1
|
Ortega-Kindica RCMH, Padasas-Adalla CS, Tabugo SRM, Martinez JGT, Amparado OA, Moneva CSO, Dalayap R, Lomeli-Ortega CO, Balcazar JL. Shotgun Metagenomics Reveals Taxonomic and Functional Patterns of the Microbiome Associated with Barbour's Seahorse (Hippocampus barbouri). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:835-841. [PMID: 38864950 DOI: 10.1007/s10126-024-10330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
This study aimed to investigate the taxonomic and functional patterns of the microbiome associated with Barbour's seahorse (Hippocampus barbouri) using a combination of shotgun metagenomics and bioinformatics. The analyses revealed that Pseudomonadota and Bacillota were the dominant phyla in the seahorse skin microbiome, whereas Pseudomonadota and, to a lesser extent, Bacillota and Bacteroidota were the dominant phyla in the seahorse gut microbiome. Several metabolic pathway categories were found to be enriched in the skin microbiome, including amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, energy metabolism, nucleotide metabolism, as well as membrane transport, signal transduction, and cellular community-prokaryotes. In contrast, the gut microbiome exhibited enrichment in metabolic pathways associated with the metabolism of terpenoids and polyketides, biosynthesis of other secondary metabolites, xenobiotics biodegradation and metabolism, and quorum sensing. Additionally, although the relative abundance of bacteriocins in the skin and gut was slightly similar, notable differences were observed at the class level. Specifically, class I bacteriocins were found to be more abundant in the skin microbiome, whereas class III bacteriocins were more abundant in the gut microbiome. To the best of our knowledge, this study represents the first comprehensive examination of the taxonomic and functional patterns of the skin and gut microbiome in Barbour's seahorse. These findings can greatly contribute to a deeper understanding of the seahorse-associated microbiome, which can play a pivotal role in predicting and controlling bacterial infections, thereby contributing to the success of aquaculture and health-promoting initiatives.
Collapse
Affiliation(s)
- Rose Chinly Mae H Ortega-Kindica
- Department of Biology and Environmental Science, University of the Philippines Cebu, Lahug, Cebu City, 6000, Philippines.
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines.
- Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines.
| | - Chinee S Padasas-Adalla
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Department of Biological Sciences, Cavite State University, Don Severino Campus, Indang, 4000, Philippines
| | - Sharon Rose M Tabugo
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Joey Genevieve T Martinez
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Mathematical Biology and Nematology Research Cluster, Complex System Groups, Premier Research Institute of Science and Mathematics (PRISM), MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Olive A Amparado
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Carlo Stephen O Moneva
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Rodelyn Dalayap
- Department of Biology, Sultan Kudarat State University, Tacurong City, Sultan Kudarat, 9800, Philippines
| | - Carlos O Lomeli-Ortega
- Catalan Institute for Water Research (ICRA), Girona, 17003, Spain
- University of Girona, Girona, 17004, Spain
| | - Jose Luis Balcazar
- Catalan Institute for Water Research (ICRA), Girona, 17003, Spain.
- University of Girona, Girona, 17004, Spain.
| |
Collapse
|
2
|
Kawser AQMR, Hoque MN, Rahman MS, Sakif TI, Coffey TJ, Islam T. Unveiling the gut bacteriome diversity and distribution in the national fish hilsa (Tenualosa ilisha) of Bangladesh. PLoS One 2024; 19:e0303047. [PMID: 38691556 PMCID: PMC11062526 DOI: 10.1371/journal.pone.0303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024] Open
Abstract
The field of fish microbiome research has rapidly been advancing, primarily focusing on farmed or laboratory fish species rather than natural or marine fish populations. This study sought to reveal the distinctive gut bacteriome composition and diversity within the anadromous fish species Tenualosa ilisha (hilsa), which holds the status of being the national fish of Bangladesh. We conducted an analysis on 15 gut samples obtained from 15 individual hilsa fishes collected from three primary habitats (e.g., freshwater = 5, brackish water = 5 and marine water = 5) in Bangladesh. The analysis utilized metagenomics based on 16S rRNA gene sequencing targeting the V3-V4 regions. Our comprehensive identification revealed a total of 258 operational taxonomic units (OTUs). The observed OTUs were represented by six phyla, nine classes, 19 orders, 26 families and 40 genera of bacteria. Our analysis unveiled considerable taxonomic differences among the habitats (freshwater, brackish water, and marine water) of hilsa fishes, as denoted by a higher level of shared microbiota (p = 0.007, Kruskal-Wallis test). Among the identified genera in the gut of hilsa fishes, including Vagococcus, Morganella, Enterobacter, Plesiomonas, Shigella, Clostridium, Klebsiella, Serratia, Aeromonas, Macrococcus, Staphylococcus, Proteus, and Hafnia, several are recognized as fish probiotics. Importantly, some bacterial genera such as Sinobaca, Synechococcus, Gemmata, Serinicoccus, Saccharopolyspora, and Paulinella identified in the gut of hilsa identified in this study have not been reported in any aquatic or marine fish species. Significantly, we observed that 67.50% (27/40) of bacterial genera were found to be common among hilsa fishes across all three habitats. Our findings offer compelling evidence for the presence of both exclusive and communal bacteriomes within the gut of hilsa fishes, exhibiting potential probiotic properties. These observations could be crucial for guiding future microbiome investigations in this economically significant fish species.
Collapse
Affiliation(s)
- A. Q. M. Robiul Kawser
- Department of Aquaculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - M. Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tahsin Islam Sakif
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia, United States of America
| | - Tracey J. Coffey
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
3
|
Fakhraldeen SA, Al-Haddad S, Habibi N, Alagarsamy S, F. K. Habeebullah S, Ali AK, Al-Zakri WM. Diversity and spatiotemporal variations in bacterial and archaeal communities within Kuwaiti territorial waters of the Northwest Arabian Gulf. PLoS One 2023; 18:e0291167. [PMID: 37972047 PMCID: PMC10653540 DOI: 10.1371/journal.pone.0291167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023] Open
Abstract
Kuwaiti territorial waters of the northwest Arabian Gulf represent a unique aquatic ecosystem prone to various environmental and anthropogenic stressors that pose significant constraints on the resident biota which must withstand extreme temperatures, salinity levels, and reducing conditions, among other factors to survive. Such conditions create the ideal environment for investigations into novel functional genetic adaptations of resident organisms. Firstly, however, it is essential to identify said organisms and understand the dynamic nature of their existence. Thus, this study provides the first comprehensive analysis of bacterial and archaeal community structures in the unique waters of Kuwait located in the Northwest Arabian Gulf and analyzes their variations with respect to depth, season, and location, as well as their susceptibility to changes in abundance with respect to various physicochemical parameters. Importantly, this study is the first of its kind to utilize a shotgun metagenomics approach with sequencing performed at an average depth of 15 million paired end reads per sample, which allows for species-level community profiling and sets the framework for future functional genomic investigations. Results showed an approximately even abundance of both archaeal (42.9%) and bacterial (57.1%) communities, but significantly greater diversity among the bacterial population, which predominantly consisted of members of the Proteobacteria, Cyanobacteria, and Bacteroidetes phyla in decreasing order of abundance. Little to no significant variations as assessed by various metrics including alpha and beta diversity analyses were observed in the abundance of archaeal and bacterial populations with respect to depth down the water column. Furthermore, although variations in differential abundance of key genera were detected at each of the three sampling locations, measurements of species richness and evenness revealed negligible variation (ANOVA p<0.05) and only a moderately defined community structure (ANOSIM r2 = 0.243; p>0.001) between the various locations. Interestingly, abundance of archaeal community members showed a significant increase (log2 median ratio of RA = 2.6) while the bacterial population showed a significant decrease (log2 median ratio = -1.29) in the winter season. These findings were supported by alpha and beta diversity analyses as well (ANOSIM r2 = 0.253; p>0.01). Overall, this study provides the first in-depth analysis of both bacterial and archaeal community structures developed using a shotgun metagenomic approach in the waters of the Northwest Arabian Gulf thus providing a framework for future investigations of functional genetic adaptations developed by resident biota attempting to survive in the uniquely extreme conditions to which they are exposed.
Collapse
Affiliation(s)
- Saja A. Fakhraldeen
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sakinah Al-Haddad
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Nazima Habibi
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Surendraraj Alagarsamy
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Sabeena F. K. Habeebullah
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| | - Abdulmuhsen K. Ali
- Biotechnology Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Shuwaikh, Kuwait
| | - Walid M. Al-Zakri
- Ecosystem-based Management of Marine Resources Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Salmiya, Kuwait
| |
Collapse
|
4
|
Yan C, Owen JS, Seo EY, Jung D, He S. Microbial Interaction is Among the Key Factors for Isolation of Previous Uncultured Microbes. J Microbiol 2023; 61:655-662. [PMID: 37589838 PMCID: PMC10477116 DOI: 10.1007/s12275-023-00063-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 08/18/2023]
Abstract
Pure cultivation of microbes is still limited by the challenges of microbial uncultivability, with most microbial strains unable to be cultivated under standard laboratory conditions. The experience accumulated from advanced techniques such as in situ cultivation has identified that microbial interactions exist in natural habitats but are absent in laboratory cultures. These microbial interactions are likely one of the key factors in isolating previously uncultured microbes. The need for better knowledge of the mechanisms operating in microbial interactions has led to various experiments that have utilized microbial interactions in different approaches to microbial cultivation. These new attempts to understand microbial interactions not only present a new perspective on microbial uncultivability but also provide an opportunity to access uncultured phylogenetically novel microbes with their potential biotechnology applications. In this review, we focus on studies of the mechanisms of microbial interaction where the growth of other microbes is affected. Additionally, we review some successful applications of microbial interactions in cultivation methods, an approach that can play an important role in the bioprospecting of untapped microbial resources.
Collapse
Affiliation(s)
- Chang Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, People's Republic of China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315832, People's Republic of China
| | - Jeffrey S Owen
- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, 17035, Republic of Korea
| | - Eun-Young Seo
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315832, People's Republic of China
| | - Dawoon Jung
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315832, People's Republic of China.
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, People's Republic of China.
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315832, People's Republic of China.
| |
Collapse
|
5
|
Ortega RCMH, Tabugo SRM, Martinez JGT, Padasas CS, Balcázar JL. Occurrence of Aeromonas Species in the Cutaneous Mucus of Barbour’s Seahorses (Hippocampus barbouri) as Revealed by High-Throughput Sequencing. Animals (Basel) 2023; 13:ani13071241. [PMID: 37048497 PMCID: PMC10092988 DOI: 10.3390/ani13071241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/23/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Although several studies have described the bacterial community composition associated with marine fish, there is limited information related to seahorses. Moreover, previous studies have demonstrated that the skin microbiota is useful for determining health status and common disorders in the host. This study, therefore, aimed to explore the skin bacterial community composition in Barbour’s seahorse (Hippocampus barbouri) using high-throughput sequencing of 16S ribosomal RNA genes. Water and sediment samples from the surrounding environment were also analyzed for comparative purposes. The results revealed that sequences affiliated with the Shewanellaceae family were dominant in the skin of female Barbour’s seahorses and sediment samples, whereas sequences affiliated with the Bacillaceae family were dominant in the skin of male Barbour’s seahorses. Interestingly, sequences affiliated with the Aeromonas genus were found in the skin of Barbour’s seahorses, whose abundance was slightly similar between the female and male specimens. Further comparative analysis showed that the presence of Aeromonas species in the skin of Barbour’s seahorses was strongly influenced by the surrounding sediment. Given that some Aeromonas species are known to be important pathogens in humans and fish, these results may be used for further research on the dependency of the skin microbial composition on the environment as well as determine whether the presence of Aeromonas and other detected species has implications on seahorse health.
Collapse
Affiliation(s)
- Rose Chinly Mae H. Ortega
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
- Molecular Systematics and Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Sharon Rose M. Tabugo
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
- Molecular Systematics and Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Joey Genevieve T. Martinez
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
- Mathematical Biology and Nematology Research Cluster, Complex Systems Group, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Chinee S. Padasas
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
- Molecular Systematics and Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
| | - José L. Balcázar
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain
- University of Girona, 17004 Girona, Spain
| |
Collapse
|
6
|
Rupert R, Rodrigues KF, Chong HLH, Yong WTL. Dataset of 16S ribosomal DNA sequences of bacteria isolated from marine red algae Kappaphycus alvarezii. Data Brief 2022; 40:107784. [PMID: 35028352 PMCID: PMC8741434 DOI: 10.1016/j.dib.2021.107784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/25/2021] [Accepted: 12/29/2021] [Indexed: 11/10/2022] Open
Abstract
The data provided in the article contains bacterial community profiles present on the surface of red algae (Kappaphycus alvarezii) isolated directly after collection and after 30 days of cultivation in a closed circulation system. The explants of Kappaphycus alvarezii were cultivated in a laboratory setting under controlled growth conditions for 30 days in order to determine bacteria that could adapt to controlled culture conditions. Amplification and sequencing of bacterial 16S rDNA amplicon were performed on bacterial isolates associated with the seedlings. The 16S rDNA gene sequences were analyzed, trimmed, and assembled into contigs using DNA Baser Sequence Assembler (V5) software. Taxonomic identification for the assembled sequences was achieved using the online BLAST (blastn) algorithm, and the construction of a phylogenetic tree was performed using the MEGA7 software. The data reveals a distinct set of microbial variations between day one and day 30. The phylogenetic tree depicts four major clusters, Vibrio, Pseudoalteromonas, Alteromonas, and Bacterioplanes resident on the surface of the K. alvarezii. Comparison between these two bacterial groups provides evidence of the persistent marine bacteria that adapt to the long-term culture in closed circulation systems. Raw data files are available at the GenBank, NCBI database under the accession number of MZ570560 to MZ570580.
Collapse
|
7
|
Fernández I, de Los Ríos-Escalante P, Valenzuela A, Aguayo P, Smith CT, García-Cancino A, Sánchez-Alonso K, Oyarzún C, Campos VL. Gastrointestinal Microbiota and Parasite-Fauna of Wild Dissostichus eleginoides Smitt, 1898 Captured at the South-Central Coast of Chile. Microorganisms 2021; 9:microorganisms9122522. [PMID: 34946125 PMCID: PMC8706219 DOI: 10.3390/microorganisms9122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022] Open
Abstract
Dissotichus eleginoides has a discontinuous circumpolar geographic distribution restricted to mountains and platforms, mainly in Subantarctic and Antarctic waters of the southern hemisphere, including the Southeast Pacific, Atlantic and Indian oceans and in areas surrounding the peninsular platforms of subantarctic islands. The aim of this work was to determine and characterize the gastrointestinal parasitic and microbial fauna of specimens of D. eleginoides captured in waters of the south-central zone of Chile. The magnitude of parasitism in D. eleginoides captured in waters of the south-central zone of Chile is variable, and the parasite richness is different from that reported in specimens from subantarctic environments. Next-generation sequencing (NGS) of the microbial community associated to intestine showed a high diversity, where Proteobacteria, Firmicutes, and Bacteriodetes were the dominant phyla. However, both parasitic and microbial structures can vary between fish from different geographic regions
Collapse
Affiliation(s)
- Italo Fernández
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Chile; (I.F.); (C.T.S.); (A.G.-C.); (K.S.-A.)
| | - Patricio de Los Ríos-Escalante
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco 4780000, Chile;
- Núcleo de Estudios Ambientales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Ariel Valenzuela
- Laboratorio de Piscicultura y Patología Acuática, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4070386, Chile; (A.V.); (C.O.)
| | - Paulina Aguayo
- Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepción, Chacabuco 539, Concepción 3349001, Chile;
- EULA Environmental Sciences Center, Faculty of Environmental Sciences, Universidad de Concepción, Concepción 4070386, Chile
| | - Carlos T. Smith
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Chile; (I.F.); (C.T.S.); (A.G.-C.); (K.S.-A.)
| | - Apolinaria García-Cancino
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Chile; (I.F.); (C.T.S.); (A.G.-C.); (K.S.-A.)
| | - Kimberly Sánchez-Alonso
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Chile; (I.F.); (C.T.S.); (A.G.-C.); (K.S.-A.)
| | - Ciro Oyarzún
- Laboratorio de Piscicultura y Patología Acuática, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4070386, Chile; (A.V.); (C.O.)
| | - Víctor L. Campos
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Chile; (I.F.); (C.T.S.); (A.G.-C.); (K.S.-A.)
- Correspondence:
| |
Collapse
|
8
|
Gomez JA, Primm TP. A Slimy Business: the Future of Fish Skin Microbiome Studies. MICROBIAL ECOLOGY 2021; 82:275-287. [PMID: 33410931 DOI: 10.1007/s00248-020-01648-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/16/2020] [Indexed: 05/10/2023]
Abstract
Fish skin contains a mucosal microbiome for the largest and oldest group of vertebrates, a location ideal for microbial community ecology and practical applications in agriculture and veterinary medicine. These selective microbiomes are dominated by Proteobacteria, with compositions different from the surrounding water. Core taxa are a small percentage of those present and are currently functionally uncharacterized. Methods for skin sampling, DNA extraction and amplification, and sequence data processing are highly varied across the field, and reanalysis of recent studies using a consistent pipeline revealed that some conclusions did change in statistical significance. Further, the 16S gene sequencing approaches lack quantitation of microbes and copy number adjustment. Thus, consistency in the field is a serious limitation in comparing across studies. The most significant area for future study, requiring metagenomic and metabolomics data, is the biochemical pathways and functions within the microbiome community, the interactions between members, and the resulting effects on fish host health being linked to specific nutrients and microbial species. Genes linked to skin colonization, such as those for attachment or mucin degradation, need to be uncovered and explored. Skin immunity factors need to be directly linked to microbiome composition and individual taxa. The basic foundation has been laid, and many exciting future discoveries remain.
Collapse
Affiliation(s)
- Javier A Gomez
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77320, USA
| | - Todd P Primm
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, 77320, USA.
| |
Collapse
|
9
|
Ahmad T, Gupta G, Sharma A, Kaur B, El-Sheikh MA, Alyemeni MN. Metagenomic analysis exploring taxonomic and functional diversity of bacterial communities of a Himalayan urban fresh water lake. PLoS One 2021; 16:e0248116. [PMID: 33764980 PMCID: PMC7993826 DOI: 10.1371/journal.pone.0248116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/21/2021] [Indexed: 11/23/2022] Open
Abstract
Freshwater lakes present an ecological border between humans and a variety of host organisms. The present study was designed to evaluate the microbiota composition and distribution in Dal Lake at Srinagar, India. The non-chimeric sequence reads were classified taxonomically into 49 phyla, 114 classes, 185 orders, 244 families and 384 genera. Proteobacteria was found to be the most abundant bacterial phylum in all the four samples. The highest number of observed species was found to be 3097 in sample taken from least populated area during summer (LPS) whereas the summer sample from highly populated area (HPS) was found most diverse among all as indicated by taxonomic diversity analysis. The QIIME output files were used for PICRUSt analysis to assign functional attributes. The samples exhibited a significant difference in their microbial community composition and structure. Comparative analysis of functional pathways indicated that the anthropogenic activities in populated areas and higher summer temperature, both decrease functional potential of the Lake microbiota. This is probably the first study to demonstrate the comparative taxonomic diversity and functional composition of an urban freshwater lake amid its highly populated and least populated areas during two extreme seasons (winter and summer).
Collapse
Affiliation(s)
- Tawseef Ahmad
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
| | - Gaganjot Gupta
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
| | - Anshula Sharma
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
| | - Baljinder Kaur
- Department of Biotechnology, Punjabi University Patiala, Punjabi, India
- * E-mail: (BK); (MNA)
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- * E-mail: (BK); (MNA)
| |
Collapse
|
10
|
Hupfauf S, Etemadi M, Fernández-Delgado Juárez M, Gómez-Brandón M, Insam H, Podmirseg SM. CoMA - an intuitive and user-friendly pipeline for amplicon-sequencing data analysis. PLoS One 2020; 15:e0243241. [PMID: 33264369 PMCID: PMC7710066 DOI: 10.1371/journal.pone.0243241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
In recent years, there has been a veritable boost in next-generation sequencing (NGS) of gene amplicons in biological and medical studies. Huge amounts of data are produced and need to be analyzed adequately. Various online and offline analysis tools are available; however, most of them require extensive expertise in computer science or bioinformatics, and often a Linux-based operating system. Here, we introduce "CoMA-Comparative Microbiome Analysis" as a free and intuitive analysis pipeline for amplicon-sequencing data, compatible with any common operating system. Moreover, the tool offers various useful services including data pre-processing, quality checking, clustering to operational taxonomic units (OTUs), taxonomic assignment, data post-processing, data visualization, and statistical appraisal. The workflow results in highly esthetic and publication-ready graphics, as well as output files in standardized formats (e.g. tab-delimited OTU-table, BIOM, NEWICK tree) that can be used for more sophisticated analyses. The CoMA output was validated by a benchmark test, using three mock communities with different sample characteristics (primer set, amplicon length, diversity). The performance was compared with that of Mothur, QIIME and QIIME2-DADA2, popular packages for NGS data analysis. Furthermore, the functionality of CoMA is demonstrated on a practical example, investigating microbial communities from three different soils (grassland, forest, swamp). All tools performed well in the benchmark test and were able to reveal the majority of all genera in the mock communities. Also for the soil samples, the results of CoMA were congruent to those of the other pipelines, in particular when looking at the key microbial players.
Collapse
Affiliation(s)
- Sebastian Hupfauf
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - María Gómez-Brandón
- Department of Ecology and Animal Biology, GEA Group, University of Vigo, Vigo, Spain
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
11
|
Advantages and Limitations of 16S rRNA Next-Generation Sequencing for Pathogen Identification in the Diagnostic Microbiology Laboratory: Perspectives from a Middle-Income Country. Diagnostics (Basel) 2020; 10:diagnostics10100816. [PMID: 33066371 PMCID: PMC7602188 DOI: 10.3390/diagnostics10100816] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022] Open
Abstract
Bacterial culture and biochemical testing (CBtest) have been the cornerstone of pathogen identification in the diagnostic microbiology laboratory. With the advent of Sanger sequencing and later, next-generation sequencing, 16S rRNA next-generation sequencing (16SNGS) has been proposed to be a plausible platform for this purpose. Nevertheless, usage of the 16SNGS platform has both advantages and limitations. In addition, transition from the traditional methods of CBtest to 16SNGS requires procurement of costly equipment, timely and sustainable maintenance of these platforms, specific facility infrastructure and technical expertise. All these factors pose a challenge for middle-income countries, more so for countries in the lower middle-income range. In this review, we describe the basis for CBtest and 16SNGS, and discuss the limitations, challenges, advantages and future potential of using 16SNGS for bacterial pathogen identification in diagnostic microbiology laboratories of middle-income countries.
Collapse
|
12
|
Okomoda VT, Nurul ANA, Danish-Daniel AM, Oladimeji AS, Abol-Munafi AB, Alabi KI, Nur AA. Microbiota composition data for wild and captive bluestreak cleaner wrasse Labroides dimidiatus (Valenciennes, 1839). Data Brief 2020; 32:106120. [PMID: 32817873 PMCID: PMC7424211 DOI: 10.1016/j.dib.2020.106120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Abstract
The Labroides dimidiatus is known as the “doctor fish” because of its role in removing parasites and infectious pathogens from the body of other fishes. This important role played both in wild and captive conditions could represent a novel form of parasitic transmission process mediated by the cleaning activity of the fish. Yet, there is a paucity of data on the microflora associated with this fish which is important for tracking disease infection and generally monitoring the health status of the fish. This article, therefore, represents the first dataset for the microbiota composition of wild and captive L. dimidiatus. Wild fish samples and carriage water were gotten in Terengganu Malaysia around the corals of the Karah Island. The captive sample, however, was obtained from well-known ornamental fish suppliers in Terengganu Malaysia. Thereafter, bacteria present on the skin, in the stomach and the aquarium water were enumerated using culture-independent approaches and Next Generation Sequencing (NGS) technology. Data obtained from the three metagenomic libraries using NGS analysis gave 1,426,740 amplicon sequence reads which are composed of 508 operational taxonomic units (OTUs) for wild samples and 3,238,564 valid reads and 828 OTUs for captive samples. All sequence reads were deposited in the GeneBank (Accession numbers SAMN14260247, SAMN14260248, SAMN14260249, SAMN14260250, SAMN14260251, and SAMN14260252). The dataset presented is associated with the research article “16S rDNA-Based Metagenomic Analysis of Microbial Communities Associated with Wild Labroides dimidiatus From Karah Island, Terengganu, Malaysia” [1]. The microbiota data presented in this article can be used to monitor the health and wellbeing of the ornamental fish, especially under captivity, hence preventing possible cross-infection.
Collapse
Affiliation(s)
- Victor Tosin Okomoda
- Department of Fisheries and Aquaculture, College of Forestry and Fisheries, University of Agriculture, P.M.B., 2373 Makurdi, Nigeria.,Institute of Tropical Aquaculture and Fisheries Research (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ashyikin Noor Ahmad Nurul
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Abdullah Muhd Danish-Daniel
- Faculty of Food Science and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | | | - Ambok Bolong Abol-Munafi
- Institute of Tropical Aquaculture and Fisheries Research (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.,Faculty of Food Science and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Korede Isaiah Alabi
- Department of Agricultural Extension and Management, Federal College of Forestry, Jos, Plateau, Nigeria
| | - Asma Ariffin Nur
- Institute of Tropical Aquaculture and Fisheries Research (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.,Faculty of Food Science and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
13
|
Nurul AAN, Danish-Daniel AM, Okomoda VT, Asma NA. Microbiota composition of captive bluestreak cleaner wrasse Labroides dimidiatus (Valenciennes, 1839). Appl Microbiol Biotechnol 2020; 104:7391-7407. [PMID: 32676710 DOI: 10.1007/s00253-020-10781-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
The Labroides dimidiatus is one of the most traded marine ornamental fishes worldwide, yet not much is known about the microflora associated with this fish. This study is designed to investigate the bacteria composition associated with captive L. dimidiatus and its surrounding aquarium water. The fish and carriage water were obtained from well-known ornamental fish suppliers in Terengganu Malaysia. Bacteria present on the skin and in the stomach and the aquarium water were enumerated using culture-independent approaches and next-generation sequencing (NGS) technology. A total of 3,238,564 valid reads and 828 total operational taxonomic units (OTUs) were obtained from the three metagenomic libraries using NGS analysis. Of all the 15 phyla identified in this study, Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria were the most prevalent in all samples. Also, 170 families belonging to 36 bacteria classes were identified. Although many of the bacteria families were common in the skin, gut, and aquarium water (39%), about 26% of the families were exclusive to the aquarium water alone. Therefore, any substantial change in the structure and abundance of microbiota (especially pathogenic bacteria) reported in this study may serve as an early sign for disease infection in the species under captivity. KEY POINTS: • Proteobacteria was the most dominant. • The microbiota was either shared or exclusively in samples.
Collapse
Affiliation(s)
- Ahmad Ashyikin Noor Nurul
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Victor Tosin Okomoda
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Department of Fisheries and Aquaculture, University of Agriculture Makurdi, PMB, 2373, Makurdi, Benue State, Nigeria.
| | - Nur Ariffin Asma
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
14
|
Osimani A, Milanović V, Roncolini A, Riolo P, Ruschioni S, Isidoro N, Loreto N, Franciosi E, Tuohy K, Olivotto I, Zarantoniello M, Cardinali F, Garofalo C, Aquilanti L, Clementi F. Hermetia illucens in diets for zebrafish (Danio rerio): A study of bacterial diversity by using PCR-DGGE and metagenomic sequencing. PLoS One 2019; 14:e0225956. [PMID: 31821372 PMCID: PMC6903733 DOI: 10.1371/journal.pone.0225956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022] Open
Abstract
In the present research, bacterial diversity was studied during a 6-month feeding trial utilizing zebrafish (Danio rerio) fed Hermetia illucens reared on different substrates with an emphasis on fish gut bacterial diversity. A polyphasic approach based on viable counting, PCR-DGGE and metagenomic 16S rRNA gene amplicon target sequencing was applied. Two different H. illucens groups were reared on coffee by-products (C) or a mixture of vegetables (S). Viable counts showed a wide variability based on substrate. PCR-DGGE and Illumina sequencing allowed the major and minor bacterial taxa to be detected. Both samples of larvae and their frass reared on the S substrate showed the highest richness and evenness of bacterial communities, whereas zebrafish (ZHC) fed H. illucens reared on substrate C and zebrafish (ZHS) fed H. illucens reared on substrate S had the lowest bacterial richness and evenness. A stimulating effect of bioactive compounds from coffee by-products on the occurrence of Lactobacillaceae and Leuconostoccaceae in H. illucens reared on substrate C has been hypothesized. Zebrafish gut samples originating from the two feeding trials showed complex microbial patterns in which Actinobacteria and Alteromonadales were always detected, irrespective of the diet used. Enterobacteriaceae in fish guts were more abundant in ZHS than in ZHC, thus suggesting an influence of the bioactive compounds (chlorogenic and caffeic acids) in the substrate on Enterobacteriaceae in fish guts. ZHC showed a higher abundance of Clostridia than did ZHS, which was likely explained by stimulating activity on the bacteria in this class by the bioactive compounds contained in H. illucens reared on substrate C. An influence of the microbiota of H. illucens or insect-derived bioactive compounds on the gut microbiota of zebrafish has been suggested. The presence of bacteria consistently associated with zebrafish guts has been found irrespective of the diet, thus attesting to the likely stability of the core fish microbiota.
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Roncolini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Nunzio Isidoro
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Nino Loreto
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Franciosi
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Kieran Tuohy
- Food Quality and Nutrition Department (DQAN), Research and Innovation Center, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Matteo Zarantoniello
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|