1
|
Zhi K, Zhou X, Gao T, Liu K, Wang Z, Cai Y, Wang Z, Wang S, Liu J, Liu D, Ying H. Engineering Saccharomyces cerevisiae for continuous secretory production of hEGF in biofilm. J Biotechnol 2025; 397:1-10. [PMID: 39549924 DOI: 10.1016/j.jbiotec.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/13/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Human epidermal growth factor (hEGF) plays a crucial role in promoting cell growth and has various clinical applications. Due to limited natural sources and the high cost of chemical synthesis, researchers are now exploring genetic engineering as a potential method for hEGF production. In this particular study, a novel hEGF expression system was developed using Saccharomyces cerevisiae. This system involved optimizing the promoter and signal peptide and deleting protease-coding genes PEP4, PRB1, and YAP3, overexpressing chaperones KAR2 and PDI1 in the protein secretion pathway, which led to a 2.01-fold increase in hEGF production compared to the wild type strain. Furthermore, biofilm-forming genes FLO11 and ALS3 were integrated to create a biofilm strain with adhesive properties. A biofilm-based immobilized continuous fermentation model was established to leverage the characteristics of this biofilm strain. Each batch of this model yielded 130 mg/L of hEGF, with a production efficiency of 2.71 mg/L/h - surpassing the production efficiency of traditional free fermentation (1.62 mg/L/h). This study presents a promising fermentation model for efficient hEGF production based on biofilm characteristics, offering valuable insights for the application of biofilm fermentation in the production of small molecule peptides.
Collapse
Affiliation(s)
- Kaiqi Zhi
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Tianping Gao
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Kehan Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenyu Wang
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jinle Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Liu
- National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Hanjie Ying
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
2
|
Song SJ, Diao HP, Guo YF, Hwang I. Advances in Subcellular Accumulation Design for Recombinant Protein Production in Tobacco. BIODESIGN RESEARCH 2024; 6:0047. [PMID: 39206181 PMCID: PMC11350518 DOI: 10.34133/bdr.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Plants and their use as bioreactors for the generation of recombinant proteins have become one of the hottest topics in the field of Plant Biotechnology and Plant Synthetic Biology. Plant bioreactors offer superior engineering potential compared to other types, particularly in the realm of subcellular accumulation strategies for increasing production yield and quality. This review explores established and emerging strategies for subcellular accumulation of recombinant proteins in tobacco bioreactors, highlighting recent advancements in the field. Additionally, the review provides reference to the crucial initial step of selecting an optimal subcellular localization for the target protein, a design that substantially impacts production outcomes.
Collapse
Affiliation(s)
- Shi-Jian Song
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Hai-Ping Diao
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yong-Feng Guo
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Inhwan Hwang
- Department of Life Science,
Pohang University of Science and Technology, Pohang, Republic of Korea
- BioApplications Inc., Pohang, Republic of Korea
| |
Collapse
|
3
|
Jun JS, Jeong HE, Hong KW. Exploring and Engineering Novel Strong Promoters for High-Level Protein Expression in Bacillus subtilis DB104 through Transcriptome Analysis. Microorganisms 2023; 11:2929. [PMID: 38138072 PMCID: PMC10745405 DOI: 10.3390/microorganisms11122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Bacillus subtilis is widely employed for recombinant protein expression. B. subtilis DB104 offers a distinct advantage as a protein expression host because it is an extracellular protease-deficient derivative of B. subtilis 168. We have conducted a time-course transcriptome analysis of B. subtilis DB104 in a prior study. In the present study, we identified 10 genes that exhibited strong expression at each time point or all, based on transcriptome data. Subsequently, we assessed the strength of 12 promoters that transcribe these genes using enhanced green fluorescent protein (eGFP) as a reporter. Among these promoters, Psdp and PskfA had the highest expression levels. At 24 h, these two promoters exhibited 34.5- and 38.8-fold higher strength, respectively, than the strength of P43, the control promoter. Consequently, these two promoters were selected for further development. We enhanced these promoters by optimizing spacer length, promoter sequence, Shine-Dalgarno sequence, regulator binding sites, and terminator sequences. As a result, we successfully engineered the most potent protein expression cassette, Psdp-4, which exhibited a 3.84-fold increase in strength compared to the original Psdp promoter. Furthermore, we constructed an expression cassette for a human epidermal growth factor (hEGF) using Psdp-4 to evaluate its general application. The expression level of His tagged hEGF, quantified using ImageJ analysis and applied to SDS-PAGE, reached the highest yield of 103.9 μg/mL under the control of Psdp-4 at 24 h. The expressed hEGF protein was purified, and its bioactivity was confirmed through a cell proliferation assay using HT-29 cells. Our work demonstrates the construction of a highly efficient expression system for B. subtilis DB104 based on transcriptome data and promoter engineering. This system enables rapid, inducer-free protein expression within 24 h. It can be used as a valuable tool for various industrial applications.
Collapse
Affiliation(s)
| | | | - Kwang-Won Hong
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang-si 10326, Republic of Korea; (J.-S.J.); (H.-E.J.)
| |
Collapse
|
4
|
Parthiban S, Vijeesh T, Gayathri T, Shanmugaraj B, Sharma A, Sathishkumar R. Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2023; 14:1252166. [PMID: 38034587 PMCID: PMC10684705 DOI: 10.3389/fpls.2023.1252166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Recombinant biopharmaceuticals including antigens, antibodies, hormones, cytokines, single-chain variable fragments, and peptides have been used as vaccines, diagnostics and therapeutics. Plant molecular pharming is a robust platform that uses plants as an expression system to produce simple and complex recombinant biopharmaceuticals on a large scale. Plant system has several advantages over other host systems such as humanized expression, glycosylation, scalability, reduced risk of human or animal pathogenic contaminants, rapid and cost-effective production. Despite many advantages, the expression of recombinant proteins in plant system is hindered by some factors such as non-human post-translational modifications, protein misfolding, conformation changes and instability. Artificial intelligence (AI) plays a vital role in various fields of biotechnology and in the aspect of plant molecular pharming, a significant increase in yield and stability can be achieved with the intervention of AI-based multi-approach to overcome the hindrance factors. Current limitations of plant-based recombinant biopharmaceutical production can be circumvented with the aid of synthetic biology tools and AI algorithms in plant-based glycan engineering for protein folding, stability, viability, catalytic activity and organelle targeting. The AI models, including but not limited to, neural network, support vector machines, linear regression, Gaussian process and regressor ensemble, work by predicting the training and experimental data sets to design and validate the protein structures thereby optimizing properties such as thermostability, catalytic activity, antibody affinity, and protein folding. This review focuses on, integrating systems engineering approaches and AI-based machine learning and deep learning algorithms in protein engineering and host engineering to augment protein production in plant systems to meet the ever-expanding therapeutics market.
Collapse
Affiliation(s)
- Subramanian Parthiban
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thandarvalli Vijeesh
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thashanamoorthi Gayathri
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Balamurugan Shanmugaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
5
|
Phan TV, Oo Y, Rodboon T, Nguyen TT, Sariya L, Chaisuparat R, Phoolcharoen W, Yodmuang S, Ferreira JN. Plant molecular farming-derived epidermal growth factor revolutionizes hydrogels for improving glandular epithelial organoid biofabrication. SLAS Technol 2023; 28:278-291. [PMID: 36966988 DOI: 10.1016/j.slast.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Epidermal growth factor (EGF) is a known signaling cue essential towards the development and organoid biofabrication particularly for exocrine glands. This study developed an in vitro EGF delivery platform with Nicotiana benthamiana plant-produced EGF (P-EGF) encapsulated on hyaluronic acid/alginate (HA/Alg) hydrogel to improve the effectiveness of glandular organoid biofabrication in short-term culture systems. Primary submandibular gland epithelial cells were treated with 5 - 20 ng/mL of P-EGF and commercially available bacteria-derived EGF (B-EGF). Cell proliferation and metabolic activity were measured by MTT and luciferase-based ATP assays. P-EGF and B-EGF 5 - 20 ng/mL promoted glandular epithelial cell proliferation during 6 culture days on a comparable fashion. Organoid forming efficiency and cellular viability, ATP-dependent activity and expansion were evaluated using two EGF delivery systems, HA/Alg-based encapsulation and media supplementation. Phosphate buffered saline (PBS) was used as a control vehicle. Epithelial organoids fabricated from PBS-, B-EGF-, and P-EGF-encapsulated hydrogels were characterized genotypically, phenotypically and by functional assays. P-EGF-encapsulated hydrogel enhanced organoid formation efficiency and cellular viability and metabolism relative to P-EGF supplementation. At culture day 3, epithelial organoids developed from P-EGF-encapsulated HA/Alg platform contained functional cell clusters expressing specific glandular epithelial markers such as exocrine pro-acinar (AQP5, NKCC1, CHRM1, CHRM3, Mist1), ductal (K18, Krt19), and myoepithelial (α-SMA, Acta2), and possessed a high mitotic activity (38-62% Ki67 cells) with a large epithelial progenitor population (∼70% K14 cells). The P-EGF encapsulation strikingly upregulated the expression of pro-acinar AQP5 cells through culture time when compared to others (B-EGF, PBS). Thus, the utilization of Nicotiana benthamiana in molecular farming can produce EGF biologicals amenable to encapsulation in HA/Alg-based in vitro platforms, which can effectively and promptly induce the biofabrication of exocrine gland organoids.
Collapse
Affiliation(s)
- Toan V Phan
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; International Graduate Program in Oral Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Yamin Oo
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Truc T Nguyen
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ladawan Sariya
- Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Lee MH, Choi C, Kim KH, Son JH, Lee GE, Choi JY, Kang CS, Shon J, Ko JM, Kim KM. Generation of Wheat Near-Isogenic Lines Overexpressing 1Bx7 Glutenin with Increased Protein Contents and SDS-Sedimentation Values. PLANTS (BASEL, SWITZERLAND) 2023; 12:1244. [PMID: 36986938 PMCID: PMC10051937 DOI: 10.3390/plants12061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Overexpression of Glu-1Bx7 via allele 1Bx7OE significantly contributes to high dough strength in some wheat varieties and is useful for improving wheat quality. However, the proportion of wheat varieties containing Bx7OE is quite low. In this study, four cultivars containing 1Bx7OE were selected, and among the selected varieties, Chisholm (1Ax2*, 1Bx7OE + 1By8*, and 1Dx5 + 1Dx10) was crossed with Keumkang, a wheat variety that contains 1Bx7 (1Ax2*, 1Bx7 + 1By8, and 1Dx5 + 1Dx10). SDS-PAGE and UPLC analyses showed that the expression of the high-molecular-weight glutenin subunit (HMW-GS) 1Bx7 was significantly higher in NILs (1Ax2*, 1Bx7OE + 1By8*, and 1Dx5 + 1Dx10) compared with that in Keumkang. Wheat quality was analyzed with near infrared reflectance spectroscopy by measuring the protein content and SDS-sedimentation of NILs. The protein content of NILs (12.94%) was 21.65% higher than that of Chisholm (10.63%) and 4.54% higher than that of Keumkang (12.37%). In addition, the SDS-sedimentation value of NILs (44.29 mL) was 14.97% and 16.44% higher than that of Keumkang (38.52 mL) and Chisholm (38.03 mL), respectively. This study predicts that the quality of domestic wheat can be improved by crossbreeding with 1Bx7OE-containing cultivars.
Collapse
|
7
|
Wang Y, Fan J, Ahmad N, Xin W, Wei Z, Xing S. Successful production of human epidermal growth factor in tobacco chloroplasts in a biologically active conformation. Growth Factors 2023; 41:20-31. [PMID: 36454601 DOI: 10.1080/08977194.2022.2150187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Human epidermal growth factor (hEGF) is an important therapeutic compound with multiple applications particularly in pharmaceutical industry. Human EGF has already been expressed in different expression systems, however, the production of hEGF with bioactivity in chloroplasts has not been successful so far. In this study, we expressed a 6 × His-tagged hEGF in tobacco chloroplasts in its native conformation for the potential of large-scale production of hEGF for industrial applications. Several transplastomic plant lines were obtained, which were screened by PCR (polymerase chain reaction) using primers specific to selectable gene aadA, hEGF- and GFP-coding sequences that were included in the chloroplast expression vector. The selected lines were confirmed to be homoplasmic by PCR verification and Southern blot analysis. Immunoblotting assays of homoplasmic lines using antibodies raised against hEGF confirmed the accumulation of hEGF in transplastomic plants and the ELISA results demonstrated the expression levels of hEGF were between 0.124% and 0.165% of the total soluble proteins (TSP), namely, 23.16-25.77 ng/g of the fresh weight. In terms of activity, the data from cell proliferation and elongation assays showed that the tobacco-derived recombinant hEGF was as bioactive as its commercial counterpart. To our knowledge, this is the first report of recombinant production of hEGF with native bioactivity form in the chloroplast stroma. Overall, our results demonstrate the potential of higher plant chloroplasts for the production of a human therapeutic, hEGF, in an active conformation.
Collapse
Affiliation(s)
- Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jieying Fan
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Wen Xin
- Beijing TransGen Biotech Co., Ltd, Beijing, China
| | - Zhengyi Wei
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Shaochen Xing
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
8
|
Wang Y, Fan J, Wei Z, Xing S. Efficient expression of fusion human epidermal growth factor in tobacco chloroplasts. BMC Biotechnol 2023; 23:1. [PMID: 36611158 PMCID: PMC9824920 DOI: 10.1186/s12896-022-00771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chloroplast transformation is a robust technology for the expression of recombinant proteins. Various types of pharmaceutical proteins including growth factors have been reported in chloroplasts via chloroplast transformation approach at high expression levels. However, high expression of epidermal growth factor (EGF) in chloroplasts with the technology is still unavailable. RESULTS The present work explored the high-level expression of recombinant EGF, a protein widely applied in many clinical therapies, in tobacco chloroplasts. In this work, homoplastic transgenic plants expressing fusion protein GFP-EGF, which was composed of GFP and EGF via a linker, were generated. The expression of GFP-EGF was confirmed by the combination of green fluorescent observation and Western blotting. The achieved accumulation of the recombinant fusion GFP-EGF was 10.21 ± 0.27% of total soluble proteins (1.57 ± 0.05 g kg- 1 of fresh leaf). The chloroplast-derived GFP-EGF was capable of increasing the cell viability of the NSLC cell line A549 and enhancing the phosphorylation level of the EGF receptor in the A549 cells. CONCLUSION The expression of recombinant EGF in tobacco chloroplasts via chloroplast transformation method was achieved at considerable accumulation level. The attempt gives a good example for the application of chloroplast transformation technology in recombinant pharmaceutical protein production.
Collapse
Affiliation(s)
- Yunpeng Wang
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China
| | - Jieying Fan
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China
| | - Zhengyi Wei
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China ,grid.452720.60000 0004 0415 7259Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Shaochen Xing
- grid.464388.50000 0004 1756 0215Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033 China
| |
Collapse
|
9
|
Akter S, Afrin S, Kim J, Kang J, Razzak MA, Berggren PO, Hwang I. Production of active Exendin-4 in Nicotiana benthamiana and its application in treatment of type-2 diabetics. FRONTIERS IN PLANT SCIENCE 2022; 13:1062658. [PMID: 36618620 PMCID: PMC9812950 DOI: 10.3389/fpls.2022.1062658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
GLP-1 (Glucagon-like peptide-1) is a peptide that stimulates insulin secretion from the β-cell for glycemic control of the plasma blood glucose level. Its mimetic exenatide (synthetic Exendin-4) with a longer half-life of approximately 3.3-4 h is widely used in clinical application to treat diabetes. Currently, exenatide is chemically synthesized. In this study, we report that the GLP-1 analogue recombinant Exendin-4 (Exdn-4) can be produced at a high level in Nicotiana benthamiana, with an estimated yield of 50.0 µg/g fresh biomass. For high-level expression, we generated a recombinant gene, B:GB1:ddCBD1m:8xHis : Exendin-4 (BGC : Exdn-4), for the production of Exendin-4 using various domains such as the BiP signal peptide, the GB1 domain (B1 domain of streptococcal G protein), a double cellulose binding domain 1 (CBD1), and 8 His residues (8xHis) to the N-terminus of Exendin-4. GB1 was used to increase the expression, whereas double CBD1 and 8xHis were included as affinity tags for easy purification using MCC beads and Ni2+-NTA resin, respectively. BGC : Exdn-4 was purified by single-step purification to near homogeneity using both Ni2+-NTA resin and microcrystalline cellulose (MCC) beads. Moreover, Exdn-4 without any extra residues was produced from BGC : Exdn-4 bound onto MCC beads by treating with enterokinase. Plant-produced Exdn-4 (Exendin-4) was as effective as chemically synthesized Exendin-4 in glucose-induced insulin secretion (GIIS) from mouse MIN6m9 cells a pancreatic beta cell line.
Collapse
Affiliation(s)
- Shammi Akter
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Shajia Afrin
- Department of Research and Development, BioN Inc., Pohang, South Korea
| | - Jaeyoon Kim
- Department of Research and Development, BioN Inc., Pohang, South Korea
| | - Joohyun Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Md Abdur Razzak
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
10
|
Phetphoung T, Malla A, Rattanapisit K, Pisuttinusart N, Damrongyot N, Joyjamras K, Chanvorachote P, Phakham T, Wongtangprasert T, Strasser R, Chaotham C, Phoolcharoen W. Expression of plant-produced anti-PD-L1 antibody with anoikis sensitizing activity in human lung cancer cells via., suppression on epithelial-mesenchymal transition. PLoS One 2022; 17:e0274737. [PMID: 36367857 PMCID: PMC9651560 DOI: 10.1371/journal.pone.0274737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint antibodies in cancer treatment are receptor-ligand pairs that modulate cancer immunity. PD-1/PD-L1 pathway has emerged as one of the major targets in cancer immunotherapy. Atezolizumab, the first anti-PD-L1 antibody approved for the treatment of metastatic urothelial, non-small cell lung, small cell lung and triple-negative breast cancers, is produced in Chinese Hamster Ovary (CHO) cells with several limitations i.e., high-production costs, low-capacity yields, and contamination risks. Due to the rapid scalability and low production costs, the transient expression in Nicotiana benthamiana leaves was investigated by co-infiltration of Agrobacterium tumefaciens GV3101 cultures harboring the nucleic acid sequences encoding for Atezolizumab heavy chain and light chain in this study. The transient expression of Atezolizumab in transformed N. benthamiana accumulated up to 86.76 μg/g fresh leaf weight after 6 days of agroinfiltration (OD 600 nm: 0.4) with 1:1 ratio of heavy chain to light chain. The structural and functional characteristics of plant-produced Atezolizumab was compared with commercially available Tecentriq® from CHO cells with similar binding efficacies to PD-L1 receptor. The direct anti-cancer effect of plant-produced anti-PD-L1 was further performed in human lung metastatic cancer cells H460 cultured under detachment condition, demonstrating the activity of anti-PD-L1-antibody on sensitizing anoikis as well as the suppression on anti-apoptosis proteins (Bcl-2 and Mcl-1) and modulation of epithelial to mesenchymal regulating proteins (E-cadherin, N-cadherin, Snail and Slug). In conclusion, this study manifests plants as an alternative cost-effective platform for the production of functional monoclonal antibodies for use in cancer therapy.
Collapse
Affiliation(s)
- Thareeya Phetphoung
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Nuttapat Pisuttinusart
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Naruechai Damrongyot
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Keerati Joyjamras
- Pharmacology and Toxicology Unit, Department of Medical Science, Faculty of Science, Rangsit University, Pathum Thani, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tanapati Phakham
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Cancer Immunotherapy, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Tossapon Wongtangprasert
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Cancer Immunotherapy, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Chulalongkorn Comprehensive Cancer Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (CC); (WP)
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (CC); (WP)
| |
Collapse
|
11
|
Vasilev N. Medicinal Plants: Guests and Hosts in the Heterologous Expression of High-Value Products. PLANTA MEDICA 2022; 88:1175-1189. [PMID: 34521134 DOI: 10.1055/a-1576-4148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medicinal plants play an important dual role in the context of the heterologous expression of high-value pharmaceutical products. On the one hand, the classical biochemical and modern omics approaches allowed for the discovery of various genes encoding biosynthetic pathways in medicinal plants. Recombinant DNA technology enabled introducing these genes and regulatory elements into host organisms and enhancing the heterologous production of the corresponding secondary metabolites. On the other hand, the transient expression of foreign DNA in plants facilitated the production of numerous proteins of pharmaceutical importance. This review summarizes several success stories of the engineering of plant metabolic pathways in heterologous hosts. Likewise, a few examples of recombinant protein expression in plants for therapeutic purposes are also highlighted. Therefore, the importance of medicinal plants has grown immensely as sources for valuable products of low and high molecular weight. The next step ahead for bioengineering is to achieve more success stories of industrial-scale production of secondary plant metabolites in microbial systems and to fully exploit plant cell factories' commercial potential for recombinant proteins.
Collapse
Affiliation(s)
- Nikolay Vasilev
- TU Dortmund University, Biochemical and Chemical Engineering, Technical Biochemistry, Dortmund, Germany
| |
Collapse
|
12
|
Hanittinan O, Rattanapisit K, Malla A, Tharakhet K, Ketloy C, Prompetchara E, Phoolcharoen W. Feasibility of plant-expression system for production of recombinant anti-human IgE: An alternative production platform for therapeutic monoclonal antibodies. FRONTIERS IN PLANT SCIENCE 2022; 13:1012583. [PMID: 36531354 PMCID: PMC9755585 DOI: 10.3389/fpls.2022.1012583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/18/2022] [Indexed: 05/07/2023]
Abstract
Omalizumab, the anti-immunoglobulin IgE antibody is the only approved and available monoclonal antibody as an auxiliary medicament for the severe respiratory allergic reactions. It forms small size immune complexes by binding to free IgE, thereby inhibiting the interaction of IgE with its receptors. Additionally, the anti-IgE can also differently shape the airflow by impeding the stimulation of IgE receptors present on structural cells in the respiratory tract. The present study aimed to use plants as an expression system for anti-human IgE antibody production, using Nicotiana benthamiana as hosts. Recombinant Agrobacterium tumefaciens containing heavy chain (HC) and light chain (LC) domains of anti-human IgE were co-transformed in N. benthamiana. The assembling of the antibody and its expression was detected by SDS-PAGE and Western blot analysis. The functional ability of the anti-IgE antibody was determined via its binding capacity with target IgE by ELISA and the inhibition of basophil activation. The anti-human IgE mAb generated in plants was shown to be effective in binding to its target IgE and inhibit the IgE-crosslink in RS-ATL8 reporter cells. Although, antibody yield and purification process have to be further optimized, this study demonstrates the use of plant expression system as a promising platform for the production of Omalizumab which showed a comparable in vitro function to that of commercial Omalizumab (Xolair) in the inhibition of basophil activation.
Collapse
Affiliation(s)
- Oranicha Hanittinan
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Kittipan Tharakhet
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Eakachai Prompetchara
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Eakachai Prompetchara, ; Waranyoo Phoolcharoen,
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Eakachai Prompetchara, ; Waranyoo Phoolcharoen,
| |
Collapse
|
13
|
Kaur M, Manchanda P, Kalia A, Ahmed FK, Nepovimova E, Kuca K, Abd-Elsalam KA. Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants. Int J Mol Sci 2021; 22:10882. [PMID: 34639221 PMCID: PMC8509792 DOI: 10.3390/ijms221910882] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
Agrobacterium-mediated transformation is one of the most commonly used genetic transformation method that involves transfer of foreign genes into target plants. Agroinfiltration, an Agrobacterium-based transient approach and the breakthrough discovery of CRISPR/Cas9 holds trending stature to perform targeted and efficient genome editing (GE). The predominant feature of agroinfiltration is the abolishment of Transfer-DNA (T-DNA) integration event to ensure fewer biosafety and regulatory issues besides showcasing the capability to perform transcription and translation efficiently, hence providing a large picture through pilot-scale experiment via transient approach. The direct delivery of recombinant agrobacteria through this approach carrying CRISPR/Cas cassette to knockout the expression of the target gene in the intercellular tissue spaces by physical or vacuum infiltration can simplify the targeted site modification. This review aims to provide information on Agrobacterium-mediated transformation and implementation of agroinfiltration with GE to widen the horizon of targeted genome editing before a stable genome editing approach. This will ease the screening of numerous functions of genes in different plant species with wider applicability in future.
Collapse
Affiliation(s)
- Maninder Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Farah K. Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., Giza 12619, Egypt;
| |
Collapse
|
14
|
Phakham T, Bulaon CJI, Khorattanakulchai N, Shanmugaraj B, Buranapraditkun S, Boonkrai C, Sooksai S, Hirankarn N, Abe Y, Strasser R, Rattanapisit K, Phoolcharoen W. Functional Characterization of Pembrolizumab Produced in Nicotiana benthamiana Using a Rapid Transient Expression System. FRONTIERS IN PLANT SCIENCE 2021; 12:736299. [PMID: 34567049 PMCID: PMC8459022 DOI: 10.3389/fpls.2021.736299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 05/23/2023]
Abstract
The striking innovation and clinical success of immune checkpoint inhibitors (ICIs) have undoubtedly contributed to a breakthrough in cancer immunotherapy. Generally, ICIs produced in mammalian cells requires high investment, production costs, and involves time consuming procedures. Recently, the plants are considered as an emerging protein production platform due to its cost-effectiveness and rapidity for the production of recombinant biopharmaceuticals. This study explored the potential of plant-based system to produce an anti-human PD-1 monoclonal antibody (mAb), Pembrolizumab, in Nicotiana benthamiana. The transient expression of this mAb in wild-type N. benthamiana accumulated up to 344.12 ± 98.23 μg/g fresh leaf weight after 4 days of agroinfiltration. The physicochemical and functional characteristics of plant-produced Pembrolizumab were compared to mammalian cell-produced commercial Pembrolizumab (Keytruda®). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis results demonstrated that the plant-produced Pembrolizumab has the expected molecular weight and is comparable with the Keytruda®. Structural characterization also confirmed that both antibodies have no protein aggregation and similar secondary and tertiary structures. Furthermore, the plant-produced Pembrolizumab displayed no differences in its binding efficacy to PD-1 protein and inhibitory activity between programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) interaction with the Keytruda®. In vitro efficacy for T cell activation demonstrated that the plant-produced Pembrolizumab could induce IL-2 and IFN-γ production. Hence, this proof-of-concept study showed that the plant-production platform can be utilized for the rapid production of functional mAbs for immunotherapy.
Collapse
Affiliation(s)
- Tanapati Phakham
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Narach Khorattanakulchai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | | - Supranee Buranapraditkun
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Yoshito Abe
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Hui Yan T, Babji AS, Lim SJ, Sarbini SR. A Systematic Review of Edible Swiftlet's Nest (ESN): Nutritional bioactive compounds, health benefits as functional food, and recent development as bioactive ESN glycopeptide hydrolysate. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Malla A, Rosales-Mendoza S, Phoolcharoen W, Vimolmangkang S. Efficient Transient Expression of Recombinant Proteins Using DNA Viral Vectors in Freshwater Microalgal Species. FRONTIERS IN PLANT SCIENCE 2021; 12:650820. [PMID: 33897742 PMCID: PMC8058379 DOI: 10.3389/fpls.2021.650820] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 05/07/2023]
Abstract
The increase in the world population, the advent of new infections and health issues, and the scarcity of natural biological products have spotlighted the importance of recombinant protein technology and its large-scale production in a cost-effective manner. Microalgae have become a significant promising platform with the potential to meet the increasing demand for recombinant proteins and other biologicals. Microalgae are safe organisms that can grow rapidly and are easily cultivated with basic nutrient requirements. Although continuous efforts have led to considerable progress in the algae genetic engineering field, there are still many hurdles to overcome before these microorganisms emerge as a mature expression system. Hence, there is a need to develop efficient expression approaches to exploit microalgae for the production of recombinant proteins at convenient yields. This study aimed to test the ability of the DNA geminiviral vector with Rep-mediated replication to transiently express recombinant proteins in the freshwater microalgal species Chlamydomonas reinhardtii and Chlorella vulgaris using Agrobacterium-mediated transformation. The SARS-CoV-2 receptor binding domain (RBD) and basic fibroblast growth factor (bFGF) are representative antigen proteins and growth factor proteins, respectively, that were subcloned in a geminiviral vector and were used for nuclear transformation to transiently express these proteins in C. reinhardtii and C. vulgaris. The results showed that the geminiviral vector allowed the expression of both recombinant proteins in both algal species, with yields at 48 h posttransformation of up to 1.14 μg/g RBD and 1.61 ng/g FGF in C. vulgaris and 1.61 μg/g RBD and 1.025 ng/g FGF in C. reinhardtii. Thus, this study provides a proof of concept for the use of DNA viral vectors for the simple, rapid, and efficient production of recombinant proteins that repress the difficulties faced in the genetic transformation of these unicellular green microalgae. This concept opens an avenue to explore and optimize green microalgae as an ideal economically valuable platform for the production of therapeutic and industrially relevant recombinant proteins in shorter time periods with significant yields.
Collapse
Affiliation(s)
- Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
17
|
Mamedov T, Gurbuzaslan I, Yuksel D, Ilgin M, Mammadova G, Ozkul A, Hasanova G. Soluble Human Angiotensin- Converting Enzyme 2 as a Potential Therapeutic Tool for COVID-19 is Produced at High Levels In Nicotiana benthamiana Plant With Potent Anti-SARS-CoV-2 Activity. FRONTIERS IN PLANT SCIENCE 2021; 12:742875. [PMID: 34938305 PMCID: PMC8685454 DOI: 10.3389/fpls.2021.742875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 05/05/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread to more than 222 countries and has put global public health at high risk. The world urgently needs a safe, cost-effective SARS-CoV-2 vaccine as well as therapeutic and antiviral drugs to combat COVID-19. Angiotensin-converting enzyme 2 (ACE2), as a key receptor for SARS-CoV-2 infections, has been proposed as a potential therapeutic tool in patients with COVID-19. In this study, we report a high-level production (about ∼0.75 g/kg leaf biomass) of human soluble (truncated) ACE2 in the Nicotiana benthamiana plant. After the Ni-NTA single-step, the purification yields of recombinant plant produced ACE2 protein in glycosylated and deglycosylated forms calculated as ∼0.4 and 0.5 g/kg leaf biomass, respectively. The plant produced recombinant human soluble ACE2s successfully bind to the SARS-CoV-2 spike protein. Importantly, both deglycosylated and glycosylated forms of ACE2 are stable at increased temperatures for extended periods of time and demonstrated strong anti-SARS-CoV-2 activities in vitro. The half maximal inhibitory concentration (IC50) values of glycosylated ACE2 (gACE2) and deglycosylated ACE2 (dACE2) were ∼1.0 and 8.48 μg/ml, respectively, for the pre-entry infection, when incubated with 100TCID50 of SARS-CoV-2. Therefore, plant produced soluble ACE2s are promising cost-effective and safe candidates as a potential therapeutic tool in the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
- *Correspondence: Tarlan Mamedov,
| | - Irem Gurbuzaslan
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Damla Yuksel
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Merve Ilgin
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Gunay Mammadova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - Aykut Ozkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Gulnara Hasanova
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
18
|
Uthailak N, Kajiura H, Misaki R, Fujiyama K. Transient Production of Human β-Glucocerebrosidase With Mannosidic-Type N-Glycan Structure in Glycoengineered Nicotiana benthamiana Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:683762. [PMID: 34163514 PMCID: PMC8215604 DOI: 10.3389/fpls.2021.683762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 05/02/2023]
Abstract
Gaucher disease is an inherited lysosomal storage disorder caused by a deficiency of functional enzyme β-glucocerebrosidase (GCase). Recombinant GCase has been used in enzyme replacement therapy to treat Gaucher disease. Importantly, the terminal mannose N-glycan structure is essential for the uptake of recombinant GCase into macrophages via the mannose receptor. In this research, recombinant GCase was produced using Agrobacterium-mediated transient expression in both wild-type (WT) and N-acetylglucosaminyltransferase I (GnTI) downregulated Nicotiana benthamiana (ΔgntI) plants, the latter of which accumulates mannosidic-type N-glycan structures. The successfully produced functional GCase exhibited GCase enzyme activity. The enzyme activity was the same as that of the conventional mammalian-derived GCase. Notably, N-glycan analysis revealed that a mannosidic-type N-glycan structure lacking plant-specific N-glycans (β1,2-xylose and α1,3-fucose residues) was predominant in all glycosylation sites of purified GCase produced from ΔgntI plants. Our research provides a promising alternative plant line as a host for the production of recombinant GCase with a mannosidic-type N-glycan structure. This glycoengineered plant might be applicable to the production of other pharmaceutical proteins, especially mannose receptor targeted protein, for therapeutic uses.
Collapse
Affiliation(s)
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Cooperative Research Station in Southeast Asia, International Center for Biotechnology, Osaka University, Mahidol University, Bangkok, Thailand
- *Correspondence: Kazuhito Fujiyama
| |
Collapse
|