1
|
Zhang M, Li Z, Jia Y, Wang F, Tian J, Zhang C, Han T, Xing R, Ye W, Wang C. Observing Mesoscopic Nucleic Acid Capacitance Effect and Mismatch Impact via Graphene Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105890. [PMID: 35072345 DOI: 10.1002/smll.202105890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This work reports a molecular-scale capacitance effect of the double helical nucleic acid duplex structure for the first time. By quantitatively conducting large sample measurements of the electrostatic field effect using a type of high-accuracy graphene transistor biosensor, an unusual charge-transport behavior is observed in which the end-immobilized nucleic acid duplexes can store a part of ionization electrons like molecular capacitors, other than electric conductors. To elucidate this discovery, a cascaded capacitive network model is proposed as a novel equivalent circuit of nucleic acid duplexes, expanding the point-charge approximation model, by which the partial charge-transport observation is reasonably attributed to an electron-redistribution behavior within the capacitive network. Furthermore, it is experimentally confirmed that base-pair mismatches hinder the charge transport in double helical duplexes, and lead to directly identifiable alterations in electrostatic field effects. The bioelectronic principle of mismatch impact is also self-consistently explained by the newly proposed capacitive network model. The mesoscopic nucleic acid capacitance effect may enable a new kind of label-free nucleic acid analysis tool based on electronic transistor devices. The in situ and real-time nucleic acid detections for virus biomarkers, somatic mutations, and genome editing off-target may thus be predictable.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Zhibo Li
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Yuan Jia
- Industrialization Center of Micro & Nano ICs and Devices Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Fuquan Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Jinpeng Tian
- Industrialization Center of Micro & Nano ICs and Devices Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Cuiping Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Tingting Han
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| | - Ruiqing Xing
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| | - Weixiang Ye
- Department of Physics, School of Science, Hainan University, Haikou, 570228, China
- Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, School of Science, Hainan University, Haikou, 570228, China
| | - Cheng Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
2
|
Recent Developments in Phenotypic and Molecular Diagnostic Methods for Antimicrobial Resistance Detection in Staphylococcus aureus: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12010208. [PMID: 35054375 PMCID: PMC8774325 DOI: 10.3390/diagnostics12010208] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen responsible for a wide range of infections in humans, such as skin and soft tissue infections, pneumonia, food poisoning or sepsis. Historically, S. aureus was able to rapidly adapt to anti-staphylococcal antibiotics and become resistant to several classes of antibiotics. Today, methicillin-resistant S. aureus (MRSA) is a multidrug-resistant pathogen and is one of the most common bacteria responsible for hospital-acquired infections and outbreaks, in community settings as well. The rapid and accurate diagnosis of antimicrobial resistance in S. aureus is crucial to the early initiation of directed antibiotic therapy and to improve clinical outcomes for patients. In this narrative review, I provide an overview of recent phenotypic and molecular diagnostic methods for antimicrobial resistance detection in S. aureus, with a particular focus on MRSA detection. I consider methods for resistance detection in both clinical samples and isolated S. aureus cultures, along with a brief discussion of the advantages and the challenges of implementing such methods in routine diagnostics.
Collapse
|
3
|
Mahadhy A, Mattiasson B, StåhlWernersson E, Hedström M. Evaluation of Polytyramine Film and 6-Mercaptohexanol Self-Assembled Monolayers as the Immobilization Layers for a Capacitive DNA Sensor Chip: A Comparison. SENSORS 2021; 21:s21238149. [PMID: 34884153 PMCID: PMC8662409 DOI: 10.3390/s21238149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022]
Abstract
The performance of a biosensor is associated with the properties of an immobilization layer on a sensor chip. In this study, gold sensor chips were modified with two different immobilization layers, polytyramine film and 6-mercaptohexanol self-assembled monolayer. The physical, electrochemical and analytical properties of polytyramine film and mercaptohexanol self-assembled monolayer modified gold sensor chips were studied and compared. The study was conducted using atomic force microscopy, cyclic voltammetry and a capacitive DNA-sensor system (CapSenze™ Biosystem). The results obtained by atomic force microscopy and cyclic voltammetry indicate that polytyramine film on the sensor chip surface possesses better insulating properties and provides more spaces for the immobilization of the capture probe than a mercaptohexanol self-assembled monolayer. A capacitive DNA sensor hosting a polytyramine single-stranded DNA-modified sensor chip displayed higher sensitivity and larger signal amplitude than that of a mercaptohexanol single-stranded DNA-modified sensor chip. The linearity responses for polytyramine single-stranded DNA- and mercaptohexanol single-stranded DNA-modified sensor chips were obtained at log concentration ranges, equivalent to 10-12 to 10-8 M and 10-10 to 10-8 M, with detection limits of 4.0 × 10-13 M and 7.0 × 10-11 M of target complementary single-stranded DNA, respectively. Mercaptohexanol single-stranded DNA- and polytyramine single-stranded DNA-modified sensor chips exhibited a notable selectivity at an elevated hybridization temperature of 50 °C, albeit the signal amplitudes due to the hybridization of the target complementary single-stranded DNA were reduced by almost 20% and less than 5%, respectively.
Collapse
Affiliation(s)
- Ally Mahadhy
- Department of Biotechnology, Lund University, 22100 Lund, Sweden; (A.M.); (E.S.); (M.H.)
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam 16103, Tanzania
| | - Bo Mattiasson
- Department of Biotechnology, Lund University, 22100 Lund, Sweden; (A.M.); (E.S.); (M.H.)
- CapSenze Biosystem AB, Värmö 5520, 26873 Billeberga, Sweden
- Correspondence: ; Tel.: +46-46-222-8264 or +46-70-605-9830
| | - Eva StåhlWernersson
- Department of Biotechnology, Lund University, 22100 Lund, Sweden; (A.M.); (E.S.); (M.H.)
| | - Martin Hedström
- Department of Biotechnology, Lund University, 22100 Lund, Sweden; (A.M.); (E.S.); (M.H.)
- CapSenze Biosystem AB, Värmö 5520, 26873 Billeberga, Sweden
| |
Collapse
|
4
|
Idil N, Bakhshpour M, Perçin I, Mattiasson B. Whole Cell Recognition of Staphylococcus aureus Using Biomimetic SPR Sensors. BIOSENSORS 2021; 11:140. [PMID: 33947112 PMCID: PMC8145927 DOI: 10.3390/bios11050140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 01/09/2023]
Abstract
Over the past few decades, a significant increase in multi-drug-resistant pathogenic microorganisms has been of great concern and directed the research subject to the challenges that the distribution of resistance genes represent. Globally, high levels of multi-drug resistance represent a significant health threat and there is a growing requirement of rapid, accurate, real-time detection which plays a key role in tracking of measures for the infections caused by these bacterial strains. It is also important to reduce transfer of resistance genes to new organisms. The, World Health Organization has informed that millions of deaths have been reported each year recently. To detect the resistant organisms traditional detection approaches face limitations, therefore, newly developed technologies are needed that are suitable to be used in large-scale applications. In the present study, the aim was to design a surface plasmon resonance (SPR) sensor with micro-contact imprinted sensor chips for the detection of Staphylococcus aureus. Whole cell imprinting was performed by N-methacryloyl-L-histidine methyl ester (MAH) under UV polymerization. Sensing experiments were done within a concentration range of 1.0 × 102-2.0 × 105 CFU/mL. The recognition of S. aureus was accomplished by the involvement of microcontact imprinting and optical sensor technology with a detection limit of 1.5 × 103 CFU/mL. Selectivity of the generated sensor was evaluated through injections of competing bacterial strains. The responses for the different strains were compared to that of S. aureus. Besides, real experiments were performed with milk samples spiked with S. aureus and it was demonstrated that the prepared sensor platform was applicable for real samples.
Collapse
Affiliation(s)
- Neslihan Idil
- Department of Biology, Hacettepe University, 06800 Ankara, Turkey; (N.I.); (I.P.)
| | | | - Işık Perçin
- Department of Biology, Hacettepe University, 06800 Ankara, Turkey; (N.I.); (I.P.)
| | - Bo Mattiasson
- Division of Biotechnology, Lund University, 22100 Lund, Sweden
- Indienz AB, Annebergs Gård, 26873 Billeberga, Sweden
| |
Collapse
|