1
|
Granados-Casas AO, Fernández-Bravo A, Stchigel AM, Cano-Lira JF. Genomic Sequencing and Functional Analysis of the Ex-Type Strain of Malbranchea zuffiana. J Fungi (Basel) 2024; 10:600. [PMID: 39330360 PMCID: PMC11433161 DOI: 10.3390/jof10090600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Malbranchea is a genus within the order Onygenales (phylum Ascomycota) that includes predominantly saprobic cosmopolitan species. Despite its ability to produce diverse secondary metabolites, no genomic data for Malbranchea spp. are currently available in databases. Therefore, in this study, we obtained, assembled, and annotated the genomic sequence of the ex-type strain of Malbranchea zuffiana (CBS 219.58). For the genomic sequencing, we employed both the Illumina and PacBio platforms, followed by hybrid assembly using MaSuRCA. Quality assessment of the assembly was performed using QUAST and BUSCO tools. Annotation was conducted using BRAKER2, and functional annotation was completed with InterProScan. The resulting genome was of high quality, with a size of 26.46 Mbp distributed across 38 contigs and a BUSCO completion rate of 95.7%, indicating excellent contiguity and assembly completeness. A total of 8248 protein-encoding genes were predicted, with functional annotations assigned to 73.9% of them. Moreover, 82 genes displayed homology with entries in the Pathogen Host Interactions (PHI) database, while 494 genes exhibited similarity to entries in the Carbohydrate-Active Enzymes (CAZymes) database. Furthermore, 30 biosynthetic gene clusters (BGCs) were identified, suggesting significant potential for the biosynthesis of diverse secondary metabolites. Comparative functional analysis with closely related species unveiled a considerable abundance of domains linked to enzymes involved in keratin degradation, alongside a restricted number of domains associated with enzymes engaged in plant cell wall degradation in all studied species of the Onygenales. This genome-based elucidation not only enhances our comprehension of the biological characteristics of M. zuffiana but also furnishes valuable insights for subsequent investigations concerning Malbranchea species and the order Onygenales.
Collapse
Affiliation(s)
- Alan Omar Granados-Casas
- Mycology Unit, School of Medicine, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| | - Ana Fernández-Bravo
- Mycology Unit, School of Medicine, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| | - Alberto Miguel Stchigel
- Mycology Unit, School of Medicine, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| | - José Francisco Cano-Lira
- Mycology Unit, School of Medicine, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Spain
| |
Collapse
|
2
|
Guajardo N, Schrebler RA. Upstream and Downstream Bioprocessing in Enzyme Technology. Pharmaceutics 2023; 16:38. [PMID: 38258049 PMCID: PMC10818583 DOI: 10.3390/pharmaceutics16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/24/2024] Open
Abstract
The development of biotransformation must integrate upstream and downstream processes. Upstream bioprocessing will influence downstream bioprocessing. It is essential to consider this because downstream processes can constitute the highest cost in bioprocessing. This review comprehensively overviews the most critical aspects of upstream and downstream bioprocessing in enzymatic biocatalysis. The main upstream processes discussed are enzyme production, enzyme immobilization methodologies, solvent selection, and statistical optimization methodologies. The main downstream processes reviewed in this work are biocatalyst recovery and product separation and purification. The correct selection and combination of upstream and downstream methodologies will allow the development of a sustainable and highly productive system.
Collapse
Affiliation(s)
- Nadia Guajardo
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | | |
Collapse
|
3
|
Dadwal A, Sharma S, Satyanarayana T. Biochemical characteristics of Myceliophthora thermophila recombinant β-glucosidase (MtBgl3c) applicable in cellulose bioconversion. Prep Biochem Biotechnol 2023; 53:1187-1198. [PMID: 36799667 DOI: 10.1080/10826068.2023.2177869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The GH3 β-glucosidase gene of Myceliophthora thermophila (MtBgl3c) has been cloned and heterologously expressed in E. coli for the first time. This study highlights the important characteristics of recombinant MtBgl3c (rMtBgl3c) which make it a promising candidate in industrial applications. Optimization of the production of rMtBgl3c led to 28,000 U L-1. On purification, it has a molecular mass of ∼100 kDa. It is a broad substrate specific thermostable enzyme that exhibits pH and temperature optima at 5.0 and 55 °C, respectively. The amino acid residues Asp287 and Glu514 act as nucleophile and catalytic acid/base, respectively in the enzyme catalysis. Its low Km value (1.28 mM) indicates a high substrate affinity as compared to those previously reported. The rMtBgl3c displays a synergistic action with the commercial enzyme cocktail in the saccharification of sugarcane bagasse suggesting its utility in the cellulose bioconversion. Tolerance to solvents, detergents as well as glucose make this enzyme applicable in wine, detergent, paper and textile industries too.
Collapse
Affiliation(s)
- Anica Dadwal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Dwarka, New Delhi, India
| | - Shilpa Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Dwarka, New Delhi, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Azad Hind Fauj Marg, Dwarka, New Delhi, India
| |
Collapse
|
4
|
de Freitas EN, Salgado JCS, Alnoch RC, Contato AG, Habermann E, Michelin M, Martínez CA, Polizeli MDLTM. Challenges of Biomass Utilization for Bioenergy in a Climate Change Scenario. BIOLOGY 2021; 10:1277. [PMID: 34943192 PMCID: PMC8698859 DOI: 10.3390/biology10121277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/01/2022]
Abstract
The climate changes expected for the next decades will expose plants to increasing occurrences of combined abiotic stresses, including drought, higher temperatures, and elevated CO2 atmospheric concentrations. These abiotic stresses have significant consequences on photosynthesis and other plants' physiological processes and can lead to tolerance mechanisms that impact metabolism dynamics and limit plant productivity. Furthermore, due to the high carbohydrate content on the cell wall, plants represent a an essential source of lignocellulosic biomass for biofuels production. Thus, it is necessary to estimate their potential as feedstock for renewable energy production in future climate conditions since the synthesis of cell wall components seems to be affected by abiotic stresses. This review provides a brief overview of plant responses and the tolerance mechanisms applied in climate change scenarios that could impact its use as lignocellulosic biomass for bioenergy purposes. Important steps of biofuel production, which might influence the effects of climate change, besides biomass pretreatments and enzymatic biochemical conversions, are also discussed. We believe that this study may improve our understanding of the plant biological adaptations to combined abiotic stress and assist in the decision-making for selecting key agronomic crops that can be efficiently adapted to climate changes and applied in bioenergy production.
Collapse
Affiliation(s)
- Emanuelle Neiverth de Freitas
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (E.N.d.F.); (A.G.C.)
| | - José Carlos Santos Salgado
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil;
| | - Robson Carlos Alnoch
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil; (R.C.A.); (E.H.); (C.A.M.)
| | - Alex Graça Contato
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (E.N.d.F.); (A.G.C.)
| | - Eduardo Habermann
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil; (R.C.A.); (E.H.); (C.A.M.)
| | - Michele Michelin
- Centre of Biological Engineering (CEB), Gualtar Campus, University of Minho, 4710-057 Braga, Portugal;
| | - Carlos Alberto Martínez
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil; (R.C.A.); (E.H.); (C.A.M.)
| | - Maria de Lourdes T. M. Polizeli
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (E.N.d.F.); (A.G.C.)
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), University of São Paulo, Ribeirão Preto 14040-901, São Paulo, Brazil; (R.C.A.); (E.H.); (C.A.M.)
| |
Collapse
|
5
|
de Freitas EN, Alnoch RC, Contato AG, Nogueira KMV, Crevelin EJ, de Moraes LAB, Silva RN, Martínez CA, Polizeli MDLTM. Enzymatic Pretreatment with Laccases from Lentinus sajor-caju Induces Structural Modification in Lignin and Enhances the Digestibility of Tropical Forage Grass ( Panicum maximum) Grown under Future Climate Conditions. Int J Mol Sci 2021; 22:ijms22179445. [PMID: 34502353 PMCID: PMC8431176 DOI: 10.3390/ijms22179445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/25/2023] Open
Abstract
Since laccase acts specifically in lignin, the major contributor to biomass recalcitrance, this biocatalyst represents an important alternative to the pretreatment of lignocellulosic biomass. Therefore, this study investigates the laccase pretreatment and climate change effects on the hydrolytic performance of Panicum maximum. Through a Trop-T-FACE system, P. maximum grew under current (Control (C)) and future climate conditions: elevated temperature (2 °C more than the ambient canopy temperature) combined with elevated atmospheric CO2 concentration(600 μmol mol−1), name as eT+eC. Pretreatment using a laccase-rich crude extract from Lentinus sajor caju was optimized through statistical strategies, resulting in an increase in the sugar yield of P. maximum biomass (up to 57%) comparing to non-treated biomass and enabling hydrolysis at higher solid loading, achieving up to 26 g L−1. These increments are related to lignin removal (up to 46%) and lignin hydrophilization catalyzed by laccase. Results from SEM, CLSM, FTIR, and GC-MS supported the laccase-catalyzed lignin removal. Moreover, laccase mitigates climate effects, and no significant differences in hydrolytic potential were found between C and eT+eC groups. This study shows that crude laccase pretreatment is a potential and sustainable method for biorefinery solutions and helped establish P. maximum as a promising energy crop.
Collapse
Affiliation(s)
- Emanuelle Neiverth de Freitas
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Robson Carlos Alnoch
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (R.C.A.); (C.A.M.)
| | - Alex Graça Contato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Karoline Maria V. Nogueira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Eduardo José Crevelin
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (E.J.C.); (L.A.B.d.M.)
| | - Luiz Alberto Beraldo de Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (E.J.C.); (L.A.B.d.M.)
| | - Roberto Nascimento Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
| | - Carlos Alberto Martínez
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (R.C.A.); (C.A.M.)
| | - Maria de Lourdes T. M. Polizeli
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.d.F.); (A.G.C.); (K.M.V.N.); (R.N.S.)
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (R.C.A.); (C.A.M.)
- Correspondence:
| |
Collapse
|