1
|
Satheesan MK, Tsang TW, Wong LT, Mui KW. The air we breathe: Numerical investigation of ventilation strategies to mitigate airborne dispersion of MERS-CoV in inpatient wards. Heliyon 2024; 10:e26159. [PMID: 38404798 PMCID: PMC10884507 DOI: 10.1016/j.heliyon.2024.e26159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Ventilation strategies for infection control in hospitals has been predominantly directed towards isolation rooms and operating theatres, with relatively less emphasis on perceived low risk spaces, such as general wards. Typically, the ventilation systems in general wards are intended to optimize patient thermal comfort and energy conservation. The emission of pathogens from exhalation activity, such as sneezing, by an undiagnosed infectious patient admitted to general wards, is a significant concern for infection outbreaks. However, the ventilation guidelines for general wards with respect to infection control are vague. This research article presents a numerical study on the effect of varying air change rates (3 h-1, 6 h-1, 9 h-1, 13 h-1) and exhaust flow rates (10%, 50% of supply air quantity) on the concentration of airborne pathogens in a mechanically ventilated general inpatient ward. The findings imply that the breathing zone directly above the source patient has the highest level of pathogen exposure, followed by the breathing zones at the bedside and adjacent patients close to the source patient. The dispersion of pathogens throughout the ward over time is also apparent. However, a key difference while adopting a lower ACH (3 h-1) and a higher ACH (13 h-1) in this study was that the latter had a significantly lower number of suspended pathogens in the breathing zone than the former. Thus, this research suggests high ventilation rates for general wards, contrary to current ventilation standards. In addition, combining a higher air change rate (13 h-1) with a high exhaust flow rate (50% of supply air) through a local exhaust grille dramatically reduced suspended pathogens within the breathing zone, further mitigating the risk of pathogen exposure for ward users. Therefore, this study presents an effective ventilation technique to dilute and eliminate airborne infectious pathogens, minimizing their concentration and the risk of infection.
Collapse
Affiliation(s)
- Manoj Kumar Satheesan
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Tsz Wun Tsang
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Ling Tim Wong
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Kwok Wai Mui
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
2
|
Carrazana E, Ruiz-Gil T, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA. Potential airborne human pathogens: A relevant inhabitant in built environments but not considered in indoor air quality standards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165879. [PMID: 37517716 DOI: 10.1016/j.scitotenv.2023.165879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Potential airborne human pathogens (PAHPs) may be a relevant component of the air microbiome in built environments. Despite that PAHPs can cause infections, particularly in immunosuppressed patients at medical centers, they are scarcely considered in standards of indoor air quality (IAQ) worldwide. Here, we reviewed the current information on microbial aerosols (bacteria, fungal and viruses) and PAHPs in different types of built environments (e.g., medical center, industrial and non-industrial), including the main factors involved in their dispersion, the methodologies used in their study and their associated biological risks. Our analysis identified the human occupancy and ventilation systems as the primary sources of dispersal of microbial aerosols indoors. We also observed temperature and relative humidity as relevant physicochemical factors regulating the dispersion and viability of some PAHPs. Our analysis revealed that some PAHPs can survive and coexist in different environments while other PAHPs are limited or specific for an environment. In relation to the methodologies (conventional or molecular) the nature of PAHPs and sampling type are pivotal. In this context, indoors air-borne viruses are the less studies because their small size, environmental lability, and absence of efficient sampling techniques and universal molecular markers for their study. Finally, it is noteworthy that PAHPs are not commonly considered and included in IAQ standards worldwide, and when they are included, the total abundance is the single parameter considered and biological risks is excluded. Therefore, we propose a revision, design and establishment of public health policies, regulations and IAQ standards, considering the interactions of diverse factors, such as nature of PAHPs, human occupancy and type of built environments where they develop.
Collapse
Affiliation(s)
- Elizabeth Carrazana
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco, Chile; Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Tay Ruiz-Gil
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - So Fujiyoshi
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Microbial Genomics and Ecology, PHIS, The IDEC institute, Hiroshima University, Hiroshima, Japan
| | - Daisuke Tanaka
- School of Science Academic Assembly, University of Toyama, Toyama, Japan
| | - Jun Noda
- Graduate School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Fumito Maruyama
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Microbial Genomics and Ecology, PHIS, The IDEC institute, Hiroshima University, Hiroshima, Japan
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
3
|
Izadyar N, Miller W. Ventilation strategies and design impacts on indoor airborne transmission: A review. BUILDING AND ENVIRONMENT 2022; 218:109158. [PMID: 35573806 PMCID: PMC9075988 DOI: 10.1016/j.buildenv.2022.109158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 outbreak has brought the indoor airborne transmission issue to the forefront. Although ventilation systems provide clean air and dilute indoor contaminated air, there is strong evidence that airborne transmission is the main route for contamination spread. This review paper aims to critically investigate ventilation impacts on particle spread and identify efficient ventilation strategies in controlling aerosol distribution in clinical and non-clinical environments. This article also examines influential ventilation design features (i.e., exhaust location) affecting ventilation performance in preventing aerosols spread. This paper shortlisted published documents for a review based on identification (keywords), pre-processing, screening, and eligibility of these articles. The literature review emphasizes the importance of ventilation systems' design and demonstrates all strategies (i.e., mechanical ventilation) could efficiently remove particles if appropriately designed. The study highlights the need for occupant-based ventilation systems, such as personalized ventilation instead of central systems, to reduce cross-infections. The literature underlines critical impacts of design features like ventilation rates and the number and location of exhausts and suggests designing systems considering airborne transmission. This review underpins that a higher ventilation rate should not be regarded as a sole indicator for designing ventilation systems because it cannot guarantee reducing risks. Using filtration and decontamination devices based on building functionalities and particle sizes can also increase ventilation performance. This paper suggests future research on optimizing ventilation systems, particularly in high infection risk spaces such as multi-storey hotel quarantine facilities. This review contributes to adjusting ventilation facilities to control indoor aerosol transmission.
Collapse
Affiliation(s)
- Nima Izadyar
- School of Built Environment, College of Engineering and Science, Victoria University, Melbourne, VIC, Australia
| | - Wendy Miller
- School of Architecture & Built Environment, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| |
Collapse
|
4
|
Büchner F, Hoffman M, Dobermann UH, Edel B, Lehmann T, Kipp F. Do closed waste containers lead to less air contamination than opened? A clinical case study at Jena University Hospital, Germany. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:11-17. [PMID: 34634566 DOI: 10.1016/j.wasman.2021.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Nosocomial infections are a growing challenge at hospitals. This clinical study aimed to investigate the influence of waste container construction ((open (O), closed (C), and hands-free opening (HF)) on microbial air contamination in a hospital setting. The results are intended to help develop guidelines for waste containers for the collection of non-infectious waste at hospitals and medical facilities. The clinical experiment was conducted at the University Hospital Jena, Germany. Air Impactor samples were performed and microbiologically evaluated for bacteria and fungi both quantitatively and qualitatively. The results were statistically determined using generalized estimating equations. Quantitatively, the lowest bacterial counts in ambient air were found around closed waste containers (114.74 CFU/m3) in comparison to HF (129.28 CFU/m3) and O (126.28 CFU/m3). For fungi, the surrounding air of C (2.08 CFU/m3) and HF (1.97 CFU/m3) waste containers showed a lower impact of fungal air contamination than for O (2.32 CFU/m3). Overall, it was shown that C are more preferable to HF and O waste containers from the point of view of microbial air contamination at hospitals.
Collapse
Affiliation(s)
- Franziskus Büchner
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Marc Hoffman
- Integrative Health and Security Management Center, Staff Section Environmental Protection, Jena University Hospital, Bachstraße 18, D-07743 Jena, Germany
| | - Ute-Helke Dobermann
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Birgit Edel
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Thomas Lehmann
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Bachstraße 18, D-07743 Jena, Germany
| | - Frank Kipp
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| |
Collapse
|
5
|
Improved Testing and Design of Intubation Boxes During the COVID-19 Pandemic. Ann Emerg Med 2020; 77:1-10. [PMID: 32893040 PMCID: PMC7470714 DOI: 10.1016/j.annemergmed.2020.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Study objective Throughout the coronavirus disease 2019 pandemic, many emergency departments have been using passive protective enclosures (“intubation boxes”) during intubation. The effectiveness of these enclosures remains uncertain. We sought to quantify their ability to contain aerosols using industry standard test protocols. Methods We tested a commercially available passive protective enclosure representing the most common design and compared this with a modified enclosure that incorporated a vacuum system for active air filtration during simulated intubations and negative-pressure isolation. We evaluated the enclosures by using the same 3 tests air filtration experts use to certify class I biosafety cabinets: visual smoke pattern analysis using neutrally buoyant smoke, aerosol leak testing using a test aerosol that mimics the size of virus-containing particulates, and air velocity measurements. Results Qualitative evaluation revealed smoke escaping from all passive enclosure openings. Aerosol leak testing demonstrated elevated particle concentrations outside the enclosure during simulated intubations. In contrast, vacuum-filter-equipped enclosures fully contained the visible smoke and test aerosol to standards consistent with class I biosafety cabinet certification. Conclusion Passive enclosures for intubation failed to contain aerosols, but the addition of a vacuum and active air filtration reduced aerosol spread during simulated intubation and patient isolation.
Collapse
|
6
|
Li H, Zhou XY, Yang XR, Zhu YG, Hong YW, Su JQ. Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:61-68. [PMID: 30772579 DOI: 10.1016/j.scitotenv.2019.01.367] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 05/04/2023]
Abstract
Exposure to airborne microbes (AM) can affect the human microbiome and has various consequences for human health. Investigating the profiles of AM and the potential bacterial pathogens within, along with the factors influencing their community, is pivotal for understanding the impact of AM on human health. In this study, we collected AM during spring and summer from 11 sites with various levels of urbanization in the city of Xiamen, China. Bacterial community compositions of the AM were determined based on 16S rRNA gene amplicon sequencing. Firmicutes and Proteobacteria were the predominating phyla in the airborne bacterial communities, and a higher (P < 0.05) diversity of AM was found during the summer as compared to the spring. Significant differences in the community structure of the AM and the potential bacterial pathogens within airborne microbes were observed among the seasons and the sites with different levels of urbanization. Increases and/or decreases in the abundance of Bacillus and Acinetobacter could explain a major part of the variations in the AM community compositions. The proportion of potential bacterial pathogens during the summer was significantly higher (P < 0.01) than in the spring, and the relative abundance of several bacterial pathogens (i.e. Burkholderia multivoran, Enterococcus faecium and Streptococcus thermophilus) related to human diseases (39.8% of total pathogens on average) increased with increasing urbanization levels, suggesting that urbanization can increase the AM-associated human health risk.
Collapse
Affiliation(s)
- Hu Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Xin-Yuan Zhou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China; State Key Laboratory of Urban and Regional Ecology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - You-Wei Hong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, China.
| |
Collapse
|
7
|
Cho J. Investigation on the contaminant distribution with improved ventilation system in hospital isolation rooms: Effect of supply and exhaust air diffuser configurations. APPLIED THERMAL ENGINEERING 2019; 148:208-218. [PMID: 32288589 PMCID: PMC7108396 DOI: 10.1016/j.applthermaleng.2018.11.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/13/2018] [Accepted: 11/07/2018] [Indexed: 05/03/2023]
Abstract
This study, that is practice-based learning in a real hospital construction project, has evaluated the ventilation performance of three strategies in the protection of health care workers and HVAC control for airborne infectious diseases induced by contaminated exhaled air from patients in a negative pressure isolation room. This paper examines air flow path and airborne pollutant distribution by computational fluid dynamics modeling and field measurement. In hospitals, the risk of virus diffusion mainly depends on air flow behavior and changes in direction caused by supply air and exhaust air locations. An improved isolation room ventilation strategy has been suggested, and is found to be the most efficient in removing contaminants based on the observations and simulation results from three ventilation systems. The results show that ventilation systems utilizing the "low-level extraction" technique are very effective at removing pollutants in the human breathing zone. A new clean isolation room ventilation strategy has been developed that employs two exhaust air grilles on the wall behind the bed at low floor level, coupled with a fan filter unit, and is found to have the highest pollutant removal efficiency.
Collapse
Affiliation(s)
- Jinkyun Cho
- Energy & Environment Business Division, KCL (Korea Conformity Laboratories), Jincheon 27872, South Korea
| |
Collapse
|