1
|
Sheraz M, Sun XF, Wang Y, Chen J, Sun L. Recent Developments in Aptamer-Based Sensors for Diagnostics. SENSORS (BASEL, SWITZERLAND) 2024; 24:7432. [PMID: 39685966 DOI: 10.3390/s24237432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Chronic and non-communicable diseases (NCDs) account for a large proportion of global disorders and mortality, posing significant burdens on healthcare systems. Early diagnosis and timely interference are critical for effective management and disease prevention. However, the traditional methods of diagnosis still suffer from high costs, time delays in processing, and infrastructure requirements that are usually unaffordable in resource-constrained settings. Aptamer-based biosensors have emerged as promising alternatives to offer enhanced specificity, stability, and cost-effectiveness for disease biomarker detection. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology allows developing aptamers with high-affinity binding capabilities to a variety of targets, for instance proteins, cells, or even small molecules, hence rendering them suitable for NCD diagnosis. Aptasensors-recent developments in the electrochemical and optical dominion-offer much enhanced sensitivity, selectivity, and stability of detection across a diverse range of diseases from lung cancer and leukemia to diabetes and chronic respiratory disorders. This study provides a comprehensive review of progress in aptamer-based sensors, focusing on their role in point-of-care diagnostics and adaptability in a real-world environment with future directions in overcoming current limitations.
Collapse
Affiliation(s)
- Muhammad Sheraz
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiao-Feng Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yongke Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiayi Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Le Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
2
|
Stobnicka-Kupiec A, Gołofit-Szymczak M, Cyprowski M, Górny RL. Monitoring of enteropathogenic Gram-negative bacteria in wastewater treatment plants: a multimethod approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37229-37244. [PMID: 38764088 PMCID: PMC11182840 DOI: 10.1007/s11356-024-33675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
The wastewater treatment processes are associated with the emission of microbial aerosols, including enteropathogenic bacteria. Their presence in this work environment poses a real threat to the health of employees, both through the possibility of direct inhalation of the contaminated air and indirectly through the pollution of all types of surfaces with such bioaerosol particles. This study aimed to investigate the prevalence of enteropathogenic bacteria in the air, on surfaces, and in wastewater samples collected in four wastewater treatment plants (WWTPs). The effectiveness of conventional culture-biochemical, as well as spectrometric and molecular methods for the rapid detection of enteropathogenic bacteria at workstations related to particular stages of wastewater processing, was also evaluated. Bioaerosol, surface swab, and influent and effluent samples were collected from wastewater plants employing mechanical-biological treatment technologies. The air samples were collected using MAS-100 NT impactor placed at a height of 1.5 m above the floor or ground, simulating aspiration from the human breathing zone. Surface samples were collected with sterile swabs from different surfaces (valves, handles, handrails, and coveyor belts) at workplaces. The raw influent and treated effluent wastewater samples were aseptically collected using sterile bottles. The identification of bacterial entheropathogens was simultaneously conducted using a culture-based method supplemented with biochemical (API) tests, mass-spectrometry (MALDI TOF MS), and molecular (multiplex real-time PCR) methods. This study confirmed the common presence of bacterial pathogens (including enteropathogenic and enterotoxigenic Escherichia coli, Salmonella spp., Campylobacter spp., and Yersinia enterocolitica) in all air, surface, and wastewater samples at studied workplaces. Higher concentrations of enteropathogenic bacteria were observed in the air and on surfaces at workplaces where treatment processes were not hermetized. The results of this study underline that identification of enteropathogenic bacteria in WWTPs is of great importance for the correct risk assessment at workplaces. From the analytical point of view, the control of enteropathogenic bacterial air and surface pollution using rapid multiplex-PCR method should be routinely performed as a part of hygienic quality assessment in WWTPs.
Collapse
Affiliation(s)
- Agata Stobnicka-Kupiec
- Central Institute for Labour Protection-National Research Institute, Czerniakowska Street 16, Warsaw, Poland.
| | - Małgorzata Gołofit-Szymczak
- Central Institute for Labour Protection-National Research Institute, Czerniakowska Street 16, Warsaw, Poland
| | - Marcin Cyprowski
- Central Institute for Labour Protection-National Research Institute, Czerniakowska Street 16, Warsaw, Poland
| | - Rafał L Górny
- Central Institute for Labour Protection-National Research Institute, Czerniakowska Street 16, Warsaw, Poland
| |
Collapse
|
3
|
Kizilkurtlu AA, Demirbas E, Agel HE. Electrochemical aptasensors for pathogenic detection toward point-of-care diagnostics. Biotechnol Appl Biochem 2023; 70:1460-1479. [PMID: 37277950 DOI: 10.1002/bab.2485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/20/2023] [Indexed: 06/07/2023]
Abstract
A biosensor system refers to a biomedical device, which detects biological, chemical, or biochemical components by converting those signals to an electrical signal by utilizing and uniting physical or chemical transducer with biorecognition elements. An electrochemical biosensor is generally based on the reaction of either production or consumption of electrons under a three-electrode system. Biosensor systems are exploited in a wide range of areas, such as medicine, agriculture, husbandry, food, industry, environment protection, quality control, waste disposal, and the military. Pathogenic infections are the third leading cause of death worldwide after cardiovascular diseases and cancer. Therefore, there is an urgent need for effective diagnostic tools to control food, water, and soil contamination result in protecting human life and health. Aptamers are peptide or oligonucleotide-based molecules that show very high affinity to their targets that are produced from large pools of random amino acid or oligonucleotide sequences. Generally, aptamers have been utilized for fundamental sciences and clinical implementations for their target-specific affinity and have been intensely exploited for different kinds of biosensor applications for approximately 30 years. The convergence of aptamers with biosensor systems enabled the construction of voltammetric, amperometric, and impedimetric biosensors for the detection of specific pathogens. In this review, electrochemical aptamer biosensors were evaluated by discussing the definition, types, and production techniques of aptamers, the advantages of aptamers as a biological recognition element against their alternatives, and a wide range of aptasensor examples from literature in the detection of specific pathogens.
Collapse
Affiliation(s)
| | - Erhan Demirbas
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Hatice Esra Agel
- BioNano Functional Materials Technologies Research Group TÜBİTAK - Marmara Research Center, Gebze, Kocaeli, Turkey
| |
Collapse
|
4
|
Bae D, Song KY, Macoy DM, Kim MG, Lee CK, Kim YS. Inactivation of Airborne Avian Pathogenic E. coli (APEC) via Application of a Novel High-Pressure Spraying System. Microorganisms 2022; 10:microorganisms10112201. [PMID: 36363793 PMCID: PMC9694486 DOI: 10.3390/microorganisms10112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Infectious diseases of livestock caused by novel pathogenic viruses and bacteria are a major threat to global animal health and welfare and their effective control is crucial for agronomic health and for securing global food supply. It has been widely recognized that the transmission of infectious agents can occur between people and/or animals in indoor spaces. Therefore, infection control practices are critical to reduce the transmission of the airborne pathogens. ViKiller®-high-pressure sprayer and Deger®-disinfectant are newly developed spraying systems that can produce an optimal size of disinfectants to reduce airborne microbes. The system was evaluated to reduce the infection caused by avian pathogenic Escherichia coli (APEC), an airborne bacterium which survives in indoor spaces. pH-neutral electrolyzed water (NEW) containing 100 ppm of free chlorine, laboratory-scale chambers, a recently developed sprayer, and a conventional sprayer were used in the study. A total of 123 day-of-hatch male layer chicks (Hy-Line W-36) were randomly classified into five groups (negative control (NC): no treatment; treatment 1 (Trt 1): spraying only NEW without APEC; treatment 2 (Trt 2): spraying NEW + APEC using a high-pressure sprayer; treatment 3 (Trt 3): spraying NEW + APEC using a conventional sprayer; positive control (PC): spraying only APEC). Experimental chicks in the chambers were daily exposed to 50 mL of NEW and/or APEC (1.0 × 106 cfu/mL) until the end of the experiment (day 35). APEC strains were sprayed by ViKiller®. At least four chicks in each group were evaluated weekly to monitor APEC infection and determine the lesion. Data showed that our spraying system significantly reduced airborne APEC concentrations, mortality rate, respiratory infection, and APEC lesions in birds in the chamber space (p < 0.05). The results demonstrate that the antibacterial effect of the novel spraying sprayer with NEW on APEC was far superior compared to the conventional sprayer. This study provides a new insight for preventive measures against airborne microorganisms in indoor spaces.
Collapse
Affiliation(s)
- Dongryeoul Bae
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- Research Institute of Pharmaceutical Science, College of Pharmacy, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: (D.B.); (Y.-S.K.); Tel.: +82-55-772-2416 (D.B.); +82-10-4402-0795 (Y.-S.K.)
| | - Kwang-Young Song
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Donah Mary Macoy
- Research Institute of Pharmaceutical Science, College of Pharmacy, Gyeongsang National University, Jinju 52828, Korea
| | - Min Gab Kim
- Research Institute of Pharmaceutical Science, College of Pharmacy, Gyeongsang National University, Jinju 52828, Korea
| | - Chul-Kyu Lee
- Division of Research and Development, TracoWorld Ltd., Gwangmyeong-si 14348, Korea
| | - Yu-Seong Kim
- Division of Research and Development, TracoWorld Ltd., Gwangmyeong-si 14348, Korea
- Correspondence: (D.B.); (Y.-S.K.); Tel.: +82-55-772-2416 (D.B.); +82-10-4402-0795 (Y.-S.K.)
| |
Collapse
|
5
|
Izadyar N, Miller W. Ventilation strategies and design impacts on indoor airborne transmission: A review. BUILDING AND ENVIRONMENT 2022; 218:109158. [PMID: 35573806 PMCID: PMC9075988 DOI: 10.1016/j.buildenv.2022.109158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 outbreak has brought the indoor airborne transmission issue to the forefront. Although ventilation systems provide clean air and dilute indoor contaminated air, there is strong evidence that airborne transmission is the main route for contamination spread. This review paper aims to critically investigate ventilation impacts on particle spread and identify efficient ventilation strategies in controlling aerosol distribution in clinical and non-clinical environments. This article also examines influential ventilation design features (i.e., exhaust location) affecting ventilation performance in preventing aerosols spread. This paper shortlisted published documents for a review based on identification (keywords), pre-processing, screening, and eligibility of these articles. The literature review emphasizes the importance of ventilation systems' design and demonstrates all strategies (i.e., mechanical ventilation) could efficiently remove particles if appropriately designed. The study highlights the need for occupant-based ventilation systems, such as personalized ventilation instead of central systems, to reduce cross-infections. The literature underlines critical impacts of design features like ventilation rates and the number and location of exhausts and suggests designing systems considering airborne transmission. This review underpins that a higher ventilation rate should not be regarded as a sole indicator for designing ventilation systems because it cannot guarantee reducing risks. Using filtration and decontamination devices based on building functionalities and particle sizes can also increase ventilation performance. This paper suggests future research on optimizing ventilation systems, particularly in high infection risk spaces such as multi-storey hotel quarantine facilities. This review contributes to adjusting ventilation facilities to control indoor aerosol transmission.
Collapse
Affiliation(s)
- Nima Izadyar
- School of Built Environment, College of Engineering and Science, Victoria University, Melbourne, VIC, Australia
| | - Wendy Miller
- School of Architecture & Built Environment, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, QLD, 4001, Australia
| |
Collapse
|
6
|
Li Z, Wang Y, Zheng W, Wang H, Li B, Liu C, Wang Y, Lei C. Effect of inlet-outlet configurations on the cross-transmission of airborne bacteria between animal production buildings. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128372. [PMID: 35236040 DOI: 10.1016/j.jhazmat.2022.128372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cross-transmission of airborne pathogens between buildings facilitates the spread of both human and animal diseases. Rational spatial arrangement of buildings and air inlet-outlet design are well-established preventive measures, but the effectiveness of current configurations for mitigating pathogens cross-transmission is still under assessment. An intensive field study in a laying hen farm was conducted to elucidate the spatial distribution of airborne bacteria (AB) and the source of AB at the inlets under different wind regimes. We found higher concentrations of AB at the interspace and sidewall inlets of buildings with sidewall exhaust systems than at those with endwall exhaust systems. We observed significant differences in bacterial diversity and richness at the interspace and sidewall inlets between buildings with side exhaust systems and those with endwall exhaust systems. We further found that the AB emitted from buildings could translocate to the sidewall inlets of adjacent building to a greater extent between buildings with sidewall exhaust systems than between those with endwall exhaust systems. Our findings revealed that sidewall exhaust systems aggravate cross-transmission of AB between buildings, suggesting that endwall exhaust systems or other compensatory preventive measures combined with sidewall exhaust systems could be a better choice to suppress airborne cross-transmission.
Collapse
Affiliation(s)
- Zonggang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weichao Zheng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China.
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Sichuan, China; Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| | - Baoming Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Chang Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Yuxin Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Sichuan, China; Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| |
Collapse
|
7
|
Ereth MH, Fine J, Stamatatos F, Mathew B, Hess D, Simpser E. Healthcare-associated infection impact with bioaerosol treatment and COVID-19 mitigation measures. J Hosp Infect 2021; 116:69-77. [PMID: 34302883 PMCID: PMC8295046 DOI: 10.1016/j.jhin.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND The real-world impact of breathing zone air purification and coronavirus disease 2019 (COVID-19) mitigation measures on healthcare-associated infections is not well documented. Engineering solutions to treat airborne transmission of disease may yield results in controlled test chambers or single rooms, but have not been reported on hospital-wide applications, and the impact of COVID-19 mitigation measures on healthcare-associated infection rates is unknown. AIM To determine the impact of hospital-wide bioaerosol treatment and COVID-19 mitigation measures on clinical outcomes. METHODS The impact of the step-wise addition of air disinfection technology and COVID-19 mitigation measures to standard multi-modal infection control on particle counts, viral and bacterial bioburden, and healthcare-associated infection rates was investigated in a 124-bed hospital (>100,000 patient-days over 30 months). FINDINGS AND CONCLUSION The addition of air disinfection technology and COVID-19 mitigation measures reduced airborne ultrafine particles, altered hospital bioburden, and reduced healthcare-associated infections from 11.9 to 6.6 (per 1000 patient-days) and from 6.6 to 1.0 (per 1000 patient-days), respectively (P<0.0001, R2=0.86). No single technology, tool or procedure will eliminate healthcare-associated infections, but the addition of a ubiquitous facility-wide engineering solution at limited expense and with no alteration to patient, visitor or staff traffic or workflow patterns reduced infections by 45%. A similar impact was documented with the addition of comprehensive, restrictive, and labour- and material-intensive COVID-19 mitigation measures. To the authors' knowledge, this is the first direct comparison between traditional infection control, an engineering solution and COVID-19 mitigation measures.
Collapse
Affiliation(s)
- M H Ereth
- Mayo Clinic College of Medicine, Rochester, MN, USA.
| | - J Fine
- St. Mary's Hospital for Children, Bayside, NY, USA
| | | | - B Mathew
- St. Mary's Hospital for Children, Bayside, NY, USA
| | - D Hess
- SecureAire, Inc, Dunedin, FL, USA
| | - E Simpser
- St. Mary's Hospital for Children, Bayside, NY, USA
| |
Collapse
|
8
|
Paudel S, Fink D, Abdelhamid MK, Zöggeler A, Liebhart D, Hess M, Hess C. Aerosol is the optimal route of respiratory tract infection to induce pathological lesions of colibacillosis by a lux-tagged avian pathogenic Escherichia coli in chickens. Avian Pathol 2021; 50:417-426. [PMID: 34505551 DOI: 10.1080/03079457.2021.1978392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pathogenesis of colibacillosis caused by avian pathogenic Escherichia coli (APEC) in poultry is unclear and experimental studies reveal substantial inconsistency. In this study, the impact of three infection routes differing in the site of deposition of inoculum in the respiratory tract, were investigated. Two-weeks-old chickens were infected with a lux-tagged APEC strain via aerosol, intranasally or intratracheally, and sequentially sampled along with uninfected birds. At 1 and 3 days post infection (dpi), liver or spleen to body-weight ratios in all infected groups were significantly higher than in negative control, while at 7 dpi, such differences were significant in both organs in the aerosol-infected group. The infection-strain colonized tracheas and lungs in infected birds at 1 dpi and persisted until 7 dpi. Among infected groups, in lungs, bacterial load at 1 dpi was significantly lower in intranasally-inoculated birds. Histology revealed that, independent of infection route, lesions were mostly seen in the lower respiratory organs (lungs and air sacs) characterized by bronchitis/pneumonia and airsacculitis. Birds infected via aerosol showed the highest mean lesion score in lungs while intranasal application caused the mildest pathological changes, and difference between the two groups was significant at 1 dpi. In spleen, heterophilic infiltrations were prominent in affected birds. Interestingly, tracheas were pathologically unaffected. Altogether, the results demonstrated the importance of infection route, with aerosol being the most suitable to induce pathological lesions of colibacillosis without predisposing factors. Furthermore, the lux-tagged APEC strain was discriminated from native isolates enabling exact differentiation and enumeration.RESEARCH HIGHLIGHTS Lux-tagged APEC strain was used for infection to differentiate from native E. coli.Pathologically, lungs, air sacs and spleen but not trachea were affected.The route of infection strongly impacts the pathological outcome with APEC.The infection with APEC via aerosol caused the most severe lesions in chickens.
Collapse
Affiliation(s)
- Surya Paudel
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dieter Fink
- Institute of Laboratory Animal Science, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mohamed Kamal Abdelhamid
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Anna Zöggeler
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dieter Liebhart
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
9
|
Li Z, Zheng W, Wang Y, Li B, Wang Y. Spatiotemporal variations in the association between particulate matter and airborne bacteria based on the size-resolved respiratory tract deposition in concentrated layer feeding operations. ENVIRONMENT INTERNATIONAL 2021; 150:106413. [PMID: 33582563 DOI: 10.1016/j.envint.2021.106413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Bacterial loading aggravates the health and environmental hazards of particulate matter (PM), particularly in concentrated animal feeding operations. Understanding the association between PM and airborne bacteria is conducive to accurately assessing occupational exposure, providing fundamental data for exposure mitigation via engineering solutions, and providing information regarding the physical properties influencing the transmission of airborne microorganisms at emission sources. In this work, we conducted a joint study to systematically determine the concentrations and size distributions of PM and airborne bacteria, and establish the quantitative relationship between PM and airborne bacteria in laying hen houses. The association between PM and airborne bacteria was expressed as the load of airborne bacteria on PM in terms of the identical particle size interval based on the size-resolved respiratory tract deposition. The concentrations and size distributions of PM and airborne bacteria in laying hen houses were affected by the in-house space (upper and lower), chicken activity (day and night), and outside temperature. The size distributions of PM and airborne bacteria indicated that the mass concentration of large particles decreased with increasing outside temperature, while the concentration of airborne bacteria loaded on the small particles increased with increasing outside temperature. The results indicated that particles with diameters ranging from 2.1 to 4.7 μm carried the most airborne bacteria. Therefore, particles with diameters ranging from 2.1 to 4.7 μm should be the focus of future experimental research on occupational exposure, air quality improvement, and the airborne transmission of PM and airborne microorganisms originating from concentrated layer feeding operations.
Collapse
Affiliation(s)
- Zonggang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weichao Zheng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Baoming Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yuxin Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
10
|
Peng S, Chen Q, Liu E. The role of computational fluid dynamics tools on investigation of pathogen transmission: Prevention and control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:142090. [PMID: 33027870 PMCID: PMC7458093 DOI: 10.1016/j.scitotenv.2020.142090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 05/17/2023]
Abstract
Transmission mechanics of infectious pathogen in various environments are of great complexity and has always been attracting many researchers' attention. As a cost-effective and powerful method, Computational Fluid Dynamics (CFD) plays an important role in numerically solving environmental fluid mechanics. Besides, with the development of computer science, an increasing number of researchers start to analyze pathogen transmission by using CFD methods. Inspired by the impact of COVID-19, this review summarizes research works of pathogen transmission based on CFD methods with different models and algorithms. Defining the pathogen as the particle or gaseous in CFD simulation is a common method and epidemic models are used in some investigations to rise the authenticity of calculation. Although it is not so difficult to describe the physical characteristics of pathogens, how to describe the biological characteristics of it is still a big challenge in the CFD simulation. A series of investigations which analyzed pathogen transmission in different environments (hospital, teaching building, etc) demonstrated the effect of airflow on pathogen transmission and emphasized the importance of reasonable ventilation. Finally, this review presented three advanced methods: LBM method, Porous Media method, and Web-based forecasting method. Although CFD methods mentioned in this review may not alleviate the current pandemic situation, it helps researchers realize the transmission mechanisms of pathogens like viruses and bacteria and provides guidelines for reducing infection risk in epidemic or pandemic situations.
Collapse
Affiliation(s)
- Shanbi Peng
- School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
| | - Qikun Chen
- School of Engineering, Cardiff University, CF24 0DE, UK.
| | - Enbin Liu
- School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
11
|
Mao N, An CK, Guo LY, Wang M, Guo L, Guo SR, Long ES. Transmission risk of infectious droplets in physical spreading process at different times: A review. BUILDING AND ENVIRONMENT 2020; 185:107307. [PMID: 33519041 PMCID: PMC7832643 DOI: 10.1016/j.buildenv.2020.107307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 05/10/2023]
Abstract
Droplets provide a well-known transmission media in the COVID-19 epidemic, and the particle size is closely related to the classification of the transmission route. However, the term "aerosol" covers most particle sizes of suspended particulates because of information asymmetry in different disciplines, which may lead to misunderstandings in the selection of epidemic prevention and control strategies for the public. In this review, the time when these droplets are exhaled by a patient was taken as the initial time. Then, all available viral loads and numerical distribution of the exhaled droplets was analyzed, and the evaporation model of droplets in the air was combined with the deposition model of droplet nuclei in the respiratory tract. Lastly, the perspective that physical spread affects the transmission risk of different size droplets at different times was summarized for the first time. The results showed that although the distribution of exhaled droplets was dominated by small droplets, droplet volume was proportional to the third power of particle diameter, meaning that the viral load of a 100 μm droplet was approximately 106 times that of a 1 μm droplet at the initial time. Furthermore, the exhaled droplets are affected by heat and mass transfer of evaporation, water fraction, salt concentration, and acid-base balance (the water fraction > 98%), which lead them to change rapidly, and the viral survival condition also deteriorates dramatically. The time required for the initial diameter (do) of a droplet to shrink to the equilibrium diameter (de, about 30% of do) is approximately proportional to the second power of the particle diameter, taking only a few milliseconds for a 1 μm droplet but hundreds of milliseconds for a 10 μm droplet; in other words, the viruses carried by the large droplets can be preserved as much as possible. Finally, the infectious droplet nuclei maybe inhaled by the susceptible population through different and random contact routes, and the droplet nuclei with larger de decompose more easily into tiny particles on account of the accelerated collision in a complex airway, which can be deposited in the higher risk alveolar region. During disease transmission, the infectious droplet particle size varies widely, and the transmission risk varies significantly at different time nodes; therefore, the fuzzy term "aerosol" is not conducive to analyzing disease exposure risk. Recommendations for epidemic prevention and control strategies are: 1) Large droplets are the main conflict in disease transmission; thus, even if they are blocked by a homemade mask initially, it significantly contains the epidemic. 2) The early phase of contact, such as close-contact and short-range transmission, has the highest infection risk; therefore, social distancing can effectively keep the susceptible population from inhaling active viruses. 3) The risk of the fomite route depends on the time in contact with infectious viruses; thus, it is important to promote good health habits (including frequent hand washing, no-eye rubbing, coughing etiquette, normalization of surface cleaning), although blind and excessive disinfection measures are not advisable. 4) Compared with the large droplets, the small droplets have larger numbers but carry fewer viruses and are more prone to die through evaporation.
Collapse
Affiliation(s)
- N Mao
- MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - C K An
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - L Y Guo
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - M Wang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - L Guo
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - S R Guo
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - E S Long
- MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China
- College of Architecture and Environment, Sichuan University, Chengdu, China
| |
Collapse
|