1
|
Li F, Jiang G, Chen F, Yuan W. Effects of Evaporation and Body Thermal Plume on Cough Droplet Dispersion and Exposure Risk for Queuing People. Life (Basel) 2024; 15:28. [PMID: 39859968 PMCID: PMC11766552 DOI: 10.3390/life15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The transmission of virus-containing droplets among multiple people in an outdoor environment is seldom evaluated. In this study, an Euler-Lagrange computational fluid dynamics approach was used to investigate the effects of evaporation and the body thermal plume on the dispersion of coughed droplets under various wind conditions, and the infection risk was evaluated for various arrangements of individuals queuing outdoors using virtual manikin models. The evaporation time was longer for larger droplets and in a more humid environment. Transient evaporation strongly affected the motion of droplets ranging in diameter from 60 to 150 μm. The body thermal plume affected airflow and particle dispersion under weak wind conditions, but its effect was negligible at wind speeds greater than 0.8 m/s. Droplets smaller than 100 μm could reach the head of a susceptible person, suggesting a high exposure risk. The exposure fraction and body deposition were highest in an all-male queue sequence and lowest for a male-female-male-female-male queue sequence.
Collapse
Affiliation(s)
- Fengjiao Li
- Department of Civil Engineering, Zhejiang University of Technology, Hangzhou 310012, China; (F.L.)
| | - Guoyi Jiang
- Department of Civil Engineering and Smart Cities, Shantou University, Shantou 515063, China
| | - Fei Chen
- Department of Civil Engineering and Smart Cities, Shantou University, Shantou 515063, China
| | - Weibin Yuan
- Department of Civil Engineering, Zhejiang University of Technology, Hangzhou 310012, China; (F.L.)
| |
Collapse
|
2
|
Yamaguchi H, Okubo T, Nozaki E, Osaki T. Differential impact of environmental factors on airborne live bacteria and inorganic particles in an underground walkway. PLoS One 2024; 19:e0300920. [PMID: 38512950 PMCID: PMC10956794 DOI: 10.1371/journal.pone.0300920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
We previously reported that variations in the number and type of bacteria found in public spaces are influenced by environmental factors. However, based on field survey data alone, whether the dynamics of bacteria in the air change as a result of a single environmental factor or multiple factors working together remains unclear. To address this, mathematical modeling may be applied. We therefore conducted a reanalysis of the previously acquired data using principal component analysis (PCA) in conjunction with a generalized linear model (Glm2) and a statistical analysis of variance (ANOVA) test employing the χ2 distribution. The data used for the analysis were reused from a previous public environmental survey conducted at 8:00-20:00 on May 2, June 1, and July 5, 2016 (regular sampling) and at 5:50-7:50 and 20:15-24:15 on July 17, 2017 (baseline sampling) in the Sapporo underground walking space, a 520-meter-long underground walkway. The dataset consisted of 60 samples (22 samples for "bacterial flora"), including variables such as "temperature (T)," "humidity (H)," "atmospheric pressure (A)," "traffic pedestrians (TP)," "number of inorganic particles (Δ5: 1-5 μm)," "number of live airborne bacteria," and "bacterial flora." Our PCA with these environmental factors (T, H, A, and TP) revealed that the 60 samples could be categorized into four groups (G1 to G4), primarily based on variations in PC1 [Loadings: T(-0.62), H(-0.647), TP(0.399), A(0.196)] and PC2 [Loadings: A(-0.825), TP(0.501), H(0.209), T(-0.155)]. Notably, the number of inorganic particles significantly increased from G4 to G1, but the count of live bacteria was highest in G2, with no other clear pattern. Further analysis with Glm2 indicated that changes in inorganic particles could largely be explained by two variables (H/TP), while live bacteria levels were influenced by all explanatory variables (TP/A/H/T). ANOVA tests confirmed that inorganic particles and live bacteria were influenced by different factors. Moreover, there were minimal changes in bacterial flora observed among the groups (G1-G4). In conclusion, our findings suggest that the dynamics of live bacteria in the underground walkway differ from those of inorganic particles and are regulated in a complex manner by multiple environmental factors. This discovery may contribute to improving public health in urban settings.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Eriko Nozaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Shinkawa, Mitaka, Tokyo, Japan
| |
Collapse
|
3
|
Chillón SA, Fernandez-Gamiz U, Zulueta E, Ugarte-Anero A, Blanco JM. Numerical performance of CO 2 accumulation and droplet dispersion from a cough inside a hospital lift under different ventilation strategies. Sci Rep 2024; 14:6843. [PMID: 38514758 PMCID: PMC10957917 DOI: 10.1038/s41598-024-57425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
The impact of mechanical ventilation on airborne diseases is not completely known. The recent pandemic of COVID-19 clearly showed that additional investigations are necessary. The use of computational tools is an advantage that needs to be included in the study of designing safe places. The current study focused on a hospital lift where two subjects were included: a healthy passenger and an infected one. The elevator was modelled with a fan placed on the middle of the ceiling and racks for supplying air at the bottom of the lateral wall. Three ventilation strategies were evaluated: a without ventilation case, an upwards-blowing exhausting fan case and a downwards-blowing fan case. Five seconds after the elevator journey began, the infected person coughed. For the risk assessment, the CO2 concentration, droplet removal performance and dispersion were examined and compared among the three cases. The results revealed some discrepancies in the selection of an optimal ventilation strategy. Depending on the evaluated parameter, downward-ventilation fan or no ventilation strategy could be the most appropriate approach.
Collapse
Affiliation(s)
- Sergio A Chillón
- Energy Engineering Department, School of Engineering of Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain
| | - Unai Fernandez-Gamiz
- Energy Engineering Department, School of Engineering of Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain.
| | - Ekaitz Zulueta
- Automatic and Simulation Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain
| | - Ainara Ugarte-Anero
- Energy Engineering Department, School of Engineering of Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain
| | - Jesus Maria Blanco
- Energy Engineering Department, School of Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo, Building 1, 48013, Bilbao, Spain
| |
Collapse
|
4
|
Firatoglu ZA. The effect of natural ventilation on airborne transmission of the COVID-19 virus spread by sneezing in the classroom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165113. [PMID: 37391140 PMCID: PMC10306413 DOI: 10.1016/j.scitotenv.2023.165113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Since school classrooms are of vital importance due to their impact on public health in COVID-19 and similar epidemics, it is imperative to develop new ventilation strategies to reduce the risk of transmission of the virus in the classroom. To be able to develop new ventilation strategies, the effect of local flow behaviors in the classroom on the airborne transmission of the virus under the most dramatic conditions must first be determined. In this study, the effect of natural ventilation on the airborne transmission of COVID-19-like viruses in the classroom in the case of sneezing by two infected students in a reference secondary school classroom was investigated in five scenarios. Firstly, experimental measurements were carried out in the reference class to validate the computational fluid dynamics (CFD) simulation results and determine the boundary conditions. Next, the effects of local flow behaviors on the airborne transmission of the virus were evaluated for five scenarios using the Eulerian-Lagrange method, a discrete phase model, and a temporary three-dimensional CFD model. In all scenarios, immediately after sneezing, between 57 and 60.2 % of the droplets containing the virus, mostly large and medium-sized (150 μm < d < 1000 μm) settled on the infected student's desk, while small droplets continued to move in the flow field. In addition, it was determined that the effect of natural ventilation in the classroom on the travel of virus droplets in the case of Redh < 8.04 × 104 (Reynolds number, Redh=Udh/νu, dh and are fluid velocity, hydraulic diameters of the door and window sections of the class and kinematic viscosity, respectively) was negligible.
Collapse
Affiliation(s)
- Z A Firatoglu
- Department of Mechanical Engineering, University of Harran, TR-63050 Sanliurfa, Turkey.
| |
Collapse
|
5
|
Liu S, Deng Z. Transmission and infection risk of COVID-19 when people coughing in an elevator. BUILDING AND ENVIRONMENT 2023; 238:110343. [PMID: 37143581 PMCID: PMC10122966 DOI: 10.1016/j.buildenv.2023.110343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
People in cities use elevators daily. With the COVID-19 pandemic, there are more worries about elevator safety, since elevators are often small and crowded. This study used a proven CFD model to see how the virus could spread in elevators. We simulated five people taking in an elevator for 2 min and analyzed the effect of different factors on the amount of virus that could be inhaled, such as the infected person's location, the standing positions of the persons, and the air flow rate. We found that the position of the infected person and the direction they stood greatly impacted virus transmission in the elevator. The use of mechanical ventilation with a flow rate of 30 ACH (air changes per hour) was effective in reducing the risk of infection. In situations where the air flow rate was 3 ACH, we found that the highest number of inhaled virus copies could range from 237 to 1186. However, with a flow rate of 30 ACH, the highest number was reduced to 153 to 509. The study also showed that wearing surgical masks decreased the highest number of inhaled virus copies to 74 to 155.
Collapse
Affiliation(s)
- Sumei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhipeng Deng
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, NY, 13244, United States
| |
Collapse
|
6
|
Li X, Feng B. Transmission of droplet aerosols in an elevator cabin: Effect of the ventilation mode. BUILDING AND ENVIRONMENT 2023; 236:110261. [PMID: 37041765 PMCID: PMC10066590 DOI: 10.1016/j.buildenv.2023.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The recent outbreak of COVID-19 has threatened public health. Owing to the relatively sealed environment and poor ventilation in elevator cabins, passengers are at risk of respiratory tract infection. However, the distribution and dispersion of droplet aerosols in elevator cabins remain unclear. This study investigated the transmission of droplet aerosols exhaled by a source patient under three ventilation modes. Droplet aerosols produced by nose breathing and mouth coughing were resolved using computational fluid dynamics (CFD) simulations. We adopted the verified renormalization group (RNG) k-ε turbulence model to simulate the flow field and the Lagrangian method to track the droplet aerosols. In addition, the influence of the ventilation mode on droplet transmission was evaluated. The results showed that droplet aerosols gathered in the elevator cabin and were difficult to discharge under the mixed and displacement ventilation modes with specific initial conditions. The inhalation proportion of droplet aerosols for air curtain was 0.016%, which was significantly lower than that for mixed ventilation (0.049%) and displacement ventilation (0.071%). The air curtain confined the transmission of droplet aerosols with the minimum ratios of inhalation, deposition, and suspension and is thus recommended to reduce the exposure risk.
Collapse
Affiliation(s)
- Xian Li
- School of Civil Engineering and Architecture, Linyi University, Linyi, 276000, China
| | - Bujin Feng
- College of Agriculture, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
7
|
Wu J, Weng W, Fu M, Li Y. Numerical study of transient indoor airflow and virus-laden droplet dispersion: Impact of interactive human movement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161750. [PMID: 36690100 DOI: 10.1016/j.scitotenv.2023.161750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Human movement affects indoor airflow and the airborne transmission of respiratory infectious diseases, which has attracted scholars. However, the interactive airflow between moving and stationary people has yet to be studied in detail. This study used the numerical method validated by experimental data to explore the transient indoor airflow and virus-laden droplet dispersion in scenes with interactive human movement. Human-shaped numerical models and the dynamic mesh method were adopted to realize human movement in scenes with different lateral distances (0.2-1.2 m) between a moving person and stationary (standing/sitting) persons. The interactive human movement obviously impacts other persons' respiratory airflow, and the lateral fusion ranged about 0.6 m. The interactive human movement strengthens the indoor airflow convection, and some exhaled virus-laden droplets were carried into wake flow and enhanced long-range airborne transmission. The impact of interactive human movement on sitting patients' exhalation airflow seems more evident than on standing patients. The impact might last over 2 min after movement stopped, and people in the affected area might be at a higher exposure. The results can provide a reference for epidemic control in indoor environments.
Collapse
Affiliation(s)
- Jialin Wu
- Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing 100084, PR China
| | - Wenguo Weng
- Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing 100084, PR China.
| | - Ming Fu
- Hefei Institute for Public Safety Research, Tsinghua University, Hefei, Anhui Province 230601, PR China; Anhui Province Key Laboratory of Human Safety, Hefei, Anhui Province 230601, PR China
| | - Yayun Li
- Hefei Institute for Public Safety Research, Tsinghua University, Hefei, Anhui Province 230601, PR China; Anhui Province Key Laboratory of Human Safety, Hefei, Anhui Province 230601, PR China
| |
Collapse
|
8
|
Rahvard AJ, Karami S, Lakzian E. Finding the proper position of supply and return registers of air condition system in a conference hall in term of COVID-19 virus spread. REVUE INTERNATIONALE DU FROID 2023; 145:78-89. [PMID: 36281435 PMCID: PMC9581653 DOI: 10.1016/j.ijrefrig.2022.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The outbreak of the COVID-19 has affected all aspects of people's lives around the world. As air transmits the viruses, air-conditioning systems in buildings, surrounded environments, and public transport have a significant role in restricting the transmission of airborne pathogens. In this paper, a computational fluid dynamic (CFD) model is deployed to simulate the dispersion of the COVID-19 virus due to the coughing of a patient in a conference hall, and the effect of displacement of supply and return registers of the air conditioning system is investigated. A validated Eulerian-Lagrangian CFD model is used to simulate the airflow in the conference hall. The particles created by coughing are droplets of the patient's saliva that contain the virus. Three cases with different positions of supply and return registers have been compared. The simulation results show that case1 has the best performance; since after 80 s in case 1 that the inlet registers are in the longitudinal wall, the whole particles are removed from space. However, in other cases, some particles are still in space.
Collapse
Affiliation(s)
- Ahmad Jahani Rahvard
- Center of Computational Energy, Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Shahram Karami
- Center of Computational Energy, Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Esmail Lakzian
- Center of Computational Energy, Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
- Department of Environmental Safety and Product Quality Management, Institute of Environmental Engineering, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198 Russia
- Department of Mechanical Engineering, Andong National University, Andong, South Korea
| |
Collapse
|
9
|
Du C, Chen Q. Virus transport and infection evaluation in a passenger elevator with a COVID-19 patient. INDOOR AIR 2022; 32:e13125. [PMID: 36305056 PMCID: PMC9874880 DOI: 10.1111/ina.13125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 05/22/2023]
Abstract
Contaminant transport and flow distribution are very important during an elevator ride, as the reduced social distancing may increase the infection rate of airborne diseases such as COVID-19. Studying the airflow and contaminant concentration in an elevator is not straightforward because the flow pattern inside an elevator changes dramatically with passenger movement and frequent door opening. Since very little experimental data were available for elevators, this investigation validated the use of computational fluid dynamics (CFD) based on the RNG k-∈ $$ \in $$ turbulence model to predict airflow and contaminant transport in a scaled, empty airliner cabin with a moving passenger. The movement of the passenger in the cabin created a dynamic airflow and transient contaminant dispersion that were similar to those in an elevator. The computed results agreed reasonably well with the experimental data for the cabin. The validated CFD program was then used to calculate the distributions of air velocity, air temperature, and particle concentration during an elevator ride with an index patient. The CFD results showed that the airflow pattern in the elevator was very complex due to the downward air supply from the ceiling and upward thermal plumes generated by passengers. This investigation studied different respiratory activities of the index patient, that is, breathing only, breathing, and coughing with and without a mask, and talking. The results indicated that the risk of infection was generally low because of the short duration of the elevator ride. If the index patient talked in the elevator, two passengers in the closest proximity to distance would be infected.
Collapse
Affiliation(s)
- Chengbo Du
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Qingyan Chen
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong
| |
Collapse
|
10
|
Ren J, Duan S, Guo L, Li H, Kong X. Effects of Return Air Inlets' Location on the Control of Fine Particle Transportation in a Simulated Hospital Ward. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11185. [PMID: 36141451 PMCID: PMC9517334 DOI: 10.3390/ijerph191811185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has made significant impacts on public health, including human exposure to airborne pathogens. In healthcare facilities, the locations of return air vents in ventilation systems may have important effects on lowering airborne SARS-CoV-2 transmission. This study conducted experiments to examine the influence of different return air vents' heights (0.7 m, 1.2 m, and 1.6 m) on the particle removal effects in a simulated patient ward. Three different ventilation systems were examined: top celling air supply-side wall return (TAS), underfloor air supply-side wall return (UFAS) and side wall air supply-side wall return (SAS). CFD simulation was applied to further study the effects of return air inlets' heights (0.3 m, 0.7 m, 1.2 m, 1.6 m, and 2.0 m) and air exchange rates. The technique for order of preference by similarity to ideal solution (TOPSIS) analysis was used to calculate the comprehensive scores of 60 scenarios using a multi-criterion method to obtain the optimal return air inlets' heights. Results showed that for each additional 0.5 m distance in most working conditions, the inhalation fraction index of medical staff could be reduced by about 5-20%. However, under certain working conditions, even though the distances between the patients and medical personnel were different, the optimal heights of return air vents were constant. For TAS and UFAS, the optimal return air inlets' height was 1.2 m, while for SAS, the best working condition was 1.6 m air supply and 0.7 m air return. At the optimum return air heights, the particle decay rate per hour of SAS was 75% higher than that of TAS, and the rate of particle decay per hour of SAS was 21% higher than that of UFAS. The location of return air inlets could further affect the operating cost-effectiveness of ventilation systems: the highest operating cost-effectiveness was 8 times higher than the lowest one.
Collapse
Affiliation(s)
- Jianlin Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shasha Duan
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Leihong Guo
- Tianjin Jin’an Thermal Power Co., Ltd., Tianjin 300130, China
| | - Hongwan Li
- Department of Biosystems & Agricultural Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Xiangfei Kong
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
11
|
Wu J, Geng J, Fu M, Weng W. Multi-person movement-induced airflow and the effects on virus-laden expiratory droplet dispersion in indoor environments. INDOOR AIR 2022; 32:e13119. [PMID: 36168216 DOI: 10.1111/ina.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The multi-person movement might cause complex induced airflow and affect the virus-laden expiratory droplet transmission in indoor environments. Using the dynamic mesh model in computational fluid dynamics, the multi-person movement with different personnel location distributions was realized. The induced airflow patterns, virus-laden droplet dispersion, and concentration distribution were investigated in detail. The results show that multi-person movement might intensify inter-regional convection, which has been rarely found in single-person movement conditions. Side-by-side distribution and ladder distribution of moving persons could cause a connected low-pressure area behind the moving persons, which might enhance lateral virus transport, especially where droplets might suspend at the height of the breathing zone. Not only 1-10 μm aerosols but also some 20-50 μm droplets are carried by the multi-person movement-induced airflow to over 3 m. Since the width of induced airflow is about 0.6-1.0 m, moving persons should keep enough horizontal distance (>1.0 m) to limit the air mixing and virus-laden droplet transmission. This paper could provide a detailed reference for the numerical study of multi-person movement-induced airflow patterns, droplet dispersion, and indoor infection control.
Collapse
Affiliation(s)
- Jialin Wu
- Department of Engineering Physics, Tsinghua University, Institute of Public Safety Research, Beijing, China
- Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, China
| | - Jing Geng
- Department of Engineering Physics, Tsinghua University, Institute of Public Safety Research, Beijing, China
- Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, China
| | - Ming Fu
- Hefei Institute for Public Safety Research, Tsinghua University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Human Safety, Hefei, Anhui Province, China
| | - Wenguo Weng
- Department of Engineering Physics, Tsinghua University, Institute of Public Safety Research, Beijing, China
- Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Xia T, Guo K, Pan Y, An Y, Chen C. Temporal and spatial far-ultraviolet disinfection of exhaled bioaerosols in a mechanically ventilated space. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129241. [PMID: 35739760 DOI: 10.1016/j.jhazmat.2022.129241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Far-UVC with a peak wavelength of 222 nm can potentially be used to inactivate exhaled bioaerosols in an efficient and safe manner. Therefore, this study aimed to experimentally explore the effectiveness of a 222 nm far-UVC light for inactivating bioaerosols, represented by E. coli, exhaled from a manikin in a chamber with mechanical ventilation. The spatial irradiance distribution from the far-UVC light was measured. The susceptibility constant (z-value) for E. coli under the far-UVC light was experimentally obtained. The temporal and spatial concentrations of the bioaerosols exhaled from the manikin were measured under three typical ventilation rates (4, 10, and 36 ACH). According to the results, when the far-UVC light was turned on, the bioaerosol concentrations were lower than those without the far-UVC light under all three ventilation rates, suggesting that far-UVC light can effectively disinfect E. coli under mechanical ventilation. However, the disinfection efficiency of the far-UVC light decreased as the ventilation rate increased, which indicated that the far-UVC light played a more important role in bioaerosol removal under a lower ventilation rate. In general, the results supported the feasibility of using 222 nm far-UVC light for disinfection of exhaled bioaerosols in mechanically ventilated spaces to reduce infection risks.
Collapse
Affiliation(s)
- Tongling Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China; Breakthrough Technology Center, Midea Building Technologies, Foshan 528000, China
| | - Kangqi Guo
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
| | - Yue Pan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
| | - Yuting An
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China
| | - Chun Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T. 999077, Hong Kong SAR, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
13
|
Zhao X, Liu S, Yin Y, Zhang T(T, Chen Q. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. INDOOR AIR 2022; 32:e13056. [PMID: 35762235 PMCID: PMC9349854 DOI: 10.1111/ina.13056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 05/22/2023]
Abstract
Since the outbreak of COVID-19 in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) has spread worldwide. This study summarized the transmission mechanisms of COVID-19 and their main influencing factors, such as airflow patterns, air temperature, relative humidity, and social distancing. The transmission characteristics in existing cases are providing more and more evidence that SARS CoV-2 can be transmitted through the air. This investigation reviewed probabilistic and deterministic research methods, such as the Wells-Riley equation, the dose-response model, the Monte-Carlo model, computational fluid dynamics (CFD) with the Eulerian method, CFD with the Lagrangian method, and the experimental approach, that have been used for studying the airborne transmission mechanism. The Wells-Riley equation and dose-response model are typically used for the assessment of the average infection risk. Only in combination with the Eulerian method or the Lagrangian method can these two methods obtain the spatial distribution of airborne particles' concentration and infection risk. In contrast with the Eulerian and Lagrangian methods, the Monte-Carlo model is suitable for studying the infection risk when the behavior of individuals is highly random. Although researchers tend to use numerical methods to study the airborne transmission mechanism of COVID-19, an experimental approach could often provide stronger evidence to prove the possibility of airborne transmission than a simple numerical model. All in all, the reviewed methods are helpful in the study of the airborne transmission mechanism of COVID-19 and epidemic prevention and control.
Collapse
Affiliation(s)
- Xingwang Zhao
- School of Energy and EnvironmentSoutheast UniversityNanjingChina
| | - Sumei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
| | - Yonggao Yin
- School of Energy and EnvironmentSoutheast UniversityNanjingChina
- Engineering Research Center of Building Equipment, Energy, and EnvironmentMinistry of EducationNanjingChina
| | - Tengfei (Tim) Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
| | - Qingyan Chen
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| |
Collapse
|
14
|
Transport Characteristics and Transmission Risk of Virus-Containing Droplets from Coughing in Outdoor Windy Environment. TOXICS 2022; 10:toxics10060294. [PMID: 35736903 PMCID: PMC9230890 DOI: 10.3390/toxics10060294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022]
Abstract
Particle dispersions have been widely studied inside rooms, but few databases have examined the transmission risk of respiratory droplets outdoors. This study investigated the wind effect on the dispersion of coughed droplets and the influence of social distancing on the infection risk in different susceptible persons using computational fluid dynamics simulations. Infection risk was evaluated based on direct depositions and exposure fractions. The results indicated that a reverse and upward flow formed in front of an infected man, and it enhanced as the wind strengthened, which transported more medium particles higher and increased the deposition on both infected and susceptible persons. Small particles moved above the neck, and they rarely deposited on the body. Medium particles larger than 60 μm were more likely to deposit and could reach the head of a healthy person under stronger winds. The exposure fraction achieved peak values when numerous particles passed the breathing zone. Although longer social distancing could alleviate the particle deposition on the face and delay the most dangerous time, its effect on infection risk was ambiguous. The infection risk was larger for a shorter susceptible person because more particles were deposited on the face, and the exposure fraction contributed by particles above the neck was larger.
Collapse
|
15
|
Li X, Liu D, Yao J. Aerosolization of fungal spores in indoor environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153003. [PMID: 35031366 DOI: 10.1016/j.scitotenv.2022.153003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Fungi in indoor environments can cause adverse health effects through inhalation and epidermal exposure. The risk of fungal exposure originates from the aerosolization of fungal spores. However, spore aerosolization is still not well understood. This paper provides a review of indoor fungal contamination, especially the aerosolization of fungal spores. We attempted to summarize what is known today and to identify what more information is needed to predict the aerosolization of fungal spores. This paper first reviews fungal contamination in indoor environments and HVAC systems. The detachment of fungal spores from colonies and the spore aerosolization principle are then summarized. Based on the above discussion, prediction methods for spore aerosolization are discussed. This review further clarifies the current situation and future efforts required to accurately predict spore aerosolization. This information is useful for forecasting and controlling the aerosolization of fungal spores.
Collapse
Affiliation(s)
- Xian Li
- School of Civil Engineering and Architecture, Linyi University, Linyi 276000, China.
| | - Dan Liu
- School of Civil Engineering and Architecture, Linyi University, Linyi 276000, China
| | - Jian Yao
- School of Civil Engineering and Architecture, Linyi University, Linyi 276000, China
| |
Collapse
|
16
|
Liu S, Koupriyanov M, Paskaruk D, Fediuk G, Chen Q. Investigation of airborne particle exposure in an office with mixing and displacement ventilation. SUSTAINABLE CITIES AND SOCIETY 2022; 79:103718. [PMID: 35127341 PMCID: PMC8799404 DOI: 10.1016/j.scs.2022.103718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 05/07/2023]
Abstract
Effective ventilation could reduce COVID-19 infection in buildings. By using a computational fluid dynamics technique and advanced experimental measurement methods, this investigation studied the air velocity, air temperature, and particle number concentration in an office under a mixing ventilation (MV) system and a displacement ventilation (DV) system with different ventilation rates. The results show reasonably good agreement between the computed results and measured data. The air temperature and particle number concentration under the MV system were uniform, while the DV system generated a vertical stratification of the air temperature and particle number concentration. Because of the vertical stratification of the particle number concentration, the DV system provided better indoor air quality than the MV system. An increase in ventilation rate can reduce the particle concentration under the two systems. However, the improvement was not proportional to the ventilation rate. The increase in ventilation rate from 2 ACH to 4 ACH and 6 ACH for MV system reduced the particle concentration by 20% and 60%, respectively. While for the DV system, increasing the ventilation rate from 2 ACH to 4 ACH and 6 ACH reduced the particle concentration by only 10% and 40%, respectively. The ventilation effectiveness of the MV system was close to 1.0, but it was much higher for the DV system. Therefore, the DV system was better than the MV system.
Collapse
Affiliation(s)
- Sumei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Mike Koupriyanov
- Price Industries Limited, 638 Raleigh Street Winnipeg, MB R2K 3Z9, Canada
| | - Dale Paskaruk
- Price Industries Limited, 638 Raleigh Street Winnipeg, MB R2K 3Z9, Canada
| | - Graham Fediuk
- Price Industries Limited, 638 Raleigh Street Winnipeg, MB R2K 3Z9, Canada
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47905, USA
| |
Collapse
|
17
|
Ren J, He J, Kong X, Li H. Robustness of ventilation systems in the control of walking-induced indoor fluctuations: Method development and case study. BUILDING SIMULATION 2022; 15:1645-1660. [PMID: 35194487 PMCID: PMC8854482 DOI: 10.1007/s12273-022-0888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 05/11/2023]
Abstract
Walking-induced fluctuations have a significant influence on indoor airflow and pollutant dispersion. This study developed a method to quantify the robustness of ventilation systems in the control of walking-induced fluctuation control. Experiments were conducted in a full-scale chamber with four different kinds of ventilation systems: ceiling supply and side return (CS), ceiling supply and ceiling return (CC), side supply and ceiling return (SC), and side supply and side return (SS). The measured temperature, flow and pollutant field data was (1) denoised by FFT filtering or wavelet transform; (2) fitted by a Gaussian function; (3) feature-extracted for the range and time scale disturbance; and then (4) used to calculate the range scale and time scale robustness for different ventilation systems with dimensionless equations developed in this study. The selection processes for FFT filtering and wavelet transform, FFT filter cut-off frequency, wavelet function, and decomposition layers are also discussed, as well as the threshold for wavelet denoising, which can be adjusted accordingly if the walking frequency or sampling frequency differs from that in other studies. The results show that for the flow and pollutant fields, the use of a ventilation system can increase the range scale robustness by 19.7%-39.4% and 10.0%-38.8%, respectively; and the SS system was 7.0%-25.7% more robust than the other three ventilation systems. However, all four kinds of ventilation systems had a very limited effect in controlling the time scale disturbance.
Collapse
Affiliation(s)
- Jianlin Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401 China
| | - Junjie He
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401 China
| | - Xiangfei Kong
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401 China
| | - Hongwan Li
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, USA
| |
Collapse
|