1
|
Xue W, Zhu B, Zhao K, Huang Q, Luo H, Shou Y, Huang Z, Guo H. Targeting LRP6: A new strategy for cancer therapy. Pharmacol Res 2024; 204:107200. [PMID: 38710241 DOI: 10.1016/j.phrs.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Targeting specific molecular drivers of tumor growth is a key approach in cancer therapy. Among these targets, the low-density lipoprotein receptor-related protein 6 (LRP6), a vital component of the Wnt signaling pathway, has emerged as an intriguing candidate. As a cell-surface receptor and vital co-receptor, LRP6 is frequently overexpressed in various cancer types, implicating its pivotal role in driving tumor progression. The pursuit of LRP6 as a target for cancer treatment has gained substantial traction, offering a promising avenue for therapeutic intervention. Here, this comprehensive review explores recent breakthroughs in our understanding of LRP6's functions and underlying molecular mechanisms, providing a profound discussion of its involvement in cancer pathogenesis and drug resistance. Importantly, we go beyond discussing LRP6's role in cancer by discussing diverse potential therapeutic approaches targeting this enigmatic protein. These approaches encompass a wide spectrum, including pharmacological agents, natural compounds, non-coding RNAs, epigenetic factors, proteins, and peptides that modulate LRP6 expression or disrupt its interactions. In addition, also discussed the challenges associated with developing LRP6 inhibitors and their advantages over Wnt inhibitors, as well as the drugs that have entered phase II clinical trials. By shedding light on these innovative strategies, we aim to underscore LRP6's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.
Collapse
Affiliation(s)
- Wei Xue
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Bo Zhu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Kaili Zhao
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiuju Huang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region of China
| | - Yiwen Shou
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhaoquan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Hongwei Guo
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Key Laboratory of Research and Evaluation of Bioactive Molecules&College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
2
|
Liu X, Li D, Gao W, Chen P, Liu H, Zhao Y, Zhao W, Dong G. Molecular characterization, clinical value, and cancer-immune interactions of genes related to disulfidptosis and ferroptosis in colorectal cancer. Discov Oncol 2024; 15:183. [PMID: 38787520 PMCID: PMC11126553 DOI: 10.1007/s12672-024-01031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND This research strived to construct a new signature utilizing disulfidptosis-related ferroptosis (SRF) genes to anticipate response to immunotherapy, prognosis, and drug sensitivity in individuals with colorectal cancer (CRC). METHODS The data for RNA sequencing as well as corresponding clinical information of individuals with CRC, were extracted from The Cancer Genome Atlas (TCGA) dataset. SRF were constructed with the help of the random forest (RF), least absolute shrinkage and selection operator (LASSO), and stepwise regression algorithms. To validate the SRF model, we applied it to an external cohort, GSE38832. Prognosis, immunotherapy response, drug sensitivity, molecular functions of genes, and somatic mutations of genes were compared across the high- and low-risk groups (categories). Following this, all statistical analyses were conducted with the aid of the R (version 4.23) software and various packages of the Cytoscape (version 3.8.0) tool. RESULTS SRF was developed based on five genes (ATG7, USP7, MMD, PLIN4, and THDC2). Both univariate and multivariate Cox regression analyses established SRF as an independent, prognosis-related risk factor. Individuals from the high-risk category had a more unfavorable prognosis, elevated tumor mutational burden (TMB), and significant immunosuppressive status. Hence, they might have better outcomes post-immunotherapy and might benefit from the administration of pazopanib, lapatinib, and sunitinib. CONCLUSION In conclusion, SRF can act as a new biomarker for prognosis assessment. Moreover, it is also a good predictor of drug sensitivity and immunotherapy response in CRC but should undergo optimization before implementation in clinical settings.
Collapse
Affiliation(s)
- Xianqiang Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dingchang Li
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenxing Gao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Chen
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hao Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yingjie Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wen Zhao
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Guanglong Dong
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Ma Y, Xing X, Cheng C, Kong R, Sun L, Zhao F, Zhang D, Li J. Hsa-miR-1269a up-regulation fosters the malignant progression of esophageal squamous cell carcinoma via targeting FAM46C. Mutat Res 2023; 827:111832. [PMID: 37467675 DOI: 10.1016/j.mrfmmm.2023.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignancy of the alimentary tract resulting in death worldwide. The role and underlying mechanism of hsa-miR-1269a in the progression of ESCC remain unclear. In this study, hsa-miR-1269a was screened by differential expression analysis in TCGA, and its target gene FAM46C was predicted. qRT-PCR was conducted to assay the expression of hsa-miR-1269a and FAM46C in ESCC cells. The results showed that hsa-miR-1269a was upregulated in ESCC tissues and cell lines. Hsa-miR-1269a overexpression stimulated the proliferation, migration, and invasion capacities of ESCC cells, and FAM46C overexpression inhibited these phenotypes. Dual-luciferase assay verified that hsa-miR-1269a could target FAM46C. Next, qRT-PCR and western blot demonstrated that hsa-miR-1269a overexpression downregulated FAM46C. Rescue experiments revealed that hsa-miR-1269a accelerated the malignant progression of ESCC through FAM46C down-regulation. These results indicate that the interaction between hsa-miR-1269a and FAM46C plays a regulatory role in driving the malignant progression of ESCC cells, thereby providing a novel molecular mechanism for understanding ESCC.
Collapse
Affiliation(s)
- Yuefeng Ma
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Xin Xing
- Department of Health Care for Cadres, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Chuantao Cheng
- Department of Dermatology, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Ranran Kong
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Liangzhang Sun
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Feng Zhao
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Danjie Zhang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004, Shaanxi Province, China.
| |
Collapse
|
4
|
Villegas-Mirón P, Gallego A, Bertranpetit J, Laayouni H, Espinosa-Parrilla Y. Signatures of genetic variation in human microRNAs point to processes of positive selection and population-specific disease risks. Hum Genet 2022; 141:1673-1693. [PMID: 35249174 PMCID: PMC9522702 DOI: 10.1007/s00439-021-02423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022]
Abstract
The occurrence of natural variation in human microRNAs has been the focus of numerous studies during the last 20 years. Most of them have been focused on the role of specific mutations in disease, while a minor proportion seek to analyse microRNA diversity in the genomes of human populations. We analyse the latest human microRNA annotations in the light of the most updated catalogue of genetic variation provided by the 1000 Genomes Project. By means of the in silico analysis of microRNA genetic variation we show that the level of evolutionary constraint of these sequences is governed by the interplay of different factors, like their evolutionary age or genomic location. The role of mutations in the shaping of microRNA-driven regulatory interactions is emphasized with the acknowledgement that, while the whole microRNA sequence is highly conserved, the seed region shows a pattern of higher genetic diversity that appears to be caused by the dramatic frequency shifts of a fraction of human microRNAs. We highlight the participation of these microRNAs in population-specific processes by identifying that not only the seed, but also the loop, are particularly differentiated regions among human populations. The quantitative computational comparison of signatures of population differentiation showed that candidate microRNAs with the largest differences are enriched in variants implicated in gene expression levels (eQTLs), selective sweeps and pathological processes. We explore the implication of these evolutionary-driven microRNAs and their SNPs in human diseases, such as different types of cancer, and discuss their role in population-specific disease risk.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Alicia Gallego
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.
| | - Yolanda Espinosa-Parrilla
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
- Laboratorio de Medicina Molecular-LMM, Centro Asistencial, Docente Y de Investigación-CADI, Universidad de Magallanes, Punta Arenas, Chile.
- Interuniversity Center on Healthy Aging, Punta Arenas, Chile.
| |
Collapse
|
5
|
Whole-Genome Sequencing of 100 Genomes Identifies a Distinctive Genetic Susceptibility Profile of Qatari Patients with Hypertension. J Pers Med 2022; 12:jpm12050722. [PMID: 35629146 PMCID: PMC9144388 DOI: 10.3390/jpm12050722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Essential hypertension (EH) is a leading risk condition for cardiovascular and renal complications. While multiple genes are associated with EH, little is known about its genetic etiology. Therefore, this study aimed to screen for variants that are associated with EH in 100 hypertensive/100 control patients comprising Qatari individuals using GWASs of whole-genome sequencing and compare these findings with genetic data obtained from more than 10,000 published peer-reviewed studies on EH. The GWAS analysis performed with 21,096 SNPs revealed 38 SNPs with a significant ≥4 log-p value association with EH. The two highest EH-associated SNPs (rs921932379 and rs113688672) revealed a significance score of ≥5 log-p value. These SNPs are located within the inter-genic region of GMPS-SETP14 and ISCA1P6-AC012451.1, respectively. Text mining yielded 3748 genes and 3078 SNPs, where 51 genes and 24 SNPs were mentioned in more than 30 and 10 different articles, respectively. Comparing our GWAS results to previously published articles revealed 194 that are unique to our patient cohort; of these, 13 genes that have 26 SNPs are the most significant with ≥4 log-p value. Of these genes, C2orf47-SPATS2L contains nine EH-associated SNPs. Most of EH-associated genes are related to ion gate channel activity and cardiac conduction. The disease–gene analysis revealed that a large number of EH-associated genes are associated with a variety of cardiovascular disorders. The clustering analysis using EH-associated SNPs across different ethnic groups showed high frequency for the minor allele in different ethnic groups, including Africans, East Asians, and South Asians. The combination of GWAS and text mining helped in identifying the unique genetic susceptibility profile of Qatari patients with EH. To our knowledge, this is the first small study that searched for genetic factors associated with EH in Qatari patients.
Collapse
|
6
|
Xie Z, Zhong C, Duan S. miR-1269a and miR-1269b: Emerging Carcinogenic Genes of the miR-1269 Family. Front Cell Dev Biol 2022; 10:809132. [PMID: 35252180 PMCID: PMC8894702 DOI: 10.3389/fcell.2022.809132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023] Open
Abstract
miRNAs play an important role in the occurrence and development of human cancer. Among them, hsa-mir-1269a and hsa-mir-1269b are located on human chromosomes 4 and 17, respectively, and their mature miRNAs (miR-1269a and miR-1269b) have the same sequence. miR-1269a is overexpressed in 9 cancers. The high expression of miR-1269a not only has diagnostic significance in hepatocellular carcinoma and non-small cell lung cancer but also is related to the poor prognosis of cancer patients such as esophageal cancer, hepatocellular carcinoma, and glioma. miR-1269a can target 8 downstream genes (CXCL9, SOX6, FOXO1, ATRX, RASSF9, SMAD7, HOXD10, and VASH1). The expression of miR-1269a is regulated by three non-coding RNAs (RP11-1094M14.8, LINC00261, and circASS1). miR-1269a participates in the regulation of the TGF-β signaling pathway, PI3K/AKT signaling pathway, p53 signaling pathway, and caspase-9-mediated apoptotic pathway, thereby affecting the occurrence and development of cancer. There are fewer studies on miR-1269b compared to miR-1269a. miR-1269b is highly expressed in hepatocellular carcinoma, non-small cell lung cancer, oral squamous cell carcinoma, and pharyngeal squamous cell carcinoma, but miR-1269b is low expressed in gastric cancer. miR-1269b can target downstream genes (METTL3, CDC40, SVEP1, and PTEN) and regulate the PI3K/AKT signaling pathway. In addition, sequence mutations on miR-1269a and miR-1269b can affect their regulation of cancer. The current studies have shown that miR-1269a and miR-1269b have the potential to be diagnostic and prognostic markers for cancer. Future research on miR-1269a and miR-1269b can focus on elucidating more of their upstream and downstream genes and exploring the clinical application value of miR-1269a and miR-1269b.At present, there is no systematic summary of the research on miR-1269a and miR-1269b. This paper aims to comprehensively analyze the abnormal expression, diagnostic and prognostic value, and molecular regulatory pathways of miR-1269a and miR-1269b in multiple cancers. The overview in our work can provide useful clues and directions for future related research.
Collapse
Affiliation(s)
- Zijun Xie
- School of Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Chenming Zhong
- School of Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Shiwei Duan
- School of Medicine, Zhejiang University City College, Hangzhou, China
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
- *Correspondence: Shiwei Duan,
| |
Collapse
|
7
|
Shen N, Duan X, Feng Y, Zhang J, Qiao X, Ding W. Long non-coding RNA HOXA11 antisense RNA upregulates spermatogenesis-associated serine-rich 2-like to enhance cisplatin resistance in laryngeal squamous cell carcinoma by suppressing microRNA-518a. Bioengineered 2022; 13:974-984. [PMID: 34974809 PMCID: PMC8805888 DOI: 10.1080/21655979.2021.2016038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Long noncoding RNAs (LncRNAs) are closely associated with the chemoresistance of laryngeal squamous cell carcinoma (LSCC). Previous studies indicated that HOXA11-AS could function as a vital regulator in human cancers. However, the regulatory mechanisms of HOXA11-AS in the chemoresistance of LSCC remain unclear. In this study, it was found that HOXA11-AS expression was upregulated in cisplatin (CDDP)-resistant LSCC tissues and cells. Loss-of-function assays revealed that HOXA11-AS knockdown inhibited the viability, migration, and invasion, but promoted the apoptosis of CDDP-resistant LSCC cells. Meanwhile, we identified miR-518a as a downstream gene of HOXA11-AS in LSCC, and miR-518a silencing reversed the promotive effect of HOXA11-AS knockdown on CDDP sensitivity of LSCC cells. In addition, miR-518a could inhibit spermatogenesis-associated serine-rich 2-like (SPATS2L) expression by direct interaction, and upregulation of SPATS2L abrogated the inhibitory effect of HOXA11-AS silencing or miR-518a overexpression on CDDP resistance of CDDP-resistant LSCC cells. In sum, our results demonstrated that HOXA11-AS enhanced CDDP resistance of LSCC via miR-518a/SPATS2L axis, which might offer novel therapeutic strategies for CDDP-resistant LSCC.
Collapse
Affiliation(s)
- Na Shen
- The Department of Otolaryngology Head and Neck Surgery, Tianjin Children’s Hospital, Tianjin, China
| | - Xiaohui Duan
- The Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Yong Feng
- The Department of Otolaryngology Head and Neck Surgery, The 4th Central Hospital of Tianjin, Tianjin, China
| | - Jianxin Zhang
- The Department of Otolaryngology Head and Neck Surgery, The 4th Central Hospital of Tianjin, Tianjin, China
| | - Xiaocheng Qiao
- The Department of Otolaryngology Head and Neck Surgery, The 4th Central Hospital of Tianjin, Tianjin, China
| | - Wenyu Ding
- The Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| |
Collapse
|
8
|
Xiong HL, Zhong XH, Guo XH, Liao HJ, Yuan X. circASS1 overexpression inhibits the proliferation, invasion and migration of colorectal cancer cells by regulating the miR-1269a/VASH1 axis. Exp Ther Med 2021; 22:1155. [PMID: 34504600 PMCID: PMC8393656 DOI: 10.3892/etm.2021.10589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC), the third most common cancer worldwide, poses a threat to human life. However, its underlying mechanism is unclear and no satisfactory treatment is available. The present study aimed to investigate the role of circular RNA argininosuccinate synthase 1 (circASS1) in CRC cells and tissues to identify the potential mechanism underlying the pathogenesis of CRC. The expression of circASS1 in CRC cells and tissues was determined by reverse transcription-quantitative PCR. Following circASS1 overexpression in HT29 cells, cell viability, colony formation and apoptosis were measured using MTT, colony formation and TUNEL assays, respectively. Cell invasion and migration were also assessed. After confirming the associations among circASS1, microRNA (miR)-1269a and vasohibin 1 (VASH1), the characteristics of the HT29 cell line were assessed by performing the aforementioned assays. circASS1 expression was decreased in CRC cells and tissues, and circASS1 overexpression suppressed CRC cell proliferation, invasion and migration. circASS1 adsorbed miR-1269a and regulated its expression, and VASH1 was a target protein of miR-1269a. circASS1 overexpression decreased cell proliferation, invasion and migration, but enhanced cell apoptosis in HT29 cells, which was reversed by co-transfection with miR-1269a mimic or short hairpin RNA-VASH1. In conclusion, circASS1 overexpression inhibited CRC cell proliferation, invasion and migration by regulating miR-1269a/VASH1, which indicated a potential molecular mechanism underlying the pathogenesis of CRC.
Collapse
Affiliation(s)
- Hai-Lin Xiong
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Xiao-Hua Zhong
- Department of Gastroenterological Surgery, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Xiao-Hong Guo
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Hao-Jie Liao
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| | - Xia Yuan
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, Huizhou, Guangdong 516000, P.R. China
| |
Collapse
|
9
|
Zhang J, Peng Y, He Y, Xiao Y, Wang Q, Zhao Y, Zhang T, Wu C, Xie Y, Zhou J, Yu W, Lu D, Bai H, Chen T, Guo P, Zhang Q. GPX1-associated prognostic signature predicts poor survival in patients with acute myeloid leukemia and involves in immunosuppression. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166268. [PMID: 34536536 DOI: 10.1016/j.bbadis.2021.166268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/21/2021] [Accepted: 09/04/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Treatment of acute myeloid leukemia (AML) remains a challenge. It is urgent to understand the microenvironment to improve therapy and prognosis. METHODS Bioinformatics methods were used to analyze transcription expression profile of AML patient samples with complete clinical information from UCSC Xena TCGA-AML datasets and validate with GEO datasets. Western blot, qPCR, RNAi and CCK8 assay were used to assay the effect of GPX1 expression on AML cell viability and the expression of genes of interest. RESULTS Our analyses revealed that highly expressed GPX1 in AML patients links to unfavorable prognosis. GPX1 expression was positively associated with not only fraction levels of myeloid-derived suppressor cells (MDSCs), monocytes and T cell exhaustion, the expression levels of MDSC markers, MDSC-promoting CCR2 and immune inhibitory checkpoints (TIM3/Gal-9, SIRPα and VISTA), but also negatively with low fraction levels of CD4+ and CD8+ T cells. Silencing GPX1 expression reduced AML cell viability and CCR2 expression. Moreover, GPX1-targetd kinases were PKC family, SRC family, SYK and PAK1, which promote AML progression and the resistance to therapy. Furthermore, Additionally, GPX1-associated prognostic signature (GPS) is an independent risk factor with high area under curve (AUC) values of receiver operating characteristic (ROC) curves. High risk group based on GPS enriched not only with endocytosis which transfers mitochondria to favor AML cell survival in response to chemotherapy, but also NOTCH, WNT and TLR signaling which promote therapy resistance. CONCLUSION Our results revealed the significant involvement of GPX1 in AML immunosuppression via and provided a prognostic signature for AML patients.
Collapse
MESH Headings
- Aged
- Antigens, Differentiation/genetics
- B7 Antigens/genetics
- Female
- Gene Expression Regulation, Leukemic/genetics
- Glutathione Peroxidase/genetics
- Hepatitis A Virus Cellular Receptor 2
- Humans
- Immune Tolerance/genetics
- Immunosuppression Therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/pathology
- Prognosis
- Receptors, CCR2/genetics
- Receptors, Immunologic/genetics
- Receptors, Notch/genetics
- Risk Factors
- Syk Kinase/genetics
- Tumor Microenvironment/immunology
- Wnt Signaling Pathway/genetics
- p21-Activated Kinases/genetics
- Glutathione Peroxidase GPX1
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yuhui Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Tin Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Changxue Wu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jianjiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Deqin Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
| | - Hua Bai
- Medical Laboratory Center, the Third Affiliated Hospital of Guizhou Medical University, Duyun 558000, Guizhou, China.
| | - Tenxiang Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guiyang 550004, Guizhou, China.
| | - Penxiang Guo
- Department of Hematology, Guizhou Provincial People's Hospital, Guizhou University, Guiyang 550002, Guizhou, China.
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
10
|
Zhan Y, Zhang R, Li C, Xu X, Zhu K, Yang Z, Zheng J, Guo Y. A microRNA-clinical prognosis model to predict the overall survival for kidney renal clear cell carcinoma. Cancer Med 2021; 10:6128-6139. [PMID: 34288551 PMCID: PMC8419758 DOI: 10.1002/cam4.4148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022] Open
Abstract
Numerous studies have shown that microRNA (miRNA) serves as key regulatory factors in the origin and development of cancers. However, the biological mechanisms of miRNAs in kidney renal clear cell carcinoma (KIRC) are still unknown. It is necessary to construct an effective miRNA‐clinical model to predict the prognosis of KIRC. In this study, 94 differentially expressed miRNAs were found between para‐tumor and tumor tissues based on the Cancer Genome Atlas (TCGA) database. Seven miRNAs (hsa‐miR‐21‐5p, hsa‐miR‐3613‐5p, hsa‐miR‐144‐5p, hsa‐miR‐376a‐5p, hsa‐miR‐5588‐3p, hsa‐miR‐1269a, and hsa‐miR‐137‐3p) were selected as prognostic indicators. According to their cox coefficient, a risk score formula was constructed. Patients with risk scores were divided into high‐ and low‐risk groups based on the median score. Kaplan–Meier curves analysis showed that the low‐risk group had a better survival probability compared to the high‐risk group. The area under the ROC curve (AUC) value of the miRNA model was 0.744. In comparison with clinical features, the miRNA model risk score was considered as an independent prognosis factor in multivariate Cox regression analysis. In addition, we built a nomogram including age, metastasis, and miRNA prognostic model based on the results of multivariate Cox regression analysis. The decision curve analysis (DCA) revealed the clinical net benefit of the prognostic model. Gene set enrichment analysis (GSEA) results suggested that several important pathways may be the potential pathways for KIRC. The results of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for the target genes of 7 miRNAs revealed that miRNAs may participate in KIRC progression via many specific pathways. Additionally, the levels of seven prognostic miRNAs showed a significant difference between KIRC tissues and adjacent non‐tumorous tissues. In conclusion, the miRNA‐clinical model provides an effective and accurate way to predict the prognosis of KIRC.
Collapse
Affiliation(s)
- Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunxue Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuantong Xu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhan Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Guo
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Liu YP, Cao Q, Li L, Zhang M. High expression of spermatogenesis associated serine rich 2 promotes tumorigenicity in esophageal squamous cell carcinoma cells and is associated with poor patient prognosis. Exp Ther Med 2021; 22:698. [PMID: 33986862 PMCID: PMC8112131 DOI: 10.3892/etm.2021.10130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/26/2020] [Indexed: 11/05/2022] Open
Abstract
Spermatogenesis associated serine rich 2 (SPATS2), recognized as a cytoplasmic RNA-binding protein, is implicated in the tumorgenicity of several cancers. However, the potential role of SPATS2 in esophageal squamous cell carcinoma (ESCC) is yet to be elucidated. The present study aimed to explore the functional implication of SPATS2 in ESCC. The ESCC cell lines Eca109 and KYSE-150 were used to conduct loss-of-function experiments. The expression patterns of SPATS2 in patients with ESCC were obtained from Oncomine, The Cancer Genome Atlas and Genotype-Tissue Expression databases. Reverse transcription-quantitative PCR and western blot analysis were applied to determine the expression levels of SPATS2 in ESCC cells. The proliferation of ESCC cells was measured via cell proliferation and colony-formation assays. Subsequently, the migration and invasion capacities of ESCC cells were observed using Transwell assays. Finally, the expression levels of P53, cyclin E, matrix metalloproteinase (MMP)-9 and neuronal-cadherin were determined via western blot analysis. SPATS2 was expressed at higher levels in ESCC tissues compared with the controls, and high expression of SPATS2 was associated with poor prognosis. ESCC cell line proliferation, migration and invasion abilities were suppressed after silencing SPATS2. Moreover, following knockdown of SPATS2, the proteins cyclin E, MMP-9 and N-cadherin were expressed at markedly decreased levels, while P53 expression was increased. In summary, the results of the present study suggest that SPATS2 promotes ESCC development and progression, providing potential insights into future ESCC targeted treatment.
Collapse
Affiliation(s)
- Yan-Peng Liu
- Department of Internal Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qiuhong Cao
- Department of Anesthesiology, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| | - Ling Li
- Department of Thoracic Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Min Zhang
- Department of Internal Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
12
|
Ma R, Zhao M, Zou X, Zhou J, Bai Z. MicroRNA polymorphism: A target for diagnosis and prognosis of hepatocellular carcinoma? Oncol Lett 2021; 21:324. [PMID: 33692856 DOI: 10.3892/ol.2021.12586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a life-threatening cancer of the digestive system, with complex pathogenesis affected by a broad spectrum of genetic and epigenetic factors. Among several factors, microRNAs (miRNAs), which are considered regulators of the post-transcriptional gene expression, play important roles in determining the malignant phenotype of HCC. In recent years, the advances in molecular genetics have resulted in the characterization of complex genetic factors and in the identification of epigenetic mechanisms of diseases. Accumulating data have suggested that miRNA polymorphisms are involved in tumorigenesis and prognosis, suggesting that the miRNAs may serve as a target for HCC with regard to pathogenesis and prognosis. In the present review, a comprehensive and detailed literature search was conducted and the role of miRNA polymorphisms in the pathogenesis and prognosis of HCC is summarized. The data proposed the use of miRNAs as targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Ruixia Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Maomao Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xin Zou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jianye Zhou
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730000, P.R. China
| | - Zhongtian Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
13
|
Sarabandi S, Sattarifard H, Kiumarsi M, Karami S, Taheri M, Hashemi M, Bahari G, Ghavami S. Association between Genetic Polymorphisms of miR-1307, miR- 1269, miR-3117 and Breast Cancer Risk in a Sample of South East Iranian Women. Asian Pac J Cancer Prev 2021; 22:201-208. [PMID: 33507700 PMCID: PMC8184203 DOI: 10.31557/apjcp.2021.22.1.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) play an essential role in the susceptibility and development of cancer cells. OBJECTIVE Examining the dependency of breast cancer risk with genetic polymorphisms of miR-1307, miR-1269, and miR-3117 in a sample of Iranian women (southeast region). METHODS The case-control study consisted of 520 individuals (260 diagnosed BC patients, 260 healthy individuals). The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was used for genotyping of miR-1307 rs7911488, miR-1269 rs73239138, and miR-3117 (rs4655646 and rs7512692) polymorphisms. RESULTS AND CONCLUSION This study provided evidence that miR-1307 rs7911488 polymorphism significantly reduced the risk of BC in heterozygous AG genotype, as well as dominant (AG+GG) genotype and G allele. A significant correlation was found between dominant (AA+AG) genotype, the A allele and protection against BC due to miR-1269 rs73239138 in the sample of study. In contrast, our findings suggested that AG genotype and G allele of miR-3117 rs4655646 polymorphism could increase BC's susceptibility among the southeastern Iranian females. The miR-3117 rs7512692 variant also increased the risk of BC in codominant, dominant and recessive models, as well as the T allele. The possible dependency of miR-1307, miR-1269, and miR-3117 variants with patients' clinicopathological characteristics and BC was also studied. It was concluded that there is a correlation between miR-3117 rs7512692 variant and tumor grade (p=0.031); also, a correlation between miR-1269 rs73239138 variant and progesterone receptor status (p=0.006). The current investigation revealed that miR-1307, miR-1269, and miR-3117 polymorphisms might play a crucial role in the Iranian population's vulnerability to BC.<br />.
Collapse
Affiliation(s)
- Sahel Sarabandi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hedieh Sattarifard
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Mohammad Kiumarsi
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Shima Karami
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.,Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland.,Autophagy Research Center, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Wang X, Jiang X, Li J, Wang J, Binang H, Shi S, Duan W, Zhao Y, Zhang Y. Serum exosomal miR-1269a serves as a diagnostic marker and plays an oncogenic role in non-small cell lung cancer. Thorac Cancer 2020; 11:3436-3447. [PMID: 33107700 PMCID: PMC7705625 DOI: 10.1111/1759-7714.13644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early diagnosis improves the prognosis for non-small cell lung cancer (NSCLC); therefore, there is a pressing need for effective diagnostic methods for NSCLC. Increasing evidence indicates that serum exosomal micro RNAs (miRNAs) represent promising diagnostic and prognostic markers for multiple cancers. Here, we explored a panel of miRNAs for NSCLC diagnosis and functionally characterized miR-1269a in the pathogenesis of NSCLC. METHODS First, we analyzed high-throughput data from The Cancer Genome Atlas (TCGA) to identify differentially expressed miRNAs between NSCLC patients and healthy controls. We examined the expression profiles of the identified miRNAs using qRT-PCR. RESULTS We found that four micro-RNAs (hsa-miR-9-3p, hsa-miR-205-5p, hsa-miR-210-5p, and hsa-miR-1269a) were more abundant in serum exosomes from NSCLC patients. A logistic regression model validated the diagnostic efficacy of the four-microRNA panel, allowing us to distinguish NSCLC patients from healthy controls with AUCs of 0.915 and 0.878 for the training and validation sets, respectively. Functionally, NSCLC cell proliferation, migration, and invasion were affected by the aberrant expression of hsa-miR-1269a in culture. Reduced expression of miR-1269a resulted in reduced proliferation, migration, and invasion through targeting the forkhead box O1 gene (FOXO1). CONCLUSIONS Taken together, our study identified a panel of four serum exosomal miRNAs as a potential noninvasive diagnostic biomarker for NSCLC. The interactions between FOXO1 and miR-1269a represent novel potential targets for NSCLC therapy.
Collapse
Affiliation(s)
- Xue Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xinquan Jiang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Jingzheng Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China.,Dongping County Peoples Hospital, Tai'an, China.,Dongping Hospital Affiliated to Shandong First Medical University, Tai'an, China
| | - Helen Binang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Shuang Shi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Weili Duan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Yi Zhang
- Respiratory and Critical Care Medicine Department, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
15
|
Zhang Y, Xiao L. Identification and validation of a prognostic 8-gene signature for acute myeloid leukemia. Leuk Lymphoma 2020; 61:1981-1988. [PMID: 32268820 DOI: 10.1080/10428194.2020.1742898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the present study, we aimed to identify some genes closely related to AML prognosis and investigate their potential roles. RNA-seq data of AML samples were accessed from the TCGA database and then analyzed in the Wilcox test. AML survival-related genes were selected and an 8-gene signature-based risk score model was in turn constructed (including TET3, S100A4, BATF, CLEC11A, PTP4A3, SPATS2L, SDHA, and ATOX1 8 feature genes) using the multivariate Cox regression analysis. Kaplan-Meier analysis was performed on the 8 genes in the training set (p = 2.826e - 11) and the test set (p = 2.213e - 2), and there was a remarkable difference in survival between the high and low-risk samples. Meanwhile, ROC analysis was conducted and revealed the relative higher accuracy of the risk score model applied in both the training set (1-year AUC = 0.864; 3-year AUC = 0.85) and test set (1-year AUC = 0.685; 3-year AUC = 0.678). Our study helps to extend our knowledge of the potential methods for AML prognosis.HighlightsA prognostic 8-gene (including TET3, CLEC11A, ATOX1, S100A4, BATF, PTP4A3, SPATS2L and SDHA 8) signature for acute myeloid leukemia (AML) was identified and validated.The influence of the expression of single gene in the model on the survival risk of AML patients was confirmed and the risk rate of 8 single-gene was compared.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Longyan Xiao
- Department of Hematology, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
16
|
Im J, Kim WR, Lee HE, Kim A, Kim DH, Choi YH, Cha HJ, Kim S, Kim HS. Expression analysis of LTR-derived miR-1269a and target gene, KSR2 in Sebastes schlegelii. Genes Genomics 2019; 42:55-65. [PMID: 31721105 DOI: 10.1007/s13258-019-00880-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Sebastes schlegelii are an important species of fish found in the coastal areas of the Korea with significant commercial importance. Most studies thus far have been primarily focused on environmental factors; behavioural patterns, aquaculture, diseases and limited genetic studies with little to none related to either microRNAs (miRNAs) or transposable elements (TE). OBJECTIVES In order to understand biological roles of TE-derived miR-1269a, we examined expression pattern for miR-1269a and its target gene, KSR2, in various tissues of Sebastes schlegelii. Also, we performed luciferase reporter assay in HINAE cells. METHODS UCSC Genome Browser (https://genome.ucsc.edu/) was used to examine which TE is associated with miR-1269a. For the target genes for miR-1269a, the target genes associated with the miRNA were identified using miRDB (http://www.mirdb.org/) and TargetScan 7.1 (http://www.targetscan.org/vert_71/). A two-step miRNA kit, HB miR Multi Assay Kit™ System. I was used for the analysis of TE-derived miRNA expression patterns. The 3'UTR of KSR2 gene was cloned into the psiCHECK-2 vector. Subsequently co-transfected with miR-1269a mimics to HINAE cells for luciferase reporter assay. RESULTS MiR-1269a was found to be derived from LTR retrotransposon, MLT2B. LTR-derived miR-1269a was highly expressed in the muscle, liver and gonad tissues of Sebastes schlegelii, but KSR2 revealed high expression in the brain. Co-transfection of KSR2 and miR-1269a mimic to HINAE cells showed high activity of miR-1269a in relation to KSR2. CONCLUSION LTR-derived miR-1269a showed enhancer activity with relation to KSR2 in Sebastes schlegelii. The data may be used as a foundation for further investigation regarding correlation of miRNA and target genes in addition to other functional studies of biological significance in Sebastes schlegelii.
Collapse
Affiliation(s)
- Jennifer Im
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ahran Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan, 49267, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea. .,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
17
|
A Role for the WNT Co-Receptor LRP6 in Pathogenesis and Therapy of Epithelial Cancers. Cancers (Basel) 2019; 11:cancers11081162. [PMID: 31412666 PMCID: PMC6721565 DOI: 10.3390/cancers11081162] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
The WNT/β-catenin signaling pathway controls stem and progenitor cell proliferation, survival and differentiation in epithelial tissues. Aberrant stimulation of this pathway is therefore frequently observed in cancers from epithelial origin. For instance, colorectal and hepatic cancers display activating mutations in the CTNNB1 gene encoding β-catenin, or inactivating APC and AXIN gene mutations. However, these mutations are uncommon in breast and pancreatic cancers despite nuclear β-catenin localization, indicative of pathway activation. Notably, the low-density lipoprotein receptor-related protein 6 (LRP6), an indispensable co-receptor for WNT, is frequently overexpressed in colorectal, liver, breast and pancreatic adenocarcinomas in association with increased WNT/β -catenin signaling. Moreover, LRP6 is hyperphosphorylated in KRAS-mutated cells and in patient-derived colorectal tumours. Polymorphisms in the LRP6 gene are also associated with different susceptibility to developing specific types of lung, bladder and colorectal cancers. Additionally, recent observations suggest that LRP6 dysfunction may be involved in carcinogenesis. Indeed, reducing LRP6 expression and/or activity inhibits cancer cell proliferation and delays tumour growth in vivo. This review summarizes current knowledge regarding the biological function and regulation of LRP6 in the development of epithelial cancers—especially colorectal, liver, breast and pancreatic cancers.
Collapse
|
18
|
Rana MA, Ijaz B, Daud M, Tariq S, Nadeem T, Husnain T. Interplay of Wnt β-catenin pathway and miRNAs in HBV pathogenesis leading to HCC. Clin Res Hepatol Gastroenterol 2019; 43:373-386. [PMID: 30377095 DOI: 10.1016/j.clinre.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/05/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
The prevalence of Hepatocellular carcinoma (HCC) has been identified world-wide. Plethora of factors including chronic infection of HBV/HCV has been characterized for the development of HCC. Although the onset and progression of HCC has been linked with awry of various signaling pathways but precise mechanism, still lies under the multitude layers of curiosity. HBV is spreading with insane speed throughout the world and has been found a main culprit in HCC development after regulating the several cellular pathways including Wnt/β-catenin, Raf/MAPK, Akt and affecting cell multiplication to genomic instability. The role of Wnt/FZD/β-catenin signaling pathway is centralized in liver functions and its anomalous activation leads to HCC development. β-catenin mainly plays a pivotal role in canonical pathway of the system. Altered mainly overexpression of β-catenin along its nuclear localization tunes the aberrations in liver functions and set disease progression. In the development of HCC, modulation of Wnt/FZD/β-catenin signaling pathway by HBV has been established. As HBV infects the cell it affects the miRNAs, the master regulators of cell. Previous studies showed the connection between HBV and cellular miRNAs. In the present review, we unveiled how HBV is deciphering the cellular miRNAs like miR-26a, miR-15a, miR-16-1, miR-148a, miR-132, miR-122, miR-34a, miR-21, miR-29a, miR-222 and miR-199a/b-3p to modulate the Wnt/FZD/β-catenin signaling pathway and develop HCC. These HBV mediated miRNAs may prove future therapeutic options to treat HBV-Wnt/FZD/β-catenin associated HCC.
Collapse
Affiliation(s)
- Muhammad Adeel Rana
- Department of microbiology, Quaid-i-Azam University, Islamabad, Pakistan; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan.
| | - Muhammad Daud
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Sommyya Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| |
Collapse
|
19
|
Robert F, Pelletier J. Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Front Genet 2018; 9:507. [PMID: 30425729 PMCID: PMC6218417 DOI: 10.3389/fgene.2018.00507] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Over the past 15 years, sequencing of the human genome and The Cancer Genome Atlas (TCGA) project have led to comprehensive lists of single-nucleotide polymorphisms (SNPs) and gene mutations across a large number of human samples. However, our ability to predict the functional impact of SNPs and mutations on gene expression is still in its infancy. Here, we provide key examples to help understand how mutations present in genes can affect translational output.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Department of Oncology, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Hu Y, Dingerdissen H, Gupta S, Kahsay R, Shanker V, Wan Q, Yan C, Mazumder R. Identification of key differentially expressed MicroRNAs in cancer patients through pan-cancer analysis. Comput Biol Med 2018; 103:183-197. [PMID: 30384176 DOI: 10.1016/j.compbiomed.2018.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
Abstract
microRNAs (miRNAs) functioning in gene silencing have been associated with cancer progression. However, common abnormal miRNA expression patterns and their potential roles in cancer have not yet been evaluated. To account for individual differences between patients, we retrieved miRNA sequencing data for 575 patients with both tumor and adjacent non-tumorous tissues from 14 cancer types from The Cancer Genome Atlas (TCGA). We then performed differential expression analysis using DESeq2 and edgeR. Results showed that cancer types can be grouped based on the distribution of miRNAs with different expression patterns between tumor and non-tumor samples. We found 81 significantly differentially expressed miRNAs (SDEmiRNAs) in a single cancer. We also found 21 key SDEmiRNAs (nine over-expressed and 12 under-expressed) associated with at least eight cancers each and enriched in more than 60% of patients per cancer, including four newly identified SDEmiRNAs (hsa-mir-4746, hsa-mir-3648, hsa-mir-3687, and hsa-mir-1269a). The downstream effects of these 21 SDEmiRNAs on cellular function were evaluated through enrichment and pathway analysis of 7186 protein-coding gene targets mined from literature reports of differential expression of miRNAs in cancer. This analysis enables identification of SDEmiRNA functional similarity in cell proliferation control across a wide range of cancers, and assembly of common regulatory networks over cancer-related pathways. These findings were validated by construction of a regulatory network in the PI3K pathway. This study provides evidence for the value of further analysis of SDEmiRNAs as potential biomarkers and therapeutic targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Hu
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Hayley Dingerdissen
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Samir Gupta
- Department of Computer and Information Science, University of Delaware, Newark, DE, 19716, USA.
| | - Robel Kahsay
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Vijay Shanker
- Department of Computer and Information Science, University of Delaware, Newark, DE, 19716, USA.
| | - Quan Wan
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Cheng Yan
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA.
| | - Raja Mazumder
- The Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC, 20037, USA; The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, 20037, USA.
| |
Collapse
|
21
|
Comprehensive assessment for miRNA polymorphisms in hepatocellular cancer risk: a systematic review and meta-analysis. Biosci Rep 2018; 38:BSR20180712. [PMID: 29976775 PMCID: PMC6153371 DOI: 10.1042/bsr20180712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/23/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023] Open
Abstract
MiRNA polymorphisms had potential to be biomarkers for hepatocellular cancer (HCC) susceptibility. Recently, miRNA single nucleotide polymorphisms (SNPs) were reported to be associated with HCC risk, but the results were inconsistent. We performed a systematic review with a meta-analysis for the association of miRNA SNPs with HCC risk. Thirty-seven studies were included with a total of 11821 HCC patients and 15359 controls in this meta-analysis. We found hsa-mir-146a rs2910164 was associated with a decreased HCC risk in the recessive model (P=0.017, OR = 0.90, 95% confidence interval (CI) = 0.83–0.98). While hsa-mir-34b/c rs4938723 was related with an increased HCC risk in the co-dominant model (P=0.016, odds ratio (OR) = 1.19, 95%CI = 1.03–1.37). When analyzing the Hepatitis B virus (HBV)-related HCC risk, hsa-mir-196a-2 rs11614913 was associated with a decreased HBV-related HCC risk in the co-dominant and allelic models. And hsa-mir-149 rs2292832 was found to be associated with a decreased HBV-related HCC risk in the dominant and recessive models. In conclusion, hsa-mir-146a rs2910164 and hsa-mir-34b/c rs4938723 could be biomarkers for the HCC risk while hsa-mir-196a-2 rs11614913 and hsa-mir-149 rs2292832 had potential to be biomarkers for HBV-related HCC risk.
Collapse
|
22
|
Nie X, Liu Y, Chen WD, Wang YD. Interplay of miRNAs and Canonical Wnt Signaling Pathway in Hepatocellular Carcinoma. Front Pharmacol 2018; 9:657. [PMID: 29977206 PMCID: PMC6021530 DOI: 10.3389/fphar.2018.00657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/01/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma is one of the leading causes of cancer death worldwide and the activation of canonical Wnt signaling pathway is universal in hepatocellular carcinoma patients. MicroRNAs are found to participate in the pathogenesis of hepatocellular carcinoma by activating or inhibiting components in the canonical Wnt signaling pathway. Meanwhile, transcriptional activation of microRNAs by canonical Wnt signaling pathway also contributes to the occurrence and progression of hepatocellular carcinoma. Pharmacological inhibition of hepatocellular carcinoma pathogenesis and other cancers by microRNAs are now in clinical trials despite the challenges of identifying efficient microRNAs candidates and safe delivery vehicles. The focus of this review is on the interplay mechanisms between microRNAs and canonical Wnt signaling pathway in hepatocellular carcinoma, and a deep understanding of the crosstalk will promote to develop a better management of this disease.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Yiran Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China.,Department of Pathology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
23
|
The SNPs in pre-miRNA are related to the response of capecitabine-based therapy in advanced colon cancer patients. Oncotarget 2018; 9:6793-6799. [PMID: 29467929 PMCID: PMC5805515 DOI: 10.18632/oncotarget.23190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
The single nucleotide polymorphisms (SNPs) in the microRNA precursor (pre-miRNA) may modulate the posttranscriptional regulation of gene expression and explain individual sensitivity to chemotherapy. Here we investigated the correlation between 23 SNPs in the pre-miRNA and the efficacy of capecitabine-based chemotherapy in 274 advanced colon cancer patients. Statistical analysis indicated that much more patients with rs744591 A/C(48.03%), C/C (53.45%) or C allele (49.73%) responded to the chemotherapy than those with the A/A genotype (33.71%). The response rates of rs745666 G/C heterozygous patients (35.25%) and C allele carriers (39.69%) were apparently less than that of the G/G homozygous patients (56.25%). Moreover, three SNPs rs2114358, rs35770269, and rs73239138 were significantly associated with the occurrence of side effects of chemotherapy. The patients with rs2114358 C allele (OR = 2.016) or rs35770269 T allele (OR = 2.299) were much more prone to endure adverse events. However, the incidence of side effect was lower in the patients carrying rs73239138 A allele than those with G/G genotype (OR = 0.500). Our findings demonstrate that genetic variations in pre-miRNA may influence the efficacy of capecitabine-based chemotherapy in advanced colon cancer patients.
Collapse
|
24
|
Nunez Lopez YO, Victoria B, Golusinski P, Golusinski W, Masternak MM. Characteristic miRNA expression signature and random forest survival analysis identify potential cancer-driving miRNAs in a broad range of head and neck squamous cell carcinoma subtypes. Rep Pract Oncol Radiother 2018; 23:6-20. [PMID: 29187807 PMCID: PMC5698002 DOI: 10.1016/j.rpor.2017.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/27/2017] [Accepted: 10/22/2017] [Indexed: 12/13/2022] Open
Abstract
AIM To characterize the miRNA expression profile in head and neck squamous cell carcinoma (HNSSC) accounting for a broad range of cancer subtypes and consequently identify an optimal miRNA signature with prognostic value. BACKGROUND HNSCC is consistently among the most common cancers worldwide. Its mortality rate is about 50% because of the characteristic aggressive behavior of these cancers and the prevalent late diagnosis. The heterogeneity of the disease has hampered the development of robust prognostic tools with broad clinical utility. MATERIALS AND METHODS The Cancer Genome Atlas HNSC dataset was used to analyze level 3 miRNA-Seq data from 497 HNSCC patients. Differential expression (DE) analysis was implemented using the limma package and multivariate linear model that adjusted for the confounding effects of age at diagnosis, gender, race, alcohol history, anatomic neoplasm subdivision, pathologic stage, T and N stages, and vital status. Random forest (RF) for survival analysis was implemented using the randomForestSRC package. RESULTS A characteristic DE miRNA signature of HNSCC, comprised of 11 upregulated (i.e., miR-196b-5p, miR-1269a, miR-196a-5p, miR-4652-3p, miR-210-3p, miR-1293, miR-615-3p, miR-503-5p, miR-455-3p, miR-205-5p, and miR-21-5p) and 9 downregulated (miR-376c-3p, miR-378c, miR-29c-3p, miR-101-3p, miR-195-5p, miR-299-5p, miR-139-5p, miR-6510-3p, miR-375) miRNAs was identified. An optimal RF survival model was built from seven variables including age at diagnosis, miR-378c, miR-6510-3p, stage N, pathologic stage, gender, and race (listed in order of variable importance). CONCLUSIONS The joint differential miRNA expression and survival analysis controlling for multiple confounding covariates implemented in this study allowed for the identification of a previously undetected prognostic miRNA signature characteristic of a broad range of HNSCC.
Collapse
Affiliation(s)
- Yury O. Nunez Lopez
- Translational Research Institute for Metabolism & Diabetes, Florida Hospital, 301 East Princeton St., Orlando, FL 32804, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
| | - Pawel Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
25
|
Chuanyin L, Xiaona W, Zhiling Y, Yu Z, Shuyuan L, Jie Y, Chao H, Li S, Hongying Y, Yufeng Y. The association between polymorphisms in microRNA genes and cervical cancer in a Chinese Han population. Oncotarget 2017; 8:87914-87927. [PMID: 29152130 PMCID: PMC5675682 DOI: 10.18632/oncotarget.21235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/27/2017] [Indexed: 01/09/2023] Open
Abstract
Several studies have confirmed the crucial roles of microRNAs (miRNAs) in cancer occurrence. In addition, single nucleotide polymorphisms (SNPs) in miRNA genes have been associated with various cancers. The aim of the present study was to investigate the association of SNPs in miRNA genes with cervical intraepithelial neoplasia (CIN) and cervical cancer in a Chinese Han population. We searched SNPs in nineteen miRNAs by sequencing healthy individuals (n=50). Then, a total of 400 patients with CIN, 609 patients with cervical cancer and 583 healthy individuals were recruited to genotype the SNPs using a Taqman assay. The results showed that only five of the nineteen miRNAs had SNPs (rs11134527 in pri-miR-218-2; rs74693964 in pri-miR-145; rs6062251 in pri-miR-133a2; rs531564 in pri-miR-124-1; and rs1834306 in pri-miR-100) in this Chinese Han population. The frequency of the rs11134527A allele was significantly higher in the control group than in CIN and cervical cancer groups (P=0.011 and 0.035, respectively). The frequency of the rs531564G allele was higher in the CIN and control groups than in the cervical cancer group (P=0.019 and 0.017, respectively). These results indicated that rs11134527 in pri-miR-218-2 and rs531564 in pri-miR-124-1 could be associated with CIN and cervical cancer in the Chinese Han population.
Collapse
Affiliation(s)
- Li Chuanyin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Wang Xiaona
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yan Zhiling
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Zhang Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Liu Shuyuan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yang Jie
- Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Chao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shi Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yang Hongying
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Yao Yufeng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
26
|
Detassis S, Grasso M, Del Vescovo V, Denti MA. microRNAs Make the Call in Cancer Personalized Medicine. Front Cell Dev Biol 2017; 5:86. [PMID: 29018797 PMCID: PMC5614923 DOI: 10.3389/fcell.2017.00086] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Since their discovery and the advent of RNA interference, microRNAs have drawn enormous attention because of their ubiquitous involvement in cellular pathways from life to death, from metabolism to communication. It is also widely accepted that they possess an undeniable role in cancer both as tumor suppressors and tumor promoters modulating cell proliferation and migration, epithelial-mesenchymal transition and tumor cell invasion and metastasis. Moreover, microRNAs can even affect the tumor surrounding environment influencing angiogenesis and immune system activation and recruitment. The tight association of microRNAs with several cancer-related processes makes them undoubtedly connected to the effect of specific cancer drugs inducing either resistance or sensitization. In this context, personalized medicine through microRNAs arose recently with the discovery of single nucleotide polymorphisms in the target binding sites, in the sequence of the microRNA itself or in microRNA biogenesis related genes, increasing risk, susceptibility and progression of multiple types of cancer in different sets of the population. The depicted scenario implies that the overall variation displayed by these small non-coding RNAs have an impact on patient-specific pharmacokinetics and pharmacodynamics of cancer drugs, pushing on a rising need of personalized treatment. Indeed, microRNAs from either tissues or liquid biopsies are also extensively studied as valuable biomarkers for disease early recognition, progression and prognosis. Despite microRNAs being intensively studied in recent years, a comprehensive review describing these topics all in one is missing. Here we report an up-to-date and critical summary of microRNAs as tools for better understanding personalized cancer biogenesis, evolution, diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Michela A. Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| |
Collapse
|