1
|
Treatment of infection and inflammation associated with COVID-19, multi-drug resistant pneumonia and fungal sinusitis by nebulizing a nanosilver solution. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102654. [PMID: 36646192 PMCID: PMC9839457 DOI: 10.1016/j.nano.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Solutions containing Ag0 nanoclusters, Ag+1, and higher oxidation state silver, generated from nanocrystalline silver dressings, were anti-inflammatory against porcine skin inflammation. The dressings have clinically-demonstrated broad-spectrum antimicrobial activity, suggesting application of nanosilver solutions in treating pulmonary infection. Nanosilver solutions were tested for antimicrobial efficacy; against HSV-1 and SARS-CoV-2; and nebulized in rats with acute pneumonia. Patients with pneumonia (ventilated), fungal sinusitis, burns plus COVID-19, and two non-hospitalized patients with COVID-19 received nebulized nanosilver solution. Nanosilver solutions demonstrated pH-dependent antimicrobial efficacy; reduced infection and inflammation without evidence of lung toxicity in the rat model; and inactivated HSV-1 and SARS-CoV-2. Pneumonia patients had rapidly reduced pulmonary symptoms, recovering pre-illness respiratory function. Fungal sinusitis-related inflammation decreased immediately with infection clearance within 21 days. Non-hospitalized patients with COVID-19 experienced rapid symptom remission. Nanosilver solutions, due to anti-inflammatory, antiviral, and antimicrobial activity, may be effective for treating respiratory inflammation and infections caused by viruses and/or microbes.
Collapse
|
2
|
Hamida RS, Ali MA, Goda DA, Redhwan A. Anticandidal Potential of Two Cyanobacteria-Synthesized Silver Nanoparticles: Effects on Growth, Cell Morphology, and Key Virulence Attributes of Candida albicans. Pharmaceutics 2021; 13:1688. [PMID: 34683981 PMCID: PMC8539685 DOI: 10.3390/pharmaceutics13101688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen responsible for 90-100% of mucosal and nosocomial infections worldwide. The emergence of drug-resistant strains has resulted in adverse consequences for human health, including numerous deaths. Consequently, there is an urgent need to identify and develop new antimicrobial drugs to counter these effects. Antimicrobial nanoagents have shown potent inhibitory activity against a number of pathogens through targeting their defense systems, such as biofilm formation. Here, we investigated the anticandidal activity of silver nanoparticles biosynthesized by the cyanobacterial strains Desertifilum sp. IPPAS B-1220 and Nostoc Bahar_M (D-SNPs and N-SNPs, respectively), along with that of silver nitrate (AgNO3), and examined the mechanisms underlying their lethal effects. For this, we performed agar well diffusion and enzyme activity assays (lactate dehydrogenase, adenosine triphosphatase, glutathione peroxidase, and catalase) and undertook morphological examinations using transmission electron microscopy. The effects of the three treatments on Hwp1 and CDR1 gene expression and protein patterns were assessed using qRT-PCR and SDS-PAGE assays, respectively. All of the three treatments inhibited C. albicans growth; disrupted membrane integrity, metabolic function, and antioxidant activity; induced ultrastructural changes in the cell envelope; and disrupted cytoplasmic and nuclear contents. Of the three agents, D-SNPs showed the greatest biocidal activity against C. albicans. Additionally, the D-SNP treatment significantly reduced the gene expression of Hwp1 and CDR1, suggestive of negative effects on biofilm formation ability and resistance potential of C. albicans, and promoted protein degradation. The mechanism involved in the biocidal effects of both D-SNPs and N-SNPs against C. albicans could be attributed to their ability to interfere with fungal cell structures and/or stimulate oxidative stress, enabling them to be used as a robust antimycotic agent.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt;
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Doaa A. Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| |
Collapse
|
3
|
Hamida RS, Ali MA, Goda DA, Al-Zaban MI. Lethal Mechanisms of Nostoc-Synthesized Silver Nanoparticles Against Different Pathogenic Bacteria. Int J Nanomedicine 2020; 15:10499-10517. [PMID: 33402822 PMCID: PMC7778443 DOI: 10.2147/ijn.s289243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing antibiotic resistance and the emergence of multidrug-resistant (MDR) pathogens have led to the need to develop new therapeutic agents to tackle microbial infections. Nano-antibiotics are a novel generation of nanomaterials with significant antimicrobial activities that target bacterial defense systems including biofilm formation, membrane permeability, and virulence activity. PURPOSE In addition to AgNO3, the current study aimed to explore for first time the antibacterial potential of silver nanoparticles synthesized by Nostoc sp. Bahar_M (N-SNPs) and their killing mechanisms against Streptococcus mutans, methicillin-resistant Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. METHODS Potential mechanisms of action of both silver species against bacteria were systematically explored using agar well diffusion, enzyme (lactate dehydrogenase (LDH) and ATPase) and antioxidant (glutathione peroxidase and catalase) assays, and morphological examinations. qRT-PCR and SDS-PAGE were employed to investigate the effect of both treatments on mfD, flu, and hly gene expression and protein patterns, respectively. RESULTS N-SNPs exhibited greater biocidal activity than AgNO3 against the four tested bacteria. E. coli treated with N-SNPs showed significant surges in LDH levels, imbalances in other antioxidant and enzyme activities, and marked morphological changes, including cell membrane disruption and cytoplasmic dissolution. N-SNPs caused more significant upregulation of mfD expression and downregulation of both flu and hly expression and increased protein denaturation compared with AgNO3. CONCLUSION N-SNPs exhibited significant inhibitory potential against E. coli by direct interfering with bacterial cellular structures and/or enhancing oxidative stress, indicating their potential for use as an alternative antimicrobial agent. However, the potential of N-SNPs to be usable and biocompatible antibacterial drug will evaluate by their toxicity against normal cells.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mayasar Ibrahim Al-Zaban
- Department of Biology, College of Science Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Hamida RS, Albasher G, Bin-Meferij MM. Oxidative Stress and Apoptotic Responses Elicited by Nostoc-Synthesized Silver Nanoparticles against Different Cancer Cell Lines. Cancers (Basel) 2020; 12:E2099. [PMID: 32731591 PMCID: PMC7464693 DOI: 10.3390/cancers12082099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Green nanoparticles represent a revolution in bionanotechnology, providing opportunities to fight life-threatening diseases, such as cancer, with less risk to the environment and to human health. Here, for the first time, we systematically investigated the anticancer activity and possible mechanism of novel silver nanoparticles (N-SNPs) synthesized by Nostoc Bahar M against the MCF-7 breast cancer cells, HCT-116 colorectal adenocarcinoma cells, and HepG2 liver cancer cells, using cell viability assays, morphological characterization with inverted light and transmission electron microscopy, antioxidants and enzymes (glutathione peroxidase (GPx), glutathione (GSH), adenosine triphosphatase (ATPase), and lactate dehydrogenase (LDH)), and western blotting (protein kinase B (Akt), phosphorylated-Akt (p-Akt), mammalian target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2), tumor suppressor (p53), and caspase 3). N-SNPs decreased the viability of MCF-7, HCT-116, and HepG2 cells, with half-maximal inhibitory concentrations of 54, 56, and 80 µg/mL, respectively. They also significantly increased LDH leakage, enhanced oxidative stress via effects on antioxidative markers, and caused metabolic stress by significantly decreasing ATPase levels. N-SNPs caused extensive ultrastructural alterations in cell and nuclear structures, as well as in various organelles. Furthermore, N-SNPs triggered apoptosis via the activation of caspase 3 and p53, and suppressed the mTOR signaling pathway via downregulating apoptosis-evading proteins in MCF-7, HCT-116, and HepG2 cells. Ultrastructural analysis, together with biochemical and molecular analyses, revealed that N-SNPs enhanced apoptosis via the induction of oxidative stress and/or through direct interactions with cellular structures in all tested cells. The cytotoxicity of Nostoc-mediated SNPs represents a new strategy for cancer treatment via targeting various cell death pathways. However, the potential of N-SNPs to be usable and biocompatible anticancer drug will depend on their toxicity against normal cells.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt
| | - Gadah Albasher
- Zoology Department, College of Science, King Saud University, Riyadh 11543, Saudi Arabia;
| | - Mashael Mohammed Bin-Meferij
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11543, Saudi Arabia
| |
Collapse
|
5
|
Antineoplastic Effect of PAC Capped Silver Nanoparticles Promote Apoptosis in HT-29 Human Colon Cancer Cells. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01510-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Basu S, Goswami U, Paul A, Chattopadhyay A. Crystalline assembly of gold nanoclusters for mitochondria targeted cancer theranostics. J Mater Chem B 2018; 6:1650-1657. [DOI: 10.1039/c7tb03254d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report the formation of a crystalline assembly of gold (Au) nanoclusters for cancer theranostics via active targeting of mitochondria.
Collapse
Affiliation(s)
- Srestha Basu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Upashi Goswami
- Centre For Nanotechnology
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Anumita Paul
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Arun Chattopadhyay
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Centre For Nanotechnology
| |
Collapse
|
7
|
Azizi M, Ghourchian H, Yazdian F, Bagherifam S, Bekhradnia S, Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep 2017; 7:5178. [PMID: 28701707 PMCID: PMC5508052 DOI: 10.1038/s41598-017-05461-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 05/10/2017] [Indexed: 01/23/2023] Open
Abstract
With the aim of making specific targeting of silver nanoparticles as a drug for tumor cells and developing new anticancer agents, a novel nano-composite was developed. Albumin coated silver nanoparticles (ASNPs) were synthesized, and their anti-cancerous effects were evaluated against MDA-MB 231, a human breast cancer cell line. The synthesized ASNPs were characterized by spectroscopic methods. The morphological changes of the cells were observed by inverted, florescent microscopy and also by DNA ladder pattern on gel electrophoresis; the results revealed that the cell death process occurred through the apoptosis mechanism. It was found that ASNPs with a size of 90 nm and negatively charged with a zeta-potential of about −20 mV could be specifically taken up by tumor cells. The LD50 of ASNPs against MDA-MB 231 (5 μM), was found to be 30 times higher than that for white normal blood cells (152 μM). The characteristics of the synthesized ASNPs included; intact structure of coated albumin, higher cytotoxicity against cancer cells than over normal cells, and cell death based on apoptosis and reduction of gland tumor sizes in mice. This work indicates that ASNPs could be a good candidate for chemotherapeutic drug.
Collapse
Affiliation(s)
- Marzieh Azizi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.,Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Fatemeh Yazdian
- Faculty of New Science and Technology, University of Tehran, Tehran, Iran
| | - Shahla Bagherifam
- Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway.,Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Bo Nyström
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Liu Q, Duan B, Xu X, Zhang L. Progress in rigid polysaccharide-based nanocomposites with therapeutic functions. J Mater Chem B 2017; 5:5690-5713. [DOI: 10.1039/c7tb01065f] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanocomposites engineered by incorporating versatile nanoparticles into different bioactive β-glucan matrices display effective therapeutic functions.
Collapse
Affiliation(s)
- Qingye Liu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
- College of Chemical and Environmental Engineering
| | - Bingchao Duan
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- China
| |
Collapse
|
9
|
Habiba K, Encarnacion-Rosado J, Garcia-Pabon K, Villalobos-Santos JC, Makarov VI, Avalos JA, Weiner BR, Morell G. Improving cytotoxicity against cancer cells by chemo-photodynamic combined modalities using silver-graphene quantum dots nanocomposites. Int J Nanomedicine 2015; 11:107-19. [PMID: 26766909 PMCID: PMC4699517 DOI: 10.2147/ijn.s95440] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The combination of chemotherapy and photodynamic therapy has emerged as a promising strategy for cancer therapy due to its synergistic effects. In this work, PEGylated silver nanoparticles decorated with graphene quantum dots (Ag-GQDs) were tested as a platform to deliver a chemotherapy drug and a photosensitizer, simultaneously, in chemo-photodynamic therapy against HeLa and DU145 cancer cells in vitro. Ag-GQDs have displayed high efficiency in delivering doxorubicin as a model chemotherapy drug to both cancer cells. The Ag-GQDs exhibited a strong antitumor activity by inducing apoptosis in cancer cells without affecting the viability of normal cells. Moreover, the Ag-GQDs exhibited a cytotoxic effect due to the generation of the reactive singlet oxygen upon 425 nm irradiation, indicating their applicability in photodynamic therapy. In comparison with chemo or photodynamic treatment alone, the combined treatment of Ag-GQDs conjugated with doxorubicin under irradiation with a 425 nm lamp significantly increased the death in DU145 and HeLa. This study suggests Ag-GQDs as a multifunctional and efficient therapeutic system for chemo-photodynamic modalities in cancer therapy.
Collapse
Affiliation(s)
- Khaled Habiba
- Department of Physics, University of Puerto Rico – Rio Piedras Campus, San Juan, PR, USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Joel Encarnacion-Rosado
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, USA
- Department of Biology, University of Puerto Rico – Rio Piedras Campus, San Juan, PR, USA
| | - Kenny Garcia-Pabon
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, USA
- Faculty of Education, University of Puerto Rico – Rio Piedras Campus, San Juan, PR, USA
| | - Juan C Villalobos-Santos
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, USA
- Department of Biology, University of Puerto Rico – Bayamon Campus, Bayamon, PR, USA
| | - Vladimir I Makarov
- Department of Physics, University of Puerto Rico – Rio Piedras Campus, San Juan, PR, USA
| | - Javier A Avalos
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, USA
- Department of Physics, University of Puerto Rico – Bayamon Campus, Bayamon, PR, USA
| | - Brad R Weiner
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, USA
- Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR, USA
- Department of Chemistry, University of Puerto Rico – Rio Piedras Campus, San Juan, PR, USA
| | - Gerardo Morell
- Department of Physics, University of Puerto Rico – Rio Piedras Campus, San Juan, PR, USA
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, USA
- Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
10
|
Egozi D, Baranes-Zeevi M, Ullmann Y, Gilhar A, Keren A, Matanes E, Berdicevsky I, Krivoy N, Zilberman M. Biodegradable soy wound dressings with controlled release of antibiotics: Results from a guinea pig burn model. Burns 2015; 41:1459-67. [DOI: 10.1016/j.burns.2015.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/07/2015] [Accepted: 03/27/2015] [Indexed: 11/25/2022]
|
11
|
Zilberman M, Egozi D, Shemesh M, Keren A, Mazor E, Baranes-Zeevi M, Goldstein N, Berdicevsky I, Gilhar A, Ullmann Y. Hybrid wound dressings with controlled release of antibiotics: Structure-release profile effects and in vivo study in a guinea pig burn model. Acta Biomater 2015; 22:155-63. [PMID: 25922303 DOI: 10.1016/j.actbio.2015.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
Over the last decades, wound dressings have evolved from a crude traditional gauze dressing to tissue-engineered scaffolds. Many types of wound dressing formats are commercially available or have been investigated. We developed and studied hybrid bilayer wound dressings which combine a drug-loaded porous poly(dl-lactic-co-glycolic acid) top layer with a spongy collagen sublayer. Such a structure is very promising because it combines the advantageous properties of both layers. The antibiotic drug gentamicin was incorporated into the top layer for preventing and/or defeating infections. In this study, we examined the effect of the top layer's structure on the gentamicin release profile and on the resulting in vivo wound healing. The latter was tested on a guinea pig burn model, compared to the neutral non-adherent dressing material Melolin® (Smith & Nephew) and Aquacel® Ag (ConvaTec). The release kinetics of gentamicin from the various studied formulations exhibited burst release values between 8% and 38%, followed by a drug elution rate that decreased with time and lasted for at least 7 weeks. The hybrid dressing, with relatively slow gentamicin release, enabled the highest degree of wound healing (28%), which is at least double that obtained by the other dressing formats (8-12%). It resulted in the lowest degree of wound contraction and a relatively low amount of inflammatory cells compared to the controls. This dressing was found to be superior to hybrid wound dressings with fast gentamicin release and to the neat hybrid dressing without drug release. Since this dressing exhibited promising results and does not require frequent bandage changes, it offers a potentially valuable concept for treating large infected burns.
Collapse
Affiliation(s)
- Meital Zilberman
- Dept. of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | - Dana Egozi
- Dept. of Plastic Surgery, Kaplan Medical Center, Rehovot, Israel
| | - Maoz Shemesh
- Dept. of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Aviad Keren
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel; Dept. of Plastic Surgery and the Burn Unit, Rambam Health Care Campus, Haifa, Israel
| | - Eytan Mazor
- Dept. of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Maya Baranes-Zeevi
- Dept. of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Nyra Goldstein
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel; Dept. of Plastic Surgery and the Burn Unit, Rambam Health Care Campus, Haifa, Israel
| | - Israela Berdicevsky
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Amos Gilhar
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yehuda Ullmann
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel; Dept. of Plastic Surgery and the Burn Unit, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
12
|
Sachdev A, Matai I, Gopinath P. Dual-functional carbon dots–silver@zinc oxide nanocomposite: in vitro evaluation of cellular uptake and induction of apoptosis. J Mater Chem B 2015; 3:1217-1229. [DOI: 10.1039/c4tb02043j] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report here the devleopment of novel CDs decorated on a silver–zinc oxide (CD–Ag@ZnO) nanocomposite (NC) consisting of highly fluorescent CDs and Ag@ZnO.
Collapse
Affiliation(s)
- Abhay Sachdev
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - Ishita Matai
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|
13
|
Bhushan B, Gopinath P. Tumor-targeted folate-decorated albumin-stabilised silver nanoparticles induce apoptosis at low concentration in human breast cancer cells. RSC Adv 2015. [DOI: 10.1039/c5ra16936d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current study exploits the folate-mediated delivery of bovine serum albumin (BSA) stabilized Ag NPs and thereby overcomes various drawbacks associated with non-specific targeting.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| | - P. Gopinath
- Nanobiotechnology Laboratory
- Centre for Nanotechnology
- Indian Institute of Technology Roorkee
- Roorkee
- India
| |
Collapse
|
14
|
Elsner JJ, Kraitzer A, Grinberg O, Zilberman M. Highly porous drug-eluting structures: from wound dressings to stents and scaffolds for tissue regeneration. BIOMATTER 2014; 2:239-70. [PMID: 23507890 PMCID: PMC3568110 DOI: 10.4161/biom.22838] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For many biomedical applications, there is need for porous implant materials. The current article focuses on a method for preparation of drug-eluting porous structures for various biomedical applications, based on freeze drying of inverted emulsions. This fabrication process enables the incorporation of any drug, to obtain an "active implant" that releases drugs to the surrounding tissue in a controlled desired manner. Examples for porous implants based on this technique are antibiotic-eluting mesh/matrix structures used for wound healing applications, antiproliferative drug-eluting composite fibers for stent applications and local cancer treatment, and protein-eluting films for tissue regeneration applications. In the current review we focus on these systems. We show that the release profiles of both types of drugs, water-soluble and water-insoluble, are affected by the emulsion's formulation parameters. The former's release profile is affected mainly through the emulsion stability and the resulting porous microstructure, whereas the latter's release mechanism occurs via water uptake and degradation of the host polymer. Hence, appropriate selection of the formulation parameters enables to obtain desired controllable release profile of any bioactive agent, water-soluble or water-insoluble, and also fit its physical properties to the application.
Collapse
Affiliation(s)
- Jonathan J Elsner
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
15
|
Novel biodegradable composite wound dressings with controlled release of antibiotics: results in a guinea pig burn model. Burns 2011; 37:896-904. [PMID: 21466923 DOI: 10.1016/j.burns.2011.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/28/2011] [Indexed: 11/22/2022]
Abstract
Approximately 70% of all people with severe burns die from related infections despite advances in treatment regimens and the best efforts of nurses and doctors. Silver ion-eluting wound dressings are available for overcoming this problem. However, there are reports of deleterious effects of such dressings due to cellular toxicity that delays the healing process, and the dressing changes needed 1-2 times a day are uncomfortable for the patient and time consuming for the stuff. An alternative concept in wound dressing design that combines the advantages of occlusive dressings with biodegradability and intrinsic topical antibiotic treatment is described herewith. The new composite structure presented in this article is based on a polyglyconate mesh and a porous poly-(dl-lactic-co-glycolic acid) matrix loaded with gentamicin developed to provide controlled release of antibiotics for three weeks. In vivo evaluation of the dressing material in contaminated deep second degree burn wounds in guinea pigs (n=20) demonstrated its ability to accelerate epithelialization by 40% compared to an unloaded format of the material and a conventional dressing material. Wound contraction was reduced significantly, and a better quality scar tissue was formed. The current dressing material exhibits promising results, does not require frequent bandage changes, and offers a potentially valuable and economic approach to treating the life-threatening complication of burn-related infections.
Collapse
|
16
|
Sanpui P, Chattopadhyay A, Ghosh SS. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS APPLIED MATERIALS & INTERFACES 2011; 3:218-28. [PMID: 21280584 DOI: 10.1021/am100840c] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We report the development of a chitosan nanocarrier (NC)-based delivery of silver nanoparticles (Ag NPs) to mammalian cells for induction of apoptosis at very low concentrations of the NPs. The cytotoxic efficacy of the Ag NP-nanocarrier (Ag-CS NC) system in human colon cancer cells (HT 29) was examined by morphological analyses and biochemical assays. Cell viability assay demonstrated that the concentration of Ag NPs required to reduce the viability of HT 29 cells by 50% was 0.33 μg mL(-1), much less than in previously reported data. The efficient induction of apoptosis by Ag-CS NCs was confirmed by flow cytometry. Additionally, the characteristic nuclear and morphological changes during apoptotic cell death were investigated by fluorescence and scanning electron microscopy (SEM), respectively. The involvement of mitochondrial pathway of cell death in the Ag-CS NCs induced apoptosis was evident from the depolarization of mitochondrial membrane potential (ΔΨ(m)). Real time quantitative RT-PCR analysis demonstrated the up-regulation of caspase 3 expression which was further reflected in the formation of oligo-nucleosomal DNA "ladders" in Ag-CS NCs treated cells, indicating the important role of caspases in the present apoptotic process. The increased production of intracellular ROS due to Ag-CS NCs treatment indicated that the oxidative stress could augment the induction of apoptosis in HT 29 cells in addition to classical caspase signaling pathway. The use of significantly low concentration of Ag NPs impregnated in chitosan nanocarrier is a much superior approach in comparison to the use of free Ag NPs in cancer therapy.
Collapse
Affiliation(s)
- Pallab Sanpui
- Centre for Nanotechnology, ‡Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| | | | | |
Collapse
|
17
|
Elsner JJ, Berdicevsky I, Shefy-Peleg A, Zilberman M. Novel Composite Antibiotic-Eluting Structures for Wound Healing Applications. ACTIVE IMPLANTS AND SCAFFOLDS FOR TISSUE REGENERATION 2011. [DOI: 10.1007/8415_2011_66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
18
|
Khundkar R, Malic C, Burge T. Use of Acticoat dressings in burns: what is the evidence? Burns 2010; 36:751-8. [PMID: 20346592 DOI: 10.1016/j.burns.2009.04.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/01/2009] [Indexed: 12/11/2022]
Abstract
The virtues of silver as an antimicrobial agent have been known for some time. Various silver containing dressings are currently used for the treatment of wounds. Introduced in the late 1990s, Acticoat is a nanocrystalline silver dressing developed to overcome some shortcomings of the older dressings by providing sustained release of silver up to 7 days. We aim to determine the level of evidence available in the literature in view of recent increased usage of Acticoat. A Medline search was conducted to identify articles evaluating the use of Acticoat in burn wounds. A level of evidence adapted from the Oxford Centre for Evidence-Based-Medicine was assigned to each of these articles. Only one study was considered to be LOE 1, which is a multicentre randomised controlled trial comparing Acticoat against Silver Sulfadiazine. One further randomised control trial was downgraded to LOE 2 due to a wide confidence interval. Twenty studies (66%) were LOE 5 of which 6 were case reports and 14 were in vitro/animal studies. The available LOE 1 study demonstrates that Acticoat has better antimicrobial activity compared to another available silver dressing. Other studies suggest Acticoat has fewer adverse effects and reduces healing times. Its ease of application and low frequency of change makes it an ideal dressing in burn wounds. More well designed and properly reported randomised controlled trials are essential for informed clinical decision-making.
Collapse
Affiliation(s)
- Roba Khundkar
- Department of Plastic and Reconstructive Surgery, John Radcliffe Hospital, Headington, Oxford OX39DU, UK.
| | | | | |
Collapse
|