1
|
Meng D, Li Y, Chen Z, Guo J, Yang M, Peng Y. Exosomes Derived from Antler Mesenchymal Stem Cells Promote Wound Healing by miR-21-5p/STAT3 Axis. Int J Nanomedicine 2024; 19:11257-11273. [PMID: 39524924 PMCID: PMC11546281 DOI: 10.2147/ijn.s481044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background Deer antlers, unique among mammalian organs for their ability to regenerate annually without scar formation, provide an innovative model for regenerative medicine. This study explored the potential of exosomes derived from antler mesenchymal stem cells (AMSC-Exo) to enhance skin wound healing. Methods We explored the proliferation, migration and angiogenesis effects of AMSC-Exo on HaCaT cells and HUVEC cells. To investigate the skin repairing effect of AMSC-Exo, we established a full-thickness skin injury mouse model. Then the skin thickness, the epidermis, collagen fibers, CD31 and collagen expressions were tested by H&E staining, Masson's trichrome staining and immunofluorescence experiments. MiRNA omics analysis was conducted to explore the mechanism of AMSC-Exo in skin repairing. Results AMSC-Exo stimulated the proliferation and migration of HaCaT cells, accelerated the migration and angiogenesis of HUVEC cells. In the mouse skin injury model, AMSC-Exo stimulated angiogenesis and regulated the extracellular matrix by facilitating the conversion of collagen type III to collagen type I, restoring epidermal thickness to normal state without aberrant hyperplasia. Notably, AMSC-Exo enhanced the quality of wound healing with increased vascularization and reduced scar formation. MiRNAs in AMSC-Exo, especially through the miR-21-5p/STAT3 signaling pathway, played a crucial role in these processes. Conclusion This study underscores the efficacy of AMSC-Exo in treating skin wounds, suggesting a new approach for enhancing skin repair and regeneration.
Collapse
Affiliation(s)
- Deshuang Meng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| | - Yingrui Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| | - Ze Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| | - Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| |
Collapse
|
2
|
Surowiecka A, Chrapusta A, Klimeczek-Chrapusta M, Korzeniowski T, Drukała J, Strużyna J. Mesenchymal Stem Cells in Burn Wound Management. Int J Mol Sci 2022; 23:ijms232315339. [PMID: 36499664 PMCID: PMC9737138 DOI: 10.3390/ijms232315339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Mesenchymal stem cells have a known regenerative potential and are used in many indications. They secrete many growth factors, including for fibroblasts (FGF), endothelium (VEGF), as well as 14 anti-inflammatory cytokines, and they stimulate tissue regeneration, promoting the secretion of proteins and glycosaminoglycans of extracellular matrices, such as collagen I, II, III, and V, elastin, and also metalloproteinases. They secrete exosomes that contain proteins, nucleic acids, lipids, and enzymes. In addition, they show the activity of inactivating free radicals. The aim of this study was an attempt to collect the existing literature on the use of stem cells in the treatment of a burn wound. There were 81 studies included in the analysis. The studies differed in terms of the design, burn wound model, source of stem cells, and methods of cellular therapy application. No major side effects were reported, and cellular therapy reduced the healing time of the burn wound. Few case reports on human models did not report any serious adverse events. However, due to the heterogeneity of the evidence, cellular therapy in burn wound treatment remains an experimental method.
Collapse
Affiliation(s)
- Agnieszka Surowiecka
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Correspondence:
| | - Anna Chrapusta
- Malopolska Burn and Plastic Surgery Center, Ludwik Rydygier Memorial Hospital in Krakow, 31-826 Cracow, Poland
| | - Maria Klimeczek-Chrapusta
- Malopolska Burn and Plastic Surgery Center, Ludwik Rydygier Memorial Hospital in Krakow, 31-826 Cracow, Poland
| | - Tomasz Korzeniowski
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Chair and Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 31-826 Cracow, Poland
| | - Jerzy Strużyna
- East Center of Burns Treatment and Reconstructive Surgery, Medical University of Lublin, 21-010 Leczna, Poland
- Department of Plastic Surgery, Reconstructive Surgery and Burn Treatment, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
3
|
Schulman CI, Namias N, Pizano L, Rodriguez-Menocal L, Aickara D, Guzman W, Candanedo A, Maranda E, Beirn A, Badiavas EV. The effect of mesenchymal stem cells improves the healing of burn wounds: a phase 1 dose-escalation clinical trial. Scars Burn Heal 2022; 8:20595131211070783. [PMID: 35781931 PMCID: PMC9247372 DOI: 10.1177/20595131211070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Stem cell therapy holds promise to improve healing and stimulate tissue
regeneration after burn injury. Preclinical evidence has supported this;
however, clinical studies are lacking. We examined the application of bone
marrow-derived mesenchymal stem cells (BM-MSC) to deep second-degree burn
injuries using a two-dose escalation protocol. Methods Ten individuals aged 18 years or older with deep second-degree burn wounds
were enrolled. The first five patients were administered 2.5 × 10³
BM-MSC/cm2 to their wounds. After safety of the initial dose
level was assessed, a second group of five patients was treated with a
higher concentration of 5 × 10³ allogeneic BM-MSC/cm2. Safety was
assessed clinically and by evaluating cytokine levels in mixed recipient
lymphocyte/donor BM-MSC reactions (INFγ, IL-10 and TNFα). At each visit, we
performed wound measurements and assessed wounds using a Patient and
Observer Scar Assessment Scale (POSAS). Results All patients responded well to treatment, with 100% closure of wounds and
minimal clinical evidence of fibrosis. No adverse reactions or evidence of
rejection were observed for both dose levels. Patients receiving the first
dose concentration had a wound closure rate of 3.64 cm2/day.
Patients receiving the second dose concentration demonstrated a wound
closure rate of 10.47 cm2/day. The difference in healing rates
between the two groups was not found to be statistically significant
(P = 0.17). Conclusion BM-MSC appear beneficial in optimising wound healing in patients with deep
second-degree burn wounds. Adverse outcomes were not observed when
administering multiple doses of allogeneic BM-MSC. Lay Summary Thermal injuries are a significant source of morbidity and mortality,
constituting 5%–20% of all injuries and 4% of all deaths. Despite overall
improvements in the management of acutely burned patients, morbidities
associated with deeper burn injuries remain commonplace. Burn patients are
too often left with significant tissue loss, scarring and contractions
leading to physical loss of function and long-lasting psychological and
emotional impacts. In previous studies, we have demonstrated the safety and efficacy of
administering bone marrow-derived mesenchymal stem cells (BM-MSC) to chronic
wounds with substantial improvement in healing and evidence of tissue
regeneration. In this report, we have examined the application of BM-MSC to
deep second-degree burn injuries in patients. The aim of the present phase I/II clinical trial was to examine the safety
and efficacy of administering allogeneic BM-MSC to deep second-degree burns.
We utilised two different dose levels at concentrations 2.5 × 103
and 5 × 103 cells/cm2. Patients with deep
second-degree burn wounds up to 20% of the total body surface area were
eligible for treatment. Allogeneic BM-MSC were applied to burn wounds
topically or by injection under transparent film dressing <7 days after
injury. Patients were followed for at least six months after treatment. Using two dose levels allowed us to gain preliminary information as to
whether different amounts of BM-MSC administered to burn wounds will result
in significant differences in safety/ clinical response. Once the safety and
dose-response analysis were completed, we evaluated the efficacy of
allogeneic stem cell therapy in the treatment of deep second-degree burn
wounds. In this study, we examined the role of allogeneic BM-MSC treatment in
patients with deep second-degree burn injuries, in a dose-dependent manner.
No significant related adverse events were reported. Safety was evaluated
both clinically and by laboratory-based methods. Efficacy was assessed
clinically through evidence of re-pigmentation, hair follicle restoration
and regenerative change. While these findings are encouraging, more studies
will be needed to better establish the benefit of BM-MSC in the treatment of
burn injuries.
Collapse
Affiliation(s)
- Carl I Schulman
- Department of Surgery, Ryder Trauma Center, University of Miami School of Medicine, Miami, FL, USA
| | - Nicholas Namias
- Department of Surgery, Ryder Trauma Center, University of Miami School of Medicine, Miami, FL, USA
| | - Louis Pizano
- Department of Surgery, Ryder Trauma Center, University of Miami School of Medicine, Miami, FL, USA
| | - Luis Rodriguez-Menocal
- Department of Dermatology and Cutaneous Surgery. Leonard M Miller School of Medicine, University of Miami, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Divya Aickara
- Department of Dermatology and Cutaneous Surgery. Leonard M Miller School of Medicine, University of Miami, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Wellington Guzman
- Department of Surgery, Ryder Trauma Center, University of Miami School of Medicine, Miami, FL, USA
| | - Ambar Candanedo
- Department of Surgery, Ryder Trauma Center, University of Miami School of Medicine, Miami, FL, USA
| | - Eric Maranda
- Department of Dermatology and Cutaneous Surgery. Leonard M Miller School of Medicine, University of Miami, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Audrey Beirn
- Department of Dermatology and Cutaneous Surgery. Leonard M Miller School of Medicine, University of Miami, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| | - Evangelos V Badiavas
- Department of Dermatology and Cutaneous Surgery. Leonard M Miller School of Medicine, University of Miami, Interdisciplinary Stem Cell Institute, Miami, FL, USA
| |
Collapse
|
4
|
Maintaining Inducibility of Dermal Follicle Cells on Silk Fibroin/Sodium Alginate Scaffold for Enhanced Hair Follicle Regeneration. BIOLOGY 2021; 10:biology10040269. [PMID: 33810528 PMCID: PMC8066588 DOI: 10.3390/biology10040269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The extracellular matrix (ECM) is important for maintaining cell phenotype and promoting cell proliferation and differentiation. In order to better solve the problem of skin appendage regeneration, a combination of mechanical/enzymatic digestion methods was used to self-extract dermal papilla cells (DPCs), which were seeded on silk fibroin/sodium alginate scaffolds as seed cells to evaluate the possibility of skin regeneration/regeneration of accessory organs. Scanning electron microscopy (SEM) graphs showed that the interconnected pores inside the scaffold had a pore diameter in the range of 153-311 μm and a porosity of 41-82%. Immunofluorescence (IF) staining and cell morphological staining proved that the extracted cells were DPCs. The results of a Cell Counting Kit-8 (CCK-8) and Calcein-AM/PI live-dead cell staining showed that the DPCs grew well in the composite scaffold extract. Normal cell morphology and characteristics of aggregation growth were maintained during the 3-day culture, which showed that the silk fibroin/sodium alginate (SF/SA) composite scaffold had good cell-compatibility. Hematoxylin-eosin (H&E) staining of tissue sections further proved that the cells adhered closely and aggregated to the pore wall of the scaffold, and retained the ability to induce differentiation of hair follicles. All these results indicate that, compared with a pure scaffold, the composite scaffold promotes the adhesion and growth of DPCs. We transplanted the SF/SA scaffolds into the back wounds of SD rats, and evaluated the damage model constructed in vivo. The results showed that the scaffold inoculated with DPCs could accelerate the repair of the skin and promote the regeneration of the hair follicle structure.
Collapse
|
5
|
Sotnichenko AS, Gilevich IV, Melkonyan KI, Yutskevich YA, Rusinova TV, Karakulev AV, Bogdanov SB, Aladina VA, Belich YA, Gumenyuk SE, Ushmarov DI, Bykov IM, Redko AN, Porhanov VA, Alekseenko SN. Comparative Morphological Characteristics of the Results of Implantation of Decellularized and Recellularized Porcine Skin Scaffolds. Bull Exp Biol Med 2021; 170:378-383. [PMID: 33452991 DOI: 10.1007/s10517-021-05071-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 11/28/2022]
Abstract
The tissue reaction of pig skin to implantation of decellularized and recellularized dermal matrices on a formed wound defect was evaluated by histological methods on days 2, 5, 8, 16, and 20 after surgery. Differences in tissue response to different matrices were identified. In experimental wounds coated with decellularized dermal matrices, we observed the formation of a scar tissue, which required autodermoplasty on day 12 of the experiment. In wounds coated with recellularized dermal matrices, all layers of the skin completely recovered by day 20 after surgery with the formation of full dermal and epidermal layers. Our findings suggest that reparative morphological changes in the wound depend on the presence of fibroblasts in the implanted dermal matrix.
Collapse
Affiliation(s)
- A S Sotnichenko
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia.
| | - I V Gilevich
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia.,Research Institute - S. V. Ochapovsky Krasnodar Regional Clinical Hospital No. 1, Ministry of Health of Krasnodar Krai, Krasnodar, Russia
| | - K I Melkonyan
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia
| | - Y A Yutskevich
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia
| | - T V Rusinova
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia
| | - A V Karakulev
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia.,Research Institute - S. V. Ochapovsky Krasnodar Regional Clinical Hospital No. 1, Ministry of Health of Krasnodar Krai, Krasnodar, Russia
| | - S B Bogdanov
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia.,Research Institute - S. V. Ochapovsky Krasnodar Regional Clinical Hospital No. 1, Ministry of Health of Krasnodar Krai, Krasnodar, Russia
| | - V A Aladina
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia.,Research Institute - S. V. Ochapovsky Krasnodar Regional Clinical Hospital No. 1, Ministry of Health of Krasnodar Krai, Krasnodar, Russia
| | - Yu A Belich
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia
| | - S E Gumenyuk
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia
| | - D I Ushmarov
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia
| | - I M Bykov
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia
| | - A N Redko
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia
| | - V A Porhanov
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia.,Research Institute - S. V. Ochapovsky Krasnodar Regional Clinical Hospital No. 1, Ministry of Health of Krasnodar Krai, Krasnodar, Russia
| | - S N Alekseenko
- Kuban State Medical University, Ministry of Health od the Russian Federation, Krasnodar, Russia
| |
Collapse
|
6
|
[Current place of cultured epithelial autografts in the management of massive burns and future prospects: Literature review]. ANN CHIR PLAST ESTH 2020; 66:10-18. [PMID: 33380355 DOI: 10.1016/j.anplas.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 11/21/2022]
Abstract
Cultured Epithelial Autografts (CEAs), developed at the end of the 1970s from in vitro culture amplification of keratinocytes, have led to a therapeutic revolution in the treatment of major burns. The areas of improvement of the cultures initially involved the manufacturing processes (culture media, support matrices, etc.) and then clinical applications (use of a largely expanded allogeneic or autologous dermal bed). These advances have enabled burn centers (BC) using CEAs to obtain very satisfactory percentages of graft integration and survival of major burns patients. However, since CEAs are not without major drawbacks (fragility, high rate of infection, high cost, unstable scars), these pitfalls have restricted their use worldwide. As of 2014, CEAs produced by Genyzme Tissue Repair are no longer available in Europe, which has considerably reduced an indispensable therapeutic arsenal for severe and extensive burns. To overcome these therapeutic limitations, current research is focusing on techniques combining surgery, tissue engineering and cell therapy. The advent of regenerative medicine, based on the use of stem cells, in particular mesenchymal stem cells (MSC), can contribute to an improvement in the management of these massively burned patients (optimization of the environmental medium, attenuation of the systemic inflammatory response and the immunosuppressive effects of the burn, acceleration of tissue regeneration, etc.). Cell therapy, therefore, offers alternatives to CEAs, which must imperatively retain their place in the therapeutic arsenal, namely an effective emergency coverage technique that can be improved.
Collapse
|
7
|
Kumar A, Behl T, Chadha S. A rationalized and innovative perspective of nanotechnology and nanobiotechnology in chronic wound management. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Yi H, Wang Y, Yang Z, Xie Z. Efficacy assessment of mesenchymal stem cell transplantation for burn wounds in animals: a systematic review. Stem Cell Res Ther 2020; 11:372. [PMID: 32859266 PMCID: PMC7456061 DOI: 10.1186/s13287-020-01879-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023] Open
Abstract
Background Clinically, severe burns remain one of the most challenging issues, but an ideal treatment is yet absent. Our purpose is to compare the efficacy of stem cell therapy in a preclinical model of burn wound healing. Methods Research reports on mesenchymal stem cells (MSCs) for burn wound healing were retrieved from 5 databases: PubMed, Embase, MEDLINE, Web of Science, and the Cochrane Library. The primary outcomes reported in this article include the un-healing rate of the wound area, the closure rate, and the wound area. Secondary outcomes included CD-31, vascular density, interleukin (IL)-10, thickness of eschar tissue, vascular endothelial growth factor (VEGF), and white blood cell count. Finally, a subgroup analysis was conducted to explore heterogeneity that potentially impacted the primary outcomes. A fixed-effects model with a 95% confidence interval (CI) was performed when no significant heterogeneity existed. Otherwise, a random-effects model was used. All data analysis was conducted by using Engauge Digitizer 10.8 and R software. Results Twenty eligible articles were finally included in the analysis. Stem cell therapy greatly improved the closure rate (2.00, 95% CI 0.52 to 3.48, p = 0.008) and compromised the wound area (− 2.36; 95% CI − 4.90 to 0.18; p = 0.069) rather than the un-healing rate of the wound area (− 11.10, 95% CI − 32.97 to 10.78, p = 0.320). Though p was 0.069, there was a trend toward shrinkage of the burn wound area after stem cell therapy. Vascular density (4.69; 95% CI 0.06 to 9.31; p = 0.047) and thickness of eschar tissue (6.56, 95% CI 1.15 to 11.98, p = 0.017) were also discovered to be significantly improved in the burn site of stem cell-treated animals. Moreover, we observed that animals in the stem cell group had an increased white blood cell count (0.84, 95% CI 0.01 to 1.66, p = 0.047) 5 days post treatment. Other indicators, such as VEGF (p = 0.381), CD-31 (p = 0.335) and IL-10 (p = 0.567), were not significantly impacted. Conclusions Despite limited data from preclinical trials, this meta-analysis suggests that stem cell therapy is curative in decreasing the burn wound area and provides some insights into future clinical studies of stem cell therapy for burns.
Collapse
Affiliation(s)
- Hanxiao Yi
- The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, JiangXi Province, China
| | - Yang Wang
- Spine Surgery, Third Affiliated Hospital of Sun-Yat Sen University, No. 600, Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Zhen Yang
- The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, JiangXi Province, China.
| | - Zhiqin Xie
- The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, JiangXi Province, China
| |
Collapse
|
9
|
Kim K, Gil M, Dayem AA, Choi S, Kang GH, Yang GM, Cho S, Jeong Y, Kim SJ, Seok J, Kwak HJ, Kumar Saha S, Kim A, Cho SG. Improved Isolation and Culture of Urine-Derived Stem Cells (USCs) and Enhanced Production of Immune Cells from the USC-Derived Induced Pluripotent Stem Cells. J Clin Med 2020; 9:E827. [PMID: 32197458 PMCID: PMC7141314 DOI: 10.3390/jcm9030827] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The availability of autologous adult stem cells is one of the essential prerequisites for human stem cell therapy. Urine-derived stem cells (USCs) are considered as desirable cell sources for cell therapy because donor-specific USCs are easily and non-invasively obtained from urine. Efficient isolation, expansion, and differentiation methods of USCs are necessary to increase their availability. Here, we developed a method for efficient isolation and expansion of USCs using Matrigel, and the rho-associated protein kinase (ROCK) inhibitor, Y-27632. The prepared USCs showed significantly enhanced migration, colony forming capacity, and differentiation into osteogenic or chondrogenic lineage. The USCs were successfully reprogramed into induced pluripotent stem cells (USC-iPSCs) and further differentiated into kidney organoid and hematopoietic progenitor cells (HPCs). Using flavonoid molecules, the isolation efficiency of USCs and the production of HPCs from the USC-iPSCs was increased. Taken together, we present an improved isolation method of USCs utilizing Matrigel, a ROCK inhibitor and flavonoids, and enhanced differentiation of USC-iPSC to HPC by flavonoids. These novel findings could significantly enhance the use of USCs and USC-iPSCs for stem cell research and further application in regenerative stem cell-based therapies.
Collapse
Affiliation(s)
- Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Minchan Gil
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Sangbaek Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Geun-Ho Kang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Sungha Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Yeojin Jeong
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Se Jong Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Jaekwon Seok
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Hee Jeong Kwak
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea;
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| |
Collapse
|
10
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
11
|
Yan X, Jiang Y, Xu Y, Tan Q. The effect of adipose-derived stem cells in healing refractory wounds based on clinical outcomes. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1803992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Xin Yan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yanan Jiang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Ye Xu
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| |
Collapse
|
12
|
Karim AS, Shaum K, Gibson AL. Indeterminate-Depth Burn Injury—Exploring the Uncertainty. J Surg Res 2020; 245:183-197. [DOI: 10.1016/j.jss.2019.07.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023]
|
13
|
Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10:111. [PMID: 30922387 PMCID: PMC6440165 DOI: 10.1186/s13287-019-1212-2] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Normal wound healing is a dynamic and complex multiple phase process involving coordinated interactions between growth factors, cytokines, chemokines, and various cells. Any failure in these phases may lead wounds to become chronic and have abnormal scar formation. Chronic wounds affect patients' quality of life, since they require repetitive treatments and incur considerable medical costs. Thus, much effort has been focused on developing novel therapeutic approaches for wound treatment. Stem-cell-based therapeutic strategies have been proposed to treat these wounds. They have shown considerable potential for improving the rate and quality of wound healing and regenerating the skin. However, there are many challenges for using stem cells in skin regeneration. In this review, we present some sets of the data published on using embryonic stem cells, induced pluripotent stem cells, and adult stem cells in healing wounds. Additionally, we will discuss the different angles whereby these cells can contribute to their unique features and show the current drawbacks.
Collapse
Affiliation(s)
- Azar Nourian Dehkordi
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Mirahmadi Babaheydari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | |
Collapse
|
14
|
Ramanauskaite G, Vaitkuviene A, Kaseta V, Vitlipaite A, Liubaviciute A, Biziuleviciene G. Bone marrow-derived lineage-negative cells accelerate skin regeneration in vivo. Turk J Biol 2019; 42:205-212. [PMID: 30814882 DOI: 10.3906/biy-1711-91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cell-based therapy is a promising strategy for promoting tissue regeneration when conventional treatments are not effective. ehT choice of the accessible source to obtain a sufficient cell amount and the use of suitable biomaterials to improve the cell delivery efficiency are the main tasks for safe, effective, and reliable application of stem cell therapy. In this study, we have compared the influence of bone marrow-derived Lin¯ cells on skin regeneration after local transplantation with or without type I collagen-based gel in a BALB/c mice full-thickness wound model. Lin¯ cells were isolated using magnetic-associated cell sorting and identified by flow cytometry. Cytokine gene expression was examined using real-time PCR. Our results show that the bone marrow-derived Lin¯ cell population demonstrates the properties to stimulate the skin tissue regeneration. Significant accelerated wound closure was revealed after cell transplantation (P < 0.05). Histological analysis indicated the earliest inhibition of inflammation, accelerated reepithelialization, and evenly distributed skin appendages in the neodermis after Lin¯ cell transplantation with type I collagen gel. eTh significant changes in mRNA levels of cytokines TNF-α, IL-10, TGF-β, and VEGF after Lin¯ cell transplantation were confirmed by RT-PCR (P < 0.05). eTh ability to positively control the reactions taking place during the wound healing process gives the advantage to the bone marrow Lin¯ cell population to be used as a cell source for therapy.
Collapse
Affiliation(s)
- Giedre Ramanauskaite
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| | - Aida Vaitkuviene
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| | - Vytautas Kaseta
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| | - Ausra Vitlipaite
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| | - Ausra Liubaviciute
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| | - Gene Biziuleviciene
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine , Vilnius , Lithuania
| |
Collapse
|
15
|
Influence of Adipose Tissue-Derived Stem Cells on the Burn Wound Healing Process. Stem Cells Int 2019; 2019:2340725. [PMID: 30886634 PMCID: PMC6388323 DOI: 10.1155/2019/2340725] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
Burns are lesions in which the thermal energy of the causative agent transfers heat to the surface of the body, causing superficial or deep damage to the skin with protein denaturation in cells and biochemical maladjustments, which delay and disrupt the cicatricial process, increasing the chances of functional and aesthetic sequelae. This study evaluates the influence of adipose tissue-derived stem cells (ADSCs) on burn healing in terms of the size of the cicatricial space and quantified measures of collagen deposition, inflammatory infiltrate, blood vessels, and lymphatic vessels. Initially, intra-abdominal adipose tissue was resected from a single donor Wistar rat that was not part of any of the subsequent groups to obtain ADSCs by isolation and cell culture. Burns were made in the left lateral abdominal region of Wistar rats by contact with a square ceramic paper with a 484 mm2 area heated to 100°C for 30 seconds. Intradermal ADSC transplantation was performed in two stages. The first was on the same day of the burn, when 3.2 × 106 ADSCs were transplanted shortly after the burned region cooled, while the second stage occurred four days later with the same number of ADSCs. The progress was evaluated by immunohistochemical methods and H&E, Masson's trichrome, Picrosirius red, and Lyve-1 immunofluorescence staining. Despite the quantitative similarity of blood vessels and the inflammatory infiltrate observed by H&E, there were statistically significant differences between the groups on the fourteenth day of evolution. The group that received ADSCs showed a reduction in the scar tissue area, increased collagen type III deposition, and a quantifiable reduction in lymphatic vessels, so we conclude that ADSCs influence the healing of total thickness burns in rats.
Collapse
|
16
|
Ahmadi AR, Chicco M, Huang J, Qi L, Burdick J, Williams GM, Cameron AM, Sun Z. Stem cells in burn wound healing: A systematic review of the literature. Burns 2018; 45:1014-1023. [PMID: 30497816 DOI: 10.1016/j.burns.2018.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/11/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Severe burns are often associated with high morbidity and unsatisfactory functional and esthetic outcomes. Over the last two decades, stem cells have generated great hopes for the treatment of numerous conditions including burns. The aim of this systematic review is to evaluate the role of stem cell therapy as a means to promote burn wound healing. METHODS Comprehensive searches in major databases were carried out in March 2017 for articles on stem cell therapy in burn wound healing. In total 2103 articles were identified and screened on the basis of pre-determined inclusion and exclusion criteria. RESULTS Fifteen experimental and two clinical studies were included in the review. The majority of studies reported significant improvement in macroscopic burn wound appearance as well as a trend toward improved microscopic appearance, after stem cell therapy. Other parameters evaluated, such as re-vascularization, collagen formation, level of pro- and anti-inflammatory mediators, apoptosis and cellular infiltrates, yielded heterogeneous results across studies. CONCLUSION Stem cell therapy appears to exert a positive effect in burn wound healing. There is, therefore, justification for continued efforts to evaluate the use of stem cells as an adjunct to first-line therapies in burns.
Collapse
Affiliation(s)
- Ali R Ahmadi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Maria Chicco
- Department of Surgery, St. Mary's Hospital, Imperial College London, London, United Kingdom
| | - Jinny Huang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Le Qi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - James Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - George M Williams
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Eyuboglu AA, Uysal CA, Ozgun G, Coskun E, Markal Ertas N, Haberal M. The effect of adipose derived stromal vascular fraction on stasis zone in an experimental burn model. Burns 2018; 44:386-396. [DOI: 10.1016/j.burns.2017.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 01/02/2023]
|
18
|
Bayati V, Abbaspour MR, Neisi N, Hashemitabar M. Skin-derived precursors possess the ability of differentiation into the epidermal progeny and accelerate burn wound healing. Cell Biol Int 2016; 41:187-196. [PMID: 27981666 DOI: 10.1002/cbin.10717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/10/2016] [Indexed: 12/31/2022]
Abstract
Skin-derived precursors (SKPs) are remnants of the embryonic neural crest stem cells that reside in the dermis until adulthood. Although they possess a wide range of differentiation potentials, their differentiation into keratinocyte-like cells and their roles in skin wound healing are obscure. The present study aimed to investigate the differentiation of SKPs into keratinocyte-like cells and evaluate their role in healing of third degree burn wounds. To this aim, SKPs were differentiated into keratinocyte-like cells on tissue culture plate and collagen-chitosan scaffold prepared by freeze-drying. Their differentiation capability was detected by real-time RT-PCR and immunofluorescence. Thereafter, they were cultured on scaffold and implanted in a rat model of burn wound. Histopathological and immunohistochemical analyses were employed to examine the reconstituted skin. The research findings revealed that SKPs were able to differentiate along the epidermal lineage and this ability can be enhanced on a suitable scaffold. Additionally, the results indicated that SKPs apparently promoted wound healing process and accelerate its transition from proliferating stage to maturational phase, especially if they were differentiated into keratinocyte-like cells. Regarding the results, it is concluded that SKPs are able to differentiate into keratinocyte-like cells, particularly when they are cultured on collagen-chitosan scaffold. Moreover, they can regenerate epidermal and dermal layers including thick collagen bundles, possibly through differentiation into keratinocyte-like cells.
Collapse
Affiliation(s)
- Vahid Bayati
- Cellular and Molecular Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Centre, Mashhad University of Medical Sciences, Mashhad, 91775-1365, Iran
| | - Niloofar Neisi
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Mahmoud Hashemitabar
- Cellular and Molecular Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| |
Collapse
|
19
|
Rose LF, Chan RK. The Burn Wound Microenvironment. Adv Wound Care (New Rochelle) 2016; 5:106-118. [PMID: 26989577 PMCID: PMC4779284 DOI: 10.1089/wound.2014.0536] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/13/2014] [Indexed: 01/27/2023] Open
Abstract
Significance: While the survival rate of the severely burned patient has improved significantly, relatively little progress has been made in treatment or prevention of burn-induced long-term sequelae, such as contraction and fibrosis. Recent Advances: Our knowledge of the molecular pathways involved in burn wounds has increased dramatically, and technological advances now allow large-scale genomic studies, providing a global view of wound healing processes. Critical Issues: Translating findings from a large number of in vitro and preclinical animal studies into clinical practice represents a gap in our understanding, and the failures of a number of clinical trials suggest that targeting single pathways or cytokines may not be the best approach. Significant opportunities for improvement exist. Future Directions: Study of the underlying molecular influences of burn wound healing progression will undoubtedly continue as an active research focus. Increasing our knowledge of these processes will identify additional therapeutic targets, supporting informed clinical studies that translate into clinical relevance and practice.
Collapse
Affiliation(s)
- Lloyd F. Rose
- United States Army Institute of Surgical Research, Brook Army Medical Center, Joint Base San Antonio, Ft. Sam Houston, Texas
| | - Rodney K. Chan
- United States Army Institute of Surgical Research, Brook Army Medical Center, Joint Base San Antonio, Ft. Sam Houston, Texas
| |
Collapse
|
20
|
Gholipourmalekabadi M, Sameni M, Radenkovic D, Mozafari M, Mossahebi‐Mohammadi M, Seifalian A. Decellularized human amniotic membrane: how viable is it as a delivery system for human adipose tissue-derived stromal cells? Cell Prolif 2016; 49:115-21. [PMID: 26840647 PMCID: PMC6496672 DOI: 10.1111/cpr.12240] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/12/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Human amniotic membrane (HAM) has been widely used in soft tissue engineering both in its fresh form and decellularized; its efficiency to aid treatment of burn injuries is well known. On the other hand, it has been reported clinically by several studies that human adipose-derived stem cells (hADSC) are a promising cell source for cell therapy for burns. Recently, we have reported a new technique for decellularization of HAM. In this study, potential of prepared decellularized HAM (dHAM) as a viable support for proliferation and delivery of hADSC was investigated. MATERIALS AND METHODS Amniotic membranes were collected, decellularized and preserved according to the protocol described in our previously published study. hADSC were obtained from the patients undergoing elective liposuction surgery and cells were then seeded on the decellularized membrane for various times. Efficiency of the decellularized membrane as a delivery system for hADSC was investigated by MTT, LDH specific activity, DAPI staining and SEM. RESULTS The results showed that dHAM provided a supporting microenvironment for cell growth without producing any cytotoxic effects. In addition, the cells were spread out and actively attached to the dHAM scaffold. CONCLUSION These results strongly suggest that dHAMs have considerable potential as 3D cell-carrier scaffolds for delivery of hADSC, in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- M. Gholipourmalekabadi
- Biotechnology DepartmentSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehran198396‐3113Iran
- Cellular and Molecular Biology Research CentreShahid Beheshti University of Medical SciencesTehran198396‐3113Iran
| | - M. Sameni
- Cellular and Molecular Biology Research CentreShahid Beheshti University of Medical SciencesTehran198396‐3113Iran
| | - Dina Radenkovic
- University College London (UCL) Medical SchoolLondonWC1E 6BTUK
| | - M. Mozafari
- Bioengineering Research GroupNanotechnology and Advanced Materials DepartmentMERCTehran14155‐4777Iran
| | - M. Mossahebi‐Mohammadi
- Department of Hematology and Blood BankingFaculty of Medical SciencesTarbiat Modares UniversityTehran14115‐111Iran
| | - A. Seifalian
- Centre for Nanotechnology & Regenerative MedicineUCL and Royal Free HospitalLondonNW3 2QGUK
- NanoRegMed LtdLondonEC1V 4PWUK
| |
Collapse
|
21
|
Stem Cell-Based Therapeutics to Improve Wound Healing. PLASTIC SURGERY INTERNATIONAL 2015; 2015:383581. [PMID: 26649195 PMCID: PMC4663003 DOI: 10.1155/2015/383581] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Abstract
Issues surrounding wound healing have garnered deep scientific interest as well as booming financial markets invested in novel wound therapies. Much progress has been made in the field, but it is unsurprising to find that recent successes reveal new challenges to be addressed. With regard to wound healing, large tissue deficits, recalcitrant wounds, and pathological scar formation remain but a few of our most pressing challenges. Stem cell-based therapies have been heralded as a promising means by which to surpass current limitations in wound management. The wide differentiation potential of stem cells allows for the possibility of restoring lost or damaged tissue, while their ability to immunomodulate the wound bed from afar suggests that their clinical applications need not be restricted to direct tissue formation. The clinical utility of stem cells has been demonstrated across dozens of clinical trials in chronic wound therapy, but there is hope that other aspects of wound care will inherit similar benefit. Scientific inquiry into stem cell-based wound therapy abounds in research labs around the world. While their clinical applications remain in their infancy, the heavy investment in their potential makes it a worthwhile subject to review for plastic surgeons, in terms of both their current and future applications.
Collapse
|
22
|
Amato B, Compagna R, Amato M, Butrico L, Fugetto F, Chibireva MD, Barbetta A, Cannistrà M, de Franciscis S, Serra R. The role of adult tissue-derived stem cells in chronic leg ulcers: a systematic review focused on tissue regeneration medicine. Int Wound J 2015; 13:1289-1298. [PMID: 26399452 DOI: 10.1111/iwj.12499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 12/12/2022] Open
Abstract
Wound healing is an articulated process that can be impaired in different steps in chronic wounds. Chronic leg ulcers are a special type of non-healing wounds that represent an important cause of morbidity and public cost in western countries. Because of their common recurrence after conventional managements and increasing prevalence due to an ageing population, newer approaches are needed. Over the last decade, the research has been focused on innovative treatment strategies, including stem-cell-based therapies. After the initial interest in embryonic pluripotent cells, several different types of adult stem cells have been studied because of ethical issues. Specific types of adult stem cells have shown a high potentiality in tissue healing, in both in vitro and in vivo studies. Aim of this review is to clearly report the newest insights on tissue regeneration medicine, with particular regard for chronic leg ulcers.
Collapse
Affiliation(s)
- Bruno Amato
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Rita Compagna
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Lucia Butrico
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Francesco Fugetto
- School of Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Mariia D Chibireva
- School of Medicine, Kazan State Medical University, Kazan, Tatarstan Republic, Russian Federation
| | - Andrea Barbetta
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Marco Cannistrà
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
23
|
Li M, Zhao Y, Hao H, Han W, Fu X. Mesenchymal stem cell-based therapy for nonhealing wounds: today and tomorrow. Wound Repair Regen 2015; 23:465-82. [PMID: 25877885 DOI: 10.1111/wrr.12304] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/09/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022]
Abstract
Although advancements have been made with traditional therapies, the treatment of chronic nonhealing wounds still remains a tough challenge. In the past two decades, mesenchymal stem cell (MSC)-based therapy has emerged as a promising therapeutic strategy for nonhealing wounds because of their characteristics including self-renewal and a multidirectional differentiation ability and their easy collection and weak immunogenicity. There is a growing body of basic scientific studies that shed light on the functional mechanism of MSCs in modulating nonhealing wounds. Furthermore, critical advances have been achieved using MSC-based therapy in preclinical animal models as well as in clinics trials. In this present review, we summarize the mechanisms of MSCs and highlight the important preclinical and clinical trials of MSC therapy for nonhealing wounds. In particular, the combination of MSCs transplantation and tissue-engineered skin is addressed as a new strategy to optimize the delivery efficiency and therapeutic potential. Additionally, the current drawbacks of MSC therapy and the potential to further optimize the use of MSCs are implied.
Collapse
Affiliation(s)
- Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, Peoples Republic of China.,Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya, Peoples Republic of China
| | - Yali Zhao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, Peoples Republic of China.,Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya, Peoples Republic of China
| | - Haojie Hao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, Peoples Republic of China
| | - Weidong Han
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, Peoples Republic of China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, Peoples Republic of China
| |
Collapse
|
24
|
Syva SH, Ampon K, Lasimbang H, Fatimah SS. Microenvironmental factors involved in human amnion mesenchymal stem cells fate decisions. J Tissue Eng Regen Med 2015; 11:311-320. [PMID: 26073746 DOI: 10.1002/term.2043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 04/12/2015] [Accepted: 04/29/2015] [Indexed: 12/28/2022]
Abstract
Human amnion mesenchymal stem cells (HAMCs) show great differentiation and proliferation potential and also other remarkable features that could serve as an outstanding alternative source of stem cells in regenerative medicine. Recent reports have demonstrated various kinds of effective artificial niche that mimic the microenvironment of different types of stem cell to maintain and control their fate and function. The components of the stem cell microenvironment consist mainly of soluble and insoluble factors responsible for regulating stem cell differentiation and self-renewal. Extensive studies have been made on regulating HAMCs differentiation into specific phenotypes; however, the understanding of relevant factors in directing stem cell fate decisions in HAMCs remain underexplored. In this review, we have therefore identified soluble and insoluble factors, including mechanical stimuli and cues from the other supporting cells that are involved in directing HAMCs fate decisions. In order to strengthen the significance of understanding on the relevant factors involved in stem cell fate decisions, recent technologies developed to specifically mimic the microenvironments of specific cell lineages are also reviewed. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Kamaruzaman Ampon
- Biotechnology Research Institute, Universiti Malaysia Sabah, Malaysia
| | - Helen Lasimbang
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Malaysia
| | | |
Collapse
|
25
|
Foubert P, Barillas S, Gonzalez AD, Alfonso Z, Zhao S, Hakim I, Meschter C, Tenenhaus M, Fraser JK. Uncultured adipose-derived regenerative cells (ADRCs) seeded in collagen scaffold improves dermal regeneration, enhancing early vascularization and structural organization following thermal burns. Burns 2015; 41:1504-16. [PMID: 26059048 DOI: 10.1016/j.burns.2015.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Advances in tissue engineering have yielded a range of both natural and synthetic skin substitutes for burn wound healing application. Long-term viability of tissue-engineered skin substitutes requires the formation and maturation of neo-vessels to optimize survival and biointegration after implantation. A number of studies have demonstrated the capacity of Adipose Derived Regenerative Cells (ADRCs) to promote angiogenesis and modulate inflammation. On this basis, it was hypothesized that adding ADRCs to a collagen-based matrix (CBM) (i.e. Integra) would enhance formation and maturation of well-organized wound tissue in the setting of acute thermal burns. The purpose of this study was to evaluate whether seeding uncultured ADRCs onto CBM would improve matrix properties and enhance healing of the grafted wound. METHODS Full thickness thermal burns were created on the backs of 8 Gottingen mini-swine. Two days post-injury wounds underwent fascial excision and animals were randomized to receive either Integra seeded with either uncultured ADRCs or control vehicle. Wound healing assessment was performed by digital wound imaging, histopathological and immunohistochemical analyses. RESULTS In vitro analysis demonstrated that freshly isolated ADRCs adhered and propagated on the CBM. Histological scoring revealed accelerated maturation of wound bed tissue in wounds receiving ADRCs-loaded CBM compared to vehicle-loaded CBM. This was associated with a significant increase in depth of the wound bed tissue and collagen deposition (p<0.05). Blood vessel density in the wound bed was 50% to 69.6% greater in wounds receiving ADRCs-loaded CBM compared to vehicle-loaded CBM (p=0.05) at day 14 and 21. In addition, ADRCs delivered with CBM showed increased blood vessel lumen area and blood vessel maturation at day 21(p=0.05). Interestingly, vascularity and overall cellularity within the CBM were 50% and 45% greater in animals receiving ADRC loaded scaffolds compared to CBM alone (p<0.05). CONCLUSIONS These data demonstrate that seeding uncultured ADRCs onto CBM dermal substitute enhances wound angiogenesis, blood vessel maturation and matrix remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | - Isaac Hakim
- Comparative Biosciences Inc., Sunnyvale, CA, USA
| | | | - Mayer Tenenhaus
- UCSD Medical Center, University of California, San Diego, CA, USA
| | | |
Collapse
|
26
|
Allogeneic mesenchymal stem cells, but not culture modified monocytes, improve burn wound healing. Burns 2015; 41:548-57. [DOI: 10.1016/j.burns.2014.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/07/2014] [Accepted: 08/11/2014] [Indexed: 01/09/2023]
|
27
|
Teng M, Huang Y, Zhang H. Application of stems cells in wound healing--an update. Wound Repair Regen 2014; 22:151-60. [PMID: 24635168 DOI: 10.1111/wrr.12152] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex but well-orchestrated tissue repair process composed of a series of molecular and cellular events conducted by various types of cells and extracellular matrix. Despite a variety of therapeutic strategies proposed to accelerate the healing of acute and/or chronic wounds over the past few decades, effective treatment of chronic nonhealing wounds still remains a challenge. Due to the recent advances in stem cell research, a dramatic enthusiasm has been drawn to the application of stem cells in regenerative medicine. Both embryonic and adult stem cells have prolonged self-renewal capacity and are able to differentiate into various tissue types. Nevertheless, use of embryonic stem cells is limited, owing to ethical concerns and legal restrictions. Adult stem cells, which could be isolated from bone marrow, umbilical cord blood, adipose tissue, skin and hair follicles,are being explored extensively to facilitate the healing of both acute and chronic wounds. The current article summarizes recent research on various types of stem cell-based strategies applied to improve wound healing. In addition, future directions of stem cell-based therapy in wound healing have also been discussed. Finally, despite its apparent advantages, limitations and challenges of stem cell therapy are discussed.
Collapse
Affiliation(s)
- Miao Teng
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | |
Collapse
|
28
|
Wood FM. Skin regeneration: the complexities of translation into clinical practise. Int J Biochem Cell Biol 2014; 56:133-40. [PMID: 25448410 DOI: 10.1016/j.biocel.2014.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/01/2022]
Abstract
The integration of engineering into biological science has resulted in the capacity to provide tissue engineered solutions for tissue damage. Skin regeneration remains the goal of skin repair to reduce the long term consequences of scarring to the individual. A scar is abnormal in its architecture, chemistry and cell phenotype, tissue engineering of scaffolds and cells opens up the potential of tissue regeneration into the future. Tissue engineering solutions have been applied to skin many decades despite technical success the clinical application has been modest. To realise the potential of the developing technologies needs alignment of not only the science and engineering but also the commercial upscaling of production in a safe and regulated framework for clinical use. In addition the education and training for the introduction of new technology within the health system is essential, bringing together the technology and systems for utilisation to optimise the patient outcome. This article is part of a Directed Issue entitled: Regenerative Medicine: The challenge of translation.
Collapse
Affiliation(s)
- Fiona M Wood
- Burns Service of Western Australia, Burn Injury Research Unit, University of Western Australia, Australia.
| |
Collapse
|
29
|
Patient experiences living with split thickness skin grafts. Burns 2014; 40:1097-105. [DOI: 10.1016/j.burns.2014.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/20/2014] [Accepted: 03/10/2014] [Indexed: 11/19/2022]
|
30
|
Wessels Q. Engineered alternative skin for partial and full-thickness burns. Bioengineered 2014; 5:161-4. [PMID: 24651001 PMCID: PMC4101007 DOI: 10.4161/bioe.28598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022] Open
Abstract
Engineered alternative skin in all its forms and shapes serve to provide temporary or permanent wound closure such as in the case of partial and full-thickness burns. The need for collagen-based regeneration templates is motivated by the fact that dermal regeneration of full-thickness injuries does not occur spontaneously and is inundated by contraction and scarring. Partial-thickness burns in turn can regress as a result of infection and improper treatment and require appropriate treatment. Nylon-silicone laminates such as Biobrane(®), and more recently AWBAT(®), address this by serving as a temporary barrier. Enhanced collagen-based scaffolds today, although not perfect, remain invaluable. Our initial approach was to characterize the design considerations and explore the use of collagen in the fabrication of a dermal regeneration matrix and a silicone-nylon bilaminate. Here we expand our initial research on scaffold fabrication and explore possible strategies to improve the outcome of collagen-scaffold medicated wound healing.
Collapse
Affiliation(s)
- Quenton Wessels
- Lancaster Medical School; Faculty of Health and Medicine; Lancaster University; Lancaster, UK
| |
Collapse
|
31
|
Lu W, Zhang YJ, Jin Y. Potential of stem cells for skin regeneration following burns. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Song J, Hornsby P, Stanley M, AbdelFattah KR, Wolf SE. Porcine urinary bladder extracellular matrix activates skeletal myogenesis in mouse muscle cryoinjury. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2050-1218-3-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Jeschke MG, Finnerty CC, Shahrokhi S, Branski LK, Dibildox M. Wound coverage technologies in burn care: novel techniques. J Burn Care Res 2013; 34:612-20. [PMID: 23877140 PMCID: PMC3819403 DOI: 10.1097/bcr.0b013e31829b0075] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Improvements in burn wound care have vastly decreased morbidity and mortality in severely burned patients. Development of new therapeutic approaches to increase wound repair has the potential to reduce infection, graft rejection, and hypertrophic scarring. The incorporation of tissue-engineering techniques, along with the use of exogenous proteins, genes, or stem cells to enhance wound healing, heralds new treatment regimens based on the modification of already existing biological activity. Refinements to surgical techniques have enabled the creation of protocols for full facial transplantation. With new technologies and advances such as these, care of the severely burned will undergo massive changes over the next decade. This review centers on new developments that have recently shown great promise in the investigational arena.
Collapse
Affiliation(s)
- Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | - Celeste C. Finnerty
- Department of Surgery, Sealy Center for Molecular Medicine, and the Institute for Translational Science, University of Texas Medical Branch and Shriners Hospitals for Children, Galveston, Texas, USA
| | - Shahriar Shahrokhi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | - Ludwik K. Branski
- Department of Plastic and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Manuel Dibildox
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Department of Surgery and Plastic Surgery, University of Toronto, Toronto, Canada
| | | |
Collapse
|
34
|
Evidence of a role for fibrocyte and keratinocyte-like cells in the formation of hypertrophic scars. J Burn Care Res 2013; 34:227-31. [PMID: 22955158 DOI: 10.1097/bcr.0b013e318254d1f9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Burn injuries affect millions of people every year, and dermal fibrosis is a common complication for the victims. This disfigurement has functional and cosmetic consequences and many research groups have made it the focus of their work to understand the mechanisms that underlie its development. Although significant progress has been made in wound-healing processes, the complexity of events involved makes it very difficult to come up with a single strategy to prevent this devastating fibrotic condition. Inflammation is considered one predisposing factor, although this phase is a necessary aspect of the wound-healing process. Inflammation, driven by infiltrated immune cells, begins minutes after the burn injury and is the prevalent phase of wound healing in the early stages. Accompanying the inflammatory infiltrate, there is evidence that subpopulations of bone marrow-derived cells are also present. These populations include fibrocytes and keratinocyte-like cells, derivatives of CD14 monocytes, a component of the peripheral blood mononuclear cell infiltrate. There is evidence that these cells contribute to regeneration and repair of the wound site, but it is interesting to note that there are also reports that these cells can have adverse effects and may contribute to the development of dermal fibrosis. In this article, the authors present a review of the origin and transdifferentiation of these cells from bone marrow stem cells, the environments that direct this transdifferentiation, and evidence to support their role in fibrosis, as well as potential avenues for therapeutics to control their fibrotic effects.
Collapse
|
35
|
Cheppudira B, Fowler M, McGhee L, Greer A, Mares A, Petz L, Devore D, Loyd DR, Clifford JL. Curcumin: a novel therapeutic for burn pain and wound healing. Expert Opin Investig Drugs 2013; 22:1295-303. [PMID: 23902423 DOI: 10.1517/13543784.2013.825249] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Managing burn injury-associated pain and wounds is a major unresolved clinical problem. Opioids, nonsteroidal antiinflammatory drugs (NSAIDs), antidepressants and anticonvulsants remain the most common forms of analgesic therapy to treat burn patients. However, prolonged treatment with these drugs leads to dose escalation and serious side effects. Additionally, severe burn wounds cause scarring and are susceptible to infection. Recent encouraging findings demonstrate that curcumin, a major bioactive component found in turmeric, is a natural pharmacotherapeutic for controlling both severe burn pain and for improved wound healing. AREAS COVERED This article covers current pr-clinical and clinical studies on the analgesic and wound healing effects. Particular emphasis has been placed on studies aimed at developing improved curcumin delivery vehicles that increase its bioavailability. Based on the available evidence, a hypothesis is proposed that the dual beneficial effects of curcumin, analgesia and enhanced wound healing are mediated through common anti-inflammatory mechanisms. EXPERT OPINION Emerging studies have demonstrated that curcumin is a promising investigational drug to treat both pain and wounds. The adequate control of severe burn pain, particularly over the long courses required for healing, as well improvements in burn wound healing are unmet clinical needs.
Collapse
Affiliation(s)
- Bopaiah Cheppudira
- U.S. Army Institute of Surgical Research, Battlefield Pain Management Research Task Area , 3698 Chambers Pass, Fort Sam Houston, TX 78234 , USA +1 210 539 2472 ; +1 210 539 1460 ;
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The effect of subcutaneous mesenchymal stem cell injection on statis zone and apoptosis in an experimental burn model. Plast Reconstr Surg 2013; 131:463-471. [PMID: 23446561 DOI: 10.1097/prs.0b013e31827c6d6f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND In an acute burn injury the zone of stasis is initially vital but may progress to coagulation necrosis with time. In this study, salvage of the zone of stasis was aimed at by subcutaneous mesenchymal stem cell injection. METHODS Mesenchymal stem cells were obtained from the bone marrow of Sprague-Dawley rats (n = 10). Twenty Sprague-Dawley rats received thermal injury on the back according to the previously described "comb burn" model. Thirty minutes after the burn injury, mesenchymal stem cells were injected subcutaneously to the stasis zone of the experimental group (n = 10). Animals in the control group (n = 10) were given the same amount of saline without mesenchymal stem cells. Animals in the sham group (n = 6) did not receive any thermal trauma. Seventy-two hours after the burn injury, scintigraphic examination was applied to determine average vital tissue at the stasis zone. Thereafter, skin samples were assessed by immunohistochemistry assay for apoptosis count. The blood samples drawn before and 72 hours after the burn injury were analyzed to determine systemic cytokine levels. RESULTS The apoptosis count of the control group was found to be significantly higher than that of the experimental group. Vital tissue percentage of the stasis zone was significantly higher for the experimental group than for the control group. The cytokine levels did not reveal any statistically significant difference between the groups. CONCLUSION Apoptosis count and scintigraphic results of this study confirm that mesenchymal stem cell treatment has a statistically significant benefit for the survival of the stasis zone in acute burn.
Collapse
|
37
|
Abstract
Burn injuries have a consistently high rate of mortality and morbidity, principally due to sepsis and systemic inflammation. Furthermore, wound closure is often troubled by a limited supply of autologous skin graft availability. Researchers are now looking at augmenting alternative sources for tissues engineering, including stem cells in the bone marrow, fat and hair follicles. Many studies suggest that the ability of stem cells to augment the clinical care of thermally-injured patients shows great potential; however, while our understanding of stem-cell biology has expanded dramatically over the last two decades, significant insight is still required so the full potential of these cells can be safely harnessed and transferred to patient care. This article provides a commentary on the evidence supporting a role for stem-cell therapy in acute burn care and tissue reconstruction, with particular reference to those in the bone marrow, adipose tissue and hair follicle.
Collapse
Affiliation(s)
- C J Lewis
- Bradford Plastic Surgery and Burns Research Unit, Bradford, UK.
| |
Collapse
|
38
|
|
39
|
Lootens L, Brusselaers N, Beele H, Monstrey S. Keratinocytes in the treatment of severe burn injury: an update. Int Wound J 2013; 10:6-12. [PMID: 22958654 PMCID: PMC7950461 DOI: 10.1111/j.1742-481x.2012.01083.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Burns are among the most life-threatening physical injuries, in which fast wound closure is crucial. The surgical burn care has evolved considerably throughout the past decennia resulting in a shift of therapeutic goals. Therapies aiming to provide coverage of the burn have been replaced by treatments that have both functional as aesthetic outcomes. The standard in treating severe burns is still early excision followed by skin grafting. The use of cultured keratinocytes to cover extensive burn wounds appeared very promising at first, but the technique still has several limitations of which the long time to culture, the major costs, the risk of infection and the need for an adequate dermal layer limit clinical application. The introduction of dermal substitutes, composite grafts, tissue engineering based on stem cell application have been advocated. The aim of this review is to assess the use of cultured keratinocytes in terms of technical aspects, clinical application, limitations and future perspectives. Cultured keratinocytes are expected to keep playing a role in wound healing, especially in the field of chronic wounds. In severe burns, despite its limitations, keratinocytes can be beneficial if implemented as one of the elements in a broader wound management.
Collapse
Affiliation(s)
- Liesbeth Lootens
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
40
|
Abstract
The ultimate goal of the treatment of cutaneous burns and wounds is to restore the damaged skin both structurally and functionally to its original state. Recent research advances have shown the great potential of stem cells in improving the rate and quality of wound healing and regenerating the skin and its appendages. Stem cell-based therapeutic strategies offer new prospects in the medical technology for burns and wounds care. This review seeks to give an updated overview of the applications of stem cell therapy in burns and wound management since our previous review of the “stem cell strategies in burns care”.
Collapse
Affiliation(s)
- Lin Huang
- Department of Surgery, Division of Plastic, Reconstructive and Aesthetic Surgery, The Chinese University of Hong Kong, Hong Kong
| | | |
Collapse
|
41
|
Abstract
Chronic wounds continue to be a major challenge for the medical profession, and plastic surgeons are frequently called in to help in the management of such wounds. Apart from the obvious morbidity to the patient, these problem wounds can be a major drain on the already scarce hospital resources. Sometimes, these chronic wounds can be more taxing than the underlying disease itself. Although many newer methods are available to handle such situations, the role of stem cells in the management of such wounds is an exciting area that needs to be explored further. A review of literature has been done regarding the role of stem cells in the management of chronic wounds. The abnormal pathology in such wounds is discussed and the possible role of stem cells for optimal healing in such cases would be detailed.
Collapse
Affiliation(s)
- Ramesh Kumar Sharma
- Department of Plastic Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
42
|
Burd A, Huang L. Advanced skin, scar and wound care centre for children: A new era of care. Indian J Plast Surg 2012; 45:184-92. [PMID: 23162215 PMCID: PMC3495366 DOI: 10.4103/0970-0358.101268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Advanced wound care centres are now a well established response to the growing epidemic of chronic wounds in the adult population. Is the concept transferable to children? Whilst there is not the same prevalence of chronic wounds in children there are conditions affecting the integumentary system that do have a profound effect on the quality of life of both children and their families. We have identified conditions involving the skin, scars and wounds which contribute to a critical number of potential patients that can justify the setting up of an advanced skin, scar and wound care centre for children. The management of conditions such as giant naevi, extensive scarring and epidermolysis bullosa challenge medical professionals and lead to new and novel treatments to be developed. The variation between and within such conditions calls for a customizing of individual patient care that involves a close relationship between research scientists and clinicians. This is translational medicine of its best and we predict that this is the future of wound care particularly and specifically in children.
Collapse
Affiliation(s)
- Andrew Burd
- Department of Surgery, Division of Plastic, Reconstructive and Aesthetic Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | | |
Collapse
|
43
|
In vivo molecular imaging of murine embryonic stem cells delivered to a burn wound surface via Integra® scaffolding. J Burn Care Res 2012; 33:e49-54. [PMID: 22540138 DOI: 10.1097/bcr.0b013e3182331d1c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been demonstrated that restoration of function to compromised tissue can be accomplished by transplantation of bone marrow stem cells and/or embryonic stem cells (ESCs). One limitation to this approach has been the lack of noninvasive techniques to longitudinally monitor stem cell attachment and proliferation. Recently, murine ESC lines that express green fluorescent protein (GFP), luciferase (LV), and herpes simplex thymidine kinase (HVTK) were developed for detection of actively growing cells in vivo by imaging. In this study, the authors investigated the use of these ESC lines in a burned mouse model using Integra® as a delivery scaffolding/matrix. Two different cell lines were used: one expressing GFP and LV and the other expressing GFP, LV, and HVTK. Burn wounds were produced by application of a brass block (2 × 2 cm kept in boiling water before application) to the dorsal surface of SV129 mice for 10 seconds. Twenty-four hours after injury, Integra® with adherent stem cells was engrafted onto a burn wound immediately after excision of eschar. The stem cells were monitored in vivo by measuring bioluminescence with a charge-coupled device camera and immunocytochemistry of excised tissue. Bioluminescence progressively increased in intensity over the time course of the study, and GFP-positive cells growing into the Integra® were detected. These studies demonstrate the feasibility of using Integra® as a scaffolding, or matrix, for the delivery of stem cells to burn wounds as well as the utility of bioluminescence for monitoring in vivo cellular tracking of stably transfected ESC cells.
Collapse
|
44
|
Clover AJP, Lane O'Neill B, Kumar AHS. Analysis of attitudes toward the source of progenitor cells in tissue-engineered products for use in burns compared with other disease states. Wound Repair Regen 2012; 20:311-6. [DOI: 10.1111/j.1524-475x.2012.00779.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Arun H. S. Kumar
- Centre for Research in Vascular Biology; University College Cork; Cork; Ireland
| |
Collapse
|
45
|
Clover AJP, Kumar AHS, Caplice NM. Deficiency of CX3CR1 delays burn wound healing and is associated with reduced myeloid cell recruitment and decreased sub-dermal angiogenesis. Burns 2011; 37:1386-93. [PMID: 21924836 DOI: 10.1016/j.burns.2011.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/24/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
The development of a good blood supply is a key step in burn wound healing and appears to be regulated in part by myeloid cells. CX3CR1 positive cells have recently been identified as myeloid cells with a potential role in angiogenesis. The role of functional CX3CR1 system in burn wound healing is not previously investigated. A 2% contact burn was induced in CX3CR1(+/gfp) and CX3CR1(gfp/gfp) mice. These transgenic mice facilitate the tracking of CX3CR1 cells (CX3CR1(+/gfp)) and allow evaluation of the consequence of CX3CR1 functional knockout (CX3CR1(gfp/gfp)) on burn wound healing. The progression of wound healing was monitored before tissue was harvested and analyzed at day 6 and day 12 for migration of CX3CR1 cells into burn wound. Deficiency of a functional CX3CR1 system resulted in decreased recruitment of CX3CR1 positive cells into the burn wound associated with decreased myeloid cell recruitment (p<0.001) and reduced maintenance of new vessels (p<0.001). Burn wound healing was prolonged (p<0.05). Our study is the first to establish a role for CX3CR1 in burn wound healing which is associated with sub-dermal angiogenesis. This chemokine receptor pathway may be attractive for therapeutic manipulation as it could increase sub dermal angiogenesis and thereby improve time to healing.
Collapse
|
46
|
Abstract
There have been tremendous advances in burns care over the past 50 years. Much of this, but not all, can be attributed to basic science and clinically related research. Out of the best centres in the world, centres that are fully funded and richly resourced, best practice guidelines result in impressive outcomes not only in terms of survival but also in terms of a quality of survival. Indeed the remaining clinical challenges in these centres are the elderly, the inhalational burns, and the very extensive burns. There are however other challenges when looking at burns care in a global context and in particular is the provision of even minimal standards of acceptable care for burns patients in many parts of the world. Whilst the justification for research funding in the wealthy countries becomes increasingly esoteric, for example looking at the immunology of face transplantation, the global health challenges of burns care still remain. Perhaps, the greatest research challenge in burns care in the 21st century lies not in furthering our understanding of the phenomenon we observe but the global application of the knowledge we already possess.
Collapse
Affiliation(s)
- Andrew Burd
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| |
Collapse
|
47
|
Blood levels, apoptosis, and homing of the endothelial progenitor cells after skin burns and escharectomy. ACTA ACUST UNITED AC 2011; 70:459-65. [PMID: 21307748 DOI: 10.1097/ta.0b013e3181fcf83c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Skin burns are an acute trauma involving an extensive vascular damage and an intense inflammatory response. Bone marrow-derived circulating endothelial progenitor cells (EPC) are known to migrate to sites of neovascularization in response to mediators (vascular endothelial growth factor and stromal cell-derived factor-1) released after trauma and ischemia, to contribute to wound healing, and to increase neovascularization of animal prefabricated flaps. Recent data showed an increase in EPC number in burned patients and a positive correlation between EPC number and total body surface area (TBSA) burnt, but data were limited to the first 5 days after thermal injury. METHODS By using flow cytometry, we studied EPC (CD34, CD133, CD45, and KDR cells) blood levels, apoptosis, and homing (stromal cell-derived factor-1 receptor expression and CXC chemokine receptor 4) in a 1-month follow-up postburn in 25 patients with ≥15% TBSA burnt, at least grade II burns and escharectomy performed at days 5 to 6, with respect to 31 controls. RESULTS EPC count at admission showed a positive linear correlation with TBSA burnt. The EPC blood levels of the patients were low (50.7 cells/mL±61.8 cells/mL) immediately after thermal injury, then increased with two peaks, at day 1 (188.3 cells/mL±223.2 cells/mL) and day 12 (253.1 cells/mL±430.7 cells/mL) with respect to controls (95.2 cells/mL±28.5 cells/mL, p<0.05), and then returned to normal levels in 1 month. EPC apoptotic rate and inflammatory parameters paralleled EPC blood count. No significant variations were found in CXC chemokine receptor 4 expression. CONCLUSIONS Thermal injury and escharectomy seem to induce an intense response in EPC production. In particular, escharectomy could improve physiologic wound repair by increasing EPC levels.
Collapse
|
48
|
Huang L, Wong YP, Gu H, Cai YJ, Ho Y, Wang CC, Leung TY, Burd A. Stem cell-like properties of human umbilical cord lining epithelial cells and the potential for epidermal reconstitution. Cytotherapy 2011; 13:145-55. [DOI: 10.3109/14653249.2010.509578] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
|
50
|
|