1
|
Ong RCS, Beros JL, Fuller K, Wood FM, Melton PE, Rodger J, Fear MW, Barrett L, Stevenson AW, Tang AD. Non-severe thermal burn injuries induce long-lasting downregulation of gene expression in cortical excitatory neurons and microglia. Front Mol Neurosci 2024; 17:1368905. [PMID: 38476460 PMCID: PMC10927825 DOI: 10.3389/fnmol.2024.1368905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Burn injuries are devastating traumas, often leading to life-long consequences that extend beyond the observable burn scar. In the context of the nervous system, burn injury patients commonly develop chronic neurological disorders and have been suggested to have impaired motor cortex function, but the long-lasting impact on neurons and glia in the brain is unknown. Using a mouse model of non-severe burn injury, excitatory and inhibitory neurons in the primary motor cortex were labelled with fluorescent proteins using adeno-associated viruses (AAVs). A total of 5 weeks following the burn injury, virus labelled excitatory and inhibitory neurons were isolated using fluorescence-activated cell sorting (FACS). In addition, microglia and astrocytes from the remaining cortical tissue caudal to the motor cortex were immunolabelled and isolated with FACS. Whole transcriptome RNA-sequencing was used to identify any long-lasting changes to gene expression in the different cell types. RNA-seq analysis showed changes to the expression of a small number of genes with known functions in excitatory neurons and microglia, but not in inhibitory neurons or astrocytes. Specifically, genes related to GABA-A receptors in excitatory neurons and several cellular functions in microglia were found to be downregulated in burn injured mice. These findings suggest that non-severe burn injuries lead to long lasting transcriptomic changes in the brain, but only in specific cell types. Our findings provide a broad overview of the long-lasting impact of burn injuries on the central nervous system which may help identify potential therapeutic targets to prevent neurological dysfunction in burn patients.
Collapse
Affiliation(s)
- Rebecca C. S. Ong
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Jamie L. Beros
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Kathy Fuller
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Fiona M. Wood
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Burn Injury Research Unit, The University of Western Australia, Crawley, WA, Australia
- Burns Service of Western Australia, WA Department of Health, Murdoch, WA, Australia
- Paediatric Burn Care, Telethon Kids Institute, Nedlands, WA, Australia
| | - Phillip E. Melton
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Global and Population Health, The University of Western Australia, Crawley, WA, Australia
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Mark W. Fear
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lucy Barrett
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Burn Injury Research Unit, The University of Western Australia, Crawley, WA, Australia
- Burns Service of Western Australia, WA Department of Health, Murdoch, WA, Australia
| | - Andrew W. Stevenson
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
- Burn Injury Research Unit, The University of Western Australia, Crawley, WA, Australia
| | - Alexander D. Tang
- Experimental and Regenerative Neuroscience, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
2
|
Allahham A, Rowe G, Stevenson A, Fear MW, Vallence AM, Wood FM. The impact of burn injury on the central nervous system. BURNS & TRAUMA 2024; 12:tkad037. [PMID: 38312739 PMCID: PMC10835674 DOI: 10.1093/burnst/tkad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 02/06/2024]
Abstract
Burn injuries can be devastating, with life-long impacts including an increased risk of hospitalization for a wide range of secondary morbidities. One area that remains not fully understood is the impact of burn trauma on the central nervous system (CNS). This review will outline the current findings on the physiological impact that burns have on the CNS and how this may contribute to the development of neural comorbidities including mental health conditions. This review highlights the damaging effects caused by burn injuries on the CNS, characterized by changes to metabolism, molecular damage to cells and their organelles, and disturbance to sensory, motor and cognitive functions in the CNS. This damage is likely initiated by the inflammatory response that accompanies burn injury, and it is often long-lasting. Treatments used to relieve the symptoms of damage to the CNS due to burn injury often target inflammatory pathways. However, there are non-invasive treatments for burn patients that target the functional and cognitive damage caused by the burn, including transcranial magnetic stimulation and virtual reality. Future research should focus on understanding the mechanisms that underpin the impact of a burn injury on the CNS, burn severity thresholds required to inflict damage to the CNS, and acute and long-term therapies to ameliorate deleterious CNS changes after a burn.
Collapse
Affiliation(s)
- Amira Allahham
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
| | - Grant Rowe
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia
| | - Andrew Stevenson
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
| | - Mark W Fear
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
| | - Ann-Maree Vallence
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, 90 South Street, Murdoch Perth 6150, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, MNH (B), Level 4, 102-118 Murdoch Drive, Murdoch, Perth, WA 6150, Australia
| | - Fiona M Wood
- Burn injury research unit, School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia
- Fiona Wood Foundation, 11 Robin Warren Dr, Murdoch WA 6150, Australia
- School of Psychology, College of Health and Education, Murdoch University, 90 South Street, Murdoch, Perth 6150, Australia
| |
Collapse
|
3
|
Rowe G, Allahham A, Edgar DW, Rurak BK, Fear MW, Wood FM, Vallence AM. Functional Brain Changes Following Burn Injury: A Narrative Review. Neurorehabil Neural Repair 2024; 38:62-72. [PMID: 38044625 PMCID: PMC10798013 DOI: 10.1177/15459683231215331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
BACKGROUND Burn injuries cause significant motor and sensory dysfunctions that can negatively impact burn survivors' quality of life. The underlying mechanisms of these burn-induced dysfunctions have primarily been associated with damage to the peripheral neural architecture, however, evidence points to a systemic influence of burn injury. Central nervous system (CNS) reorganizations due to inflammation, afferent dysfunction, and pain could contribute to persistent motor and sensory dysfunction in burn survivors. Recent evidence shows that the capacity for neuroplasticity is associated with self-reported functional recovery in burn survivors. OBJECTIVE This review first outlines motor and sensory dysfunctions following burn injury and critically examines recent literature investigating the mechanisms mediating CNS reorganization following burn injury. The review then provides recommendations for future research and interventions targeting the CNS such as non-invasive brain stimulation to improve functional recovery. CONCLUSIONS Directing focus to the CNS following burn injury, alongside the development of non-invasive methods to induce functionally beneficial neuroplasticity in the CNS, could advance treatments and transform clinical practice to improve quality of life in burn survivors.
Collapse
Affiliation(s)
- Grant Rowe
- School of Psychology, College of Health and Education, Murdoch University, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Dale W. Edgar
- Fiona Wood Foundation, Murdoch, WA, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, MNH (B) Main Hospital, Level 4, Burns Unit, Murdoch, WA, Australia
- Institute for Health Research, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Brittany K. Rurak
- School of Psychology, College of Health and Education, Murdoch University, Murdoch, WA, Australia
| | - Mark W. Fear
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Fiona Wood Foundation, Murdoch, WA, Australia
| | - Fiona M. Wood
- Burn Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Fiona Wood Foundation, Murdoch, WA, Australia
- Burn Service of Western Australia, Fiona Stanley Hospital, MNH (B) Main Hospital, Level 4, Burns Unit, Murdoch, WA, Australia
| | - Ann-Maree Vallence
- School of Psychology, College of Health and Education, Murdoch University, Murdoch, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|