1
|
Lima FL, Cronemberger S, Albuquerque ALB, Barbosa LF, Cunha FR, Veloso AW, Diniz-Filho A, Friedman E, De Marco L. Traboulsi syndrome without features of Marfan syndrome caused by a novel homozygous ASPH variant associated with a heterozygous FBN1 variant. Ophthalmic Genet 2023; 44:366-370. [PMID: 37133842 DOI: 10.1080/13816810.2023.2206888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Traboulsi syndrome is a rare disease clinically characterized by facial dysmorphism, abnormal spontaneous filtering blebs, ectopia lentis (EL) and multiple anterior segment abnormalities. MATERIAL AND METHODS An 18-year-old female was referred to the Emergency Service of Hospital São Geraldo (HSG) claiming decreased right eye (RE) visual acuity associated with ocular pain that was noticed approximately 2 months earlier. She underwent a complete ophthalmic and physical examination including hands, ankle, wrist and chest X-ray, abdominal ultrasound, echocardiogram and genetic analysis (whole-exome sequencing). RESULTS The ophthalmic examination revealed a high myopia with spherical equivalent of - 9.50 D and best corrected visual acuity (BCVA) of 20/60 in RE and - 9.25 D with BCVA of 20/30 in the left eye (LE). Slit-lamp examination showed normal conjunctiva in both eyes (BE) and a superior-temporal cystic lesion in RE and nasal in LE; the flat anterior chamber in BE with the transparent crystalline lens touches the central corneal endothelium in the RE. Fundoscopy suggested glaucoma as the cup/disc ratio was 0.7, although the intraocular pressure (IOP) was 10 mmHg in BE without medication. Validation of data from whole exome demonstrated a novel splicing homozygous pathogenic variant (PV) (c.1765-1G>A) of the ASPH gene as well as a heterozygous variant of unknown significance (VUS) of the FBN1 gene (c.6832C>T). CONCLUSION We here report a novel splice-affecting homozygous pathogenic variant in the ASPH gene that was detected in a Brazilian patient with clinical features of Traboulsi syndrome.
Collapse
Affiliation(s)
- Felipe L Lima
- Glaucoma Service Professor Nassim Calixto, Hospital São Geraldo, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sebastião Cronemberger
- Glaucoma Service Professor Nassim Calixto, Hospital São Geraldo, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anna L B Albuquerque
- Department of Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana F Barbosa
- Glaucoma Service Professor Nassim Calixto, Hospital São Geraldo, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Francine R Cunha
- Glaucoma Service Professor Nassim Calixto, Hospital São Geraldo, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Artur W Veloso
- Glaucoma Service Professor Nassim Calixto, Hospital São Geraldo, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alberto Diniz-Filho
- Glaucoma Service Professor Nassim Calixto, Hospital São Geraldo, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eitan Friedman
- The Preventive Personalized Medicine Center, Assuta Medical Center and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Luiz De Marco
- Department of Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Sarkar S, Gupta VK, Sharma S, Shen T, Gupta V, Mirzaei M, Graham SL, Chitranshi N. Computational refinement identifies functional destructive single nucleotide polymorphisms associated with human retinoid X receptor gene. J Biomol Struct Dyn 2023; 41:1458-1478. [PMID: 34971346 DOI: 10.1080/07391102.2021.2021991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alterations in the nuclear retinoid X receptor (RXRs) signalling have been implicated in neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis and glaucoma. Single nucleotide polymorphisms (SNPs) are the main cause underlying single nucleic acid variations which in turn determine heterogeneity within various populations. These genetic polymorphisms have been suggested to associate with various degenerative disorders in population-wide analysis. This bioinformatics study was designed to investigate, search, retrieve and identify deleterious SNPs which may affect the structure and function of various RXR isoforms through a computational and molecular modelling approach. Amongst the 1,813 retrieved SNPs several were found to be deleterious with rs140464195_G139R, rs368400425_R358W and rs368586400_L383F RXRα mutant variants being the most detrimental ones causing changes in the interatomic interactions and decreasing the flexibility of the mutant proteins. Molecular genetics analysis identified seven missense mutations in RXRα/β/γ isoforms. Two novel mutations SNP IDs (rs1588299621 and rs1057519958) were identified in RXRα isoform. We used several in silico prediction tools such as SIFT, PolyPhen, I-Mutant, Protein Variation Effect Analyzer (PROVEAN), PANTHER, SNP&Go, PhD-SNP and SNPeffect to predict pathogenicity and protein stability associated with RXR mutations. The structural assessment by DynaMut tool revealed that hydrogen bonds were affected along with hydrophobic and carbonyl interactions resulting in reduced flexibility at the mutated residue positions but ultimately stabilizing the molecule as a whole. Summarizing, analysis of the missense mutations in RXR isoforms showed a mix of conclusive and inconclusive genotype-phenotype correlations suggesting the use of sophisticated computational analysis tools for studying RXR variants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soumalya Sarkar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Vivek K Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Samridhi Sharma
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Ting Shen
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Srirangam Nadhamuni V, Korbonits M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 2020; 41:bnaa006. [PMID: 32201880 PMCID: PMC7441741 DOI: 10.1210/endrev/bnaa006] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vinaya Srirangam Nadhamuni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
4
|
De Sousa SMC, Manavis J, Feng J, Wang P, Schreiber AW, Scott HS, Torpy DJ. A putative role for the aryl hydrocarbon receptor (AHR) gene in a patient with cyclical Cushing's disease. BMC Endocr Disord 2020; 20:18. [PMID: 31996203 PMCID: PMC6988286 DOI: 10.1186/s12902-020-0495-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Apart from PRKAR1A mutations in a subset of cyclical Cushing's syndrome due to primary pigmented nodular adrenocortical disease, the molecular basis of cyclical Cushing's syndrome has not been investigated. We speculated that cyclical Cushing's syndrome may be due to mutations in the clock genes that govern circadian rhythms, including the hypothalamic-pituitary-adrenal axis. CASE PRESENTATION A 47-year-old man presented with mass effects from a sellar lesion. He was ultimately diagnosed with cyclical Cushing's disease due to a giant corticotrophinoma. We performed whole exome sequencing of germline and tumour DNA, SNP array of tumour DNA and tumour immunohistochemistry in order to detect variants in candidate circadian/pituitary-associated genes. We identified a rare germline missense variant in the aryl hydrocarbon receptor (AHR) gene, which has previously been indirectly linked to pituitary tumorigenesis and clock system disruption. The AHR variant was found in a highly conserved site involved in phosphorylation. It was predicted to be damaging by multiple in silico tools and AHR tumour immunohistochemistry demonstrated loss of the normal nuclear staining pattern, suggestive of an inactivating mutation. We also found a novel, damaging germline missense variant in the retinoid X receptor gamma (RXRG) gene, multiple somatic chromosomal gains (including AHR), and a somatic mutational signature consistent with oncogenesis that may have acted synergistically with the AHR variant. CONCLUSIONS This is the first report of an AHR variant with predicted pathogenicity in the pituitary adenoma setting. Our preliminary data suggest that the highly conserved AHR gene may represent a link between pituitary tumorigenesis, the hypothalamic-pituitary-adrenal axis and the clock system. Further research may indicate a role for the gene in the development of cyclical Cushing's disease.
Collapse
Affiliation(s)
- Sunita M C De Sousa
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia.
- School of Medicine, University of Adelaide, Adelaide, Australia.
| | - Jim Manavis
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Jinghua Feng
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Paul Wang
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia
| | - Andreas W Schreiber
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, an SA Pathology and University of South Australia alliance, Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|