1
|
Gao X, Yang X, He F, Liu X, Liu D, Yuan X. Downregulation of microRNA‑494 inhibits cell proliferation in lung squamous cell carcinoma via the induction of PUMA‑α‑mediated apoptosis. Exp Ther Med 2023; 25:242. [PMID: 37153893 PMCID: PMC10160919 DOI: 10.3892/etm.2023.11941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/16/2023] [Indexed: 05/10/2023] Open
Abstract
Increased evidence has shown that abnormal microRNA (miRNA) plays pivotal roles in numerous types of cancer. However, their expression, function and mechanism in lung squamous cell carcinoma (LSCC) remains to be fully elucidated. The aim of the present study was to investigate the suppressive role of miR-494 in LSCC progression and elucidate its regulatory mechanism. By analyzing expression profiles of miRNAs in LSCC tissues using miRNA microarray, it was revealed that miR-494 was significantly upregulated in 22 pairs of LSCC tissues. Subsequently, reverse transcription-quantitative PCR was performed to determine the expression of miR-494 and p53-upregulated-modulator-of-apoptosis-α (PUMA-α). Western blot analysis was conducted to examine protein levels. Dual-luciferase reporter assay was used to confirm the binding between miR-494 and PUMA-α. Annexin V-fluoresceine isothiocyanate/propidium iodide staining and CCK-8 assays were employed to determine cell apoptosis and cell viability, respectively. It was also revealed that miR-494 was highly expressed in LSCC cell lines compared with that in 16HBE cells. Further experiments confirmed that knockdown of miR-494 reduced cell viability and induced LSCC apoptosis. Bioinformatics analysis predicted that miR-494 could potentially target PUMA-α; also known as Bcl-2-binding component 3, a pro-apoptotic factor, and an inverse correlation between the expression of miR-494 and PUMA-α mRNA levels in LSCC tissues was found. Furthermore, PUMA-α inhibition could reverse the promoting effect of miR-494 knockdown on apoptosis in LSCC cells. Taken together, these findings demonstrated that miR-494 functions as an oncogene by targeting PUMA-α in LSCC, and miR-494 may serve as a novel therapeutic target for treating LSCC.
Collapse
Affiliation(s)
- Xinyuan Gao
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Xiaohua Yang
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Fengzhen He
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Xue Liu
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
| | - Ding Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiaomei Yuan
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan 453100, P.R. China
- Correspondence to: Professor Xiaomei Yuan, Department of Respiratory and Critical Care, The First Affiliated Hospital of Xinxiang Medical College, 88 Jiankang Road, Weihui, Xinxiang, Henan 453100, P.R. China
| |
Collapse
|
2
|
Erkin ÖC, Cömertpay B, Göv E. Integrative Analysis for Identification of Therapeutic Targets and Prognostic Signatures in Non-Small Cell Lung Cancer. Bioinform Biol Insights 2022; 16:11779322221088796. [PMID: 35422618 PMCID: PMC9003654 DOI: 10.1177/11779322221088796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/27/2022] [Indexed: 01/12/2023] Open
Abstract
Differential expressions of certain genes during tumorigenesis may serve to identify novel manageable targets in the clinic. In this work with an integrated bioinformatics approach, we analyzed public microarray datasets from Gene Expression Omnibus (GEO) to explore the key differentially expressed genes (DEGs) in non-small cell lung cancer (NSCLC). We identified a total of 984 common DEGs in 252 healthy and 254 NSCLC gene expression samples. The top 10 DEGs as a result of pathway enrichment and protein–protein interaction analysis were further investigated for their prognostic performances. Among these, we identified high expressions of CDC20, AURKA, CDK1, EZH2, and CDKN2A genes that were associated with significantly poorer overall survival in NSCLC patients. On the contrary, high mRNA expressions of CBL, FYN, LRKK2, and SOCS2 were associated with a significantly better prognosis. Furthermore, our drug target analysis for these hub genes suggests a potential use of Trichostatin A, Pracinostat, TGX-221, PHA-793887, AG-879, and IMD0354 antineoplastic agents to reverse the expression of these DEGs in NSCLC patients.
Collapse
Affiliation(s)
| | | | - Esra Göv
- Esra Göv, Department of Bioengineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Balcalı Mah., Çatalan Caddesi No: 201/1, Sarıçam, 01250 Adana, Turkey.
| |
Collapse
|
3
|
Xiao K, Wang Y, Zhou L, Wang J, Wang Y, Tong D, Zhu Z, Jiang J. Construction of ceRNA network to identify the lncRNA and mRNA related to non-small cell lung cancer. PLoS One 2021; 16:e0259091. [PMID: 34714841 PMCID: PMC8555814 DOI: 10.1371/journal.pone.0259091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) harms human health, but its pathogenesis remains unclear. We wish to provide more molecular therapeutic targets for NSCLC. METHODS The NSCLC tissue and normal tissue samples were screened for genetic comparison in the TCGA database. The predicted lncRNA and mRNA in BEAS2B and A549 cells were detected. RESULTS Volcano plot displayed differentially expressed lncRNAs and mRNAs in adjacent tissues and NSCLC tissues. The survival curve showed that the lncRNA and mRNA had a significant impact on the patient's survival. The results of GO term enrichment analysis indicated that mRNA functions were enriched in cell cycle-related pathways. In the ceRNA interaction network, 13 lncRNAs and 20 miRNAs were found to have an interactive relationship. Finally, 3 significantly different lncRNAs (LINC00968, lnc-FAM92A-9 and lnc-PTGFR-1) and 6 mRNAs (CTCFL, KRT5, LY6D, TMEM, GBP6, and TMEM179) with potential therapeutic significance were screened out. And the cell experiment verified our results. CONCLUSION We screened out clinically significant 3 lncRNAs and 6 mRNAs involved in the ceRNA network, which were the key to our future research on the treatment of NSCLC.
Collapse
Affiliation(s)
- Kui Xiao
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Yang Wang
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lihua Zhou
- Department of Pulmonary and Critical Care Medicine, University of South China Affiliated Changsha Central Hospital, Changsha City, Hunan Province, China
| | - Jufen Wang
- Department of Pulmonary and Critical Care Medicine, University of South China Affiliated Changsha Central Hospital, Changsha City, Hunan Province, China
| | - Yaohui Wang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - De Tong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Zhiruo Zhu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
- The Respiratory Disease Diagnosis and Treatment Center of Hunan Province, Changsha, Hunan, China
| | - Jiehan Jiang
- Department of Pulmonary and Critical Care Medicine, University of South China Affiliated Changsha Central Hospital, Changsha City, Hunan Province, China
- * E-mail:
| |
Collapse
|
4
|
Fan X, Zhang J, Xie Y, Xu D, Liu Y, Liu J, Hou J. Biochar produced from the co-pyrolysis of sewage sludge and waste tires for cadmium and tetracycline adsorption from water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1429-1445. [PMID: 33767048 DOI: 10.2166/wst.2021.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Application of sewage sludge biochar as an adsorbent for pollutant removal has obtained special attention due to their low cost and surface functionality. In this research, sludge-tire composite biochar (STB) was successfully prepared through co-pyrolysis at 300, 500 and 700 °C, respectively. Cadmium (Cd) and tetracycline (TC) were selected as the target pollutant. The results indicated that STB has the highest surface area (49.71 m2/g), more inorganic minerals (Kaolinite) as well as relatively stable physicochemical properties with 10% tire particles (TP) at 700 °C. The adsorption results indicated that the pseudo-second-order equation and Langmuir isotherm model could better describe the adsorption of Cd2+ and TC by STB. The maximum adsorption capacity of Cd2+ and TC was 50.25 mg/g and 90.09 mg/g, respectively. The main mechanism of the adsorption process of STB for Cd mainly involves anion binding adsorption and ion exchange. The main mechanism of the adsorption process of STB for TC mainly involves complexation and cation exchange. The present study could set a scientific foundation for further research on the recycle of sewage sludge and tires.
Collapse
Affiliation(s)
- Xiulei Fan
- Key Laboratory of Industrial Pollution Control and Resource Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China E-mail:
| | - Jiajun Zhang
- Key Laboratory of Industrial Pollution Control and Resource Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China E-mail:
| | - Ya Xie
- Key Laboratory of Industrial Pollution Control and Resource Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China E-mail:
| | - Dezhi Xu
- Key Laboratory of Industrial Pollution Control and Resource Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China E-mail:
| | - Yu Liu
- Key Laboratory of Industrial Pollution Control and Resource Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China E-mail:
| | - Jiaqiang Liu
- Key Laboratory of Industrial Pollution Control and Resource Reuse of Jiangsu Province, College of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China E-mail:
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
5
|
Li J, Gao Y, Li Q, Chen L, Chen Y, Li J. LncRNA COL1A2-AS1 promotes skin fibroblast apoptosis by repressing p-Smad3 and promoting β-catenin expression. Exp Dermatol 2021; 30:1090-1098. [PMID: 33354832 DOI: 10.1111/exd.14269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
LncRNA COL1A2-AS1 has been demonstrated to inhibit fibroblast proliferation of hypertrophic scars. However, the function of COL1A2-AS1 in normal skin fibroblasts remains poorly studied. Here, we report that overexpression of COL1A2-AS1 promoted normal skin fibroblast apoptosis. On the basis of mRNA-seq data and gene set enrichment analysis plus Kyoto encyclopedia of genes and genomes pathway analysis, 16 upregulated and 125 downregulated mRNAs were found; TGF-β, Wnt, and MAPK pathways were potentially involved. Western blot assay confirmed that overexpression of COL1A2-AS1 repressed p-Smad3 expression and promoted β-catenin expression. Furthermore, COL1A2-AS1 overexpression combined with either TGF-β1 or siRNA against β-catenin reversed the upregulation of apoptosis in the COL1A2-AS1 overexpression group. In conclusion, our study revealed the roles of COL1A2-AS1 in normal skin fibroblast apoptosis, with COL1A2-AS1 functioning by repressing p-Smad3 expression and promoting β-catenin expression.
Collapse
Affiliation(s)
- Jun Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yanli Gao
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qian Li
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ling Chen
- Department of Plastic & Cosmetic Surgery, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yajun Chen
- Department of Clinical laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
6
|
Yang JF, Shi SN, Xu WH, Qiu YH, Zheng JZ, Yu K, Song XY, Li F, Wang Y, Wang R, Qu YY, Zhang HL, Zhou XQ. Screening, identification and validation of CCND1 and PECAM1/CD31 for predicting prognosis in renal cell carcinoma patients. Aging (Albany NY) 2019; 11:12057-12079. [PMID: 31850854 PMCID: PMC6949065 DOI: 10.18632/aging.102540] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common cancers worldwide. Despite intense efforts to elucidate its pathogenesis, the molecular mechanisms and genetic characteristics of this cancer remain unknown. In this study, three expression profile data sets (GSE15641, GSE16441 and GSE66270) were integrated to identify candidate genes that could elucidate functional pathways in ccRCC. Expression data from 63 ccRCC tumors and 54 normal samples were pooled and analyzed. The GSE profiles shared 379 differentially expressed genes (DEGs), including 249 upregulated genes, and 130 downregulated genes. A protein-protein interaction network (PPI) was constructed and analyzed using STRING and Cytoscape. Functional and signaling pathways of the shared DEGs with significant p values were identified. Kaplan-Meier plots of integrated expression scores were used to analyze survival outcomes. These suggested that FN1, ICAM1, CXCR4, TYROBP, EGF, CAV1, CCND1 and PECAM1/CD31 were independent prognostic factors in ccRCC. Finally, to investigate early events in renal cancer, we screened for the hub genes CCND1 and PECAM1/CD31. In summary, integrated bioinformatics analysis identified candidate DEGs and pathways in ccRCC that could improve our understanding of the causes and underlying molecular events of ccRCC. These candidate genes and pathways could be therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Jian-Feng Yang
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Shen-Nan Shi
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yun-Hua Qiu
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Jin-Zhou Zheng
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Kui Yu
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Xiao-Yun Song
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Feng Li
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Yu Wang
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Rui Wang
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xi-Qiu Zhou
- Department of Surgery, Pudong Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200126, China
| |
Collapse
|