1
|
Ji HW, Kang J, Kim HC, Jung J, Lee SJ, Jung JY, Lee SW. The association between cumulative exposure to PM 2.5 and DNA methylation measured using methyl-capture sequencing among COPD patients. Respir Res 2024; 25:335. [PMID: 39251997 PMCID: PMC11386081 DOI: 10.1186/s12931-024-02955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/17/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Particulate matter with a diameter of < 2.5 μm (PM2.5) influences gene regulation via DNA methylation; however, its precise mechanism of action remains unclear. Thus, this study aimed to examine the connection between personal PM2.5 exposure and DNA methylation in CpG islands as well as explore the associated gene pathways. METHODS A total of 95 male patients with chronic obstructive pulmonary disease (COPD) were enrolled in this study. PM2.5 concentrations were measured for 12 months, with individual exposure recorded for 24 h every 3 months. Mean indoor and estimated individual PM2.5 exposure levels were calculated for short-term (7 days), mid-term (35 days), and long-term (90 days). DNA methylation analysis was performed on the blood samples, which, after PCR amplification and hybridization, were finally sequenced using an Illumina NovaSeq 6000 system. Correlation between PM2.5 exposure and CpG methylation sites was confirmed via a mixed-effects model. Functional enrichment analysis was performed on unique CpG methylation sites associated with PM2.5 exposure to identify the relevant biological functions or pathways. RESULTS The number of CpG sites showing differential methylation was 36, 381, and 182 for the short-, mid-, and long-term indoor models, respectively, and 3, 98, and 28 for the short-, mid-, and long-term estimated exposure models, respectively. The representative genes were TMTC2 (p = 1.63 × 10-3, R2 = 0.656), GLRX3 (p = 1.46 × 10-3, R2 = 0.623), DCAF15 (p = 2.43 × 10-4, R2 = 0.623), CNOT6L (p = 1.46 × 10-4, R2 = 0.609), BSN (p = 2.21 × 10-5, R2 = 0.606), and SENP6 (p = 1.59 × 10-4, R2 = 0.604). Functional enrichment analysis demonstrated that the related genes were mostly associated with pathways related to synaptic transmission in neurodegenerative diseases and cancer. CONCLUSION A significant association was observed between PM2.5 exposure and DNA methylation upon short-term exposure, and the extent of DNA methylation was the highest upon mid-term exposure. Additionally, various pathways related to neurodegenerative diseases and cancer were associated with patients with COPD. CLINICALTRIALS GOV IDENTIFIER NCT04878367.
Collapse
Affiliation(s)
- Hyun Woo Ji
- Division of Pulmonology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Jieun Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | | | - Seon-Jin Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji Ye Jung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kalinina E. Glutathione-Dependent Pathways in Cancer Cells. Int J Mol Sci 2024; 25:8423. [PMID: 39125992 PMCID: PMC11312684 DOI: 10.3390/ijms25158423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The most abundant tripeptide-glutathione (GSH)-and the major GSH-related enzymes-glutathione peroxidases (GPxs) and glutathione S-transferases (GSTs)-are highly significant in the regulation of tumor cell viability, initiation of tumor development, its progression, and drug resistance. The high level of GSH synthesis in different cancer types depends not only on the increasing expression of the key enzymes of the γ-glutamyl cycle but also on the changes in transport velocity of its precursor amino acids. The ability of GPxs to reduce hydroperoxides is used for cellular viability, and each member of the GPx family has a different mechanism of action and site for maintaining redox balance. GSTs not only catalyze the conjugation of GSH to electrophilic substances and the reduction of organic hydroperoxides but also take part in the regulation of cellular signaling pathways. By catalyzing the S-glutathionylation of key target proteins, GSTs are involved in the regulation of major cellular processes, including metabolism (e.g., glycolysis and the PPP), signal transduction, transcription regulation, and the development of resistance to anticancer drugs. In this review, recent findings in GSH synthesis, the roles and functions of GPxs, and GST isoforms in cancer development are discussed, along with the search for GST and GPx inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Elena Kalinina
- T.T. Berezov Department of Biochemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| |
Collapse
|
3
|
Zhou M, Hanschmann EM, Römer A, Linn T, Petry SF. The significance of glutaredoxins for diabetes mellitus and its complications. Redox Biol 2024; 71:103043. [PMID: 38377787 PMCID: PMC10891345 DOI: 10.1016/j.redox.2024.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/13/2024] [Indexed: 02/22/2024] Open
Abstract
Diabetes mellitus is a non-communicable metabolic disease hallmarked by chronic hyperglycemia caused by beta-cell failure. Diabetic complications affect the vasculature and result in macro- and microangiopathies, which account for a significantly increased morbidity and mortality. The rising incidence and prevalence of diabetes is a major global health burden. There are no feasible strategies for beta-cell preservation available in daily clinical practice. Therefore, patients rely on antidiabetic drugs or the application of exogenous insulin. Glutaredoxins (Grxs) are ubiquitously expressed and highly conserved members of the thioredoxin family of proteins. They have specific functions in redox-mediated signal transduction, iron homeostasis and biosynthesis of iron-sulfur (FeS) proteins, and the regulation of cell proliferation, survival, and function. The involvement of Grxs in chronic diseases has been a topic of research for several decades, suggesting them as therapeutic targets. Little is known about their role in diabetes and its complications. Therefore, this review summarizes the available literature on the significance of Grxs in diabetes and its complications. In conclusion, Grxs are differentially expressed in the endocrine pancreas and in tissues affected by diabetic complications, such as the heart, the kidneys, the eye, and the vasculature. They are involved in several pathways essential for insulin signaling, metabolic inflammation, glucose and fatty acid uptake and processing, cell survival, and iron and mitochondrial metabolism. Most studies describe significant changes in glutaredoxin expression and/or activity in response to the diabetic metabolism. In general, mitigated levels of Grxs are associated with oxidative distress, cell damage, and even cell death. The induced overexpression is considered a potential part of the cellular stress-response, counteracting oxidative distress and exerting beneficial impact on cell function such as insulin secretion, cytokine expression, and enzyme activity.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Eva-Maria Hanschmann
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Axel Römer
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany
| | - Sebastian Friedrich Petry
- Clinical Research Unit, Medical Clinic and Polyclinic III, Center of Internal Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
4
|
Brzozowa-Zasada M, Piecuch A, Bajdak-Rusinek K, Gołąbek K, Michalski M, Matysiak N, Czuba Z. A Prognostic Activity of Glutaredoxin 1 Protein (Grx1) in Colon Cancer. Int J Mol Sci 2024; 25:1007. [PMID: 38256082 PMCID: PMC10816104 DOI: 10.3390/ijms25021007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Glutaredoxin 1 (Grx1) is an essential enzyme that regulates redox signal transduction and repairs protein oxidation by reversing S-glutathionylation, an oxidative modification of protein cysteine residues. Grx1 removes glutathione from proteins to restore their reduced state (protein-SH) and regulate protein-SSG levels in redox signaling networks. Thus, it can exert an influence on the development of cancer. To further investigate this problem, we performed an analysis of Grx1 expression in colon adenocarcinoma samples from the Polish population of patients with primary colon adenocarcinoma (stages I and II of colon cancer) and those with regional lymph node metastasis (stage III of colon cancer). Our study revealed a significant correlation between the expression of Grx1 protein through immunohistochemical analysis and various clinical characteristics of patients, such as histological grade, depth of invasion, angioinvasion, staging, regional lymph node invasion, and PCNA expression. It was found that almost 88% of patients with stage I had high levels of Grx1 expression, while only 1% of patients with stage III exhibited high levels of Grx1 protein expression. Furthermore, the study discovered that high levels of Grx1 expression were present in samples of colon mucosa without any pathological changes. These results were supported by in vitro analysis conducted on colorectal cancer cell lines that corresponded to stages I, II, and III of colorectal cancer, using qRT-PCR and Western blot.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Adam Piecuch
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology and Cell Pathology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed—Research and Implementation Centre, Medical University of Silesia, 40-055 Katowice, Poland
| | - Natalia Matysiak
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland;
| |
Collapse
|
5
|
Stanojevic A, Samiotaki M, Lygirou V, Marinkovic M, Nikolic V, Stojanovic-Rundic S, Jankovic R, Vlahou A, Panayotou G, Fijneman RJA, Castellví-Bel S, Zoidakis J, Cavic M. Data-Independent Acquisition Mass Spectrometry Analysis of FFPE Rectal Cancer Samples Offers In-Depth Proteomics Characterization of the Response to Neoadjuvant Chemoradiotherapy. Int J Mol Sci 2023; 24:15412. [PMID: 37895091 PMCID: PMC10607861 DOI: 10.3390/ijms242015412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Locally advanced rectal cancer (LARC) presents a challenge in identifying molecular markers linked to the response to neoadjuvant chemoradiotherapy (nCRT). This study aimed to utilize a sensitive proteomic method, data-independent mass spectrometry (DIA-MS), to extensively analyze the LARC proteome, seeking individuals with favorable initial responses suitable for a watch-and-wait approach. This research addresses the unmet need to understand the response to treatment, potentially guiding personalized strategies for LARC patients. Post-treatment assessment included MRI scans and proctoscopy. This research involved 97 LARC patients treated with intense chemoradiotherapy, comprising radiation and chemotherapy. Out of 97 LARC included in this study, we selected 20 samples with the most different responses to nCRT for proteome profiling (responders vs. non-responders). This proteomic approach shows extensive proteome coverage in LARC samples. The analysis identified a significant number of proteins compared to a prior study. A total of 915 proteins exhibited differential expression between the two groups, with certain signaling pathways associated with response mechanisms, while top candidates had good predictive potential. Proteins encoded by genes SMPDL3A, PCTP, LGMN, SYNJ2, NHLRC3, GLB1, and RAB43 showed high predictive potential of unfavorable treatment outcome, while RPA2, SARNP, PCBP2, SF3B2, HNRNPF, RBBP4, MAGOHB, DUT, ERG28, and BUB3 were good predictive biomarkers of favorable treatment outcome. The identified proteins and related biological processes provide promising insights that could enhance the management and care of LARC patients.
Collapse
Affiliation(s)
- Aleksandra Stanojevic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (A.S.); (R.J.)
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 166 72 Vari, Greece; (M.S.); (G.P.)
| | - Vasiliki Lygirou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (V.L.); (A.V.); (J.Z.)
| | - Mladen Marinkovic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (M.M.); (S.S.-R.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Vladimir Nikolic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Suzana Stojanovic-Rundic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (M.M.); (S.S.-R.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Radmila Jankovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (A.S.); (R.J.)
| | - Antonia Vlahou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (V.L.); (A.V.); (J.Z.)
| | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 166 72 Vari, Greece; (M.S.); (G.P.)
| | - Remond J. A. Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
| | - Sergi Castellví-Bel
- Gastroenterology Department, Fundació Clínic per la Recerca Biomèdica-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), C/del Rosselló, 149, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Almagro, 3, 28029 Madrid, Spain
- Hospital Clínic, University of Barcelona, C/del Villarroel, 170, 08036 Barcelona, Spain
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (V.L.); (A.V.); (J.Z.)
- Department of Biology, National and Kapodistrian University of Athens, Panepistimíou 30, 106 79 Athens, Greece
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (A.S.); (R.J.)
| |
Collapse
|
6
|
Chen P, Li Z, Liang Y, Wei M, Jiang H, Chen S, Zhao Z. Identification of Hypoxia-Associated Signature in Colon Cancer to Assess Tumor Immune Microenvironment and Predict Prognosis Based on 14 Hypoxia-Associated Genes. Int J Gen Med 2023; 16:2503-2518. [PMID: 37346810 PMCID: PMC10281280 DOI: 10.2147/ijgm.s407005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Purpose Colon cancer is the main malignant tumor of the digestive tract. Hypoxia is highly related to the occurrence, progression and tumor immune microenvironment (TIME) of cancer. The aim of this study was to identify a hypoxia-associated signature with high accuracy for predicting the prognosis and TIME of colon cancer. Methods Download colon cancer data from the GEO and TCGA databases. A novel hypoxia risk model was identified to predict the prognosis of colon cancer patients. Subsequently, GSEA, TIME and mutation analysis were performed in the hypoxia high and low risk score groups. Finally, the signature gene ANKZF1 was selected for functional verification at the cellular level. Results A novel hypoxia risk model was identified. The risk score was significantly associated with poorer overall survival in colon cancer, and could be used as an independent prognostic factor for colon cancer. GSEA analysis found that the processes related to stimulate tumor proliferation and anti-apoptosis were significantly enriched in the hypoxia high risk score group. The expression of immunosuppressive cells and most immune checkpoints in the high risk score group was significantly higher than that in the low risk score group. In vitro cell experiments showed that knockdown the expression of ANKZF1 could inhibit the proliferation, migration and invasion of colon cancer cells. Conclusion Hypoxia plays an important role in evaluating the TIME and predicting the prognosis of colon cancer.
Collapse
Affiliation(s)
- Peng Chen
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Zhongxin Li
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Yulong Liang
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Ming Wei
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Haibo Jiang
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Shihao Chen
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Zengren Zhao
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| |
Collapse
|
7
|
Wei S, Xing J, Lu K, Wang K, Yu W. NPM3 as a novel oncogenic factor and poor prognostic marker contributes to cell proliferation and migration in lung adenocarcinoma. Hereditas 2023; 160:27. [PMID: 37254219 PMCID: PMC10230701 DOI: 10.1186/s41065-023-00289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/21/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide, and despite recent advances in targeted therapies and immunotherapies, the clinical benefit remains limited. Therefore, there is an urgent need to further investigate the molecular mechanisms underlying lung cancer. The aim of this study was to investigate the expression and function of NPM3 in the tumor microenvironment of lung adenocarcinoma (LUAD). METHODS We utilized bioinformatics tools and databases, including UALCAN, GEPIA2, HPA, and Sangerbox, to analyze NPM3 expression in LUAD samples and its association with prognosis and mutational landscape. NPM3 expression in various cell types was assessed at the single cell level using the TISCH database. We also used algorithms such as TIMER and EPIC to explore the crosstalk between NPM3 expression and immune features. KEGG enrichment analysis was performed to identify potential signaling pathways of NPM3. Finally, we employed siRNA knockdown strategy to investigate the effect of NPM3 on LUAD cell proliferation and migration in vitro. RESULTS NPM3 was significantly upregulated in LUAD tissues and was strongly associated with poor prognosis and TP53 gene mutations. Single-cell sequencing analysis revealed that NPM3 was expressed in immune cells (dendritic cells and monocytes/macrophages) in the tumor microenvironment. Moreover, NPM3 expression was negatively associated with immune B cell and CD4 T cell infiltration, as well as with several immune-related genes (including CCL22, CXCR2, CX3CR1, CCR6, HLA-DOA, HLA-DQA2). KEGG enrichment analysis indicated that NPM3 expression was associated with cell cycle, CAMs, and NSCLC pathway genes. Finally, in vitro experiments showed that NPM3 knockdown inhibited LUAD cell proliferation and migration in NCI-H1299 and SPC-A1 cells, and suppressed the expression of CCNA2 and MAD2L1. CONCLUSION Elevated NPM3 expression predicts poor clinical outcome and an immunosuppressive microenvironment in LUAD tissues. NPM3 promotes LUAD progression by promoting cell proliferation and migration, and targeting NPM3 may represent a novel therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Shan Wei
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, Zhejiang, People's Republic of China
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), No.251, Baizhang Road, Ningbo, 315040, Zhejiang, People's Republic of China
| | - Jing Xing
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), No.251, Baizhang Road, Ningbo, 315040, Zhejiang, People's Republic of China
- Ningbo University School of Medicine, Zhejiang Province, Ningbo, People's Republic of China
| | - Kaining Lu
- Department of Urology, The Affiliated First Hospital of Ningbo University (Ningbo First Hospital), No.59, Liuting Street, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, 322000, Zhejiang, People's Republic of China
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, The Affiliated People's Hospital of Ningbo University (Ningbo Yinzhou People's Hospital), No.251, Baizhang Road, Ningbo, 315040, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Jo JH, Kim SA, Lee JH, Park YR, Kim C, Park SB, Jung DE, Lee HS, Chung MJ, Song SY. GLRX3, a novel cancer stem cell-related secretory biomarker of pancreatic ductal adenocarcinoma. BMC Cancer 2021; 21:1241. [PMID: 34794402 PMCID: PMC8603516 DOI: 10.1186/s12885-021-08898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Cancer stem cells (CSCs) are implicated in carcinogenesis, cancer progression, and recurrence. Several biomarkers have been described for pancreatic ductal adenocarcinoma (PDAC) CSCs; however, their function and mechanism remain unclear. Method In this study, secretome analysis was performed in pancreatic CSC-enriched spheres and control adherent cells for biomarker discovery. Glutaredoxin3 (GLRX3), a novel candidate upregulated in spheres, was evaluated for its function and clinical implication. Results PDAC CSC populations, cell lines, patient tissues, and blood samples demonstrated GLRX3 overexpression. In contrast, GLRX3 silencing decreased the in vitro proliferation, migration, clonogenicity, and sphere formation of cells. GLRX3 knockdown also reduced tumor formation and growth in vivo. GLRX3 was found to regulate Met/PI3K/AKT signaling and stemness-related molecules. ELISA results indicated GLRX3 overexpression in the serum of patients with PDAC compared to that in healthy controls. The sensitivity and specificity of GLRX3 for PDAC diagnosis were 80.0 and 100%, respectively. When GLRX3 and CA19–9 were combined, sensitivity was significantly increased to 98.3% compared to that with GLRX3 or CA19–9 alone. High GLRX3 expression was also associated with poor disease-free survival in patients receiving curative surgery. Conclusion Overall, these results indicate GLRX3 as a novel diagnostic marker and therapeutic target for PDAC targeting CSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08898-y.
Collapse
Affiliation(s)
- Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sun A Kim
- Cowell Biodigm Co., Ltd, Seoul, South Korea
| | - Jeong Hoon Lee
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yu Rang Park
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Chanyang Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Soo Been Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
9
|
Genetic variants in histone modification regions are associated with the prognosis of lung adenocarcinoma. Sci Rep 2021; 11:21520. [PMID: 34728688 PMCID: PMC8563968 DOI: 10.1038/s41598-021-00909-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
We investigated the association between genetic variants in the histone modification regions and the prognosis of lung adenocarcinoma after curative surgery. Potentially functional SNPs were selected using integrated analysis of ChIP-seq and RNA-seq. The SNPs were analyzed in a discovery set (n = 166) and a validation set (n = 238). The associations of the SNPs with overall survival (OS) and disease-free survival (DFS) were analyzed. A total of 279 SNPs were selected for genotyping. Among these, CAPN1 rs17583C>T was significantly associated with better OS and DFS (P = 0.001 and P = 0.007, respectively), and LINC00959 rs4751162A>G was significantly associated with worse DFS (P = 0.008). Luciferase assays showed a significantly lower promoter activity of CAPN1 in the rs17583 T allele than C allele (P = 0.008), and consistently the CT + TT genotypes had significantly lower CAPN1 expression than CC genotype (P = 0.01) in clinical samples. The rs4751162 G allele had higher promoter activity of GLRX3 than A allele (P = 0.05). The motif analyses and ChIP-qPCR confirmed that the variants are located in the active promoter/enhancer regions where transcription factor binding occurs. This study showed that genetic variants in the histone modification regions could predict the prognosis of lung adenocarcinoma after surgery.
Collapse
|
10
|
Ogata FT, Branco V, Vale FF, Coppo L. Glutaredoxin: Discovery, redox defense and much more. Redox Biol 2021; 43:101975. [PMID: 33932870 PMCID: PMC8102999 DOI: 10.1016/j.redox.2021.101975] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/15/2023] Open
Abstract
Glutaredoxin, Grx, is a small protein containing an active site cysteine pair and was discovered in 1976 by Arne Holmgren. The Grx system, comprised of Grx, glutathione, glutathione reductase, and NADPH, was first described as an electron donor for Ribonucleotide Reductase but, from the first discovery in E.coli, the Grx family has impressively grown, particularly in the last two decades. Several isoforms have been described in different organisms (from bacteria to humans) and with different functions. The unique characteristic of Grxs is their ability to catalyse glutathione-dependent redox regulation via glutathionylation, the conjugation of glutathione to a substrate, and its reverse reaction, deglutathionylation. Grxs have also recently been enrolled in iron sulphur cluster formation. These functions have been implied in various physiological and pathological conditions, from immune defense to neurodegeneration and cancer development thus making Grx a possible drug target. This review aims to give an overview on Grxs, starting by a phylogenetic analysis of vertebrate Grxs, followed by an analysis of the mechanisms of action, the specific characteristics of the different human isoforms and a discussion on aspects related to human physiology and diseases.
Collapse
Affiliation(s)
- Fernando T Ogata
- Department of Biochemistry/Molecular Biology, CTCMol, Universidade Federal de São Paulo, Rua Mirassol, 207. 04044-010, São Paulo - SP, Brazil
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solnavägen 9, SE-17165, Stockholm, Sweden.
| |
Collapse
|
11
|
Flores J, Takvorian PM, Weiss LM, Cali A, Gao N. Human microsporidian pathogen Encephalitozoon intestinalis impinges on enterocyte membrane trafficking and signaling. J Cell Sci 2021; 134:jcs253757. [PMID: 33589497 PMCID: PMC7938802 DOI: 10.1242/jcs.253757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
Microsporidia are a large phylum of obligate intracellular parasites. Approximately a dozen species of microsporidia infect humans, where they are responsible for a variety of diseases and occasionally death, especially in immunocompromised individuals. To better understand the impact of microsporidia on human cells, we infected human colonic Caco2 cells with Encephalitozoon intestinalis, and showed that these enterocyte cultures can be used to recapitulate the life cycle of the parasite, including the spread of infection with infective spores. Using transmission electron microscopy, we describe this lifecycle and demonstrate nuclear, mitochondrial and microvillar alterations by this pathogen. We also analyzed the transcriptome of infected cells to reveal host cell signaling alterations upon infection. These high-resolution imaging and transcriptional profiling analysis shed light on the impact of the microsporidial infection on its primary human target cell type.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | - Peter M Takvorian
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
- Departments of Medicine and Pathology, Albert Einstein College of Medicine Bronx, New York 10461, USA
| | - Louis M Weiss
- Departments of Medicine and Pathology, Albert Einstein College of Medicine Bronx, New York 10461, USA
| | - Ann Cali
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| |
Collapse
|
12
|
Pandya P, Isakov N. PICOT promotes T lymphocyte proliferation by down-regulating cyclin D2 expression. World J Immunol 2020; 10:1-12. [DOI: 10.5411/wji.v10.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/09/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The mammalian protein kinase C-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3) is a multi-domain monothiol glutaredoxin that is involved in a wide variety of signaling pathways and biological processes. PICOT is required for normal and transformed cell growth and is critical for embryonic development. Recent studies in T lymphocytes demonstrated that PICOT can translocate to the nucleus and interact with embryonic ectoderm development, a polycomb group protein and a core component of the polycomb repressive complex 2, which contributes to the maintenance of transcriptional repression and chromatin remodeling. Furthermore, PICOT was found to interact with chromatin-bound embryonic ectoderm development and alter the extent of histone 3 lysine 27 trimethylation at the promoter region of selected polycomb repressive complex 2 target genes. PICOT knockdown in Jurkat T cells led to increased histone 3 lysine 27 trimethylation at the promoter region of CCND2, a cell cycle-regulating gene which encodes the cyclin D2 protein. As a result, the expression levels of CCND2 mRNA and protein levels were reduced, concomitantly with inhibition of the cell growth rate. Analysis of multiple data sets from the Cancer Genome Atlas revealed that a high expression of PICOT correlated with a low expression of CCND2 in a large number of human cancers. In addition, this parameter correlated with poor patient survival, suggesting that the ratio between PICOT/CCND2 mRNA levels might serve as a predictor of patient survival in selected types of human cancer.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Computational and System biology, UPMC Hillman Cancer Center, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15232, United States
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
13
|
Pandya P, Jethva M, Rubin E, Birnbaum RY, Braiman A, Isakov N. PICOT binding to chromatin-associated EED negatively regulates cyclin D2 expression by increasing H3K27me3 at the CCND2 gene promoter. Cell Death Dis 2019; 10:685. [PMID: 31527584 PMCID: PMC6746821 DOI: 10.1038/s41419-019-1935-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/08/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Grx3; Glrx3)) is a ubiquitous protein that can interact with the embryonic ectoderm development (EED) protein via each of its two C-terminal PICOT/Grx homology domains. Since EED is a Polycomb-Group protein and a core component of the polycomb repressive complex 2 (PRC2), we tested the involvement of PICOT in the regulation of PRC2-mediated H3 lysine 27 trimethylation (H3K27me3), transcription and translation of selected PRC2 target genes. A fraction of the cellular PICOT protein was found in the nuclei of leukemia cell lines, where it was associated with the chromatin. In addition, PICOT coimmunoprecipitated with chromatin-residing EED derived from Jurkat and COS-7 cell nuclei. PICOT knockdown led to a reduced H3K27me3 mark and a decrease in EED and EZH2 at the CCND2 gene promoter. In agreement, PICOT-deficient T cells exhibited a significant increase in CCND2 mRNA and protein expression. Since elevated expression levels of PICOT were reported in several different tumors and correlated in the current studies with decreased transcription and translation of the CCND2 gene, we tested whether this opposite correlation exists in human cancers. Data from the Cancer Genome Atlas (TCGA) database indicated statistically significant negative correlation between PICOT and CCND2 in eight different human tumors where the highest correlation was in lung (p = 8.67E−10) and pancreatic (p = 1.06E−5) adenocarcinoma. Furthermore, high expression of PICOT and low expression of CCND2 correlated with poor patient survival in five different types of human tumors. The results suggest that PICOT binding to chromatin-associated EED modulates the H3K27me3 level at the CCND2 gene promoter which may be one of the potential mechanisms for regulation of cyclin D2 expression in tumors. These findings also indicate that a low PICOT/CCND2 expression ratio might serve as a good predictor of patient survival in selected human cancers.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Minesh Jethva
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Eitan Rubin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ramon Y Birnbaum
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
14
|
Zhang Y, Ye Q, Ponomareva LV, Cao Y, Liu Y, Cui Z, Van Lanen SG, Voss SR, She QB, Thorson JS. Total synthesis of griseusins and elucidation of the griseusin mechanism of action. Chem Sci 2019; 10:7641-7648. [PMID: 31583069 PMCID: PMC6755659 DOI: 10.1039/c9sc02289a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
An efficient divergent synthesis of griseusins enabled SAR studies, mechanistic elucidation and evaluation in an axolotl tail regeneration model.
A divergent modular strategy for the enantioselective total synthesis of 12 naturally-occurring griseusin type pyranonaphthoquinones and 8 structurally-similar analogues is described. Key synthetic highlights include Cu-catalyzed enantioselective boration–hydroxylation and hydroxyl-directed C–H olefination to afford the central pharmacophore followed by epoxidation–cyclization and maturation via diastereoselective reduction and regioselective acetylation. Structural revision of griseusin D and absolute structural assignment of 2a,8a-epoxy-epi-4′-deacetyl griseusin B are also reported. Subsequent mechanistic studies establish, for the first time, griseusins as potent inhibitors of peroxiredoxin 1 (Prx1) and glutaredoxin 3 (Grx3). Biological evaluation, including comparative cancer cell line cytotoxicity and axolotl embryo tail inhibition studies, highlights the potential of griseusins as potent molecular probes and/or early stage leads in cancer and regenerative biology.
Collapse
Affiliation(s)
- Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine , School of Pharmacy , Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210023 , China.,Center for Pharmaceutical Research and Innovation , University of Kentucky , Lexington , KY 40536 , USA.,College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| | - Qing Ye
- Markey Cancer Center , Department of Pharmacology and Nutritional Sciences , College of Medicine , University of Kentucky , Lexington , KY 40536 , USA .
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation , University of Kentucky , Lexington , KY 40536 , USA.,College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| | - Yanan Cao
- Markey Cancer Center , Department of Pharmacology and Nutritional Sciences , College of Medicine , University of Kentucky , Lexington , KY 40536 , USA .
| | - Yang Liu
- Center for Pharmaceutical Research and Innovation , University of Kentucky , Lexington , KY 40536 , USA.,College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| | - Zheng Cui
- College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| | - Steven G Van Lanen
- College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| | - S Randal Voss
- Department of Neuroscience , Spinal Cord and Brain Injury Research Center , Ambystoma Genetic Stock Center , University of Kentucky , Lexington , KY 40536 , USA
| | - Qing-Bai She
- Markey Cancer Center , Department of Pharmacology and Nutritional Sciences , College of Medicine , University of Kentucky , Lexington , KY 40536 , USA .
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation , University of Kentucky , Lexington , KY 40536 , USA.,College of Pharmacy , University of Kentucky , Lexington , KY 40536 , USA .
| |
Collapse
|
15
|
Pandya P, Braiman A, Isakov N. PICOT (GLRX3) is a positive regulator of stress-induced DNA-damage response. Cell Signal 2019; 62:109340. [PMID: 31176019 DOI: 10.1016/j.cellsig.2019.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3 (Glrx3)) is a ubiquitously expressed protein that possesses an N-terminal monothiol thioredoxin (Trx) domain and two C-terminal tandem copies of a monothiol Glrx domain. It has an overall highly conserved amino acid sequence and is encoded by a unique gene, both in humans and mice, without having other functional gene homologs in the entire genome. Despite being discovered almost two decades ago, the biological function of PICOT remains largely ill-defined and its ramifications are underestimated considering the fact that PICOT-deficiency in mice results in embryonic lethality. Since classical Glrxs are important regulators of the cellular redox homeostasis, we tested whether PICOT participate in the stress-induced DNA-damage response, focusing on nuclear proteins that function as integral components of the DNA repair machinery. Using wild type versus PICOT-deficient (PICOT-KD) Jurkat T cells we found that the anti-oxidant mechanism in PICOT-deficient cells is impaired, and that these cells respond to genotoxic drugs, such as etoposide and camptothecin, by increased caspase-3 activity, a reduced survival and a slower and diminished phosphorylation of the histone protein, H2AX. Nevertheless, the effect of PICOT on the drug-induced phosphorylation of H2AX was independent of the cellular levels of reactive oxygen species. PICOT-deficient cells also demonstrated reduced and slower γH2AX foci formation in response to radiation. Furthermore, immunofluorescence staining using PICOT- and γH2AX-specific Abs followed by confocal microscopy demonstrated partial localization of PICOT at the γH2AX-containing foci at the site of the DNA double strand breaks. In addition, PICOT knockdown resulted in inhibition of phosphorylation of ATR, Chk1 and Chk2 kinases, which play an essential role in the DNA-damage response and serve as upstream regulators of γH2AX. The present data suggest that PICOT protects cells from DNA damage-inducing agents by operating as an upstream positive regulator of ATR-dependent signaling pathways. By promoting the activity of ATR, PICOT indirectly regulates the phosphorylation and activation of Chk1, Chk2, and γH2AX, which are critical components of the DNA damage repair mechanism and thereby attenuate the stress- and replication-induced genome instability.
Collapse
Affiliation(s)
- Pinakin Pandya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and the Cancer Research Center, Ben Gurion University of the Negev, P.O.B. 653, Beer Sheva 84105, Israel..
| |
Collapse
|
16
|
Ye Q, Zhang Y, Cao Y, Wang X, Guo Y, Chen J, Horn J, Ponomareva LV, Chaiswing L, Shaaban KA, Wei Q, Anderson BD, St Clair DK, Zhu H, Leggas M, Thorson JS, She QB. Frenolicin B Targets Peroxiredoxin 1 and Glutaredoxin 3 to Trigger ROS/4E-BP1-Mediated Antitumor Effects. Cell Chem Biol 2019; 26:366-377.e12. [PMID: 30661989 DOI: 10.1016/j.chembiol.2018.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/22/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Peroxiredoxin 1 (Prx1) and glutaredoxin 3 (Grx3) are two major antioxidant proteins that play a critical role in maintaining redox homeostasis for tumor progression. Here, we identify the prototypical pyranonaphthoquinone natural product frenolicin B (FB) as a selective inhibitor of Prx1 and Grx3 through covalent modification of active-site cysteines. FB-targeted inhibition of Prx1 and Grx3 results in a decrease in cellular glutathione levels, an increase of reactive oxygen species (ROS), and concomitant inhibition of cancer cell growth, largely by activating the peroxisome-bound tuberous sclerosis complex to inhibit mTORC1/4E-BP1 signaling axis. FB structure-activity relationship studies reveal a positive correlation between inhibition of 4E-BP1 phosphorylation, ROS-mediated cancer cell cytotoxicity, and suppression of tumor growth in vivo. These findings establish FB as the most potent Prx1/Grx3 inhibitor reported to date and also notably highlight 4E-BP1 phosphorylation status as a potential predictive marker in response to ROS-based therapies in cancer.
Collapse
Affiliation(s)
- Qing Ye
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Yinan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA; Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210047, China
| | - Yanan Cao
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Xiachang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA; Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210047, China
| | - Yubin Guo
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jing Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jamie Horn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA
| | - Larissa V Ponomareva
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA
| | - Luksana Chaiswing
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Khaled A Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA
| | - Qiou Wei
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Bradley D Anderson
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA
| | - Daret K St Clair
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Haining Zhu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA
| | - Jon S Thorson
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY 40536, USA.
| | - Qing-Bai She
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
17
|
PICOT binding to the polycomb group protein, EED, alters H3K27 methylation at the MYT1 PRC2 target gene. Biochem Biophys Res Commun 2018; 509:469-475. [PMID: 30595380 DOI: 10.1016/j.bbrc.2018.12.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
PICOT is a ubiquitous protein that has no functional redundant ortholog and is critical for mouse embryonic development. It is involved in the regulation of signal transduction in T lymphocytes and cardiac muscle, and in cellular iron metabolism and biogenesis of Fe/S proteins. However, very little is known about the physiological role of PICOT and its mechanism of action, and on its upstream regulators or downstream target molecules. In attempt to identify new PICOT interaction partners, we adopted the yeast two-hybrid system and screened a Jurkat T cell cDNA library using the full-length human PICOT cDNA as a bait. We found that PICOT interacts with embryonic ectoderm development (EED), a Polycomb Group (PcG) protein that serves as a core component of the Polycomb repressive complex 2 (PRC2) and contributes to the regulation of chromatin remodeling and cell differentiation. Using bead immobilized GST-PICOT and GST-EED fusion proteins in a pull-down assay and reciprocal coimmunoprecipitation studies we demonstrated that the interaction between PICOT and EED also occurs in human Jurkat T cells. In addition, immunofluorescence staining of Jurkat T cells revealed partial colocalization of PICOT and EED, predominantly in the cell nuclei. A pull-down assay using the GST-EED fusion protein and lysates of cells expressing different Myc-tagged truncation products of PICOT revealed that binding of EED is mediated by each of the two C-terminal PICOT homology domains and suggests that simultaneous interaction via both domains increases the binding affinity. Furthermore, PICOT knock-down in Jurkat T cells resulted in a reduced histone H3 lysine 27 trimethylation (H3K27me3) at the PRC2 target gene, myelin transcription factor 1 (MYT1), suggesting that PICOT binding to EED alters PRC2-regulated transcriptional repression, and potentially contributes to the epigenetic regulation of chromatin silencing and remodeling.
Collapse
|
18
|
He F, Wei L, Luo W, Liao Z, Li B, Zhou X, Xiao X, You J, Chen Y, Zheng S, Li P, Murata M, Huang G, Zhang Z. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget 2018; 7:37000-37012. [PMID: 27203742 PMCID: PMC5095054 DOI: 10.18632/oncotarget.9454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Glutaredoxin 3 (GLRX3) is antioxidant enzyme, maintaining a low level of ROS, thus contributing to the survival and metastasis of several types of cancer. However, the expression and functions of GLRX3 have not been addressed in nasopharyngeal carcinoma (NPC). In this study, we found that GLRX3 was overexpressed in NPC. Knockdown of GLRX3 in NPC cell lines inhibited proliferation in vitro, tumorignesis in vivo, and colony formation. In addition, GLRX3 knockdown decreased the migration and invasion capacity of NPC cells by reversing the epithelial-mesenchymal transition (EMT). Furthermore, stabilization of GLRX3 was positively related to with epidermal growth factor receptor (EGFR) expression and negatively with ROS generation. Phosphorylation of Akt, a key downstream effector, was induced by EGFR signaling but did not rely on increasing ROS level in NPC cells. GLRX3 might be an oncoprotein in NPC, playing important roles in increasing redox reaction and activating EGFR/ Akt signals, so it may be a therapeutic target for NPC.
Collapse
Affiliation(s)
- Feng He
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lili Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhipeng Liao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingping You
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufeng Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shixing Zheng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
19
|
Djukic T, Simic T, Pljesa-Ercegovac M, Matic M, Suvakov S, Coric V, Dragicevic D, Savic-Radojevic A. Upregulated glutathione transferase omega-1 correlates with progression of urinary bladder carcinoma. Redox Rep 2017; 22:486-492. [PMID: 28288548 DOI: 10.1080/13510002.2017.1299909] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Newly discovered glutathione transferase omega 1 (GSTO1-1) plays an important role in the glutathionylation cycle, a significant mechanism of protein function regulation. GSTO1-1 expression pattern has not been studied in transitional cell carcinoma (TCC), as yet. METHODS A total of 56 TCC tumor and corresponding non-tumor specimens were investigated. Glutathione content and thioltransferase activity were measured spectrophotometrically. Protein-glutathione mixed disulfides were measured fluorimetrically. GSTO1-1 expression was determined by immunoblot and qPCR. Immunoprecipitation with GSTO1-1 antibody was followed by immunoblot using anti-GSTO1, GSTP1, c-Jun, JNK, Akt, phospho-Akt, and ASK1 antibody, while for the total S-glutathionylation levels non-reducing electrophoresis was performed. RESULTS The contents of reduced glutathione and thioltransferase activity were significantly increased in tumor compared to non-tumor tissue. The increased GSTO1 expression in tumor tissue showed clear correlation with grade and stage. However, decreased total protein glutathionylation level in tumor compared to non-tumor samples was found. Immunoprecipitation has shown an association of GSTO1-1 with GSTP1, Akt, phospho-Akt, and ASK1 proteins. CONCLUSIONS GSTO1 deglutathionylase activity suggests its potential important role in redox perturbations present in TCC. Increased GSTO1-1 expression might contribute to TCC development and/or progression supporting the notion that GSTO1-1 may be a promising novel cancer target.
Collapse
Affiliation(s)
- Tatjana Djukic
- a Institute of Medical and Clinical Biochemistry, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Tatjana Simic
- a Institute of Medical and Clinical Biochemistry, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Marija Pljesa-Ercegovac
- a Institute of Medical and Clinical Biochemistry, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Marija Matic
- a Institute of Medical and Clinical Biochemistry, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Sonja Suvakov
- a Institute of Medical and Clinical Biochemistry, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Vesna Coric
- a Institute of Medical and Clinical Biochemistry, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Dejan Dragicevic
- b Clinic of Urology, Clinical Centre of Serbia, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Ana Savic-Radojevic
- a Institute of Medical and Clinical Biochemistry, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
20
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 626] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
21
|
Pujol-Carrion N, Torre-Ruiz MADL. Physical interaction between the MAPK Slt2 of the PKC1-MAPK pathway and Grx3/Grx4 glutaredoxins is required for the oxidative stress response in budding yeast. Free Radic Biol Med 2017; 103:107-120. [PMID: 28007574 DOI: 10.1016/j.freeradbiomed.2016.12.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/02/2016] [Accepted: 12/18/2016] [Indexed: 01/20/2023]
Abstract
This study demonstrates that both monothiol glutaredoxins Grx3 and Grx4 physically interact with the MAPK Slt2 forming a complex involved in the cellular response to oxidative stress. The simultaneous absence of Grx3 and Grx4 provokes a serious impairment in cell viability, Slt2 activation and Rlm1 transcription in response to oxidative stress. Both in vivo and in vitro results clearly show that Slt2 can independently bind either Grx3 or Grx4 proteins. Our results suggest that Slt2 form iron/sulphur bridged clusters with Grx3 and Grx4. For the assembly of this complex, cysteines of the active site of each Grx3/4 glutaredoxins, glutathione and specific cysteine residues from Slt2 provide the ligands. One of the ligands of Slt2 is required for its dimerisation upon oxidative treatment and iron repletion. These interactions are relevant for the oxidative response, given that mutants in the cysteine ligands identified in the complex show a severe impairment of both cell viability and Slt2 phosphorylation upon oxidative stress. Grx4 is the relevant glutaredoxin that regulates Slt2 phosphorylation under oxidative conditions precluding cell survival. Our studies contribute to extend the functions of both monothiol glutaredoxins to the regulation of a MAPK in the context of the oxidative stress response.
Collapse
Affiliation(s)
- Nuria Pujol-Carrion
- Department of Basic Medical Sciences, IRB-Lleida. University of Lleida, Av. Alcalde Rovira Roure no 80, 25198 Lleida, Spain
| | - Maria Angeles de la Torre-Ruiz
- Department of Basic Medical Sciences, IRB-Lleida. University of Lleida, Av. Alcalde Rovira Roure no 80, 25198 Lleida, Spain.
| |
Collapse
|
22
|
Monoclonal Antibody Against Human GLRX3. Monoclon Antib Immunodiagn Immunother 2016; 35:309. [PMID: 28029331 DOI: 10.1089/mab.2016.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Dai X, Li Y, Sun X, Cai K, Mao Q, Xia H. Generation of Domain-Specific Monoclonal Antibodies Against Human Glutaredoxin3. Monoclon Antib Immunodiagn Immunother 2016; 35:285-292. [PMID: 27923109 DOI: 10.1089/mab.2016.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human Glutaredoxin3 (hGLRX3), which encodes a 37.4 kDa protein, possesses an N-terminal Trx homology domain followed by two tandem repeats of Grx domains. GLRX3 is expressed in many tissues and plays important roles in iron metabolism, antioxidant effect, cell proliferation and development, regulation of immune reaction, and tumorigenesis. The mechanisms underlying the biological function of GLRX3 are still not clear. To facilitate the functional research of GLRX3, in this study, monoclonal antibodies (MAbs) against hGLRX3 were produced by using purified prokaryotic recombinant 6His-hGLRX3 fusion protein as the immunogen. Five MAbs were obtained after preliminary screening by indirect enzyme-linked immunosorbent assay, then further characterized by Western blot analysis and immunocytochemistry. The domain specificity of these MAbs was also evaluated. Owing to the high conservation of protein sequences among different species, anti-GLRX3 MAbs produced in this study were shown to be immunoactive for GLRX3 in the cells from other species, such as mice, rats, Chinese hamster, and zebrafish. These domain-specific anti-GLRX3 MAbs will be an essential tool to investigate the roles of GLRX3 in normal physiological or pathological conditions.
Collapse
Affiliation(s)
- Xin Dai
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, China
| | - Yanqing Li
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, China
| | - Xiaohong Sun
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, China
| | - Kai Cai
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, China
| | - Qinwen Mao
- 2 Department of Pathology, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Haibin Xia
- 1 Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University , Xi'an, China
| |
Collapse
|
24
|
Hou Q, Lin J, Huang W, Li M, Feng J, Mao X. CTRP3 Stimulates Proliferation and Anti-Apoptosis of Prostate Cells through PKC Signaling Pathways. PLoS One 2015. [PMID: 26218761 PMCID: PMC4517796 DOI: 10.1371/journal.pone.0134006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
C1q/TNF-related protein-3 (CTRP3) is a novel adipokine with roles in multiple cellular processes. However, little is known about its function in prostate cells. This study investigated the effects and mechanisms of CTRP3 in prostate cells. We first generated and purified CTRP3 protein in HEK 293T cells. Proliferation of RWPE-1 prostate cells was evaluated by MTT analyses under treatment with different concentrations of CTRP3 for various exposure times. The results revealed maximum enhancement of proliferation with 10 μg/mL CTRP3 for 72 h. Cell apoptosis and cell cycle were determined by TUNEL staining and flow cytometry analysis. TUNEL assay showed decreased TUNEL-positive cells in RWPE-1 prostate cells treated with CTRP3, and flow cytometry showed significantly decreased apoptotic cells upon CTRP3 treatment (treated cells, 8.34±1.175 vs. controls, 20.163±0.35) (P < 0.01). Moreover, flow cytometry analysis also showed a significant decrease of cells in the G1 phase and an increase of cells in the S and G2 phase upon CTRP3 treatment (treated cells, 42.85±1.40 vs. control, 52.77±0.90; 28.41±0.57 vs. 23.49±1.13; 27.08±1.97 vs. 22.20±1.32, respectively) (all P < 0.05). Two-dimensional gel electrophoresis and mass spectrometry identified differentially expressed proteins, including cytokeratin-19, GLRX3 and DDAH1, which were upregulated in CTRP3 treated cells, and cytokeratin-17 and 14-3-3 sigma, which were downregulated. GLRX3, DDAH1 and 14-3-3 sigma were confirmed using western blot analysis. A PKC inhibitor, staurosporine, was used to inhibit PKC activity in CTRP3 treated RWPE-1 cells. Staurosporine completely abolished the CTRP3-induced increased phosphorylation of intracellular PKC substrates and CTRP3-stimulated effect by RWPE-1 cells. Our results provide the first evidence for a physiological role of the novel adipokine, CTRP3, in prostate cells. Our findings suggest that CTRP3 could improve proliferation and anti-apoptosis of prostate cells through protein kinase C signaling pathways.
Collapse
Affiliation(s)
- Qi Hou
- Department of Urology, Longgang District Central Hospital, Shenzhen, China
| | - Jinyan Lin
- Health management center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wentao Huang
- Department of Urology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maoyin Li
- Department of Urology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Feng
- Department of Urology, Longgang District Central Hospital, Shenzhen, China
- * E-mail: (JF); (XM)
| | - Xiangming Mao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
- * E-mail: (JF); (XM)
| |
Collapse
|
25
|
Zhang JZ, Gao Y, Lu QP, Sa RN, Zhang HF. iTRAQ-based quantitative proteomic analysis of longissimus muscle from growing pigs with dietary supplementation of non-starch polysaccharide enzymes. J Zhejiang Univ Sci B 2015; 16:465-78. [PMID: 26055908 PMCID: PMC4471598 DOI: 10.1631/jzus.b1400266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/31/2015] [Indexed: 01/13/2023]
Abstract
Non-starch polysaccharide enzymes (NSPEs) have long been used in the feed production of monogastric animals to degrade non-starch polysaccharide to oligosaccharides and promote growth performance. However, few studies have been conducted on the effect of such enzymes on skeletal muscle in monogastric animals. To elucidate the mechanism of the effect of NSPEs on skeletal muscle, an isobaric tag for relative and absolute quantification (iTRAQ) for differential proteomic quantitation was applied to investigate alterations in the proteome in the longissimus muscle (LM) of growing pigs after a 50-d period of supplementation with 0.6% NSPEs in the diet. A total of 51 proteins were found to be differentially expressed in the LM between a control group and the NSPE group. Functional analysis of the differentially expressed protein species showed an increased abundance of proteins related to energy production, protein synthesis, muscular differentiation, immunity, oxidation resistance and detoxification, and a decreased abundance of proteins related to inflammation in the LM of the pigs fed NSPEs. These findings have important implications for understanding the mechanisms whereby dietary supplementation with NSPEs enzymes can promote growth performance and improve muscular metabolism in growing pigs.
Collapse
Affiliation(s)
- Ji-ze Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Jilin University, Changchun 130062, China
| | - Qing-ping Lu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ren-na Sa
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hong-fu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
26
|
Pieper R, Martin L, Schunter N, Villodre Tudela C, Weise C, Klopfleisch R, Zentek J, Einspanier R, Bondzio A. Impact of high dietary zinc on zinc accumulation, enzyme activity and proteomic profiles in the pancreas of piglets. J Trace Elem Med Biol 2015; 30:30-6. [PMID: 25744507 DOI: 10.1016/j.jtemb.2015.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/26/2022]
Abstract
The exocrine pancreas plays an important role in zinc homeostasis. Feeding very high (2000-3000mgzinc/kg diet) levels of zinc oxide to piglets for short periods is a common practice in the swine industry to improve performance and prevent diseases. The impact on pancreatic function and possible side effects during long-term feeding of high dietary zinc levels are still poorly understood. A total of 54 weaned piglets were either fed with low (57mg/kg, LZn), normal (164mg/kg, NZn) or high (2425mg/kg, HZn) zinc concentration in the diets. After 4 weeks of feeding, ten piglets per treatment were euthanized and pancreas samples were taken. Tissue zinc concentration and metallothionein abundance was greater with HZn compared with NZn and LZn (P<0.05). Similarly, activity of α-amylase, lipase, trypsin and chymotrypsin was higher with HZn as compared with NZn and LZn diets (P<0.05), whereas elastase activity was unchanged. Total trolox equivalent antioxidative capacity of pancreas tissue was higher with HZn diets compared with the other treatments (P<0.05). Pancreatic protein profiles of NZn and HZn fed piglets were obtained by 2D-DIGE technique and revealed 15 differentially expressed proteins out of 2100 detected spots (P<0.05). The differentially expressed proteins aldose reductase, eukaryotic elongation factor II and peroxiredoxin III were confirmed by immunoblotting. Identified proteins include zinc finger-containing transcription factors and proteins mainly associated with oxidative stress response and signal transduction in HZn compared with NZn pigs. Histologic examination however showed no morphologic changes. The results suggest that long-term supply of very high dietary zinc increases zinc and metallothionein concentration, and digestive enzyme activity, but also triggers oxidative stress reactions in the pancreas of young pigs. The data provide new insights into pancreatic function under outbalanced zinc homeostasis.
Collapse
Affiliation(s)
- R Pieper
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany.
| | - L Martin
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - N Schunter
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - C Villodre Tudela
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - C Weise
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - R Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, D-14163 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Königin-Luise-Strasse 49, D-14195 Berlin, Germany
| | - R Einspanier
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, D-14163 Berlin, Germany
| | - A Bondzio
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, D-14163 Berlin, Germany
| |
Collapse
|
27
|
Parker AR, Petluru PN, Nienaber VL, Badger J, Leverett BD, Jair K, Sridhar V, Logan C, Ayala PY, Kochat H, Hausheer FH. Cysteine specific targeting of the functionally distinct peroxiredoxin and glutaredoxin proteins by the investigational disulfide BNP7787. Molecules 2015; 20:4928-50. [PMID: 25793542 PMCID: PMC6272748 DOI: 10.3390/molecules20034928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/05/2015] [Indexed: 10/25/2022] Open
Abstract
Glutaredoxin (Grx), peroxiredoxin (Prx), and thioredoxin (Trx) are redoxin family proteins that catalyze different types of chemical reactions that impact cell growth and survival through functionally distinct intracellular pathways. Much research is focused on understanding the roles of these redoxin proteins in the development and/or progression of human diseases. Grx and Prx are overexpressed in human cancers, including human lung cancers. BNP7787 is a novel investigational agent that has been evaluated in previous clinical studies, including non-small cell lung cancer (NSCLC) studies. Herein, data from activity assays, mass spectrometry analyses, and X-ray crystallographic studies indicate that BNP7787 forms mixed disulfides with select cysteine residues on Grx and Prx and modulates their function. Studies of interactions between BNP7787 and Trx have been conducted and reported separately. Despite the fact that Trx, Grx, and Prx are functionally distinct proteins that impact oxidative stress, cell proliferation and disease processes through different intracellular pathways, BNP7787 can modify each protein and appears to modulate function through mechanisms that are unique to each target protein. Tumor cells are often genomically heterogeneous containing subpopulations of cancer cells that often express different tumor-promoting proteins or that have multiple dysregulated signaling pathways modulating cell proliferation and drug resistance. A multi-targeted agent that simultaneously modulates activity of proteins important in mediating cell proliferation by functionally distinct intracellular pathways could have many potentially useful therapeutic applications.
Collapse
Affiliation(s)
- Aulma R Parker
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Pavankumar N Petluru
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Vicki L Nienaber
- Zenobia Therapeutics, Inc., 505 Coast Blvd. South, Suite 111, La Jolla, CA 92037, USA
| | - John Badger
- Zenobia Therapeutics, Inc., 505 Coast Blvd. South, Suite 111, La Jolla, CA 92037, USA
| | - Betsy D Leverett
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Kamwing Jair
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Vandana Sridhar
- Zenobia Therapeutics, Inc., 505 Coast Blvd. South, Suite 111, La Jolla, CA 92037, USA
| | - Cheyenne Logan
- Zenobia Therapeutics, Inc., 505 Coast Blvd. South, Suite 111, La Jolla, CA 92037, USA
| | - Philippe Y Ayala
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Harry Kochat
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Frederick H Hausheer
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA.
| |
Collapse
|
28
|
Ma D, Cui L, Gao J, Yan W, Liu Y, Xu S, Wu B. Proteomic analysis of mesenchymal stem cells from normal and deep carious dental pulp. PLoS One 2014; 9:e97026. [PMID: 24809979 PMCID: PMC4014579 DOI: 10.1371/journal.pone.0097026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/14/2014] [Indexed: 12/19/2022] Open
Abstract
Dental pulp stem cells (DPSCs), precursor cells of odontoblasts, are ideal seed cells for tooth tissue engineering and regeneration. Our previous study has demonstrated that stem cells exist in dental pulp with deep caries and are called carious dental pulp stem cells (CDPSCs). The results indicated that CDPSCs had a higher proliferative and stronger osteogenic differentiation potential than DPSCs. However, the molecular mechanisms responsible for the biological differences between DPSCs and CDPSCs are poorly understood. The aim of this study was to define the molecular features of DPSCs and CDPSCs by comparing the proteomic profiles using two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) in combination with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Our results revealed that there were 18 protein spots differentially expressed between DPSCs and CDPSCs in a narrow pH range of 4 to 7. These differently expressed proteins are mostly involved in the regulation of cell proliferation, differentiation, cell cytoskeleton and motility. In addition, our results suggested that CDPSCs had a higher expression of antioxidative proteins that might protect CDPSCs from oxidative stress. This study explores some potential proteins responsible for the biological differences between DPSCs and CDPSCs and expands our understanding on the molecular mechanisms of mineralization of DPSCs in the formation of the dentin-pulp complex.
Collapse
Affiliation(s)
- Dandan Ma
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Li Cui
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Jie Gao
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Ying Liu
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Shuaimei Xu
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Guangzhou, P.R. China
- College of Stomatology, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
29
|
Lee SO, Jin UH, Kang JH, Kim SB, Guthrie AS, Sreevalsan S, Lee JS, Safe S. The orphan nuclear receptor NR4A1 (Nur77) regulates oxidative and endoplasmic reticulum stress in pancreatic cancer cells. Mol Cancer Res 2014; 12:527-538. [PMID: 24515801 DOI: 10.1158/1541-7786.mcr-13-0567] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
UNLABELLED NR4A1 (Nur77, TR3) is an orphan nuclear receptor that is overexpressed in pancreatic cancer and exhibits pro-oncogenic activity. RNA interference of NR4A1 expression in Panc-1 cells induced apoptosis and subsequent proteomic analysis revealed the induction of several markers of endoplasmic reticulum stress, including glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), and activating transcription factor-4 (ATF-4). Treatment of pancreatic cancer cells with the NR4A1 antagonist 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) gave similar results. Moreover, both NR4A1 knockdown and DIM-C-pPhOH induced reactive oxygen species (ROS), and induction of ROS and endoplasmic reticulum stress by these agents was attenuated after cotreatment with antioxidants. Manipulation of NR4A1 expression coupled with gene expression profiling identified a number of ROS metabolism transcripts regulated by NR4A1. Knockdown of one of these transcripts, thioredoxin domain containing 5 (TXNDC5), recapitulated the elevated ROS and endoplasmic reticulum stress; thus, demonstrating that NR4A1 regulates levels of endoplasmic reticulum stress and ROS in pancreatic cancer cells to facilitate cell proliferation and survival. Finally, inactivation of NR4A1 by knockdown or DIM-C-pPhOH decreased TXNDC5, resulting in activation of the ROS/endoplasmic reticulum stress and proapoptotic pathways. IMPLICATIONS The NR4A1 receptor is pro-oncogenic, regulates the ROS/endoplasmic reticulum stress pathways, and inactivation of the receptor represents a novel pathway for inducing cell death in pancreatic cancer.
Collapse
Affiliation(s)
- Syng-Ook Lee
- Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.,Department of Food Science and Technology, Keimyung University, Daegu 704-701, Republic of Korea
| | - Un-Ho Jin
- Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Jeong Han Kang
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sang Bae Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Aaron S Guthrie
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sandeep Sreevalsan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Stephen Safe
- Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
30
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
31
|
Cheema AK, Varghese RS, Timofeeva O, Zhang L, Kirilyuk A, Zandkarimi F, Kaur P, Ressom HW, Jung M, Dritschilo A. Functional proteomics analysis to study ATM dependent signaling in response to ionizing radiation. Radiat Res 2013; 179:674-683. [PMID: 23642045 DOI: 10.1667/rr3198.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ataxia telangiectasia (AT) is a human genetic disease characterized by radiation sensitivity, impaired neuronal development and predisposition to cancer. Using a genetically defined model cell system consisting of cells expressing a kinase dead or a kinase proficient ATM gene product, we previously reported systemic alterations in major metabolic pathways that translate at the gene expression, protein and small molecule metabolite levels. Here, we report ionizing radiation induced stress response signaling arising from perturbations in the ATM gene, by employing a functional proteomics approach. Functional pathway analysis shows robust translational and post-translational responses under ATM proficient conditions, which include enrichment of proteins in the Ephrin receptor and axonal guidance signaling pathways. These molecular networks offer a hypothesis generating function for further investigations of cellular stress responses.
Collapse
Affiliation(s)
- Amrita K Cheema
- Department of Oncology, Georgetown University Medical Center, Washington, DC.,Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Rency S Varghese
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Olga Timofeeva
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Lihua Zhang
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Alexander Kirilyuk
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | | | - Prabhjit Kaur
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Habtom W Ressom
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Mira Jung
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Anatoly Dritschilo
- Department of Oncology, Georgetown University Medical Center, Washington, DC.,Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
32
|
Yamada F, Sumida K, Uehara T, Morikawa Y, Yamada H, Urushidani T, Ohno Y. Toxicogenomics discrimination of potential hepatocarcinogenicity of non-genotoxic compounds in rat liver. J Appl Toxicol 2012; 33:1284-93. [PMID: 22806939 DOI: 10.1002/jat.2790] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/28/2012] [Indexed: 01/23/2023]
Abstract
Long-term carcinogenicity testing of a compound is exceedingly time-consuming and costly, and requires many test animals, whereas the Ames test, which is based on the assumption that any substance that is mutagenic may also exert carcinogenic potential, is useful as a short-term screening assay but has major drawbacks. Although, in fact, 90% of compounds that give a positive Ames test cause cancer in laboratory animals, a good proportion of compounds that give a negative Ames test are also carcinogens; that is, there is no good correlation between carcinogenicity and negative Ames test results. As an alternative to these two approaches, we have tried applying toxicogenomics to predict the carcinogenicity of a compound from the gene expression profile induced in vivo. To establish our model, male Sprague-Dawley rats were orally administered test compounds (12 hepatocarcinogens and 26 non-hepatocarcinogens) for 28 days. Analysis of liver gene expression data by Support Vector Machines (SVM) dividing compounds into 'for training' and 'for test' (20 cases assigned randomly) allowed a set of marker genes to be tested for prediction of hepatocarcinogenicity. The developed prediction model was then validated with reference to the concordance rate with training data and test data, and a good performance was obtained. We will have new gene expression data and continue the validation of our model.
Collapse
Affiliation(s)
- Fumihiro Yamada
- Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka, 554-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Li H, Outten CE. Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry 2012; 51:4377-89. [PMID: 22583368 DOI: 10.1021/bi300393z] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Monothiol glutaredoxins (Grxs) with a signature CGFS active site and BolA-like proteins have recently emerged as novel players in iron homeostasis. Elegant genetic and biochemical studies examining the functional and physical interactions of CGFS Grxs in the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe have unveiled their essential roles in intracellular iron signaling, iron trafficking, and the maturation of Fe-S cluster proteins. Biophysical and biochemical analyses of the [2Fe-2S] bridging interaction between CGFS Grxs and a BolA-like protein in S. cerevisiae provided the first molecular-level understanding of the iron regulation mechanism in this model eukaryote and established the ubiquitous CGFS Grxs and BolA-like proteins as novel Fe-S cluster-binding regulatory partners. Parallel studies focused on Escherichia coli and human homologues for CGFS Grxs and BolA-like proteins have supported the studies in yeast and provided additional clues about their involvement in cellular iron metabolism. Herein, we review recent progress in uncovering the cellular and molecular mechanisms by which CGFS Grxs and BolA-like proteins help regulate iron metabolism in both eukaryotic and prokaryotic organisms.
Collapse
Affiliation(s)
- Haoran Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | | |
Collapse
|
34
|
Li H, Mapolelo DT, Randeniya S, Johnson MK, Outten CE. Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2. Biochemistry 2012; 51:1687-96. [PMID: 22309771 DOI: 10.1021/bi2019089] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human glutaredoxin 3 (Glrx3) is an essential [2Fe-2S]-binding protein with ill-defined roles in immune cell response, embryogenesis, cancer cell growth, and regulation of cardiac hypertrophy. Similar to other members of the CGFS monothiol glutaredoxin (Grx) family, human Glrx3 forms homodimers bridged by two [2Fe-2S] clusters that are ligated by the conserved CGFS motifs and glutathione (GSH). We recently demonstrated that the yeast homologues of human Glrx3 and the yeast BolA-like protein Fra2 form [2Fe-2S]-bridged heterodimers that play a key role in signaling intracellular iron availability. Herein, we provide biophysical and biochemical evidence that the two tandem Grx-like domains in human Glrx3 form similar [2Fe-2S]-bridged complexes with human BolA2. UV-visible absorption and circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopic analyses of recombinant [2Fe-2S] Glrx3 homodimers and [2Fe-2S] Glrx3-BolA2 complexes indicate that the Fe-S coordination environments in these complexes are virtually identical to those of the analogous complexes in yeast. Furthermore, we demonstrate that apo BolA2 binds to each Grx domain in the [2Fe-2S] Glrx3 homodimer forming a [2Fe-2S] BolA2-Glrx3 heterotrimer. Taken together, these results suggest that the unusual [2Fe-2S]-bridging Grx-BolA interaction is conserved in higher eukaryotes and may play a role in signaling cellular iron status in humans.
Collapse
Affiliation(s)
- Haoran Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | | | | | | |
Collapse
|
35
|
Kuipers I, Bracke KR, Brusselle GG, Wouters EFM, Reynaert NL. Smoke decreases reversible oxidations S-glutathionylation and S-nitrosylation in mice. Free Radic Res 2012; 46:164-73. [PMID: 22145974 DOI: 10.3109/10715762.2011.647011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cigarette smoke causes irreversible oxidations in lungs, but its impact on reversible and physiologically relevant redox-dependent protein modifications remains to be investigated. Here the effect of cigarette smoke exposure in mice was investigated on the covalent binding of glutathione to protein thiols, known as S-glutathionylation (PSSG), which can be reversed by glutaredoxins (Grx). Also, protein S-nitrosylation (PSNO) which is the modification of protein thiols by NO and which is reversed by the enzyme alcohol dehydrogenase (ADH) 5 was examined. Both PSSG and PSNO levels in lung tissue were markedly decreased after 4 weeks of cigarette smoke exposure. This coincided with attenuated protein free thiol levels and increased protein carbonylation. The expression of NOX4, DHE sensitive oxidant production and iNOS levels were induced by smoke, whereas Grx1 mRNA expression and activity were attenuated. Free GSH levels, protein expression and activity of ADH5 were unaffected by smoke. Taken together, smoke exposure decreases reversible cysteine oxidations PSSG and PSNO and enhances protein carbonylation. These alterations are not associated with differences in some of the regulatory enzymes, but are likely the result of oxidative stress.
Collapse
Affiliation(s)
- Ine Kuipers
- Department of Respiratory Medicine, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
36
|
Abstract
The intestinal tract, known for its capability for self-renew, represents the first barrier of defence between the organism and its luminal environment. The thiol/disulfide redox systems comprising the glutathione/glutathione disulfide (GSH/GSSG), cysteine/cystine (Cys/CySS) and reduced and oxidized thioredoxin (Trx/TrxSS) redox couples play important roles in preserving tissue redox homeostasis, metabolic functions, and cellular integrity. Control of the thiol-disulfide status at the luminal surface is essential for maintaining mucus fluidity and absorption of nutrients, and protection against chemical-induced oxidant injury. Within intestinal cells, these redox couples preserve an environment that supports physiological processes and orchestrates networks of enzymatic reactions against oxidative stress. In this review, we focus on the intestinal redox and antioxidant systems, their subcellular compartmentation, redox signalling and epithelial turnover, and contribution of luminal microbiota, key aspects that are relevant to understanding redox-dependent processes in gut biology with implications for degenerative digestive disorders, such as inflammation and cancer.
Collapse
Affiliation(s)
- Magdalena L Circu
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
37
|
Kuipers I, Guala AS, Aesif SW, Konings G, Bouwman FG, Mariman EC, Wouters EFM, Janssen-Heininger YMW, Reynaert NL. Cigarette smoke targets glutaredoxin 1, increasing s-glutathionylation and epithelial cell death. Am J Respir Cell Mol Biol 2011; 45:931-7. [PMID: 21454804 DOI: 10.1165/rcmb.2010-0249oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It is established that cigarette smoke (CS) causes irreversible oxidations in lung epithelial cells, and can lead to their death. However, its impact on reversible and physiologically relevant redox-dependent protein modifications remains to be investigated. Glutathione is an important antioxidant against inhaled reactive oxygen species as a direct scavenger, but it can also covalently bind protein thiols upon mild oxidative stress to protect them against irreversible oxidation. This posttranslational modification, known as S-glutathionylation, can be reversed under physiological conditions by the enzyme, glutaredoxin 1 (Grx1). The aim of this study was to investigate if CS modifies Grx1, and if this impacts on protein S-glutathionylation and epithelial cell death. Upon exposure of alveolar epithelial cells to CS extract (CSE), a decrease in Grx1 mRNA and protein expression was observed, in conjunction with decreased activity and increased protein S-glutathionylation. Using mass spectrometry, irreversible oxidation of recombinant Grx1 by CSE and acrolein was demonstrated, which was associated with attenuated enzyme activity. Furthermore, carbonylation of Grx1 in epithelial cells after exposure to CSE was shown. Overexpression of Grx1 attenuated CSE-induced increases in protein S-glutathionylation and increased survival. Conversely, primary tracheal epithelial cells of mice lacking Grx1 were more sensitive to CS-induced cell death, with corresponding increases in protein S-glutathionylation. These results show that CS can modulate Grx1, not only at the expression level, but can also directly modify Grx1 itself, decreasing its activity. These findings demonstrate a role for the Grx1/S-glutathionylation redox system in CS-induced lung epithelial cell death.
Collapse
Affiliation(s)
- Ine Kuipers
- Department of Respiratory Medicine, Maastricht University Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Qu Y, Wang J, Ray PS, Guo H, Huang J, Shin-Sim M, Bukoye BA, Liu B, Lee AV, Lin X, Huang P, Martens JW, Giuliano AE, Zhang N, Cheng NH, Cui X. Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-κB signaling. J Clin Invest 2010; 121:212-25. [PMID: 21123948 DOI: 10.1172/jci43144] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 09/29/2010] [Indexed: 12/14/2022] Open
Abstract
Cancer cells have an efficient antioxidant system to counteract their increased generation of ROS. However, whether this ability to survive high levels of ROS has an important role in the growth and metastasis of tumors is not well understood. Here, we demonstrate that the redox protein thioredoxin-like 2 (TXNL2) regulates the growth and metastasis of human breast cancer cells through a redox signaling mechanism. TXNL2 was found to be overexpressed in human cancers, including breast cancers. Knockdown of TXNL2 in human breast cancer cell lines increased ROS levels and reduced NF-κB activity, resulting in inhibition of in vitro proliferation, survival, and invasion. In addition, TXNL2 knockdown inhibited tumorigenesis and metastasis of these cells upon transplantation into immunodeficient mice. Furthermore, analysis of primary breast cancer samples demonstrated that enhanced TXNL2 expression correlated with metastasis to the lung and brain and with decreased overall patient survival. Our studies provided insight into redox-based mechanisms underlying tumor growth and metastasis and suggest that TXNL2 could be a target for treatment of breast cancer.
Collapse
Affiliation(s)
- Ying Qu
- Department of Surgery, Ruijin Hospital, Institute of Digestive Surgery, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gao JJ, Maricque BB, Morse MD, Huang W, McNeel DG. Identification of autoantibodies in a patient with testicular cancer and concurrent inflammatory bowel disease. J Clin Oncol 2010; 28:e680-3. [PMID: 20805455 DOI: 10.1200/jco.2010.30.2893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Selenium compounds are substrates for glutaredoxins: a novel pathway for selenium metabolism and a potential mechanism for selenium-mediated cytotoxicity. Biochem J 2010; 429:85-93. [PMID: 20408818 DOI: 10.1042/bj20100368] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Grx (glutaredoxin) proteins are oxidoreductases with a central function in maintaining the redox balance within the cell. In the present study, we have explored the reactions between selenium compounds and the glutaredoxin system. Selenite, GS-Se-SG (selenodiglutathione) and selenocystine were all shown to be substrates of human Grx1, implying a novel role for the glutaredoxins in selenium metabolism. During the past few years, selenium has further evolved as a potential therapeutic agent in cancer treatment, and a leading mechanism of cytotoxicity is the generation of ROS (reactive oxygen species). Both selenite and GS-Se-SG were reduced by Grx1 and Grx2 in a non-stoichiometric manner due to redox cycling with oxygen, which in turn generated ROS. The role of Grx in selenium toxicity was therefore explored. Cells were treated with the selenium compounds in combination with transient overexpression of, or small interfering RNA against, Grx1. The results demonstrated an increased viability of the cells during silencing of Grx1, indicating that Grx1 is contributing to selenium toxicity. This is in contrast with TrxR (thioredoxin reductase), which previously was shown to protect cells from selenium cytotoxicity, verifying a diverse role between Grx and TrxR in selenium-mediated cytotoxicity. Furthermore, selenium treatment led to a marked increase in protein glutathionylation and cysteinylation that potentially can influence the activity and function of several proteins within the cell.
Collapse
|
41
|
Ohayon A, Babichev Y, Galperin M, Altman A, Isakov N. Widespread expression of PICOT in mouse and human tissues with predominant localization to epithelium. J Histochem Cytochem 2010; 58:799-806. [PMID: 20498481 DOI: 10.1369/jhc.2010.956532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The protein kinase C-interacting cousin of thioredoxin (PICOT; also termed glutaredoxin 3) protein was discovered a decade ago as a protein kinase C theta (PKCtheta)-binding protein in human T lymphocytes. PICOT possesses an amino-terminal monothiol thioredoxin-like domain and a carboxy-terminal tandem repeat of a monothiol glutaredoxin-like domain. Nevertheless, the enzymatic activities of PICOT and its potential substrates have not yet been characterized and its biological importance is unknown. Earlier studies reported the presence of PICOT in several different cell lines and tissues, but its expression pattern has not been thoroughly investigated. We performed Northern blot analysis of 19 different human organs and tissues and found the expression of PICOT mRNA in all organs and tissues tested. Western blot analysis confirmed the expression of PICOT at the protein level in all organs and tissues tested and showed, in addition, that PICOT and PKCtheta expression in different tissues only partially overlap. These findings support the involvement of PICOT in biological functions that are independent of PKCtheta. To analyze the in vivo expression pattern of PICOT within cells of different human organs, we performed immunohistochemical staining using PICOT-specific antibodies. Analysis of breast, pituitary, adrenal, pancreas, and kidney sections demonstrated a differential expression of PICOT in various cell types, with a predominant cytosolic staining of epithelial cells and low or undetectable levels of PICOT in the stroma.
Collapse
Affiliation(s)
- Ariel Ohayon
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | |
Collapse
|
42
|
Lim SK, Kim JC, Moon CJ, Kim GY, Han HJ, Park SH. Formaldehyde induces apoptosis through decreased Prx 2 via p38 MAPK in lung epithelial cells. Toxicology 2010; 271:100-6. [PMID: 20347000 DOI: 10.1016/j.tox.2010.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 11/19/2022]
Abstract
Formaldehyde (FA) is an important substance that induces sick house syndrome and diseases, such as asthma and allergies. Oxidative stress is involved in the development of respiratory disease, and diverse antioxidants may protect respiratory tract cells from apoptosis. Peroxiredoxin is a pivotal endogenous antioxidant. In the present study, FA induced death in A549 cells, a lung epithelial cell line, in a dose-dependent manner. FA also increased lipid peroxide formation (LPO) in A549 cells, suggesting a role for oxidative stress. Additionally, FA decreased peroxiredoxin 2 (Prx 2) protein levels after a 24 or 48h exposure to FA. We also examined whether the FA-induced decrease in Prx 2 was associated with apoptosis. Prx 2 overexpression protected against FA-induced cell apoptosis but not necrosis. Prx 2 overexpression blocked FA-induced increase in Bax, a pro-apoptotic molecule, and a decrease in Bcl-2, an anti-apoptotic molecule. Prx 2 overexpression also protected against FA-induced activation of some special apoptosis-associated proteins [caspase-3, caspase-9, and polypeptide poly (ADP-ribose) polymerase (PARP)]. Furthermore, we examined the signaling molecules involved in the FA-induced decrease in Prx 2 expression. The FA-induced decrease in Prx 2 and increase in cell apoptosis was restored by treatment with SB203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by SP600125 [a c-jun-N-terminal kinase (JNK) inhibitor]. Also, FA-induced events were blocked by treatment with p38 siRNA, but not by scrambled siRNA. Indeed, FA increased p38 MAPK activation, suggesting a role for p38 MAPK in FA action. In conclusion, FA mediated apoptosis in lung epithelial cells by decreasing Prx 2 via p38 MAPK.
Collapse
Affiliation(s)
- Seul Ki Lim
- Bio-therapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Yongbongdong 300 Bukgu, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|