1
|
Zhu S, Luo Z, Li X, Han X, Shi S, Zhang T. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 2021; 12:54-64. [PMID: 33391402 PMCID: PMC7738842 DOI: 10.7150/jca.49692] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) occupy an important position in the tumor microenvironment (TME), they are a highly plastic heterogeneous population with complex effects on tumorigenesis and development. TAMs secrete a variety of cytokines, chemokines, and proteases, which promote the remodeling of extracellular matrix, tumor cell growth and metastasis, tumor vessel and lymphangiogenesis, and immunosuppression. TAMs with different phenotypes have different effects on tumor proliferation and metastasis. TAMs act a pivotal part in occurrence and development of tumors, and are very attractive target to inhibit tumor growth and metastasis in tumor immunotherapy. This article reviews the interrelationship between TAMs and tumor microenvironment and its related applications in tumor therapy.
Collapse
Affiliation(s)
- Shunyao Zhu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyi Luo
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xixi Li
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Han
- Xiaoshan Hosptital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Senlin Shi
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Zhang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
2
|
Fozza C, Barraqueddu F, Corda G, Contini S, Virdis P, Dore F, Bonfigli S, Longinotti M. Study of the T-cell receptor repertoire by CDR3 spectratyping. J Immunol Methods 2016; 440:1-11. [PMID: 27823906 DOI: 10.1016/j.jim.2016.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 09/26/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
The T-cell receptor (TCR) is the key player within the so called immunological synapse and the analysis of its repertoire offers a picture of both versatility and wideness of the whole immune T-cell compartment. Among the different approaches applied to its study the so-called spectratyping identifies the pattern of the third complementarity determining region (CDR3) length distribution in each one of the beta variable (TRBV) subfamilies encoded by the corresponding genes. This technique consists in a CDR3 fragment analysis through capillary electrophoresis, performed after cell separation, RNA extraction and reverse transcriptase PCR. This review will run through the most relevant studies which have tried to dissect the TCR repertoire usage in patients with different immune-mediated and infective diseases as well as solid or haematologic malignancies.
Collapse
Affiliation(s)
- Claudio Fozza
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy.
| | - Francesca Barraqueddu
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Giovanna Corda
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Salvatore Contini
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Patrizia Virdis
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Fausto Dore
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Silvana Bonfigli
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| | - Maurizio Longinotti
- Hematology, Department of Clinical and Experimental Medicine, University of Sassari, Viale San Pietro 12, 07100 Sassari, Italy
| |
Collapse
|
3
|
Zhou CY, Wen Q, Chen XJ, Wang RN, He WT, Zhang SM, Du XL, Ma L. Human CD8(+) T cells transduced with an additional receptor bispecific for both Mycobacterium tuberculosis and HIV-1 recognize both epitopes. J Cell Mol Med 2016; 20:1984-98. [PMID: 27113787 PMCID: PMC5020620 DOI: 10.1111/jcmm.12878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) and human immunodeficiency virus type 1 (HIV-1) infection are closely intertwined, with one-quarter of TB/HIV coinfected deaths among people died of TB. Effector CD8(+) T cells play a crucial role in the control of Mycobacterium tuberculosis (MTB) and HIV-1 infection in coinfected patients. Adoptive transfer of a multitude of effector CD8(+) T cells is an appealing strategy to impose improved anti-MTB/HIV-1 activity onto coinfected individuals. Due to extensive existence of heterologous immunity, that is, T cells cross-reactive with peptides encoded by related or even very dissimilar pathogens, it is reasonable to find a single T cell receptor (TCR) recognizing both MTB and HIV-1 antigenic peptides. In this study, a single TCR specific for both MTB Ag85B199-207 peptide and HIV-1 Env120-128 peptide was screened out from peripheral blood mononuclear cells of a HLA-A*0201(+) healthy individual using complementarity determining region 3 spectratype analysis and transferred to primary CD8(+) T cells using a recombinant retroviral vector. The bispecificity of the TCR gene-modified CD8(+) T cells was demonstrated by elevated secretion of interferon-γ, tumour necrosis factor-α, granzyme B and specific cytolytic activity after antigen presentation of either Ag85B199-207 or Env120-128 by autologous dendritic cells. To the best of our knowledge, this study is the first report proposing to produce responses against two dissimilar antigenic peptides of MTB and HIV-1 simultaneously by transfecting CD8(+) T cells with a single TCR. Taken together, T cells transduced with the additional bispecific TCR might be a useful strategy in immunotherapy for MTB/HIV-1 coinfected individuals.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Base Sequence
- CD8-Positive T-Lymphocytes/immunology
- Cytotoxicity, Immunologic
- Epitopes/immunology
- Genetic Vectors/metabolism
- HIV-1/immunology
- Humans
- Interferon-gamma/metabolism
- Lectins, C-Type/metabolism
- Mycobacterium tuberculosis/immunology
- Peptides/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Transduction, Genetic
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Chao-Ying Zhou
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Jie Chen
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui-Ning Wang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Ting He
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Shi-Meng Zhang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xia-Lin Du
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Tamura K, Hazama S, Yamaguchi R, Imoto S, Takenouchi H, Inoue Y, Kanekiyo S, Shindo Y, Miyano S, Nakamura Y, Kiyotani K. Characterization of the T cell repertoire by deep T cell receptor sequencing in tissues and blood from patients with advanced colorectal cancer. Oncol Lett 2016; 11:3643-3649. [PMID: 27284367 PMCID: PMC4887943 DOI: 10.3892/ol.2016.4465] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/21/2016] [Indexed: 01/22/2023] Open
Abstract
The aim of the present study was to characterize infiltrated T cell clones that define the tumor immune environment and are important in the response to treatment in patients with advanced colorectal cancer (CRC). In order to explore predictive biomarkers for the efficacy of immunochemotherapies, T cell receptor (TCR) repertoire analysis was performed using blood samples and tumor tissues obtained from patients with advanced CRC that had been treated with a combination of five-cancer peptide vaccines and oxaliplatin-based chemotherapy. The TCR-α/β complementary DNAs (cDNAs), prepared from the messenger RNAs (mRNAs) obtained from 17 tumor tissues and 39 peripheral blood mononuclear cells of 9 CRC patients at various time points, were sequenced. The oligoclonal enrichment of certain TCR sequences was identified in tumor tissues and blood samples; however, only a few TCR sequences with a frequency of >0.1% were commonly detected in pre- and post-treatment tumor tissues, or in post-treatment blood and tissue samples. The average correlation coefficients of the TCR-α and TCR-β clonotype frequencies between the post-treatment tumor tissues and blood samples were 0.023 and 0.035, respectively, and were much lower compared with the correlation coefficients of the TCR-α and TCR-β clonotype frequencies between pre- and post-treatment blood samples (0.430 and 0.370, respectively), suggesting that T cell populations in tumor tissues vary from those in blood. Although the sample size was small, a tendency for the TCR diversity in tumor tissues to drastically decrease during the treatment was indicated in two patients, who exhibited a longer progression-free survival time. The results of the present study suggest that TCR diversity scores in tissues may be a useful predictive biomarker for the therapeutic effect of immunochemotherapy for patients with advanced CRC.
Collapse
Affiliation(s)
- Kenji Tamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Rui Yamaguchi
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Imoto
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroko Takenouchi
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yuka Inoue
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Shinsuke Kanekiyo
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Kazuma Kiyotani
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
WANG CHUNYAN, YU PEIFA, HE XIAOBING, FANG YONGXIANG, CHENG WENYU, JING ZHIZHONG. αβ T-cell receptor bias in disease and therapy (Review). Int J Oncol 2016; 48:2247-56. [DOI: 10.3892/ijo.2016.3492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022] Open
|
6
|
Profiling the repertoire of T-cell receptor beta-chain variable genes in peripheral blood lymphocytes from subjects who have recovered from acute hepatitis B virus infection. Cell Mol Immunol 2015; 11:332-42. [PMID: 25126662 DOI: 10.1038/cmi.2014.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The profile of T-cell receptor beta-chain variable (TRBV) genes usually skews in subjects with virus infection or cancer. The gene melting spectral pattern (GMSP) can be used to determine the profile of the TRBV gene family. To explore the portrait of the TRBV family in peripheral blood lymphocytes from subjects who have recovered from acute hepatitis B virus infection (AHI), peripheral blood mononuclear cells (PBMCs) were separated and further sorted into CD4+ and CD8+ T-cell subsets. The molecular features of the TRBV complementary determining region 3 (CDR3) motifs were determined using GMSP analysis. When aGMSP profile showed a single peak, the monoclonally expanded TRBV gene was cloned and sequenced. Skewed expansions of multiple TRBV genes were observed among the CD4+ and CD8+ T-cell subsets and the PBMCs. The frequency of monoclonally expanded TRBV genes in the CD8+ T-cell subset was significantly higher than that of the CD4+ T-cell subset and the PBMCs. Compared to other members of the TRBV gene family, TRBV11, BV15 and BV20 were predominantly expressed in the repertoire of peripheral blood lymphocytes in recovered AHI subjects. The relatively conserved amino acid motifs of TRBV5.1 and BV20 CDR3 were also detected in the CD4+ and CD8+ T-cell subsets. These results demonstrate the presence of multiple biased TRBV families in recovered AHI subjects. TRBV11, BV15 and BV20, especially from the CD8+ T-cell subset, may be relevant to the pathogenesis of subjects with AHI. The preferentially selected TRBV5.1 and BV20 with the relatively conserved CDR3 motif may be potential targets for personalized treatments of chronic HBV infection.
Collapse
|
7
|
Yang J, Lu H, Guo R, Yan D, Ye P, Jin L, Chen C, Cao H, Diao H, Li L. Molecular profile of the T cell receptor beta variable in peripheral blood lymphocytes from chronic asymptomatic HBV carriers. Pathog Dis 2014; 73:1-9. [PMID: 25722488 DOI: 10.1093/femspd/ftu018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Renyong Guo
- Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Ping Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Linfeng Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Chunlei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
8
|
Abstract
Although type 1 diabetes (T1D) is a common autoimmune disease, and there have been many experimental and clinical researches on it, yet the exact mechanisms still remain unclear. What is the fact without doubt that T cells play an important role in the progress of T1D. Because the identification of T cells depends on the identification of MHC which binds the peptides of auto-antigens, the responses of T cells specific to this combination might make the T cell receptor (TCR) genes changed, especially the complementarity determining region 3 (CDR3) genes. According to this theory, it is possible to unclose the immune mechanisms of T1D from the changes of the specific TCR. This paper focuses on the current studies of TCR relative to T1D.
Collapse
Affiliation(s)
- Jianwei Zhou
- Clinical Laboratory, Affiliated Hospital of Jining Medical College, China.
| | - Cui Kong
- Nursing Department, Affiliated Hospital of Jining Medical College, China
| | - Xinke Chen
- Clinical Laboratory, Affiliated Hospital of Jining Medical College, China
| |
Collapse
|
9
|
Zhou J, Kong C, Wang X, Jia Y, Wang L, Chang H, Sun L. In silico Analysis of TCR Vβ7 of Two Patients with Type 1 Diabetes Mellitus. J Lab Physicians 2014; 5:79-82. [PMID: 24701098 PMCID: PMC3968635 DOI: 10.4103/0974-2727.119845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To compare the sequences and crystal structures of variable region of beta chain 7 (Vβ7) of T cell receptor (TCR) of two patients with type 1 diabetes mellitus (T1DM). PATIENTS AND METHODS The skewness of TCR Vβ7 of two T1DM patients were detected with real-time florescence quantitative polymerase chain reaction (FQ-PCR) and deoxyribonucleic acid (DNA) melting curve analysis technique followed by being sequenced, the crystal structures of them were simulated according to CPH models 2.0 Server, IMGT database, and RasMol 2 software. RESULTS The whole sequences of TCR Vβ7 of T1DM patient-1 were "CASRTAGQYEQYFGPGTR", that of patient-2 were "CASRTAGQYEQFFGPGTR"; the only difference between them lied on the 12(th) amino acid. The crystal structures of Vβ7 of the two patients simulated with backbone model were rather similar, while that with sphere model were obviously different. CONCLUSION Although the TCR Vβ7 of the T1DM patients share the similar gene sequences, their crystal structures simulated with sphere model are different, and the mechanism needs further study.
Collapse
Affiliation(s)
- Jianwei Zhou
- Clinic Laboratory, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| | - Cui Kong
- Department of Cardiovascular Disease, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| | - Xiukui Wang
- Department of Stomatology, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| | - Yinfeng Jia
- Clinic Laboratory, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| | - Li Wang
- Department of Pharmocology, The First People's Hospital, Jining, Shandong Province, China
| | - Hong Chang
- Clinic Laboratory, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| | - Lin Sun
- Department of Endocrinology, The Affiliated Hospital of Jining Medical College, Jining, Shandong Province, China
| |
Collapse
|
10
|
Yang J, Chen J, Mao H, Yi P, Yan D, He J, Li L. Skewed T-cell receptor beta chain variable gene (TCRBV) usage among different clinical types of patients with chronic HBV infection. ACTA ACUST UNITED AC 2012; 65:448-55. [PMID: 22469337 DOI: 10.1111/j.1574-695x.2012.00969.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/09/2012] [Accepted: 03/24/2012] [Indexed: 02/05/2023]
Abstract
This study aimed to determine the degree of clonal expansion of T cells in peripheral blood mononuclear cells (PBMCs) isolated from patients suffering from different clinical types of hepatitis B (HB) infection and to analyse the clinical relevance of the skewed T-cell receptor beta variable (TCRBV). Sera and PBMCs were collected from 90 HB patients. Gene melting spectral pattern (GMSP) analysis was used to determine the distribution and expansion of populations expressing specific TCRBV complementary determined region 3 (CDR3) genes. TCRBV genes associated with monoclonal expansion were sequenced. TCRBV families from the majority of patients (80/90) displayed skewed T-cell expansion. Furthermore, TCRBV11, BV12 and BV13.1 were more frequent than other TCRBV genes; the sequence of TCRBV11 CDR3 was expressed as 'VYNEQ' in all patients and was accompanied by the BJ2.1 fragment. In patients with chronic HB, the frequency of skewed TCRBV was inversely correlated with hepatitis B virus (HBV) DNA levels. The persistently skewed TCRBV gene families in HB patients may be associated with the development and maintenance of hepatitis. GMSP analysis of TCRBV gene families may be helpful in estimating disease status, and BV11 may be associated with HBV replication in patients with chronic HBV infection.
Collapse
Affiliation(s)
- Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Narimatsu S, Yoshioka Y, Morishige T, Yao X, Tsunoda SI, Tsutsumi Y, Nishimura MI, Mukai Y, Okada N, Nakagawa S. Structure-activity relationship of T-cell receptors based on alanine scanning. Biochem Biophys Res Commun 2011; 415:558-62. [PMID: 22079637 DOI: 10.1016/j.bbrc.2011.10.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 11/25/2022]
Abstract
T-cell receptors (TCR) recognize complexes between human leukocyte antigens (HLA) and peptides derived from intracellular proteins. Their therapeutic use for antigen targeting, however, has been hindered by the very low binding affinity of TCRs, typically in the 1- to 100-μM range. Therefore, to construct mutant TCRs with high binding affinity, we need to understand the relationship between the structure and activity of these molecules. Here, we attempted to identify the amino acids of the TCR that are important for binding to the peptide/HLA complex. We used a TCR that recognizes complexes between HLA-A(∗)0201 and the peptide from tyrosinase, antigen overexpressed in melanoma. We changed 16 amino acids in the third complementarity-determining region within the TCR to alanine and examined the effect on binding affinity. Five alanine substitutions decreased the binding affinity to below 10% compared with that of wild-type TCR. In contrast, one alanine substitution caused a faster on-rate and slower off-rate, and increased the binding affinity to three times that of the wild-type TCR. Our results provide fundamental information for constructing mutant TCRs with high binding affinity.
Collapse
Affiliation(s)
- Shogo Narimatsu
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|