1
|
Wang C, Cheng T, Lu Q, Li W, Liu B, Yue L, Du M, Sheng W, Lu Z, Yang J, Geng F, Gao X, Lü J, Pan X. Oxygen therapy accelerates apoptosis induced by selenium compounds via regulating Nrf2/MAPK signaling pathway in hepatocellular carcinoma. Pharmacol Res 2023; 187:106624. [PMID: 36563868 DOI: 10.1016/j.phrs.2022.106624] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Selenium has good antitumor effects in vitro, but the hypoxic microenvironment in solid tumors makes its clinical efficacy unsatisfactory. We hypothesized that the combination with oxygen therapy might improve the treatment efficacy of selenium in hypoxic tumors through the changes of redox environment. In this work, two selenium compounds, Na2SeO3 and CysSeSeCys, were selected to interrogate their therapeutic effects on hepatocellular carcinoma (HCC) under different oxygen levels. In tumor-bearing mice, both selenium compounds significantly inhibited the tumor growth, and combined with oxygen therapy further reduced the tumor volume about 50 %. In vitro HepG2 cell experiments, selenium induced autophagy and delayed apoptosis under hypoxia (1 % O2), while inhibited autophagy and accelerated apoptosis under hyperoxia (60 % O2). We found that, in contrast to hypoxia, the hyperoxic environment facilitated the H2Se, produced by the selenium metabolism in cells, to be rapidly oxidized to generate H2O2, leading to inhibit the expression level of Nrf2 and to increase that of phosphorylation of p38 and MKK4, resulting in inhibiting autophagy and accelerating apoptosis. Once the Nrf2 gene was knocked down, selenium compounds combined with hyperoxia treatment would further activate the MAPK signaling pathway and further increase apoptosis. These findings highlight oxygen can significantly enhance the anti-HCC effect of selenium compounds through regulating the Nrf2 and MAPK signaling pathways, thus providing novel therapeutic strategy for the hypoxic tumors and pave the way for the application of selenium in clinical treatment.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | | | - Qianqian Lu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, China
| | - Wenzhen Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ben Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, China
| | - Lijun Yue
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Maoru Du
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Wenxue Sheng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Zhaochen Lu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jingnan Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Feng Geng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xue Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Junhong Lü
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China.; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiaohong Pan
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
2
|
Seshadri VD, Oyouni AAA, Bawazir WM, Alsagaby SA, Alsharif KF, Albrakati A, Al-Amer OM. Zingiberene exerts chemopreventive activity against 7,12-dimethylbenz(a)anthracene-induced breast cancer in Sprague-Dawley rats. J Biochem Mol Toxicol 2022; 36:e23146. [PMID: 35698847 DOI: 10.1002/jbt.23146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/06/2022] [Accepted: 05/29/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is the primary cause of cancer-related death in females, wherein increased mortality of breast cancer patients is recorded worldwide. Zingiberene is a monocyclic sesquiterpene from the ginger plant and has many pharmacological benefits. In this exploration, we assessed the anticancer actions of Zingiberene against the 7,12-dimethylbenz(a)anthracene (DMBA)-stimulated mammary carcinogenesis in rats and MDA-MB-231 cells. Breast cancer was induced in the Female Sprague-Dawley rats through the 25 mg/kg of DMBA in 0.5 ml of corn oil and then treated with 20 and 40 mg/kg of Zingiberene, respectively. The body weight of animals and tumor volume was measured. Hematological parameters, transaminases, lipid profile, lipid peroxidation, and antioxidants status were scrutinized using standard techniques. The estrogen receptor-α and inflammatory markers were inspected by using respective assay kits. Histological damage scores were determined. In vitro experiments were conducted to scrutinize Zingiberene's effect on cell viability and apoptotic cell death in MDA-MB-231 cells. Zingiberene substantially modulated the DMBA-stimulated physiological and hematological changes and decreased the transaminases, and lipid peroxidation in the DMBA-stimulated animals. Zingiberene also elevated the antioxidant level and suppressed the inflammatory markers. Histological study revealed the protective effects of Zingiberene. The viability of MDA-MB-231 cells was noticeably diminished by the Zingiberene, thus inducing apoptotic cell death. Overall, our findings reliably proved the anticancer potential of Zingiberene against the DMBA-stimulated mammary tumorigenesis, and it could be a promising chemotherapeutic agent.
Collapse
Affiliation(s)
- Vidya Devanathadesikan Seshadri
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Waleed M Bawazir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Osama M Al-Amer
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
3
|
Chen SY, Tsuneyama K, Yen MH, Lee JT, Chen JL, Huang SM. Hyperbaric oxygen suppressed tumor progression through the improvement of tumor hypoxia and induction of tumor apoptosis in A549-cell-transferred lung cancer. Sci Rep 2021; 11:12033. [PMID: 34103583 PMCID: PMC8187442 DOI: 10.1038/s41598-021-91454-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/27/2021] [Indexed: 01/16/2023] Open
Abstract
Tumor cells have long been recognized as a relative contraindication to hyperbaric oxygen treatment (HBOT) since HBOT might enhance progressive cancer growth. However, in an oxygen deficit condition, tumor cells are more progressive and can be metastatic. HBOT increasing in oxygen partial pressure may benefit tumor suppression. In this study, we investigated the effects of HBOT on solid tumors, such as lung cancer. Non-small cell human lung carcinoma A549-cell-transferred severe combined immunodeficiency mice (SCID) mice were selected as an in vivo model to detect the potential mechanism of HBOT in lung tumors. HBOT not only improved tumor hypoxia but also suppressed tumor growth in murine xenograft tumor models. Platelet endothelial cell adhesion molecule (PECAM-1/CD31) was significantly increased after HBOT. Immunostaining of cleaved caspase-3 was demonstrated and apoptotic tumor cells with nuclear debris were aggregated starting on the 14th-day after HBOT. In vitro, HBOT suppressed the growth of A549 cells in a time-dependent manner and immediately downregulated the expression of p53 protein after HBOT in A549 cells. Furthermore, HBOT-reduced p53 protein could be rescued by a proteasome degradation inhibitor, but not an autophagy inhibitor in A549 cells. Our results demonstrated that HBOT improved tissue angiogenesis, tumor hypoxia and increased tumor apoptosis to lung cancer cells in murine xenograft tumor models, through modifying the tumor hypoxic microenvironment. HBOT will merit further cancer therapy as an adjuvant treatment for solid tumors, such as lung cancer.
Collapse
Affiliation(s)
- Shao-Yuan Chen
- Department of Hyperbaric Medicine and Neurology, Cardinal Tien Hospital, New Taipei City, Taiwan, ROC. .,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC. .,Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Koichi Tsuneyama
- Department of Molecular and Environmental Pathology, The University of Tokushima, Tokushima, Japan
| | - Mao-Hsiung Yen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jiunn-Tay Lee
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jiun-Liang Chen
- Department of Traditional Chinese Medicine, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Simultaneous hyperbaric oxygen therapy during systemic chemotherapy reverses chemotherapy-induced peripheral neuropathy by inhibiting TLR4 and TRPV1 activation in the central and peripheral nervous system. Support Care Cancer 2021; 29:6841-6850. [PMID: 34003380 DOI: 10.1007/s00520-021-06269-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Chemotherapy-induced peripheral neuropathy (CIPN) is considered one of the most common sequelae in patients with cancer who experience consistent abnormal sensations or pain symptoms during or after paclitaxel (PAC) chemotherapy. Transient receptor potential vanilloid 1 (TRPV1) and toll-like receptor 4 (TLR4) have been reported to interact in the nervous system in patients with CIPN. The antinociceptive effects of hyperbaric oxygen therapy (HBOT) on CIPN was demonstrated in this study through behavior tests. Using a CIPN rat model, we examined the effects of simultaneous HBOT (SHBOT) administration during chemotherapy and discovered that SHBOT achieved better reversal effects than chemotherapy alone. MATERIALS AND METHODS Twenty-four rats were randomly allocated to four groups: control, PAC, SHBOT, and HBOT after PAC groups. Behavior tests were performed to evaluate mechanical allodynia and thermal hyperalgesia status. Tissues from the spinal cord and dorsal root ganglions were collected, and TLR4 and TRPV1 expression and microglial activation were investigated through immunofluorescence (IF) staining. RESULTS The mechanical and thermal behavior tests revealed that HBOT intervention during PAC treatment led to the early alleviation of CIPN symptoms and inhibited CIPN deterioration. IF staining revealed that TLR4, TRPV1, and microglial activation were all upregulated in PAC-injected rats and exhibited early and significant downregulation in SHBOT-treated rats. CONCLUSION This study is the first to demonstrate that the use of SHBOT during PAC treatment has potential for the early suppression of CIPN initiation and deterioration, indicating that it can alleviate CIPN symptoms and may reverse CIPN in patients undergoing systemic chemotherapy.
Collapse
|
5
|
Aphale R, Shah SM. A Randomised Clinical Trial to Compare the Efficacy of Hyperbaric Oxygen Therapy with Neoadjuvant Chemotherapy with Neoadjuvant Chemotherapy Alone for Carcinoma Breast: a Pilot Study. Indian J Surg 2020. [DOI: 10.1007/s12262-020-02601-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Abstract
IMPACT STATEMENT Tumor hypoxia promotes cancer cell aggressiveness, and is strongly associated with poor prognosis across multiple tumor types. The hypoxic microenvironments inside tumors also limit the effectiveness of radiotherapy, chemotherapy, and immunotherapy. Several approaches to eliminate hypoxic state in tumors have been proposed to delay cancer progression and improve therapeutic efficacies. This review will summarize current knowledge on hyperoxia, used alone or in combination with other therapeutic modalities, in cancer treatment. Molecular mechanisms and undesired side effects of hyperoxia will also be discussed.
Collapse
Affiliation(s)
- Sei W Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - In K Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang H Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
7
|
Iyikesici MS. Long-Term Survival Outcomes of Metabolically Supported Chemotherapy with Gemcitabine-Based or FOLFIRINOX Regimen Combined with Ketogenic Diet, Hyperthermia, and Hyperbaric Oxygen Therapy in Metastatic Pancreatic Cancer. Complement Med Res 2019; 27:31-39. [PMID: 31527373 DOI: 10.1159/000502135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Despite introduction of new chemotherapeutic agents, outcomes of patients with metastatic pancreatic cancer are still poor. Metabolically supported chemotherapy (MSCT) is a novel approach targeting dysregulated energy mechanism of the tumor cell. OBJECTIVES This study aimed to examine the efficacy of metabolically supported administration of chemotherapy combined with ketogenic diet, hyperthermia, and hyperbaric oxygen therapy (HBOT) in patients with metastatic pancreatic cancer. METHOD This retrospective observational study included 25 patients with metastatic pancreatic ductal carcinoma (stage IV) who received MSCT (either gemcitabine-based or FOLFIRINOX regimen administered concomitantly with induced hypoglycemia) plus ketogenic diet, hyperthermia, and HBOT combination. Survival outcomes were evaluated. RESULTS During the mean follow-up duration of 25.4 ± 19.3 months, median overall survival and median progression-free survival were 15.8 months (95% CI, 10.5-21.1) and 12.9 months (95% CI, 11.2-14.6), respectively. Age and gender did not have any effect on overall survival (p > 0.05 for all). CONCLUSIONS MSCT administered together with ketogenic diet, hyperthermia, and HBOT appears to be a viable option with the potential to improve survival outcomes in patients diagnosed with metastatic pancreatic cancer. Further research, particularly with larger comparative clinical trials, is warranted.
Collapse
Affiliation(s)
- Mehmet Salih Iyikesici
- Altinbas University, School of Medicine, Department of Medical Oncology, Bahcelievler, Turkey, .,ChemoThermia Oncology Center, Istanbul, Turkey,
| |
Collapse
|
8
|
Tveitarås MK, Selheim F, Sortland K, Reed RK, Stuhr L. Protein expression profiling of plasma and lungs at different stages of metastatic development in a human triple negative breast cancer xenograft model. PLoS One 2019; 14:e0215909. [PMID: 31042781 PMCID: PMC6494042 DOI: 10.1371/journal.pone.0215909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/10/2019] [Indexed: 12/29/2022] Open
Abstract
The main objective of this study was to identify single proteins or protein networks that might be used as diagnostic biomarkers or for therapeutic purposes by evaluating the protein expression profiling of plasma and lungs at different stages of metastatic development in a human triple negative MDA-MB-231 breast cancer xenograft model. MDA-MB-231 tumour cells were injected into the mammary fat pads on one side of the groin area. The mice were sacrificed day 19 (pre-metastases) and day 54 (metastases). Non-injected mice served as controls. Plasma was collected and lungs harvested for both immunohistochemistry and protein analysis. The most striking observation in plasma was the initial reduction in haptoglobin level at the pre-metastatic stage, to a following significant increase in haptoglobin level at the metastatic stage, with a more than 4000-fold increase from the pre-metastatic to the metastatic phase. A corresponding increase in haptoglobin level was also found in lung tissue after metastasis. Fibrinogen beta chain also had a similar change in expression level in plasma as haptoglobin, however not as prominent. There were also changes in plasma thrombospondin-4 and transferrin receptor protein 1 levels, from an increase at the pre-metastatic stage, to a significant fall when metastases were established. This suggests that especially changes in haptoglobin, but also fibrinogen beta chain, thrombospondin-4 and transferrin receptor protein 1 is indicative of metastasis, at least in this breast cancer model, and should be further evaluated as general breast cancer biomarkers.
Collapse
Affiliation(s)
- Maria K. Tveitarås
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Frode Selheim
- Proteomic Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Rolf K. Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Linda Stuhr
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
9
|
Iyikesici MS. Feasibility study of metabolically supported chemotherapy with weekly carboplatin/paclitaxel combined with ketogenic diet, hyperthermia and hyperbaric oxygen therapy in metastatic non-small cell lung cancer. Int J Hyperthermia 2019; 36:446-455. [DOI: 10.1080/02656736.2019.1589584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mehmet Salih Iyikesici
- Department of Medical Oncology, School of Medicine, Altinbas University, Istanbul, Turkey
- ChemoThermia Oncology Center, Istanbul, Turkey
| |
Collapse
|
10
|
Zembrzuska K, Ostrowski RP, Matyja E. Hyperbaric oxygen increases glioma cell sensitivity to antitumor treatment with a novel isothiourea derivative in vitro. Oncol Rep 2019; 41:2703-2716. [PMID: 30896865 PMCID: PMC6448092 DOI: 10.3892/or.2019.7064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/04/2019] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor. Tumor hypoxia is a pivotal factor responsible for the progression of this malignant glioma, and its resistance to radiation and chemotherapy. Thus, improved tumor tissue oxygenation may promote greater sensitivity to anticancer treatment. Protein kinase D1 (PKD1) protects cells from oxidative stress, and its abnormal activity serves an important role in multiple malignancies. The present study examined the effects of various oxygen conditions on the cytotoxic potential of the novel isothiourea derivate N,N′-dimethyl-S-(2,3,4,5,6-pentabromobenzyl)- isothiouronium bromide (ZKK-3) against the T98G GBM cell line. ZKK-3 was applied at concentrations of 10, 25 and 50 µM, and cells were maintained under conditions of normoxia, anoxia, hypoxia, hyperbaric oxygen (HBO), hypoxia/hypoxia and hypoxia/HBO. The proliferation and viability of neoplastic cells, and protein expression levels of hypoxia-inducible factor 1α (HIF-1α), PKD1, phosphorylated (p)PKD1 (Ser 916) and pPKD1 (Ser 744/748) kinases were evaluated. Oxygen deficiency, particularly regarding hypoxia, could diminish the cytotoxic effect of ZKK-3 at 25 and 50 µM and improve T98G cell survival compared with normoxia. HBO significantly reduced cell proliferation and increased T98G cell sensitivity to ZKK-3 when compared with normoxia. HIF-1α expression levels were increased under hypoxia compared with normoxia and decreased under HBO compared with hypoxia/hypoxia at 0, 10 and 50 µM ZKK-3, suggesting that HBO improved oxygenation of the cells. ZKK-3 exhibited inhibitory activity against pPKD1 (Ser 916) kinase; however, the examined oxygen conditions did not appear to significantly influence the expression of this phosphorylated form in cells treated with the tested compound. Regarding pPKD1 (Ser 744/748), a significant difference in expression was observed only for cells treated with 10 µM ZKK-3 and hypoxia/hypoxia compared with normoxia. However, there were significant differences in the expression levels of both phosphorylated forms of PKD1 under different oxygen conditions in the controls. In conclusion, the combination of isothiourea derivatives and hyperbaric oxygenation appears to be a promising therapeutic approach for malignant glioma treatment.
Collapse
Affiliation(s)
- Katarzyna Zembrzuska
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| | - Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02‑106 Warsaw, Poland
| |
Collapse
|
11
|
Poljsak B, Kovac V, Dahmane R, Levec T, Starc A. Cancer Etiology: A Metabolic Disease Originating from Life's Major Evolutionary Transition? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7831952. [PMID: 31687086 PMCID: PMC6800902 DOI: 10.1155/2019/7831952] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
A clear understanding of the origins of cancer is the basis of successful strategies for effective cancer prevention and management. The origin of cancer at the molecular and cellular levels is not well understood. Is the primary cause of the origin of cancer the genomic instability or impaired energy metabolism? An attempt was made to present cancer etiology originating from life's major evolutionary transition. The first evolutionary transition went from simple to complex cells when eukaryotic cells with glycolytic energy production merged with the oxidative mitochondrion (The Endosymbiosis Theory first proposed by Lynn Margulis in the 1960s). The second transition went from single-celled to multicellular organisms once the cells obtained mitochondria, which enabled them to obtain a higher amount of energy. Evidence will be presented that these two transitions, as well as the decline of NAD+ and ATP levels, are the root of cancer diseases. Restoring redox homeostasis and reactivation of mitochondrial oxidative metabolism are important factors in cancer prevention.
Collapse
Affiliation(s)
- B. Poljsak
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - V. Kovac
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - R. Dahmane
- 2Faculty of Health Sciences, University of Ljubljana, Chair of Biomedicine in Health Care, Ljubljana, Slovenia
| | - T. Levec
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - A. Starc
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| |
Collapse
|
12
|
Lee HY, Kim IK, Lee HI, Lee HY, Kang HS, Yeo CD, Kang HH, Moon HS, Lee SH. Combination of carboplatin and intermittent normobaric hyperoxia synergistically suppresses benzo[a]pyrene-induced lung cancer. Korean J Intern Med 2018; 33:541-551. [PMID: 29237253 PMCID: PMC5943660 DOI: 10.3904/kjim.2016.334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/14/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIMS We explored the effects of intermittent normobaric hyperoxia alone or combined with chemotherapy on the growth, general morphology, oxidative stress, and apoptosis of benzo[a]pyrene (B[a]P)-induced lung tumors in mice. METHODS Female A/J mice were given a single dose of B[a]P and randomized into four groups: control, carboplatin (50 mg/kg intraperitoneally), hyperoxia (95% fraction of inspired oxygen), and carboplatin and hyperoxia. Normobaric hyperoxia (95%) was applied for 3 hours each day from weeks 21 to 28. Tumor load was determined as the average total tumor numbers and volumes. Several markers of oxidative stress and apoptosis were evaluated. RESULTS Intermittent normobaric hyperoxia combined with chemotherapy reduced the tumor number by 59% and the load by 72% compared with the control B[a]P group. Intermittent normobaric hyperoxia, either alone or combined with chemotherapy, decreased the levels of superoxide dismutase and glutathione and increased the levels of catalase and 8-hydroxydeoxyguanosine. The Bax/Bcl-2 mRNA ratio, caspase 3 level, and number of transferase-mediated dUTP nick end-labeling positive cells increased following treatment with hyperoxia with or without chemotherapy. CONCLUSIONS Intermittent normobaric hyperoxia was found to be tumoricidal and thus may serve as an adjuvant therapy for lung cancer. Oxidative stress and its effects on DNA are increased following exposure to hyperoxia and even more with chemotherapy, and this may lead to apoptosis of lung tumors.
Collapse
Affiliation(s)
- Hea Yon Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye In Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwa Young Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Seon Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Hui Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwa Sik Moon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Sang Haak Lee, M.D. Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, St. Paul’s Hospital, The Catholic University of Korea, 180 Wangsan-ro, Dongdaemun-gu, Seoul 02559, Korea Tel: +82-2-961-4500 Fax: +82-2-958-2494 E-mail:
| |
Collapse
|
13
|
Oxygen-dependent regulation of tumor growth and metastasis in human breast cancer xenografts. PLoS One 2017; 12:e0183254. [PMID: 28832662 PMCID: PMC5568407 DOI: 10.1371/journal.pone.0183254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
Background Tumor hypoxia is relevant for tumor growth, metabolism, resistance to chemotherapy and metastasis. We have previously shown that hyperoxia, using hyperbaric oxygen treatment (HBOT), attenuates tumor growth and shifts the phenotype from mesenchymal to epithelial (MET) in the DMBA-induced mammary tumor model. This study describes the effect of HBOT on tumor growth, angiogenesis, chemotherapy efficacy and metastasis in a triple negative MDA-MB-231 breast cancer model, and evaluates tumor growth using a triple positive BT-474 breast cancer model. Materials and methods 5 x 105 cancer cells were injected s.c. in the groin area of NOD/SCID female mice. The BT-474 group was supplied with Progesterone and Estradiol pellets 2-days prior to tumor cell injection. Mice were divided into controls (1 bar, pO2 = 0.2 bar) or HBOT (2.5 bar, pO2 = 2.5 bar, 90 min, every third day until termination of the experiments). Treatment effects were determined by assessment of tumor growth, proliferation (Ki67-staining), angiogenesis (CD31-staining), metastasis (immunostaining), EMT markers (western blot), stromal components collagen type I, Itgb1 and FSP1 (immunostaining) and chemotherapeutic efficacy (5FU). Results HBOT significantly suppressed tumor growth in both the triple positive and negative tumors, and both MDA-MB-231 and BT-474 showed a decrease in proliferation after HBOT. No differences were found in angiogenesis or 5FU efficacy between HBOT and controls. Nevertheless, HBOT significantly reduced both numbers and total area of the metastastatic lesions, as well as reduced expression of N-cadherin, Axl and collagen type I measured in the MDA-MB-231 model. No change in stromal Itgb1 and FSP1 was found in either tumor model. Conclusion Despite the fact that behavior and prognosis of the triple positive and negative subtypes of cancer are different, the HBOT had a similar suppressive effect on tumor growth, indicating that they share a common oxygen dependent anti-tumor mechanism. Furthermore, HBOT significantly reduced the number and area of metastatic lesions in the triple negative model as well as a significant reduction in the EMT markers N-cadherin, Axl and density of collagen type I.
Collapse
|
14
|
Stępień K, Ostrowski RP, Matyja E. Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. Med Oncol 2016; 33:101. [PMID: 27485098 PMCID: PMC4971045 DOI: 10.1007/s12032-016-0814-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 12/22/2022]
Abstract
Hyperbaric oxygen (HBO) therapy is widely used as an adjunctive treatment for various pathological states, predominantly related to hypoxic and/or ischaemic conditions. It also holds promise as an approach to overcoming the problem of oxygen deficiency in the poorly oxygenated regions of the neoplastic tissue. Occurrence of local hypoxia within the central areas of solid tumours is one of the major issues contributing to ineffective medical treatment. However, in anti-cancer therapy, HBO alone gives a limited curative effect and is typically not applied by itself. More often, HBO is used as an adjuvant treatment along with other therapeutic modalities, such as radio- and chemotherapy. This review outlines the existing data regarding the medical use of HBO in cancer treatment, with a particular focus on the use of HBO in the treatment of brain tumours. We conclude that the administration of HBO can provide many clinical benefits in the treatment of tumours, including management of highly malignant gliomas. Applied immediately before irradiation, it is safe and well tolerated by patients, causing rare and limited side effects. The results obtained with a combination of HBO/radiotherapy protocol proved to be especially favourable compared to radiation treatment alone. HBO can also increase the cytostatic effect of certain drugs, which may render standard chemotherapy more effective. The currently available data support the legitimacy of conducting further research on the use of HBO in the treatment of malignancies.
Collapse
Affiliation(s)
- Katarzyna Stępień
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Robert P Ostrowski
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland
| | - Ewa Matyja
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland
| |
Collapse
|
15
|
Vedarethinam V, Dhanaraj K, Ilavenil S, Arasu MV, Choi KC, Al-Dhabi NA, Srisesharam S, Lee KD, Kim DH, Dhanapal T, Sivanesan R, Choi HS, Kim YO. Antitumor Effect of the Mannich Base(1,3-bis-((3-Hydroxynaphthalen-2-yl)phenylmethyl)urea) on Hepatocellular Carcinoma. Molecules 2016; 21:E632. [PMID: 27187346 PMCID: PMC6273734 DOI: 10.3390/molecules21050632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/26/2023] Open
Abstract
The present study was designed to evaluate the antitumor effects of the synthetic Mannich base 1,3-bis-((3-hydroxynaphthalen-2-yl)phenylmethyl)urea (1,3-BPMU) against HEP-G2 hepatoma cells and diethylnitrosamine (DEN)-induced hepatocarcinoma (HCC) in albino rats. In vitro analysis results revealed that 1,3-BPMU showed significant cytotoxicity and cell growth inhibition in HEP-G2 hepatoma cells in a concentration-dependent manner. Furthermore, flow cytometry results indicated that 1,3-BPMU enhanced early and late apoptosis. The maximum apoptosis was exhibited at a concentration of 100 μg/mL of 1,3-BPMU. In in vivo analysis, DEN treatment increased the content of nucleic acids, LPO and the activities of AST, ALT, ALP, LDH, γGT and 5'NT with decreased antioxidant activity as compared to control rats. However, 1,3-BPMU treatment to DEN-induced rats decreased the content of nucleic acids, LPO and the activities of AST, ALT, ALP, LDH, γGT and 5'NT and increased the activities of SOD, CAT, GPx, GST and GR (p < 0.05). Furthermore, 1,3-BPMU enhanced the apoptosis via upregulation of caspase-3 and caspase-9 and the downregulation of Bcl-2 and Bcl-XL mRNA expression as compared to DEN-induced rats. Histological and ultrastructural investigation showed that 1,3-BPMU treatment renovated the internal architecture of the liver in DEN-induced rats. In this study, the molecular and pre-clinical results obtained by treatment of DEN-induced rats with 1,3-BPMU suggested that 1,3-BPMU might be considered as an antitumor compound in the future.
Collapse
Affiliation(s)
| | - Karthik Dhanaraj
- Department of Biotechnology, PRIST University, Thanjavur, Tamilnadu 613-403, India.
| | - Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, Chungnam 330-808, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Chungnam 330-808, Korea.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Srigopalram Srisesharam
- Grassland and Forage Division, National Institute of Animal Science, Chungnam 330-808, Korea.
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongshin University, Naju 520-714, Korea.
| | - Da Hye Kim
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8550, Japan.
| | | | - Ravikumar Sivanesan
- Department of Biotechnology, PRIST University, Thanjavur, Tamilnadu 613-403, India.
| | - Han Sung Choi
- Department of Emergency Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Young Ock Kim
- Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong 369-873, Korea.
| |
Collapse
|
16
|
Raloxifene Inhibits NF-kB Pathway and Potentiates Anti-Tumour Activity of Cisplatin with Simultaneous Reduction in its Nephrotoxictiy. Pathol Oncol Res 2015; 22:145-53. [DOI: 10.1007/s12253-015-9988-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022]
|
17
|
Mundhe NA, Kumar P, Ahmed S, Jamdade V, Mundhe S, Lahkar M. Nordihydroguaiaretic acid ameliorates cisplatin induced nephrotoxicity and potentiates its anti-tumor activity in DMBA induced breast cancer in female Sprague–Dawley rats. Int Immunopharmacol 2015; 28:634-42. [DOI: 10.1016/j.intimp.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 01/01/2023]
|
18
|
Poff AM, Ward N, Seyfried TN, Arnold P, D’Agostino DP. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy. PLoS One 2015; 10:e0127407. [PMID: 26061868 PMCID: PMC4464523 DOI: 10.1371/journal.pone.0127407] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 04/14/2015] [Indexed: 12/29/2022] Open
Abstract
The Warburg effect and tumor hypoxia underlie a unique cancer metabolic phenotype characterized by glucose dependency and aerobic fermentation. We previously showed that two non-toxic metabolic therapies - the ketogenic diet with concurrent hyperbaric oxygen (KD+HBOT) and dietary ketone supplementation - could increase survival time in the VM-M3 mouse model of metastatic cancer. We hypothesized that combining these therapies could provide an even greater therapeutic benefit in this model. Mice receiving the combination therapy demonstrated a marked reduction in tumor growth rate and metastatic spread, and lived twice as long as control animals. To further understand the effects of these metabolic therapies, we characterized the effects of high glucose (control), low glucose (LG), ketone supplementation (βHB), hyperbaric oxygen (HBOT), or combination therapy (LG+βHB+HBOT) on VM-M3 cells. Individually and combined, these metabolic therapies significantly decreased VM-M3 cell proliferation and viability. HBOT, alone or in combination with LG and βHB, increased ROS production in VM-M3 cells. This study strongly supports further investigation into this metabolic therapy as a potential non-toxic treatment for late-stage metastatic cancers.
Collapse
Affiliation(s)
- A. M. Poff
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, Florida, United States of America
| | - N. Ward
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, Florida, United States of America
| | - T. N. Seyfried
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - P. Arnold
- Savind, Inc. Seymour, Illinois, United States of America
| | - D. P. D’Agostino
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, Hyperbaric Biomedical Research Laboratory, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
19
|
Doguchi H, Saio M, Kuniyoshi S, Matsuzaki A, Yoshimi N. The enhancing effects of hyperbaric oxygen on mouse skin carcinogenesis. J Toxicol Pathol 2014; 27:67-72. [PMID: 24791069 PMCID: PMC4000075 DOI: 10.1293/tox.2013-0046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/05/2013] [Indexed: 12/29/2022] Open
Abstract
The effects of hyperbaric oxygen (HBO) on mouse skin two-stage chemical carcinogenesis were examined. Six-week-old inbred CD-1 female mice were divided into the following five groups: group 1, normoxia and application of 25 nmol 7,12-dimethylbenz[a]anthracene (DMBA) and 8.5 nmol 12-O-tetradecanoylphorbol-13-acetate (TPA) (n=19); group 2, HBO and DMBA/TPA (n=21); group 3, HBO and DMBA/acetone (n=3); group 4, normoxia and acetone (n=3); and group 5, non-treatment group (n=5). HBO was started at the same time as DMBA. Mice were euthanized at 23 weeks after the start of the experiment. Mice in group 2 showed the occurrence of tumors at 8 weeks after the beginning of the experiment, while the occurrence of tumors in mice in group 1 was observed beginning at 9 weeks. There was a difference in occurrence among low-grade papillomas, high-grade papillomas and SCCs in both groups 1 and 2 by the χ (2)-test at end of the experiment (p<0.05). The Ki-67 labeling indices of tumors revealed that the percentages of positive cells in low-grade papillomas in groups 1 and 2 were 15.27 ± 2.54% and 29.67 ± 2.82%, respectively (p<0.01). The results suggested that the tumors in group 2, which was treated with HBO, were more progressive than those in group 1, which was not treated with HBO. In this study, HBO accelerated tumor cell proliferation and advanced tumor progression in skin carcinogenesis by DMBA/TPA.
Collapse
Affiliation(s)
- Hiroshi Doguchi
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Masanao Saio
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Shimpei Kuniyoshi
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Akiko Matsuzaki
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Naoki Yoshimi
- Department of Pathology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| |
Collapse
|
20
|
Poff AM, Ari C, Seyfried TN, D'Agostino DP. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One 2013; 8:e65522. [PMID: 23755243 PMCID: PMC3673985 DOI: 10.1371/journal.pone.0065522] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/02/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Abnormal cancer metabolism creates a glycolytic-dependency which can be exploited by lowering glucose availability to the tumor. The ketogenic diet (KD) is a low carbohydrate, high fat diet which decreases blood glucose and elevates blood ketones and has been shown to slow cancer progression in animals and humans. Abnormal tumor vasculature creates hypoxic pockets which promote cancer progression and further increase the glycolytic-dependency of cancers. Hyperbaric oxygen therapy (HBO2T) saturates tumors with oxygen, reversing the cancer promoting effects of tumor hypoxia. Since these non-toxic therapies exploit overlapping metabolic deficiencies of cancer, we tested their combined effects on cancer progression in a natural model of metastatic disease. Methods We used the firefly luciferase-tagged VM-M3 mouse model of metastatic cancer to compare tumor progression and survival in mice fed standard or KD ad libitum with or without HBO2T (2.5 ATM absolute, 90 min, 3x/week). Tumor growth was monitored by in vivo bioluminescent imaging. Results KD alone significantly decreased blood glucose, slowed tumor growth, and increased mean survival time by 56.7% in mice with systemic metastatic cancer. While HBO2T alone did not influence cancer progression, combining the KD with HBO2T elicited a significant decrease in blood glucose, tumor growth rate, and 77.9% increase in mean survival time compared to controls. Conclusions KD and HBO2T produce significant anti-cancer effects when combined in a natural model of systemic metastatic cancer. Our evidence suggests that these therapies should be further investigated as potential non-toxic treatments or adjuvant therapies to standard care for patients with systemic metastatic disease.
Collapse
Affiliation(s)
- Angela M Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America.
| | | | | | | |
Collapse
|
21
|
Moen I, Stuhr LEB. Hyperbaric oxygen therapy and cancer--a review. Target Oncol 2012; 7:233-42. [PMID: 23054400 PMCID: PMC3510426 DOI: 10.1007/s11523-012-0233-x] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/20/2012] [Indexed: 02/06/2023]
Abstract
Hypoxia is a critical hallmark of solid tumors and involves enhanced cell survival, angiogenesis, glycolytic metabolism, and metastasis. Hyperbaric oxygen (HBO) treatment has for centuries been used to improve or cure disorders involving hypoxia and ischemia, by enhancing the amount of dissolved oxygen in the plasma and thereby increasing O2 delivery to the tissue. Studies on HBO and cancer have up to recently focused on whether enhanced oxygen acts as a cancer promoter or not. As oxygen is believed to be required for all the major processes of wound healing, one feared that the effects of HBO would be applicable to cancer tissue as well and promote cancer growth. Furthermore, one also feared that exposing patients who had been treated for cancer, to HBO, would lead to recurrence. Nevertheless, two systematic reviews on HBO and cancer have concluded that the use of HBO in patients with malignancies is considered safe. To supplement the previous reviews, we have summarized the work performed on HBO and cancer in the period 2004–2012. Based on the present as well as previous reviews, there is no evidence indicating that HBO neither acts as a stimulator of tumor growth nor as an enhancer of recurrence. On the other hand, there is evidence that implies that HBO might have tumor-inhibitory effects in certain cancer subtypes, and we thus strongly believe that we need to expand our knowledge on the effect and the mechanisms behind tumor oxygenation.
Collapse
Affiliation(s)
- Ingrid Moen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | |
Collapse
|
22
|
Sun S, Lee D, Lee NP, Pu JKS, Wong STS, Lui WM, Fung CF, Leung GKK. Hyperoxia resensitizes chemoresistant human glioblastoma cells to temozolomide. J Neurooncol 2012; 109:467-75. [PMID: 22763762 PMCID: PMC3434886 DOI: 10.1007/s11060-012-0923-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/19/2012] [Indexed: 12/27/2022]
Abstract
Temozolomide (TMZ) is standard chemotherapy for glioblastoma multiforme (GBM). Intratumoral hypoxia is common in GBM and may be associated with the development of TMZ resistance. Oxygen therapy has previously been reported to potentiate the effect of chemotherapy in cancer. In this study, we investigated whether hyperoxia can enhance the TMZ-induced cytotoxicity of human GBM cells, and whether and how it would resensitize TMZ-resistant GBM cells to TMZ. TMZ-sensitive human GBM cells (D54-S and U87-S) were treated with TMZ to develop isogenic subclones of TMZ-resistant cells (D54-R and U87-R). All cell lines were then exposed to different oxygen levels (1, 21, 40, or 80 %), with or without concomitant TMZ treatment, before assessment of cell cytotoxicity and morphology. Cell death and survival pathways elicited by TMZ and/or hyperoxia were elucidated by western blotting. Our results showed that TMZ sensitivity of both chemo-sensitive and resistant cells was enhanced significantly under hyperoxia. At the cell line-specific optimum oxygen concentration (D54-R, 80 %; U87-R, 40 %), resistant cells had the same response to TMZ as the parent chemosensitive cells under normoxia via the caspase-dependent pathway. Both TMZ and hyperoxia were associated with increased phosphorylation of ERK p44/42 MAPK (Erk1/2), but to a lesser extent in D54-R cells, suggesting that Erk1/2 activity may be involved in regulation of hyperoxia and TMZ-mediated cell death. Overall, hyperoxia enhanced TMZ toxicity in GBM cells by induction of apoptosis, possibly via MAPK-related pathways. Induced hyperoxia is a potentially promising approach for treatment of TMZ-resistant GBM.
Collapse
Affiliation(s)
- Stella Sun
- Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Mazzio EA, Boukli N, Rivera N, Soliman KFA. Pericellular pH homeostasis is a primary function of the Warburg effect: inversion of metabolic systems to control lactate steady state in tumor cells. Cancer Sci 2012; 103:422-32. [PMID: 22320183 DOI: 10.1111/j.1349-7006.2012.02206.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/22/2011] [Accepted: 12/08/2011] [Indexed: 12/25/2022] Open
Abstract
The Warburg effect describes a heightened propensity of tumor cells to produce lactic acid in the presence or absence of O(2) . A generally held notion is that the Warburg effect is related to energy. Using whole-genome, proteomic MALDI-TOF-MS and metabolite analysis, we investigated the Warburg effect in malignant neuroblastoma N2a cells. The findings show that the Warburg effect serves a functional role in regulating acidic pericellular pH (pHe), which is mediated by metabolic inversion or a fluctuating dominance between glycolytic-rate substrate level phosphorylation (SLP) and mitochondrial (mt) oxidative phosphorylation (OXPHOS) to control lactic acid production. The results also show that an alkaline pHe caused an elevation in SLP/OXPHOS ratio (approximately 98% SLP/OXPHOS); while the ratio was approximately 56% at neutral pHe and approximately 93% in acidic pHe. Acidic pHe paralleled greater expression of mitochondrial biogenesis and OXPHOS genes, such as complex III-V (Uqcr10, Atp5 and Cox7c), mt Fmc1, Romo1, Tmem 173, Tomm6, aldehyde dehydrogenase, mt Sod2 mt biogenesis component PPAR-γ co-activator 1 adjunct to loss of mt fission (Mff). Moreover, acidic pHe corresponded to metabolic efficiency evidenced by a rise in mTOR nutrient sensor GβL, its downstream target (Eif4ebp1), insulin modulators (Trib3 and Fetub) and loss of catabolic (Hadhb, Bdh1 and Pygl)/glycolytic processes (aldolase C, pyruvate kinase, Nampt and aldose-reductase). In contrast, alkaline pHe initiated loss of mitofusin 2, complex II-IV (Sdhaf1, Uqcrq, Cox4i2 and Aldh1l2), aconitase, mitochondrial carrier triple repeat 1 and mt biosynthetic (Coq2, Coq5 and Coq9). In conclusion, the Warburg effect might serve as a negative feedback loop that regulates the pHe toward a broad acidic range by altering lactic acid production through inversion of metabolic systems. These effects were independent of changes in O(2) concentration or glucose supply.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A & M University, Tallahassee, Florida, USA
| | | | | | | |
Collapse
|
24
|
Moen I, Jevne C, Wang J, Kalland KH, Chekenya M, Akslen LA, Sleire L, Enger PØ, Reed RK, Øyan AM, Stuhr LEB. Gene expression in tumor cells and stroma in dsRed 4T1 tumors in eGFP-expressing mice with and without enhanced oxygenation. BMC Cancer 2012; 12:21. [PMID: 22251838 PMCID: PMC3274430 DOI: 10.1186/1471-2407-12-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/17/2012] [Indexed: 01/21/2023] Open
Abstract
Background The tumor microenvironment is pivotal in tumor progression. Thus, we aimed to develop a mammary tumor model to elucidate molecular characteristics in the stroma versus the tumor cell compartment by global gene expression. Secondly, since tumor hypoxia influences several aspects of tumor pathophysiology, we hypothesized that hyperoxia might have an inhibitory effect on tumor growth per se. Finally, we aimed to identify differences in gene expression and key molecular mechanisms, both in the native state and following treatment. Methods 4T1 dsRed breast cancer cells were injected into eGFP expressing NOD/SCID mice. Group 1 was exposed to 3 intermittent HBO treatments (Day 1, 4 and 7), Group 2 to 7 daily HBO treatments (both 2.5bar, 100% O2, à 90 min), whereas the controls were exposed to a normal atmosphere. Tumor growth, histology, vascularisation, cell proliferation, cell death and metastasis were assessed. Fluorescence-activated cell sorting was used to separate tumor cells from stromal cells prior to gene expression analysis. Results The purity of sorted cells was verified by fluorescence microscopy. Gene expression profiling demonstrated that highly expressed genes in the untreated tumor stroma included constituents of the extracellular matrix and matrix metalloproteinases. Tumor growth was significantly inhibited by HBO, and the MAPK pathway was found to be significantly reduced. Immunohistochemistry indicated a significantly reduced microvessel density after intermittent HBO, whereas daily HBO did not show a similar effect. The anti-angiogenic response was reflected in the expression trends of angiogenic factors. Conclusions The present in vivo mammary tumor model enabled us to separate tumor and stromal cells, and demonstrated that the two compartments are characterized by distinct gene expressions, both in the native state and following HBO treatments. Furthermore, hyperoxia induced a significant tumor growth-inhibitory effect, with significant down-regulation of the MAPK pathway. An anti-angiogenic effect after intermittent HBO was observed, and reflected in the gene expression profile.
Collapse
Affiliation(s)
- Ingrid Moen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tikoo K, Sane MS, Gupta C. Tannic acid ameliorates doxorubicin-induced cardiotoxicity and potentiates its anti-cancer activity: Potential role of tannins in cancer chemotherapy. Toxicol Appl Pharmacol 2011; 251:191-200. [DOI: 10.1016/j.taap.2010.12.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 11/27/2022]
|
26
|
Khan MS, Devaraj H, Devaraj N. Chrysin abrogates early hepatocarcinogenesis and induces apoptosis in N-nitrosodiethylamine-induced preneoplastic nodules in rats. Toxicol Appl Pharmacol 2011; 251:85-94. [PMID: 21167192 DOI: 10.1016/j.taap.2010.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 01/14/2023]
|
27
|
Moen I, Tronstad KJ, Kolmannskog O, Salvesen GS, Reed RK, Stuhr LEB. Hyperoxia increases the uptake of 5-fluorouracil in mammary tumors independently of changes in interstitial fluid pressure and tumor stroma. BMC Cancer 2009; 9:446. [PMID: 20017908 PMCID: PMC2805681 DOI: 10.1186/1471-2407-9-446] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 12/17/2009] [Indexed: 01/11/2023] Open
Abstract
Background Hypoxia is associated with increased resistance to chemo- and radiation-therapy. Hyperoxic treatment (hyperbaric oxygen) has previously been shown to potentiate the effect of some forms of chemotherapy, and this has been ascribed to enhanced cytotoxicity or neovascularisation. The aim of this study was to elucidate whether hyperoxia also enhances any actual uptake of 5FU (5-fluorouracil) into the tumor tissue and if this can be explained by changes in the interstitium and extracellular matrix. Methods One group of tumor bearing rats was exposed to repeated hyperbaric oxygen (HBO) treatment (2 bar, pO2 = 2 bar, 4 exposures à 90 min), whereas one group was exposed to one single identical HBO treatment. Animals housed under normal atmosphere (1 bar, pO2 = 0.2 bar) served as controls. Three doses of 5FU were tested for dose response. Uptake of [3H]-5FU in the tumor was assessed, with special reference to factors that might have contributed, such as interstitial fluid pressure (Pif), collagen content, oxygen stress (measured as malondialdehyd levels), lymphatics and transcapillary transport in the tumors. Results The uptake of the cytostatic agent increases immediately after a single HBO treatment (more than 50%), but not 24 hours after the last repeated HBO treatment. Thus, the uptake is most likely related to the transient increase in oxygenation in the tumor tissue. Factors like tumor Pif and collagen content, which decreased significantly in the tumor interstitium after repeated HBO treatment, was without effect on the drug uptake. Conclusion We showed that hyperoxia increases the uptake of [3H]-5FU in DMBA-induced mammary tumors per se, independently of changes in Pif, oxygen stress, collagen fibril density, or transendothelial transport alone. The mechanism by which such an uptake occur is still not elucidated, but it is clearly stimulated by elevated pO2.
Collapse
Affiliation(s)
- Ingrid Moen
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
28
|
Tikoo K, Ali IY, Gupta J, Gupta C. 5-Azacytidine prevents cisplatin induced nephrotoxicity and potentiates anticancer activity of cisplatin by involving inhibition of metallothionein, pAKT and DNMT1 expression in chemical induced cancer rats. Toxicol Lett 2009; 191:158-66. [PMID: 19723570 DOI: 10.1016/j.toxlet.2009.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 08/22/2009] [Accepted: 08/24/2009] [Indexed: 11/26/2022]
Abstract
5-Azactydine inhibits cell growth by direct cytotoxic action as well as by inhibition of DNA methyl transferase enzyme. Inhibitors of DNMT have been reported to potentiate the therapeutic activity of cisplatin in vitro. Dose dependent bone marrow toxicity, neurotoxicity and nephrotoxicity are the major side effects of cisplatin, limiting its use as an effective chemotherapeutic agent. The present study was aimed to reduce the nephrotoxic potential of cisplatin without compensating its potency. To best of our knowledge, this is the first report which shows that the combination of 5-azacytidine with cisplatin leads to remarkable reduction in nephrotoxicity, by involving inhibition of cisplatin induced metallothionein expression. 5-Azacytidine treatment with cisplatin leads to maximum reduction in tumor size in DMH induced colon cancer and tumor volume in DMBA induced breast cancer bearing SD rats. This combination regimen prevents phosphorylation and acetylation of histone H3 which may be involved in inhibition of aberrant gene expression in colon tumors. Further, 5-azacytidine potentiated cisplatin induced antitumor activity by involving decreased expression of pAKT, DNMT1 and an increased expression of p38 in colon tumors. Thus, combination of 5-azactydine with cisplatin attenuates the cisplatin induced nephrotoxicity and potentiates the anti-cancer activity which can have profound clinical implications.
Collapse
Affiliation(s)
- Kulbhushan Tikoo
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.
| | | | | | | |
Collapse
|
29
|
Moen I, Øyan AM, Kalland KH, Tronstad KJ, Akslen LA, Chekenya M, Sakariassen PØ, Reed RK, Stuhr LEB. Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. PLoS One 2009; 4:e6381. [PMID: 19636430 PMCID: PMC2712688 DOI: 10.1371/journal.pone.0006381] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/17/2009] [Indexed: 11/18/2022] Open
Abstract
Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimetyl-α-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO2 = 2 bar, 4 exposures à 90 minutes), whereas the control group was housed under normal atmosphere (1 bar, pO2 = 0.2 bar). Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (∼16%) after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the “switches” of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects.
Collapse
Affiliation(s)
- Ingrid Moen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Anne Margrete Øyan
- The Gade Institute, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Karl-Henning Kalland
- The Gade Institute, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - Lars Andreas Akslen
- The Gade Institute, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Rolf Kåre Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
30
|
Tikoo K, Kumar P, Gupta J. Rosiglitazone synergizes anticancer activity of cisplatin and reduces its nephrotoxicity in 7, 12-dimethyl benz{a}anthracene (DMBA) induced breast cancer rats. BMC Cancer 2009; 9:107. [PMID: 19356226 PMCID: PMC2676298 DOI: 10.1186/1471-2407-9-107] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 04/08/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Antineoplastic drug cisplatin remains the drug of choice for various solid tumours including breast cancer. But dose dependent nephrotoxicity is the major drawback in majority of platinum based chemotherapy regimens. Recent reports have shown that inflammatory pathways are the main offender for cisplatin induced nephrotoxicity. The present study was undertaken to assess the effect of rosiglitazone, a PPARgamma agonist and an anti-inflammatory agent, on cisplatin induced nephrotoxicity, and its anticancer activity in DMBA induced breast cancer rats. METHODS Mammary tumours were induced in female Sprague-Dawley rats by feeding orally with dimethylbenz [a]anthracene (DMBA) (60 mg/kg). Cisplatin induced nephropathy was assessed by measurements of blood urea nitrogen, albumin and creatinine levels. Posttranslational modifications of histone H3, mitogen-activated protein (MAP) kinase p38 expression and PPAR-gamma expression were examined by western blotting. RESULTS Our data shows involvement of TNF-alpha in preventing cisplatin induced nephrotoxicity by rosiglitazone. Rosiglitazone pre-treatment to cisplatin increases the expression of p38, PPAR-gamma in mammary tumours and shows maximum tumour reduction. Furthermore, cisplatin induced changes in histone acetylation, phosphorylation and methylation of histone H3 in mammary tumours was ameliorated by pre-treatment of rosiglitazone. Suggesting, PPAR-gamma directly or indirectly alters aberrant gene expression in mammary tumours by changing histone modifications. CONCLUSION To best of our knowledge this is the first report which shows that pre-treatment of rosiglitazone synergizes the anticancer activity of cisplatin and minimizes cisplatin induced nephrotoxicity in DMBA induced breast cancer.
Collapse
Affiliation(s)
- Kulbhushan Tikoo
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Punjab, India.
| | | | | |
Collapse
|
31
|
Stuhr LEB, Raa A, Oyan AM, Kalland KH, Sakariassen PO, Petersen K, Bjerkvig R, Reed RK. Hyperoxia retards growth and induces apoptosis, changes in vascular density and gene expression in transplanted gliomas in nude rats. J Neurooncol 2007; 85:191-202. [PMID: 17557137 DOI: 10.1007/s11060-007-9407-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/01/2007] [Indexed: 01/22/2023]
Abstract
This study describes the biological effects of hyperoxic treatment on BT4C rat glioma xenografts in vivo with special reference to tumor growth, angiogenesis, apoptosis, general morphology and gene expression parameters. One group of tumor bearing animals was exposed to normobaric hyperoxia (1 bar, pO(2) = 1.0) and another group was exposed to hyperbaric hyperoxia (2 bar, pO(2) = 2.0), whereas animals housed under normal atmosphere (1 bar, pO(2) = 0.2) served as controls. All treatments were performed at day 1, 4 and 7 for 90 min. Treatment effects were determined by assessment of tumor growth, vascular morphology (immunostaining for von Willebrand factor), apoptosis by TUNEL staining and cell proliferation by Ki67 staining. Moreover, gene expression profiles were obtained and verified by real time quantitative PCR. Hyperoxic treatment caused a approximately 60% reduction in tumor growth compared to the control group after 9 days (p < 0.01). Light microscopy showed that the tumors exposed to hyperoxia contained large "empty spaces" within the tumor mass. Moreover, hyperoxia induced a significant increase in the fraction of apoptotic cells ( approximately 21%), with no significant change in cell proliferation. After 2 bar treatment, the mean vascular density was reduced in the central parts of the tumors compared to the control and 1 bar group. The vessel diameters were significantly reduced (11-24%) in both parts of the tumor tissue. Evidence of induced cell death and reduced angiogenesis was reflected by gene expression analyses.Increased pO(2)-levels in experimental gliomas, using normobaric and moderate hyperbaric oxygen therapy, caused a significant reduction in tumor growth. This process is characterized by enhanced cell death, reduced vascular density and changes in gene expression corresponding to these effects.
Collapse
|
32
|
Abstract
One unique feature of tumors is the presence of hypoxic regions, which occur predominantly at the tumor center. Hypoxia has a major impact on various aspects of tumor cell function and proliferation. Hypoxic tumor cells are relatively insensitive to conventional therapy owing to cellular adaptations effected by the hypoxic microenvironment. Recent efforts have aimed to alter the hypoxic state and to reverse these adaptations to improve treatment outcome. One way to increase tumor oxygen tensions is by hyperbaric oxygen (HBO) therapy. HBO therapy can influence the tumor microenvironment at several levels. It can alter tumor hypoxia, a potent stimulus that drives angiogenesis. Hyperoxia as a result of HBO also produces reactive oxygen species, which can damage tumors by inducing excessive oxidative stress. This review outlines the importance of oxygen to tumors and the mechanisms by which tumors survive under hypoxic conditions. It also presents data from both experimental and clinical studies for the effect of HBO on malignancy.
Collapse
Affiliation(s)
- Jurstine Daruwalla
- Department of Surgery, University of Melbourne, Austin Hospital, Level 8 Lance Townsend Building, Austin Health, Studley Road, Heidelberg, Victoria, 3084 Australia.
| | | |
Collapse
|
33
|
Hyperoxia retards growth and induces apoptosis and loss of glands and blood vessels in DMBA-induced rat mammary tumors. BMC Cancer 2007; 7:23. [PMID: 17263869 PMCID: PMC1797183 DOI: 10.1186/1471-2407-7-23] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 01/30/2007] [Indexed: 12/27/2022] Open
Abstract
Background This study investigated the effects of hyperoxic treatment on growth, angiogenesis, apoptosis, general morphology and gene expression in DMBA-induced rat mammary tumors. Methods One group of animals was exposed to normobaric hyperoxia (1 bar, pO2 = 1.0 bar) and another group was exposed to hyperbaric hyperoxia (1.5 bar, pO2 = 1.5 bar). A third group was treated with the commonly used chemotherapeutic drug 5- Fluorouracil (5-FU), whereas animals housed under normal atmosphere (1 bar, pO2 = 0.2 bar) served as controls. All treatments were performed on day 1, 4, 7 and 10 for 90 min. Tumor growth was calculated from caliper measurements. Biological effects of the treatment, was determined by assessment of vascular morphology (immunostaining for von Willebrandt factor) and apoptosis (TUNEL staining). Detailed gene expression profiles were obtained and verified by quantitative rtPCR. Results Tumor growth was significantly reduced (~57–66 %) after hyperoxic treatment compared to control and even more than 5-FU (~36 %). Light microscopic observations of the tumor tissue showed large empty spaces within the tissue after hyperoxic treatment, probably due to loss of glands as indicated by a strong down-regulation of glandular secretory proteins. A significant reduction in mean vascular density (30–50%) was found after hyperoxic treatment. Furthermore, increased apoptosis (18–21%) was found after hyperoxic treatment. Conclusion Thus, by increasing the pO2 in mammary tumor tissue using normobaric and moderate hyperbaric oxygen therapy, a significant retardation in tumor growth is achieved, by loss of glands, reduction in vascular density and enhanced cell death. Hyperbaric oxygen should therefore be further evaluated as a tumor treatment.
Collapse
|
34
|
Daruwalla J, Christophi C. The effect of hyperbaric oxygen therapy on tumour growth in a mouse model of colorectal cancer liver metastases. Eur J Cancer 2006; 42:3304-11. [PMID: 17010602 DOI: 10.1016/j.ejca.2006.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/30/2006] [Accepted: 08/04/2006] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND AIMS Hyperbaric oxygen (HBO) therapy involves the administration of 100% oxygen at high pressure. It has been used to treat a variety of conditions including non-healing wounds, carbon monoxide poisoning, and as an adjuvant to radiotherapy or chemotherapy. The effect of HBO alone on the growth of malignancy remains controversial. This study investigates the impact of HBO on tumour growth, kinetics and microcirculation of colorectal cancer liver metastases in an experimental model. METHODS Male CBA mice were induced with colorectal liver metastases via an intrasplenic injection of a murine derived colorectal cell line. Tumours were examined using quantitative stereological analysis, histology and scanning electron microscopy of microvascular resin casts. The effect of HBO on tumour proliferation and apoptosis was quantified using immunohistochemistry. RESULTS Daily exposure to HBO at 2.4 atm for 90 min had no effect on the volume of liver metastases. At day 13, HBO caused a significant reduction in tumour necrosis and proliferation compared to the non-HBO group (p=0.002 and p=0.008, respectively). By day 25 however, no differences were observed (p>0.05). No differences in apoptosis or microvascular architecture were observed. CONCLUSION HBO did not have a tumour stimulatory effect on colorectal liver metastases and may potentially be used safely in conjunction with other therapeutic treatment modalities.
Collapse
Affiliation(s)
- Jurstine Daruwalla
- University of Melbourne, Department of Surgery Austin Hospital, Level 8 Lance Townsend Bldg., Studley Rd, Heidelberg, Vic., 3084, Australia.
| | | |
Collapse
|