1
|
Zhang H, Zhang Q, Tu J, You Q, Wang L. Dual function of protein phosphatase 5 (PPP5C): An emerging therapeutic target for drug discovery. Eur J Med Chem 2023; 254:115350. [PMID: 37054560 DOI: 10.1016/j.ejmech.2023.115350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Phosphorylation of proteins is reversibly controlled by the kinases and phosphatases in many posttranslational regulation patterns. Protein phosphatase 5 (PPP5C) is a serine/threonine protein phosphatase showing dual function by simultaneously exerting dephosphorylation and co-chaperone functions. Due to this special role, PPP5C was found to participate in many signal transductions related to various diseases. Abnormal expression of PPP5C results in cancers, obesity, and Alzheimer's disease, making it a potential drug target. However, the design of small molecules targeting PPP5C is struggling due to its special monomeric enzyme form and low basal activity by a self-inhibition mechanism. Through realizing the PPP5C's dual function as phosphatase and co-chaperone, more and more small molecules were found to regulate PPP5C with a different mechanism. This review aims to provide insights into PPP5C's dual function from structure to function, which could provide efficient design strategies for small molecules targeting PPP5C as therapeutic candidates.
Collapse
Affiliation(s)
- Hengheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaqi Tu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Bryant JP, Levy A, Heiss J, Banasavadi-Siddegowda YK. Review of PP2A Tumor Biology and Antitumor Effects of PP2A Inhibitor LB100 in the Nervous System. Cancers (Basel) 2021; 13:cancers13123087. [PMID: 34205611 PMCID: PMC8235527 DOI: 10.3390/cancers13123087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Central and peripheral nervous system tumors represent a heterogenous group of neoplasms which often demonstrate resistance to treatment. Given that these tumors are often refractory to conventional therapy, novel pharmaceutical regimens are needed for successfully treating this pathology. One such therapeutic is the serine/threonine phosphatase inhibitor, LB100. LB100 is a water-soluble competitive protein phosphtase inhibitor that has demonstrated antitumor effects in preclinical and clinical trials. In this review, we aim to summarize current evidence demonstrating the efficacy of LB100 as an inhibitor of nervous system tumors. Furthermore, we review the involvement of the well-studied phosphatase, protein phosphatase 2A, in oncogenic cell signaling pathways, neurophysiology, and neurodevelopment. Abstract Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase implicated in a wide variety of regulatory cellular functions. PP2A is abundant in the mammalian nervous system, and dysregulation of its cellular functions is associated with myriad neurodegenerative disorders. Additionally, PP2A has oncologic implications, recently garnering attention and emerging as a therapeutic target because of the antitumor effects of a potent PP2A inhibitor, LB100. LB100 abrogation of PP2A is believed to exert its inhibitory effects on tumor progression through cellular chemo- and radiosensitization to adjuvant agents. An updated and unifying review of PP2A biology and inhibition with LB100 as a therapeutic strategy for targeting cancers of the nervous system is needed, as other reviews have mainly covered broader applications of LB100. In this review, we discuss the role of PP2A in normal cells and tumor cells of the nervous system. Furthermore, we summarize current evidence regarding the therapeutic potential of LB100 for treating solid tumors of the nervous system.
Collapse
Affiliation(s)
- Jean-Paul Bryant
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
| | - Adam Levy
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - John Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
| | - Yeshavanth Kumar Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (J.-P.B.); (J.H.)
- Correspondence: ; Tel.: +1-301-451-0970
| |
Collapse
|
3
|
Yu Y, Zhao Q, Zhu S, Dong H, Huang B, Liang S, Wang Q, Wang H, Yu S, Han H. Molecular characterization of serine/threonine protein phosphatase of Eimeria tenella. J Eukaryot Microbiol 2020; 67:510-520. [PMID: 32358794 DOI: 10.1111/jeu.12798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Avian coccidiosis is a widespread and economically significant poultry disease caused by several Eimeria species, including Eimeria tenella. Previously, E. tenella serine/threonine protein phosphatase (EtSTP) was found to be differentially expressed in drug-sensitive (DS) and drug-resistant strains using RNA-seq. In the present study, we found that transcription and translation levels of EtSTP were higher in diclazuril-resistant (DZR) strains and maduramicin-resistant (MRR) strains than in DS strains using quantitative real-time PCR (qPCR) and Western blotting. Enzyme activity results indicated that the catalytic activity of EtSTP was higher in the two drug-resistant strains than in DS strains. Western blot and qPCR analysis also showed that expression levels of EtSTP were higher in unsporulated oocysts (UO) and second-generation merozoites (SM). Indirect immunofluorescence localization showed that EtSTP was located in most areas of the parasite with the exception of refractile bodies, and fluorescence intensity was enhanced during development. In vitro inhibition experiments showed that the ability of sporozoites (SZ) to invade cells was significantly decreased after treatment with anti-rEtSTP antibody. These results indicated that EtSTP acted mainly during the developmental and reproductive stages of the parasite and may be related to the resistance of coccidia to external drug pressure.
Collapse
Affiliation(s)
- Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China.,College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai, 200241, China
| |
Collapse
|
4
|
Ye T, Wan X, Li J, Feng J, Guo J, Li G, Liu J. The Clinical Significance of PPEF1 as a Promising Biomarker and Its Potential Mechanism in Breast Cancer. Onco Targets Ther 2020; 13:199-214. [PMID: 32021267 PMCID: PMC6955604 DOI: 10.2147/ott.s229432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background Breast cancer (BC) is the leading cause of malignancy death in females worldwide. While intense efforts have been made to elucidate the pathogeny, the molecular mechanism of BC remains elusive. Thus, this study aimed to investigate the role of PPEF1 in the progression of BC and further explore the better clinical significance. Methods The diagnostic and prognostic values of elevated PPEF1 expression in BC were unveiled via public databases analysis. In addition, Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA) and Protein–protein interaction (PPI) analysis were performed to explore the potential functions and molecular mechanisms of PPEF1 in BC progression. Experimentally, transwell and CCK-8 assays were carried out to estimate the effects of PPEF1 on the BC metastasis. Meanwhile, the differential expressions of PPEF1 in paraffin-embedded tissues and serum samples were, respectively, analyzed by Immunohistochemical (IHC) analysis and enzyme-linked immunosorbent assay (ELISA) kit. Results The transcriptional levels of PPEF1 were higher in BC than in normal breast tissues or adjacent normal tissues. Moreover, survival analysis revealed that higher PPEF1 expression was negatively associated with overall survival (OS), all events-free (AE-free) and metastatic recurrence-free (MR-free) survival, and further was an independent risk factor of unfavorable prognosis in BC patients. Additionally, the present study provided the first evidence that PPEF1 participated in multiple biological processes and underly signaling pathways involving in tumorigenesis and development of BC. Furthermore, PPEF1 promotes the BC progression and can be used as a noninvasive diagnostic marker. Noteworthy, the combined determination of serum PPEF1 and traditional tumor markers can enhance diagnostic accuracy thus is of vital importance in the early diagnosis of BC. Conclusion PPEF1 exerted a tumorigenic role and involved in molecular mechanism of tumorigenesis in BC which served as a promising biomarker for prognosis and diagnosis.
Collapse
Affiliation(s)
- Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jinglan Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Guangrong Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| |
Collapse
|
5
|
D'Arcy BM, Swingle MR, Papke CM, Abney KA, Bouska ES, Prakash A, Honkanen RE. The Antitumor Drug LB-100 Is a Catalytic Inhibitor of Protein Phosphatase 2A (PPP2CA) and 5 (PPP5C) Coordinating with the Active-Site Catalytic Metals in PPP5C. Mol Cancer Ther 2019; 18:556-566. [PMID: 30679389 DOI: 10.1158/1535-7163.mct-17-1143] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/20/2018] [Accepted: 01/11/2019] [Indexed: 12/28/2022]
Abstract
LB-100 is an experimental cancer therapeutic with cytotoxic activity against cancer cells in culture and antitumor activity in animals. The first phase I trial (NCT01837667) evaluating LB-100 recently concluded that safety and efficacy parameters are favorable for further clinical testing. Although LB-100 is widely reported as a specific inhibitor of serine/threonine phosphatase 2A (PP2AC/PPP2CA:PPP2CB), we could find no experimental evidence in the published literature demonstrating the specific engagement of LB-100 with PP2A in vitro, in cultured cells, or in animals. Rather, the premise for LB-100 targeting PP2AC is derived from studies that measure phosphate released from a phosphopeptide (K-R-pT-I-R-R) or inferred from the ability of LB-100 to mimic activity previously reported to result from the inhibition of PP2AC by other means. PP2AC and PPP5C share a common catalytic mechanism. Here, we demonstrate that the phosphopeptide used to ascribe LB-100 specificity for PP2A is also a substrate for PPP5C. Inhibition assays using purified enzymes demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C. The structure of PPP5C cocrystallized with LB-100 was solved to a resolution of 1.65Å, revealing that the 7-oxabicyclo[2.2.1]heptane-2,3-dicarbonyl moiety coordinates with the metal ions and key residues that are conserved in both PP2AC and PPP5C. Cell-based studies revealed some known actions of LB-100 are mimicked by the genetic disruption of PPP5C These data demonstrate that LB-100 is a catalytic inhibitor of both PP2AC and PPP5C and suggest that the observed antitumor activity might be due to an additive effect achieved by suppressing both PP2A and PPP5C.
Collapse
Affiliation(s)
- Brandon M D'Arcy
- USA Mitchell Cancer Institute, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Mark R Swingle
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Cinta M Papke
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Kevin A Abney
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Erin S Bouska
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| | - Aishwarya Prakash
- USA Mitchell Cancer Institute, Mobile, Alabama. .,Department of Pharmacology, University of South Alabama, Mobile, Alabama
| | - Richard E Honkanen
- USA Mitchell Cancer Institute, Mobile, Alabama. .,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
6
|
Zhu J, Ji Y, Yu Y, Jin Y, Zhang X, Zhou J, Chen Y. Knockdown of serine/threonine protein phosphatase 5 enhances gemcitabine sensitivity by promoting apoptosis in pancreatic cancer cells in vitro. Oncol Lett 2018; 15:8761-8769. [PMID: 29805615 DOI: 10.3892/ol.2018.8363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/22/2017] [Indexed: 12/28/2022] Open
Abstract
The targeting protein of serine/threonine protein phosphatase 5 (PPP5C) has been reported to be present in various malignancies. However, its functional role in pancreatic cancer (PC) remains unknown. In the present study, the function of PPP5C in PC cells treated with the first-line drug gemcitabine (GEM) was investigated. Short hairpin (sh)RNA targeting PPP5C was constructed to knockdown PPP5C in PANC-1 cells. Cell cycle and apoptosis analyses were performed in order to investigate the mechanisms underlying the effects induced by PPP5C silencing combined with GEM treatment. Western blot analysis was applied to detect the expression of certain key regulators of cell apoptosis in PANC-1 cells treated with GEM. shRNA against PPP5C effectively suppressed the proliferation of PANC-1 cells treated with GEM. Additionally, cell cycle analysis indicated that PPP5C knockdown resulted in a higher number of PANC-1 cells treated with GEM in G0/G1 phase arrest. Knockdown of PPP5C increased the expression of associated apoptotic markers, including cleaved caspase 3, poly (ADP-ribose) polymerase and phosphorylated (p)-p53. In addition, the combination of treatment with GEM and PPP5C silencing significantly increased the apoptosis of PANC-1 cells by affecting the expression levels of p-c-Jun N-terminal kinases and p-p38. The present study suggests that PPP5C may be a potential target for the treatment of PC and that it may enhance the gemcitabine sensitivity of PC cells.
Collapse
Affiliation(s)
- Jinhui Zhu
- Department of General Surgery and Laparoscopic Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yun Ji
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yuanquan Yu
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yun Jin
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaoxiao Zhang
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiale Zhou
- Department of General Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yan Chen
- Department of General Surgery and Laparoscopic Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
7
|
Chen YL, Hung MH, Chu PY, Chao TI, Tsai MH, Chen LJ, Hsiao YJ, Shih CT, Hsieh FS, Chen KF. Protein phosphatase 5 promotes hepatocarcinogenesis through interaction with AMP-activated protein kinase. Biochem Pharmacol 2017; 138:49-60. [DOI: 10.1016/j.bcp.2017.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/12/2017] [Indexed: 11/27/2022]
|
8
|
Wang L, Yan F. Deprotonation states of the two active site water molecules regulate the binding of protein phosphatase 5 with its substrate: A molecular dynamics study. Protein Sci 2017; 26:2010-2020. [PMID: 28726316 DOI: 10.1002/pro.3239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/11/2017] [Accepted: 07/12/2017] [Indexed: 01/01/2023]
Abstract
Protein phosphatase 5 (PP5), mainly localized in human brain, can dephosphorylate tau protein whose high level of phosphorylation is related to Alzheimer's disease. Similar to other protein phosphatases, PP5 has a conserved motif in the catalytic domain that contains two binding sites for manganese (Mn2+ ) ions. Structural data indicate that two active site water molecules, one bridging the two Mn2+ ions and the other terminally coordinated with one of the Mn2+ ions (Mn1), are involved in catalysis. Recently, a density functional theory study revealed that the two water molecules can be both deprotonated to keep a neutral active site for catalysis. The theoretical study gives us an insight into the catalytic mechanism of PP5, but the knowledge of how the deprotonation states of the two water molecules affect the binding of PP5 with its substrate is still lacking. To approach this problem, molecular dynamics simulations were performed to model the four possible deprotonation states. Through structural, dynamical and energetic analyses, the results demonstrate that the deprotonation states of the two water molecules affect the structure of the active site including the distance between the two Mn2+ ions and their coordination, impact the interaction energy of residues R275, R400 and H304 which directly interact with the substrate phosphoserine, and mediate the dynamics of helix αJ which is involved in regulation of the enzyme's activity. Furthermore, the deprotonation state that is preferable for PP5 binding of its substrate has been identified. These findings could provide new design strategy for PP5 inhibitor.
Collapse
Affiliation(s)
- Lingyun Wang
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Feng Yan
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, P. R. China
| |
Collapse
|
9
|
Chen M, Lv JM, Ye JQ, Cui XG, Qu FJ, Chen L, Liu X, Pan XW, Li L, Huang H, Yang QW, Chen J, Wang LH, Gao Y, Xu DF. Disruption of serine/threonine protein phosphatase 5 inhibits tumorigenesis of urinary bladder cancer cells. Int J Oncol 2017; 51:39-48. [PMID: 28534961 PMCID: PMC5467789 DOI: 10.3892/ijo.2017.3997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/20/2017] [Indexed: 01/26/2023] Open
Abstract
Serine/threonine protein phosphatase 5 (PPP5C) is a member of the protein serine/threonine phosphatase family and has been shown to participate in multiple signaling cascades and tumor progression. We found that PPP5C was highly expressed in bladder cancer tissues compared to normal urothelial tissues, and positively correlated to tumor stages through ONCOMINE microarray data mining. Knockdown of PPP5C via a lentivirus-mediated short hairpin RNA (shRNA) markedly inhibited cell proliferation and colony formation. Flow cytometric analysis showed that PPP5C-deficient T24 and BT5637 bladder cancer cells were arrested in G0/G1 phase and induced apoptosis. In addition, tumor growth was inhibited in vivo in a xenograft nude mouse model. Further studies indicated that knockdown of PPP5C downregulated c-myc and CDK4, whereas upregulated p27, BAD and Beclin1. These results suggest that PPP5C is associated with bladder cancer (BCa) and plays an oncogenic role in the development and progression of bladder cancer.
Collapse
Affiliation(s)
- Ming Chen
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jian-Min Lv
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jian-Qing Ye
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, P.R. China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, P.R. China
| | - Fa-Jun Qu
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 201805, P.R. China
| | - Lu Chen
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xi Liu
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiu-Wu Pan
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Lin Li
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Hai Huang
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Qi-Wei Yang
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jie Chen
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Lin-Hui Wang
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yi Gao
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Dan-Feng Xu
- Department of Urinary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
10
|
Hong TJ, Park K, Choi EW, Hahn JS. Ro 90-7501 inhibits PP5 through a novel, TPR-dependent mechanism. Biochem Biophys Res Commun 2017; 482:215-220. [DOI: 10.1016/j.bbrc.2016.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/08/2016] [Indexed: 01/03/2023]
|
11
|
Swingle M, Volmar CH, Saldanha SA, Chase P, Eberhart C, Salter EA, D'Arcy B, Schroeder CE, Golden JE, Wierzbicki A, Hodder P, Honkanen RE. An Ultra-High-Throughput Screen for Catalytic Inhibitors of Serine/Threonine Protein Phosphatases Types 1 and 5 (PP1C and PP5C). SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2017; 22:21-31. [PMID: 27628691 PMCID: PMC8041090 DOI: 10.1177/1087057116668852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although there has been substantial success in the development of specific inhibitors for protein kinases, little progress has been made in the identification of specific inhibitors for their protein phosphatase counterparts. Inhibitors of PP1 and PP5 are desired as probes for research and to test their potential for drug development. We developed and miniaturized (1536-well plate format) nearly identical homogeneous, fluorescence intensity (FLINT) enzymatic assays to detect inhibitors of PP1 or PP5. The assays were used in an ultra-high-throughput screening (uHTS) campaign, testing >315,000 small-molecule compounds. Both assays demonstrated robust performance, with a Z' of 0.92 ± 0.03 and 0.95 ± 0.01 for the PP1 and PP5 assays, respectively. Screening the same library with both assays aided the identification of class inhibitors and assay artifacts. Confirmation screening and hit prioritization assays used [32P/33P]-radiolabel protein substrates, revealing excellent agreement between the FLINT and radiolabel assays. This screening campaign led to the discovery of four novel unrelated small-molecule inhibitors of PP1 and ~30 related small-molecule inhibitors of PP5. The results suggest that this uHTS approach is suitable for identifying selective chemical probes that inhibit PP1 or PP5 activity, and it is likely that similar assays can be developed for other PPP-family phosphatases.
Collapse
Affiliation(s)
| | - Claude-Henry Volmar
- 2 Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, FL, USA
- 3 Center for Therapeutic Innovation and Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S Adrian Saldanha
- 2 Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, FL, USA
- 4 Forma Therapeutics, Watertown, MA, USA
| | - Peter Chase
- 2 Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, FL, USA
- 5 BMS, Lawrenceville, NJ, USA
| | - Christina Eberhart
- 2 Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, FL, USA
| | | | | | - Chad E Schroeder
- 6 University of Kansas Specialized Chemistry Center, Lawrence, KS, USA
| | - Jennifer E Golden
- 6 University of Kansas Specialized Chemistry Center, Lawrence, KS, USA
| | | | - Peter Hodder
- 2 Scripps Research Institute Molecular Screening Center, Scripps Florida, Jupiter, FL, USA
- 7 Amgen, Thousand Oaks, CA, USA
| | | |
Collapse
|
12
|
Zheng X, Zhang L, Jin B, Zhang F, Zhang D, Cui L. Knockdown of protein phosphatase 5 inhibits ovarian cancer growth in vitro. Oncol Lett 2015; 11:168-172. [PMID: 26870184 DOI: 10.3892/ol.2015.3828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most common cause of gynecological cancer-related mortality. Serine/threonine protein phosphatase 5 (PP5, PPP5C) has been recognized to be involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, including cell growth, differentiation, proliferation, motility and apoptosis. In this study, to evaluate the functional role of PP5 in ovarian cancer cells, lentivirus-mediated RNA interference (RNAi) was applied to silence PPP5C in the human ovarian cancer cell line CAOV-3. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell colony forming ability was measured by colony formation. Cell cycle progression was determined by propidium iodide staining and flow cytometry. The results demonstrated that lentivirus-mediated RNAi specifically suppressed the expression of PPP5C at the mRNA and protein levels in CAOV-3 cells. Further investigations revealed that PP5 knockdown significantly inhibited the proliferation and colony formation of CAOV-3 cells. Moreover, the cell cycle of CAOV-3 cells was arrested at the G0/G1 phase following PP5 knockdown. This study highlights the crucial role of PP5 in promoting ovarian cancer cell proliferation, and provides a foundation for further study into the clinical potential of lentiviral-mediated delivery of PP5 RNAi therapy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Lianxiao Zhang
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Bohong Jin
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Fubin Zhang
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Duoyi Zhang
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Lining Cui
- Department of Gynaecology and Obstetrics, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
13
|
Zhi X, Zhang H, He C, Wei Y, Bian L, Li G. Serine/Threonine Protein Phosphatase-5 Accelerates Cell Growth and Migration in Human Glioma. Cell Mol Neurobiol 2015; 35:669-77. [PMID: 25796168 DOI: 10.1007/s10571-015-0162-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/30/2015] [Indexed: 11/24/2022]
Abstract
Glioma is the most common type of primary central nervous system tumor. Ser/Thr protein phosphatase 5 (PP5) has been shown to regulate multiple signaling cascades that suppress growth and facilitate apoptosis in several human cancer cells. However, the role of PP5 in human gliomas remains unclear. Herein, the relationship between PP5 expression and glioma cell growth was investigated, and the therapeutic value of PP5 in glioma was further evaluated. We employed a short hairpin RNA targeting PPP5C gene to knock down PP5 expression in human glioma cell lines U251 and U373. Depletion of PPP5C via RNAi remarkably inhibited glioma cell proliferation and colony formation, and arrested cell cycle in the G0/G1 phase. Moreover, knockdown of PP5 markedly suppressed glioma cell migration, as determined by Transwell assay. Our findings suggest that PPP5C could be essential for glioma cell growth and serve as a promising therapeutic target in human gliomas.
Collapse
Affiliation(s)
- Xinglong Zhi
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | | | | | | | | | | |
Collapse
|
14
|
Knockdown of PPP5C inhibits growth of hepatocellular carcinoma cells in vitro. Appl Biochem Biotechnol 2014; 175:526-34. [PMID: 25326185 DOI: 10.1007/s12010-014-1281-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023]
Abstract
Ser/Thr protein phosphatase 5 (PPP5C) has been reported to participate in tumor progression. However, its functional role in hepatocellular carcinoma (HCC) remains unknown yet. In this study, we firstly evaluated the expression levels of PPP5C in six HCC cell lines by real-time PCR and found that PPP5C was widely expressed in HCC cells. To explore the role of PPP5C in HCC cell growth, lentivirus-mediated short hairpin RNA (shRNA) was employed to silence PPP5C expression in HepG2 and Bel-7404 cells. The expression of PPP5C was significantly downregulated in PPP5C knockdown cells. Knockdown of PPP5C markedly suppressed the proliferation and colony formation ability of HCC cells. Moreover, cell cycle analysis showed that PPP5C depletion in HepG2 cells led to G0/G1 phase and G2/M phase arrest. We demonstrate for the first time that PPP5C is essential for growth of HCC cells, which suggests that inhibition of PPP5C by RNAi may be a potential therapeutic strategy for the treatment of HCC.
Collapse
|
15
|
Mazalouskas MD, Godoy-Ruiz R, Weber DJ, Zimmer DB, Honkanen RE, Wadzinski BE. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1. J Biol Chem 2013; 289:4219-32. [PMID: 24371145 DOI: 10.1074/jbc.m113.518514] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Serine/threonine protein phosphatase 5 (PP5, PPP5C) is known to interact with the chaperonin heat shock protein 90 (HSP90) and is involved in the regulation of multiple cellular signaling cascades that control diverse cellular processes, such as cell growth, differentiation, proliferation, motility, and apoptosis. Here, we identify PP5 in stable complexes with extracellular signal-regulated kinases (ERKs). Studies using mutant proteins reveal that the formation of PP5·ERK1 and PP5·ERK2 complexes partially depends on HSP90 binding to PP5 but does not require PP5 or ERK1/2 activity. However, PP5 and ERK activity regulates the phosphorylation state of Raf1 kinase, an upstream activator of ERK signaling. Whereas expression of constitutively active Rac1 promotes the assembly of PP5·ERK1/2 complexes, acute activation of ERK1/2 fails to influence the phosphatase-kinase interaction. Introduction of oncogenic HRas (HRas(V12)) has no effect on PP5-ERK1 binding but selectively decreases the interaction of PP5 with ERK2, in a manner that is independent of PP5 and MAPK/ERK kinase (MEK) activity, yet paradoxically requires ERK2 activity. Additional studies conducted with oncogenic variants of KRas4B reveal that KRas(L61), but not KRas(V12), also decreases the PP5-ERK2 interaction. The expression of wild type HRas or KRas proteins fails to reduce PP5-ERK2 binding, indicating that the effect is specific to HRas(V12) and KRas(L61) gain-of-function mutations. These findings reveal a novel, differential responsiveness of PP5-ERK1 and PP5-ERK2 interactions to select oncogenic Ras variants and also support a role for PP5·ERK complexes in regulating the feedback phosphorylation of PP5-associated Raf1.
Collapse
Affiliation(s)
- Matthew D Mazalouskas
- From the Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600
| | | | | | | | | | | |
Collapse
|
16
|
Zhou BH, Wang HW, Zhao ZS, Liu M, Yan WC, Zhao J, Zhang Z, Xue FQ. A novel serine/threonine protein phosphatase type 5 from second-generation merozoite of Eimeria tenella is associated with diclazuril-induced apoptosis. Parasitol Res 2013; 112:1771-80. [PMID: 23417098 DOI: 10.1007/s00436-013-3336-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/31/2013] [Indexed: 11/25/2022]
Abstract
Screening the anticoccidial drug targets is very important for developing novel drugs and revealing the molecular basis of drug resistance in coccidia. Due to high effectivity and safety, diclazuril was used widely in the poultry industry. To assess the roles of the serine/threonine protein phosphatase type 5 of second-generation merozoites in Eimeria tenella (EtPP5) in the anticoccidial activity of diclazuril against chicken coccidiosis, EtPP5 was cloned using reverse transcriptase polymerase chain reaction and rapid amplification of cDNA ends. Ultrastructural changes in second-generation merozoites and mRNA expression level of EtPP5 were monitored by transmission electron microscopy (TEM) and quantitative real-time PCR, respectively. The results showed that the full length of the cloned EtPP5 cDNA (2,495 bp) encompassed a 1,647-bp open reading frame encoding a polypeptide of 548 residues with an estimated molecular mass of 60.82 kDa and a theoretical isoelectric point of 5.89. Molecular analysis of EtPP5 reveals the presence of a C-terminal phosphatase domain and an extended N-terminal tetratricopeptide repeat motif, a typical feature of protein phosphatases. The cDNA sequence has been submitted to the GenBank database with accession number JX987508. EtPP5 shared 89% homology with the published sequence of a PP5 ortholog of Toxoplasma gondii at the amino acid level (GenBank XP_002364442.1). TEM observed that diclazuril induced ultrastructural changes in second-generation merozoites. Quantitative real-time PCR analysis showed that compared with the control group, the level of EtPP5 mRNA expression was significantly downregulated by 51.4% by diclazuril treatment. The high similarity of EtPP5 to previously described PP5 of other organisms, as well as its downregulated expression and connection with apoptosis in the second-generation merozoites induced by diclazuril, suggests that it could act an important role in understanding the signaling mechanism underlining the diclazuril-induced merozoites apoptosis.
Collapse
Affiliation(s)
- Bian-hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, 70 Tianjin Road, Jianxi, Luoyang, Hehan, 471003, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bouazza B, Krytska K, Debba-Pavard M, Amrani Y, Honkanen RE, Tran J, Tliba O. Cytokines alter glucocorticoid receptor phosphorylation in airway cells: role of phosphatases. Am J Respir Cell Mol Biol 2012; 47:464-73. [PMID: 22592921 DOI: 10.1165/rcmb.2011-0364oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corticosteroid insensitivity (CSI) represents a profound challenge in managing patients with asthma. We recently demonstrated that short exposure of airway smooth muscle cells (ASMCs) to proasthmatic cytokines drastically reduced their responsiveness to glucocorticoids (GCs), an effect that was partially mediated via interferon regulatory factor-1, suggesting the involvement of additional mechanisms (Am J Respir Cell Mol Biol 2008;38:463-472). Although GC receptor (GR) can be phosphorylated at multiple serines in the N-terminal region, the major phosphorylation sites critical for GR transcriptional activity are serines 211 (Ser211) and 226 (Ser226). We tested the novel hypothesis that cytokine-induced CSI in ASMCs is due to an impaired GR phosphorylation. Cells were treated with TNF-α (10 ng/ml) and IFN-γ (500 UI/ml) for 6 hours and/or fluticasone (100 nm) added 2 hours before. GR was constitutively phosphorylated at Ser226 but not at Ser211 residues. Cytokines dramatically suppressed fluticasone-induced phosphorylation of GR on Ser211 but not on Ser226 residues while increasing the expression of Ser/Thr protein phosphatase (PP)5 but not that of PP1 or PP2A. Transfection studies using a reporter construct containing GC responsive elements showed that the specific small interfering RNA-induced mRNA knockdown of PP5, but not that of PP1 or PP2A, partially prevented the cytokine suppressive effects on GR-meditated transactivation activity. Similarly, cytokines failed to inhibit GC-induced GR-Ser211 phosphorylation when expression of PP5 was suppressed. We propose that the novel mechanism that proasthmatic cytokine-induced CSI in ASMCs is due, in part, to PP5-mediated impairment of GR-Ser211 phosphorylation.
Collapse
Affiliation(s)
- Belaid Bouazza
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA 19107-5233, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Sanchez ER. Chaperoning steroidal physiology: lessons from mouse genetic models of Hsp90 and its cochaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:722-9. [PMID: 22155719 DOI: 10.1016/j.bbamcr.2011.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
The molecular chaperone Hsp90 is abundant, ubiquitous, and catholic to biological processes in eukaryotes, controlling phosphorylation cascades, protein stability and turnover, client localization and trafficking, and ligand-receptor interactions. Not surprisingly, Hsp90 does not accomplish these activities alone. Instead, an ever-growing number of cochaperones have been identified, leading to an explosion of reports on their molecular and cellular effects on Hsp90 chaperoning of client substrates. Notable among these clients are many members of the steroid receptor family, such as glucocorticoid, androgen, estrogen and progesterone receptors. Cochaperones typically associated with the mature, hormone-competent states of these receptors include p23, the FK506-binding protein 52 (FKBP52), FKBP51, protein phosphatase 5 (PP5) and cyclophilin 40 (Cyp40). The ultimate relevance of these cochaperones to steroid receptor action depends on their physiological effects. In recent years, the first mouse genetic models of these cochaperones have been developed. This work will review the complex and intriguing phenotypes so far obtained in genetically-altered mice and compare them to the known molecular and cellular impacts of cochaperones on steroid receptors. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Edwin R Sanchez
- Department of Physiologyand Pharmacology, University of Toledo College of Medicine, Toledo, OH, USA.
| |
Collapse
|
19
|
Amable L, Grankvist N, Largen JW, Ortsäter H, Sjöholm Å, Honkanen RE. Disruption of serine/threonine protein phosphatase 5 (PP5:PPP5c) in mice reveals a novel role for PP5 in the regulation of ultraviolet light-induced phosphorylation of serine/threonine protein kinase Chk1 (CHEK1). J Biol Chem 2011; 286:40413-22. [PMID: 21921034 DOI: 10.1074/jbc.m111.244053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PP5 is a ubiquitously expressed Ser/Thr protein phosphatase. High levels of PP5 have been observed in human cancers, and constitutive PP5 overexpression aids tumor progression in mouse models of tumor development. However, PP5 is highly conserved among species, and the roles of PP5 in normal tissues are not clear. Here, to help evaluate the biological actions of PP5, a Cre/loxP-conditional mouse line was generated. In marked contrast to the early embryonic lethality associated with the genetic disruption of other PPP family phosphatases (e.g. PP2A and PP4), intercrosses with mouse lines that ubiquitously express Cre recombinase starting early in development (e.g. MeuCre40 and ACTB-Cre) produced viable and fertile PP5-deficient mice. Phenotypic differences caused by the total disruption of PP5 were minor, suggesting that small molecule inhibitors of PP5 will not have widespread systemic toxicity. Examination of roles for PP5 in fibroblasts generated from PP5-deficient embryos (PP5(-/-) mouse embryonic fibroblasts) confirmed some known roles and identified new actions for PP5. PP5(-/-) mouse embryonic fibroblasts demonstrated increased sensitivity to UV light, hydroxyurea, and camptothecin, which are known activators of ATR (ataxia-telangiectasia and Rad3-related) kinase. Further study revealed a previously unrecognized role for PP5 downstream of ATR activation in a UV light-induced response. The genetic disruption of PP5 is associated with enhanced and prolonged phosphorylation of a single serine (Ser-345) on Chk1, increased phosphorylation of the p53 tumor suppressor protein (p53) at serine 18, and increased p53 protein levels. A comparable role for PP5 in the regulation of Chk1 phosphorylation was also observed in human cells.
Collapse
Affiliation(s)
- Lauren Amable
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | | | |
Collapse
|
20
|
Skarra DV, Goudreault M, Choi H, Mullin M, Nesvizhskii AI, Gingras AC, Honkanen RE. Label-free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5. Proteomics 2011; 11:1508-16. [PMID: 21360678 DOI: 10.1002/pmic.201000770] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/12/2011] [Accepted: 01/24/2011] [Indexed: 11/07/2022]
Abstract
Affinity purification coupled to mass spectrometry (AP-MS) represents a powerful and proven approach for the analysis of protein-protein interactions. However, the detection of true interactions for proteins that are commonly considered background contaminants is currently a limitation of AP-MS. Here using spectral counts and the new statistical tool, Significance Analysis of INTeractome (SAINT), true interaction between the serine/threonine protein phosphatase 5 (PP5) and a chaperonin, heat shock protein 90 (Hsp90), is discerned. Furthermore, we report and validate a new interaction between PP5 and an Hsp90 adaptor protein, stress-induced phosphoprotein 1 (STIP1; HOP). Mutation of PP5, replacing key basic amino acids (K97A and R101A) in the tetratricopeptide repeat (TPR) region known to be necessary for the interactions with Hsp90, abolished both the known interaction of PP5 with cell division cycle 37 homolog and the novel interaction of PP5 with stress-induced phosphoprotein 1. Taken together, the results presented demonstrate the usefulness of label-free quantitative proteomics and statistical tools to discriminate between noise and true interactions, even for proteins normally considered as background contaminants.
Collapse
Affiliation(s)
- Dana V Skarra
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
McKeen HD, Byrne C, Jithesh PV, Donley C, Valentine A, Yakkundi A, O'Rourke M, Swanton C, McCarthy HO, Hirst DG, Robson T. FKBPL regulates estrogen receptor signaling and determines response to endocrine therapy. Cancer Res 2010; 70:1090-100. [PMID: 20103631 DOI: 10.1158/0008-5472.can-09-2515] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HSP90 chaperone and immunophilin FKBPL is an estrogen-responsive gene that interacts with estogen receptor alpha (ERalpha) and regulates its levels. In this study, we explored the effects of FKBPL on breast cancer proliferation. Breast cancer cells stably overexpressing FKBPL became dependent on estrogen for their growth and were dramatically more sensitive to the antiestrogens tamoxifen and fulvestrant, whereas FKBPL knockdown reverses this phenotype. FKBPL knockdown also decreased the levels of the cell cycle inhibitor p21WAF1 and increased ERalpha phosphorylation on Ser(118) in response to 17beta-estradiol and tamoxifen. In support of the likelihood that these effects explained FKBPL-mediated cell growth inhibition and sensitivity to endocrine therapies, FKBPL expression was correlated with increased overall survival and distant metastasis-free survival in breast cancer patients. Our findings suggest that FKBPL may have prognostic value based on its impact on tumor proliferative capacity and sensitivity to endocrine therapies, which improve outcome.
Collapse
Affiliation(s)
- Hayley D McKeen
- School of Pharmacy, McClay Research Centre and Centre for Cancer Research and Cell Biology, Queen's University, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang Y, Leung DYM, Nordeen SK, Goleva E. Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation. J Biol Chem 2009; 284:24542-52. [PMID: 19586900 DOI: 10.1074/jbc.m109.021469] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although glucocorticoids suppress proliferation of many cell types and are used in the treatment of certain cancers, trials of glucocorticoid therapy in breast cancer have been a disappointment. Another suggestion that estrogens may affect glucocorticoid action is that the course of some inflammatory diseases tends to be more severe and less responsive to corticosteroid treatment in females. To date, the molecular mechanism of cross-talk between estrogens and glucocorticoids is poorly understood. Here we show that, in both MCF-7 and T47D breast cancer cells, estrogen inhibits glucocorticoid induction of the MKP-1 (mitogen-activated protein kinase phosphatase-1) and serum/glucocorticoid-regulated kinase genes. Estrogen did not affect glucocorticoid-induced glucocorticoid receptor (GR) nuclear translocation but reduced ligand-induced GR phosphorylation at Ser-211, which is associated with the active form of GR. We show that estrogen increases expression of protein phosphatase 5 (PP5), which mediates the dephosphorylation of GR at Ser-211. Gene knockdown of PP5 abolished the estrogen-mediated suppression of GR phosphorylation and induction of MKP-1 and serum/glucocorticoid-regulated kinase. More importantly, after PP5 knockdown estrogen-promoted cell proliferation was significantly suppressed by glucocorticoids. This study demonstrates cross-talk between estrogen-induced PP5 and GR action. It also reveals that PP5 inhibition may antagonize estrogen-promoted events in response to corticosteroid therapy.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
23
|
Golden T, Swingle M, Honkanen RE. The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer. Cancer Metastasis Rev 2008; 27:169-78. [PMID: 18253812 DOI: 10.1007/s10555-008-9125-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although the aberrant actions of protein kinases have long been known to contribute to tumor promotion and carcinogenesis, roles for protein phosphatases in the development of human cancer have only emerged in the last decade. In this review, we discuss the data obtained from studies examining the biological and pathological roles of a serine/threonine protein phosphatase, PP5, which suggest that PP5 is a potentially important regulator of both hormone- and stress-induced signaling networks that enable a cell to respond appropriately to genomic stress.
Collapse
Affiliation(s)
- Teresa Golden
- Department of Biological Sciences, Southeastern Oklahoma State University, Durant, OK 74701, USA.
| | | | | |
Collapse
|
24
|
Bertini I, Fragai M, Luchinat C, Talluri E. Water-Based Ligand Screening for Paramagnetic Metalloproteins. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Bertini I, Fragai M, Luchinat C, Talluri E. Water-Based Ligand Screening for Paramagnetic Metalloproteins. Angew Chem Int Ed Engl 2008; 47:4533-7. [DOI: 10.1002/anie.200800327] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Golden T, Aragon IV, Rutland B, Tucker JA, Shevde LA, Samant RS, Zhou G, Amable L, Skarra D, Honkanen RE. Elevated levels of Ser/Thr protein phosphatase 5 (PP5) in human breast cancer. Biochim Biophys Acta Mol Basis Dis 2008; 1782:259-70. [PMID: 18280813 DOI: 10.1016/j.bbadis.2008.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 12/19/2007] [Accepted: 01/09/2008] [Indexed: 01/21/2023]
Abstract
Ser/Thr protein phosphatase 5 (PP5) regulates several signaling-cascades that suppress growth and/or facilitate apoptosis in response to genomic stress. The expression of PP5 is responsive to hypoxia inducible factor-1 (HIF-1) and estrogen, which have both been linked to the progression of human breast cancer. Still, it is not clear if PP5 plays a role in the development of human cancer. Here, immunostaining of breast cancer tissue-microarrays (TMAs) revealed a positive correlation between PP5 over-expression and ductal carcinoma in situ (DCIS; P value 0.0028), invasive ductal carcinoma (IDC; P value 0.012) and IDC with metastases at the time of diagnosis (P value 0.0001). In a mouse xenograft model, the constitutive over-expression of PP5 was associated with an increase in the rate of tumor growth. In a MCF-7 cell culture model over-expression correlated with both an increase in the rate of proliferation and protection from cell death induced by oxidative stress, UVC-irradiation, adriamycin, and vinblastine. PP5 over-expression had no apparent effect on the sensitivity of MCF-7 cells to taxol or rapamycin. Western analysis of extracts from cells over-expressing PP5 revealed a decrease in the phosphorylation of known substrates for PP5. Together, these studies indicate that elevated levels of PP5 protein occur in human breast cancer and suggest that PP5 over-expression may aid tumor progression.
Collapse
Affiliation(s)
- Teresa Golden
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hinds TD, Sánchez ER. Protein phosphatase 5. Int J Biochem Cell Biol 2007; 40:2358-62. [PMID: 17951098 DOI: 10.1016/j.biocel.2007.08.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 01/16/2023]
Abstract
Protein phosphatase 5 (PP5) is a unique member of the PPP family of serine/threonine phosphatases based on the presence of tetratricopeptide repeat (TPR) domains within its structure. Since its discovery, PP5 has been implicated in wide ranging cellular processes, including MAPK-mediated growth and differentiation, cell cycle arrest and DNA damage repair via the p53 and ATM/ATR pathways, regulation of ion channels via the membrane receptor for atrial natriuretic peptide, the cellular heat shock response as mediated by heat shock transcription factor, and steroid receptor signaling, especially glucocorticoid receptor (GR). Given this diversity of effects, the recent development of viable PP5-deficient mice was surprising and suggests that PP5 is a modulatory, rather than essential, factor in phosphorylation pathways. Here, we review the signaling involvement of PP5 in light of new findings and relate these activities to the structural features of the protein.
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, 3035 Arlington Avenue, Toledo, OH 43614-5804, USA.
| | | |
Collapse
|
28
|
Anderson S, Jones C, Saha L, Chaudhuri M. Functional characterization of the serine/threonine protein phosphatase 5 from Trypanosoma brucei. J Parasitol 2007; 92:1152-61. [PMID: 17304789 DOI: 10.1645/ge-916r1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PP5 is a member of the PPP family of serine/threonine protein phosphatases and is present in all eukaryotes. We previously cloned and characterized a PP5 homologue from Trypanosoma brucei. Here, we synchronized the T. brucei procyclic form by hydroxyurea treatment and showed that TbPP5 expression is regulated during cell cycle progression. TbPP5 transcript and protein levels were maximal in the G1 phase of the cell cycle, and reduced about 3-fold in the G2/M phase. To further evaluate its function, TbPP5 expression was depleted in both procyclic and bloodstream forms of T. brucei by RNA interference. In the procyclic form, TbPP5 knockdown resulted in a moderate reduction in cell growth. However, in the bloodstream form, ablation of TbPP5 caused an 8-fold decrease in cell growth. Furthermore, TbPP5 overexpression conferred the ability of procyclic cells to grow in serum-deprived conditions suggesting that TbPP5 acts downstream of serum factor-induced growth in T. brucei. Taken together; these findings suggest that a serum factor (or factors) induces up-regulation of TbPP5 expression during the G1 phase, which is required for proper cell growth.
Collapse
Affiliation(s)
- Sedrick Anderson
- Division of Microbial Pathogenesis and Immune Response, Department of Biomedical Sciences, Meharry Medical College, Nashville, Tennessee 37208, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Protein serine/threonine phosphatases control key biological pathways including early embryonic development, cell proliferation, cell death, circadian rhythm and cancer. Recent studies have provided important insights into how several of the many phosphatase regulators, through their interaction with a conserved phosphatase catalytic subunit, control the activity of critical substrates in these diverse pathways. Recent co-crystal structures provided a major insight into how the diverse protein serine/threonine regulators rein in the otherwise promiscuous catalytic subunits.
Collapse
Affiliation(s)
- Monica Gallego
- Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
30
|
Zhou G, Golden T, Aragon IV, Honkanen RE. Ser/Thr protein phosphatase 5 inactivates hypoxia-induced activation of an apoptosis signal-regulating kinase 1/MKK-4/JNK signaling cascade. J Biol Chem 2004; 279:46595-605. [PMID: 15328343 DOI: 10.1074/jbc.m408320200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling cascades are multifunctional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. Since the activation/propagation of MAPK signaling requires the sequential phosphorylation of many downstream proteins, the phosphatases that dephosphorylate MAPKs represent critical elements in the control of MAPK-signaling networks. Here we show that hypoxia induces a transient increase in the activity of apoptosis signal-regulating kinase 1 (ASK-1), a MAPKKK that responds to oxidative stress by triggering cascades leading to the phosphorylation/activation of c-Jun N-terminal kinases (JNK) and p38-MAPK. Hypoxia-induced ASK-1/MKK-4/JNK signaling is suppressed by serine/threonine protein phosphatase type 5 (PP5), which acts to turn off ASK-1/MKK-4/JNK signaling via two mechanisms. First, in a rapid response hypoxia facilitates the association of endogenous PP5 with ASK-1. PP5 binds to the C-terminal domain of ASK-1, and studies with siRNA targeting PP5 indicate that PP5 acts to suppress the phosphorylation of MKK4 (Thr-261), JNK (Thr-183/Tyr-185), and c-Jun (Ser-63) without affecting the activating phosphorylation of p38 MAPK (Thr-180/Tyr-182), p44/p42-MAPK/ERK1/2 (Thr-202/Tyr-204), or c-Jun protein levels. If hypoxia is prolonged, the expression of PP5 is increased due to the activation of a transcriptional activator, which was identified as hypoxia-inducible factor-1. Together, these studies indicate that PP5 plays an important role in the survival of cells in a low oxygen environment by suppressing a hypoxia-induced ASK-1/MKK4/JNK signaling cascade that promotes an apoptotic response.
Collapse
MESH Headings
- Apoptosis
- Base Sequence
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Enzyme Activation
- Genes, Reporter
- Humans
- Hypoxia
- JNK Mitogen-Activated Protein Kinases/metabolism
- Luciferases/metabolism
- MAP Kinase Kinase 4/metabolism
- MAP Kinase Kinase Kinase 5/metabolism
- Microcystins
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Models, Biological
- Molecular Sequence Data
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Oxygen/metabolism
- Peptides, Cyclic/pharmacology
- Phosphoprotein Phosphatases/metabolism
- Phosphoprotein Phosphatases/physiology
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- RNA, Double-Stranded/metabolism
- RNA, Small Interfering/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sepharose/metabolism
- Sequence Homology, Nucleic Acid
- Signal Transduction
- Threonine/metabolism
- Time Factors
- Transcriptional Activation
Collapse
Affiliation(s)
- Guofei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|