1
|
Feng W, Zuo M, Li W, Chen S, Wang Z, Yuan Y, Yang Y, Liu Y. A novel score system based on arginine metabolism-related genes to predict prognosis, characterize immune microenvironment, and forecast response to immunotherapy in IDH-wildtype glioblastoma. Front Pharmacol 2023; 14:1145828. [PMID: 37214463 PMCID: PMC10196947 DOI: 10.3389/fphar.2023.1145828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Glioblastoma is one of the most lethal cancers and leads to more than 200,000 deaths annually. However, despite lots of researchers devoted to exploring novel treatment regime, most of these attempts eventually failed to improve the overall survival of glioblastoma patients in near 20 years. Immunotherapy is an emerging therapy for cancers and have succeeded in many cancers. But most of its application in glioblastoma have been proved with no improvement in overall survival, which may result from the unique immune microenvironment of glioblastoma. Arginine is amino acid and is involved in many physiological processes. Many studies have suggested that arginine and its metabolism can regulate malignancy of multiple cancers and influence the formation of tumor immune microenvironment. However, there is hardly study focusing on the role of arginine metabolism in glioblastoma. Methods: In this research, based on mRNA sequencing data of 560 IDH-wildtype glioblastoma patients from three public cohorts and one our own cohort, we aimed to construct an arginine metabolism-related genes signature (ArMRS) based on four essential arginine metabolism-related genes (ArMGs) that we filtered from all genes with potential relation with arginine metabolism. Subsequently, the glioblastoma patients were classified into ArMRS high-risk and low-risk groups according to calculated optimal cut-off values of ArMRS in these four cohorts. Results: Further validation demonstrated that the ArMRS was an independent prognostic factor and displayed fine efficacy in prediction of glioblastoma patients' prognosis. Moreover, analyses of tumor immune microenvironment revealed that higher ArMRS was correlated with more immune infiltration and relatively "hot" immunological phenotype. We also demonstrated that ArMRS was positively correlated with the expression of multiple immunotherapy targets, including PD1 and B7-H3. Additionally, the glioblastomas in the ArMRS high-risk group would present with more cytotoxic T cells (CTLs) infiltration and better predicted response to immune checkpoint inhibitors (ICIs). Discussion: In conclusion, our study constructed a novel score system based on arginine metabolism, ArMRS, which presented with good efficacy in prognosis prediction and strong potential to predict unique immunological features, resistance to immunotherapy, and guide the application of immunotherapy in IDH-wild type glioblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuan Yang
- *Correspondence: Yuan Yang, ; Yanhui Liu,
| | - Yanhui Liu
- *Correspondence: Yuan Yang, ; Yanhui Liu,
| |
Collapse
|
2
|
Hou X, Chen S, Zhang P, Guo D, Wang B. Targeted Arginine Metabolism Therapy: A Dilemma in Glioma Treatment. Front Oncol 2022; 12:938847. [PMID: 35898872 PMCID: PMC9313538 DOI: 10.3389/fonc.2022.938847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Efforts in the treatment of glioma which is the most common primary malignant tumor of the central nervous system, have not shown satisfactory results despite a comprehensive treatment model that combines various treatment methods, including immunotherapy. Cellular metabolism is a determinant of the viability and function of cancer cells as well as immune cells, and the interplay of immune regulation and metabolic reprogramming in tumors has become an active area of research in recent years. From the perspective of metabolism and immunity in the glioma microenvironment, we elaborated on arginine metabolic reprogramming in glioma cells, which leads to a decrease in arginine levels in the tumor microenvironment. Reduced arginine availability significantly inhibits the proliferation, activation, and function of T cells, thereby promoting the establishment of an immunosuppressive microenvironment. Therefore, replenishment of arginine levels to enhance the anti-tumor activity of T cells is a promising strategy for the treatment of glioma. However, due to the lack of expression of argininosuccinate synthase, gliomas are unable to synthesize arginine; thus, they are highly dependent on the availability of arginine in the extracellular environment. This metabolic weakness of glioma has been utilized by researchers to develop arginine deprivation therapy, which ‘starves’ tumor cells by consuming large amounts of arginine in circulation. Although it has shown good results, this treatment modality that targets arginine metabolism in glioma is controversial. Exploiting a suitable strategy that can not only enhance the antitumor immune response, but also “starve” tumor cells by regulating arginine metabolism to cure glioma will be promising.
Collapse
|
3
|
Bhingarkar A, Vangapandu HV, Rathod S, Hoshitsuki K, Fernandez CA. Amino Acid Metabolic Vulnerabilities in Acute and Chronic Myeloid Leukemias. Front Oncol 2021; 11:694526. [PMID: 34277440 PMCID: PMC8281237 DOI: 10.3389/fonc.2021.694526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
Amino acid (AA) metabolism plays an important role in many cellular processes including energy production, immune function, and purine and pyrimidine synthesis. Cancer cells therefore require increased AA uptake and undergo metabolic reprogramming to satisfy the energy demand associated with their rapid proliferation. Like many other cancers, myeloid leukemias are vulnerable to specific therapeutic strategies targeting metabolic dependencies. Herein, our review provides a comprehensive overview and TCGA data analysis of biosynthetic enzymes required for non-essential AA synthesis and their dysregulation in myeloid leukemias. Furthermore, we discuss the role of the general control nonderepressible 2 (GCN2) and-mammalian target of rapamycin (mTOR) pathways of AA sensing on metabolic vulnerability and drug resistance.
Collapse
Affiliation(s)
- Aboli Bhingarkar
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Hima V. Vangapandu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Sanjay Rathod
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Keito Hoshitsuki
- Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christian A. Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Recombinant Bacillus caldovelox Arginase Mutant (BCA-M) Induces Apoptosis, Autophagy, Cell Cycle Arrest and Growth Inhibition in Human Cervical Cancer Cells. Int J Mol Sci 2020; 21:ijms21207445. [PMID: 33050217 PMCID: PMC7589785 DOI: 10.3390/ijms21207445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
With our recent success in developing a recombinant human arginase drug against broad-spectrum cancer cell lines, we have explored the potential of a recombinant Bacillus caldovelox arginase mutant (BCA-M) for human cervical cancer treatment. Our studies demonstrated that BCA-M significantly inhibited the growth of human cervical cancer cells in vitro regardless of argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) expression. Drug susceptibilities correlate well with the expressions of major urea cycle genes and completeness of L-arginine regeneration pathways. With the expressions of ASS and ASL genes conferring resistance to L-arginine deiminase (ADI) which is undergoing Phase III clinical trial, BCA-M offers the advantage of a broader spectrum of susceptible cancer cells. Mechanistic studies showed that BCA-M inhibited the growth of human cervical cancer cells by inducing apoptosis and cell cycle arrest at S and/or G2/M phases. Our results also displayed that autophagy served as a protective mechanism, while the growth inhibitory effects of BCA-M could be enhanced synergistically by its combination to the autophagy inhibitor, chloroquine (CQ), on human cervical cancer cells.
Collapse
|
5
|
Mörén L, Perryman R, Crook T, Langer JK, Oneill K, Syed N, Antti H. Metabolomic profiling identifies distinct phenotypes for ASS1 positive and negative GBM. BMC Cancer 2018; 18:167. [PMID: 29422017 PMCID: PMC5806242 DOI: 10.1186/s12885-018-4040-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background Tumour cells have a high demand for arginine. However, a subset of glioblastomas has a defect in the arginine biosynthetic pathway due to epigenetic silencing of the rate limiting enzyme argininosuccinate synthetase (ASS1). These tumours are auxotrophic for arginine and susceptible to the arginine degrading enzyme, pegylated arginine deiminase (ADI-PEG20). Moreover, ASS1 deficient GBM have a worse prognosis compared to ASS1 positive tumours. Since altered tumour metabolism is one of the hallmarks of cancer we were interested to determine if these two subtypes exhibited different metabolic profiles that could allow for their non-invasive detection as well as unveil additional novel therapeutic opportunities. Methods We looked for basal metabolic differences using one and two-dimensional gas chromatography-time-of-flight mass spectrometry (1D/2D GC-TOFMS) followed by targeted analysis of 29 amino acids using liquid chromatography-time-of-flight mass spectrometry (LC-TOFMS). We also looked for differences upon arginine deprivation in a single ASS1 negative and positive cell line (SNB19 and U87 respectively). The acquired data was evaluated by chemometric based bioinformatic methods. Results Orthogonal partial least squares-discriminant analysis (OPLS-DA) of both the 1D and 2D GC-TOFMS data revealed significant systematic difference in metabolites between the two subgroups with ASS1 positive cells generally exhibiting an overall elevation of identified metabolites, including those involved in the arginine biosynthetic pathway. Pathway and network analysis of the metabolite profile show that ASS1 negative cells have altered arginine and citrulline metabolism as well as altered amino acid metabolism. As expected, we observed significant metabolite perturbations in ASS negative cells in response to ADI-PEG20 treatment. Conclusions This study has highlighted significant differences in the metabolome of ASS1 negative and positive GBM which warrants further study to determine their diagnostic and therapeutic potential for the treatment of this devastating disease.
Collapse
Affiliation(s)
- Lina Mörén
- Department of Chemistry, Umeå University, SE 901 87, Umeå, Sweden
| | - Richard Perryman
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London, UK
| | - Tim Crook
- St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, Surrey, UK
| | - Julia K Langer
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London, UK
| | - Kevin Oneill
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, London, UK.
| | - Henrik Antti
- Department of Chemistry, Umeå University, SE 901 87, Umeå, Sweden.
| |
Collapse
|
6
|
Liu Z, Nahon P, Li Z, Yin P, Li Y, Amathieu R, Ganne-Carrié N, Ziol M, Sellier N, Seror O, Le Moyec L, Savarin P, Xu G. Determination of candidate metabolite biomarkers associated with recurrence of HCV-related hepatocellular carcinoma. Oncotarget 2018; 9:6245-6258. [PMID: 29464069 PMCID: PMC5814209 DOI: 10.18632/oncotarget.23500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) infection is associated with a high risk of developing hepatocellular carcinoma (HCC) and HCC recurrence remains the primary threat to outcomes after curative therapy. In this study, we compared recurrent and non-recurrent HCC patients treated with radiofrequency ablation (RFA) in order to identify characteristic metabolic profile variations associated with HCC recurrence. Gas chromatography-mass spectrometry (GC-MS) -based metabolomic analyses were conducted on serum samples obtained before and after RFA therapy. Significant variations were observed in metabolites in the glycerolipid, tricarboxylic acid (TCA) cycle, fatty acid, and amino acid pathways between recurrent and non-recurrent patients. Observed differences in metabolites associated with recurrence did not coincide before and after treatment except for fatty acids. Based on the comparison of serum metabolomes between recurrent and non-recurrent patients, key discriminatory metabolites were defined by a random forest (RF) test. Two combinations of these metabolites before and after RFA treatment showed outstanding performance in predicting HCV-related HCC recurrence, they were further confirmed by an external validation set. Our study showed that the determined combination of metabolites may be potential biomarkers for the prediction of HCC recurrence before and after RFA treatment.
Collapse
Affiliation(s)
- Zhicheng Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques, UMR 7244, Bobigny, France
| | - Pierre Nahon
- Hepatology Unit, Jean Verdier Teaching Hospital, AP-HP, Bondy, France.,INSERM U1162, Génomique Fonctionnelle des Tumeurs Solides, INSERM U1162, Paris, France.,University Paris 13, Bobigny, France
| | - Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peiyuan Yin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yanli Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Roland Amathieu
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques, UMR 7244, Bobigny, France.,Intensive Care Unit, Jean Verdier Teaching Hospital, AP-HP, Bondy, France
| | - Nathalie Ganne-Carrié
- Hepatology Unit, Jean Verdier Teaching Hospital, AP-HP, Bondy, France.,University Paris 13, Bobigny, France
| | - Marianne Ziol
- APHP, Service d'Anatomie Pathologique, Hôpital Jean Verdier, BB-0033-00027, Centre de Ressources Biologiques Maladies du foie, Groupe Hospitalier, Paris-Seine-Saint-Denis, France.,BB-0033-00027, Centre de Ressources Biologiques Maladies du Foie, Groupe Hospitalier Paris-Seine-Saint-Denis, Bondy, France
| | - Nicolas Sellier
- APHP, Service de Radiologie, Hôpital Jean Verdier, Bondy, France
| | - Olivier Seror
- INSERM U1162, Génomique Fonctionnelle des Tumeurs Solides, INSERM U1162, Paris, France.,APHP, Service de Radiologie, Hôpital Jean Verdier, Bondy, France
| | | | - Philippe Savarin
- Université Paris 13, Sorbonne Paris Cité, Laboratoire de Chimie, Structures et Propriétés de Biomateriaux et d'Agents Therapeutiques, UMR 7244, Bobigny, France
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
7
|
Liu JB, Lei LL, Yang YH, Li W, Ma QY, Liu DC, Li SQ. Arginine deiminase inhibits pancreatic cancer cell invasion by blocking PI3K-AKT signaling pathway. Shijie Huaren Xiaohua Zazhi 2016; 24:3570-3579. [DOI: 10.11569/wcjd.v24.i24.3570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the impact of arginine deiminase (ADI) on the migration and invasion of human pancreatic cancer cells and the possible mechanism involved.
METHODS The pancreatic cancer cell lines PANC-1 expressing defective argininosuccinate synthase (ASS) and BxPC-3 expressing ASS protein were chosen for the ADI treatment experiments, and they were cultured in the medium containing ADI (experimental group) or the common medium without ADI (control group). The impact of ADI on the migration and invasion of the two pancreatic cancer cell lines was examined by scratch assay and transwell invasion assay. The mRNA and protein expression of invasion-related genes in pancreatic cancer cells treated with ADI was detected by real-time quantitative PCR and/or Western blot. The expression of signal transduction proteins and invasion-related proteins in PANC-1 cell treated with ADI in combination with PI3K signaling inhibitor LY294002 was also analyzed.
RESULTS ADI significantly inhibited cell migration and invasion (P < 0.05), down-regulated the mRNA and protein levels of urokinase plasminogen activator, matrix metalloproteinases (MMP)-2, as well as MMP-9, and elevated the levels of tissue inhibitor of metalloproteinase-2 and E-Cadherin (P < 0.05) in ASS deficient pancreatic cancer cell line PANC-1; while there were no obvious changes for ASS-positive pancreatic cancer cell line BxPC-3. ADI reduced the expression levels of p-AKT and p-p65, which are involved in the PI3K/AKT/nuclear factor-kappa B (NF-κB) signaling, in PANC-1 cells, and PI3K inhibitor LY294002 can synergize the effect of ADI on reducing the levels of phosphorylation of the signaling protein and MMP-2. Furthermore, in combination with ADI, LY294002 synergistically inhibited the invasion ability of pancreatic cancer PANC-1 cells (P < 0.05).
CONCLUSION ADI inhibits the invasion of pancreatic cancer cells by regulating the expression of invasion-related genes via blocking the PI3K-AKT signaling pathway.
Collapse
|
8
|
Stasyk OV, Boretsky YR, Gonchar MV, Sibirny AA. Recombinant arginine‐degrading enzymes in metabolic anticancer therapy and bioanalytics. Cell Biol Int 2014; 39:246-52. [DOI: 10.1002/cbin.10383] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/17/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Oleh V. Stasyk
- Institute of Cell BiologyNational Academy of Sciences of UkraineDrahomanov St. 14/16Lviv79005Ukraine
| | - Yuriy R. Boretsky
- Institute of Cell BiologyNational Academy of Sciences of UkraineDrahomanov St. 14/16Lviv79005Ukraine
- Department of Biochemistry and HygieneLviv State University of Physical CultureKosciuszko St. 11Lviv79000Ukraine
| | - Mykhailo V. Gonchar
- Institute of Cell BiologyNational Academy of Sciences of UkraineDrahomanov St. 14/16Lviv79005Ukraine
- Institute of Applied Biotechnology and Basic SciencesRzeszow UniversitySokolowska Str. 26Kolbuszowa36‐100Poland
| | - Andriy A. Sibirny
- Institute of Cell BiologyNational Academy of Sciences of UkraineDrahomanov St. 14/16Lviv79005Ukraine
- Department of Biotechnology and MicrobiologyRzeszow UniversityCwiklinskiej 2Rzeszow35‐601Poland
| |
Collapse
|
9
|
Arginine deprivation affects glioblastoma cell adhesion, invasiveness and actin cytoskeleton organization by impairment of β-actin arginylation. Amino Acids 2014; 47:199-212. [PMID: 25362567 PMCID: PMC4282698 DOI: 10.1007/s00726-014-1857-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/12/2014] [Indexed: 01/19/2023]
Abstract
A deficit of exogenous arginine affects growth and viability of numerous cancer cells. Although arginine deprivation-based strategy is currently undergoing clinical trials, molecular mechanisms of tumor cells’ response to arginine deprivation are not yet elucidated. We have examined effects of arginine starvation on cell motility, adhesion and invasiveness as well as on actin cytoskeleton organization of human glioblastoma cells. We observed for the first time that arginine, but not lysine, starvation affected cell morphology, significantly inhibited their motility and invasiveness, and impaired adhesion. No effects on glia cells were observed. Also, arginine deprivation in glioblastoma evoked specific changes in actin assembly, decreased β-actin filament content, and affected its N-terminal arginylation. We suggest that alterations in organization of β-actin resulted from a decrease of its arginylation could be responsible for the observed effects of arginine deprivation on cell invasiveness and migration. Our data indicate that arginine deprivation-based treatment strategies could inhibit, at least transiently, the invasion process of highly malignant brain tumors and may have a potential for combination therapy to extend overall patient survival.
Collapse
|
10
|
The metabolic cooperation between cells in solid cancer tumors. Biochim Biophys Acta Rev Cancer 2014; 1846:216-25. [PMID: 24983675 DOI: 10.1016/j.bbcan.2014.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/12/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
Cancer cells cooperate with stromal cells and use their environment to promote tumor growth. Energy production depends on nutrient availability and O₂ concentration. Well-oxygenated cells are highly proliferative and reorient the glucose metabolism towards biosynthesis, whereas glutamine oxidation replenishes the TCA cycle coupled with OXPHOS-ATP production. Glucose, glutamine and alanine transformations sustain nucleotide and fatty acid synthesis. In contrast, hypoxic cells slow down their proliferation, enhance glycolysis to produce ATP and reject lactate which is recycled as fuel by normoxic cells. Thus, glucose is spared for biosynthesis and/or for hypoxic cell function. Environmental cells, such as fibroblasts and adipocytes, serve as food donors for cancer cells, which reject waste products (CO₂ , H⁺, ammoniac, polyamines…) promoting EMT, invasion, angiogenesis and proliferation. This metabolic-coupling can be considered as a form of commensalism whereby non-malignant cells support the growth of cancer cells. Understanding these cellular cooperations within tumors may be a source of inspiration to develop new anti-cancer agents.
Collapse
|
11
|
Three-dimensional environment renders cancer cells profoundly less susceptible to a single amino acid starvation. Amino Acids 2013; 45:1221-30. [DOI: 10.1007/s00726-013-1586-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/27/2013] [Indexed: 01/26/2023]
|
12
|
A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim Biophys Acta Rev Cancer 2012; 1826:423-33. [PMID: 22841746 DOI: 10.1016/j.bbcan.2012.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 02/08/2023]
Abstract
Cancer cells increase glucose uptake and reject lactic acid even in the presence of oxygen (Warburg effect). This metabolism reorients glucose towards the pentose phosphate pathway for ribose synthesis and consumes great amounts of glutamine to sustain nucleotide and fatty acid synthesis. Oxygenated and hypoxic cells cooperate and use their environment in a manner that promotes their development. Coenzymes (NAD(+), NADPH,H(+)) are required in abundance, whereas continuous consumption of ATP and citrate precludes the negative feedback of these molecules on glycolysis, a regulation supporting the Pasteur effect. Understanding the metabolism of cancer cells may help to develop new anti-cancer treatments.
Collapse
|
13
|
Cytotoxicity of human recombinant arginase I (Co)-PEG5000 in the presence of supplemental L-citrulline is dependent on decreased argininosuccinate synthetase expression in human cells. Anticancer Drugs 2012; 23:51-64. [PMID: 21955999 DOI: 10.1097/cad.0b013e32834ae42b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human recombinant arginase I cobalt [HuArgI (Co)] coupled with polyethylene glycol 5000 [HuArgI (Co)-PEG5000] has shown potent in-vitro depletion of arginine from tissue culture medium. We now show that HuArgI (Co)-PEG5000 is toxic to almost all cancer cell lines and to some normal primary cells examined. In contrast, HuArgI (Co)-PEG5000 in combination with supplemental L-citrulline is selectively cytotoxic to a fraction of human cancer cell lines in tissue culture, including some melanomas, mesotheliomas, acute myeloid leukemias, hepatocellular carcinomas, pancreas adenocarcinomas, prostate adenocarcinomas, lung adenocarcinomas, osteosarcomas, and small cell lung carcinomas. Unfortunately, a subset of normal human tissues is also sensitive to HuArgI (Co)-PEG5000 with L-citrulline supplementation, including umbilical endothelial cells, bronchial epithelium, neurons, and renal epithelial cells. We further show that cell sensitivity is predicted by the level of cellular argininosuccinate synthetase protein expression measured by immunoblots. By comparing a 3-day and 7-day exposure to HuArgI (Co)-PEG5000 with supplemental L-citrulline, some tumor cells sensitive on short-term assay are resistant in the 7-day assay consistent with the induction of argininosuccinate synthetase expression. On the basis of these results, we hypothesize that HuArgI (Co)-PEG5000 in combination with L-citrulline supplementation may be an attractive therapeutic agent for some argininosuccinate synthetase-deficient tumors. These in-vitro findings stimulate further development of this molecule and may aid in the identification of tissue toxicities and better selection of patients who will potentially respond to this combination therapy.
Collapse
|
14
|
Vynnytska-Myronovska B, Bobak Y, Garbe Y, Dittfeld C, Stasyk O, Kunz-Schughart LA. Single amino acid arginine starvation efficiently sensitizes cancer cells to canavanine treatment and irradiation. Int J Cancer 2011; 130:2164-75. [PMID: 21647872 DOI: 10.1002/ijc.26221] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/24/2011] [Indexed: 01/25/2023]
Abstract
Single amino acid arginine deprivation is a promising strategy in modern metabolic anticancer therapy. Its potency to inhibit tumor growth warrants the search for rational chemo- and radio-therapeutic approaches to be co-applied. In this report, we evaluated, for the first time, the efficacy of arginine deprivation as anticancer therapy in three-dimensional (3D) cultures of human tumor cells, and propose a new combinatorial metabolic-chemo-radio-treatment regime based on arginine starvation, low doses of arginine natural analog canavanine and irradiation. A sophisticated experimental setup was designed to evaluate the impact of arginine starvation on four human epithelial cancer cell lines in 2D monolayer and 3D spheroid culture. Radioresponse was assessed in colony formation assays and by monitoring spheroid regrowth probability following single dose irradiation using a standardized spheroid-based test platform. Surviving fraction at 2 Gy (SF(2Gy)) and spheroid control dose(50) (SCD(50) ) were calculated as analytical endpoints. Cancer cells in spheroids are much more resistant to arginine starvation than in 2D culture. Spheroid volume stagnated during arginine deprivation, but even after 10 days of starvation, 100% of the spheroids regrew. Combination treatment, however, was remarkably efficient. In particular, pretreatment of cancer cells with the arginine-degrading enzyme arginase combined with or without low concentration of canavanine substantially enhanced cell radioresponse reflected by a loss in spheroid regrowth probability and SCD(50) values reduced by a factor of 1.5-3. Our data strongly suggest that arginine withdrawal alone or in combination with canavanine is a promising antitumor strategy with potential to enhance cancer cure by irradiation.
Collapse
|
15
|
Israël M, Schwartz L. The metabolic advantage of tumor cells. Mol Cancer 2011; 10:70. [PMID: 21649891 PMCID: PMC3118193 DOI: 10.1186/1476-4598-10-70] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/07/2011] [Indexed: 12/21/2022] Open
Abstract
1- Oncogenes express proteins of "Tyrosine kinase receptor pathways", a receptor family including insulin or IGF-Growth Hormone receptors. Other oncogenes alter the PP2A phosphatase brake over these kinases. 2- Experiments on pancreatectomized animals; treated with pure insulin or total pancreatic extracts, showed that choline in the extract, preserved them from hepatomas. Since choline is a methyle donor, and since methylation regulates PP2A, the choline protection may result from PP2A methylation, which then attenuates kinases. 3- Moreover, kinases activated by the boosted signaling pathway inactivate pyruvate kinase and pyruvate dehydrogenase. In addition, demethylated PP2A would no longer dephosphorylate these enzymes. A "bottleneck" between glycolysis and the oxidative-citrate cycle interrupts the glycolytic pyruvate supply now provided via proteolysis and alanine transamination. This pyruvate forms lactate (Warburg effect) and NAD+ for glycolysis. Lipolysis and fatty acids provide acetyl CoA; the citrate condensation increases, unusual oxaloacetate sources are available. ATP citrate lyase follows, supporting aberrant transaminations with glutaminolysis and tumor lipogenesis. Truncated urea cycles, increased polyamine synthesis, consume the methyl donor SAM favoring carcinogenesis. 4- The decrease of butyrate, a histone deacetylase inhibitor, elicits epigenic changes (PETEN, P53, IGFBP decrease; hexokinase, fetal-genes-M2, increase). 5- IGFBP stops binding the IGF - IGFR complex, it is perhaps no longer inherited by a single mitotic daughter cell; leading to two daughter cells with a mitotic capability. 6- An excess of IGF induces a decrease of the major histocompatibility complex MHC1, Natural killer lymphocytes should eliminate such cells that start the tumor, unless the fever prostaglandin PGE2 or inflammation, inhibit them...
Collapse
Affiliation(s)
- Maurice Israël
- Ecole Polytechnique Palaiseau 91128 and Hôpital Raymond Poincaré, 104 Bd Raymond Poincaré Garches 92380m, France.
| | | |
Collapse
|
16
|
Wu FLL, Liang YF, Chang YC, Yo HH, Wei MF, Shen LJ. RNA interference of argininosuccinate synthetase restores sensitivity to recombinant arginine deiminase (rADI) in resistant cancer cells. J Biomed Sci 2011; 18:25. [PMID: 21453546 PMCID: PMC3080799 DOI: 10.1186/1423-0127-18-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/01/2011] [Indexed: 01/19/2023] Open
Abstract
Background Sensitivity of cancer cells to recombinant arginine deiminase (rADI) depends on expression of argininosuccinate synthetase (AS), a rate-limiting enzyme in synthesis of arginine from citrulline. To understand the efficiency of RNA interfering of AS in sensitizing the resistant cancer cells to rADI, the down regulation of AS transiently and permanently were performed in vitro, respectively. Methods We studied the use of down-regulation of this enzyme by RNA interference in three human cancer cell lines (A375, HeLa, and MCF-7) as a way to restore sensitivity to rADI in resistant cells. The expression of AS at levels of mRNA and protein was determined to understand the effect of RNA interference. Cell viability, cell cycle, and possible mechanism of the restore sensitivity of AS RNA interference in rADI treated cancer cells were evaluated. Results AS DNA was present in all cancer cell lines studied, however, the expression of this enzyme at the mRNA and protein level was different. In two rADI-resistant cell lines, one with endogenous AS expression (MCF-7 cells) and one with induced AS expression (HeLa cells), AS small interference RNA (siRNA) inhibited 37-46% of the expression of AS in MCF-7 cells. ASsiRNA did not affect cell viability in MCF-7 which may be due to the certain amount of residual AS protein. In contrast, ASsiRNA down-regulated almost all AS expression in HeLa cells and caused cell death after rADI treatment. Permanently down-regulated AS expression by short hairpin RNA (shRNA) made MCF-7 cells become sensitive to rADI via the inhibition of 4E-BP1-regulated mTOR signaling pathway. Conclusions Our results demonstrate that rADI-resistance can be altered via AS RNA interference. Although transient enzyme down-regulation (siRNA) did not affect cell viability in MCF-7 cells, permanent down-regulation (shRNA) overcame the problem of rADI-resistance due to the more efficiency in AS silencing.
Collapse
Affiliation(s)
- Fe-Lin Lin Wu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Cancer cell sensitivity to arginine deprivationin vitrois not determined by endogenous levels of arginine metabolic enzymes. Cell Biol Int 2010; 34:1085-9. [DOI: 10.1042/cbi20100451] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Yoon CY, Shim YJ, Kim EH, Lee JH, Won NH, Kim JH, Park IS, Yoon DK, Min BH. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer 2007; 120:897-905. [PMID: 17096330 DOI: 10.1002/ijc.22322] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, pegylated arginine deiminase (ADI; EC 3.5.3.6) has been used to treat the patients with hepatocellular carcinoma or melanoma, in which the level of argininosuccinate synthetase (ASS) activity is low or undetectable. The efficacy of its antitumor activity largely depends on the level of intracellular ASS, which enables tumor cells to recycle citrulline to arginine. Thus, we examined the expression levels of ASS in various cancer cells and found that it is low in renal cell carcinoma (RCC) cells, rendering the cells highly sensitive to arginine deprivation by ADI treatment. Immunohistochemical analysis revealed that in biopsy specimens from RCC patients (n = 98), the expression of ASS is highly demonstrated in the epithelium of normal proximal tubule but not seen in tumor cells. Furthermore, RCC cells treated with ADI showed remarkable growth retardation in a dose dependent manner. ADI also exerted in vivo antiproliferative effect on the allografted renal cell carcinoma (RENCA) tumor cells and prolonged the survival of tumor-bearing mice. Histological examination of the tumors revealed that tumor angiogenesis and vascular endothelial growth factor (VEGF) expression were significantly diminished by ADI administration. Therefore, these findings suggest that arginine deprivation by ADI could provide a beneficial strategy for the treatment of RCC in ways of inhibitions of arginine availability and neovascularization.
Collapse
Affiliation(s)
- Cheol-Yong Yoon
- Department of Urology, College of Medicine, Korea University, Seoul 136-705, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Romero MJ, Platt DH, Caldwell RB, Caldwell RW. Therapeutic use of citrulline in cardiovascular disease. ACTA ACUST UNITED AC 2007; 24:275-90. [PMID: 17214603 DOI: 10.1111/j.1527-3466.2006.00275.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
L-citrulline is the natural precursor of L-arginine, substrate for nitric oxide synthase (NOS) in the production of NO. Supplemental administration L-arginine has been shown to be effective in improving NO production and cardiovascular function in cardiovascular diseases associated with endothelial dysfunction, such as hypertension, heart failure, atherosclerosis, diabetic vascular disease and ischemia-reperfusion injury, but the beneficial actions do not endure with chronic therapy. Substantial intestinal and hepatic metabolism of L-arginine to ornithine and urea by arginase makes oral delivery very ineffective. Additionally, all of these disease states as well as supplemental L-arginine enhance arginase expression and activity, thus reducing the effectiveness of L-arginine therapy. In contrast, L-citrulline is not metabolized in the intestine or liver and does not induce tissue arginase, but rather inhibits its activity. L-citrulline entering the kidney, vascular endothelium and other tissues can be readily converted to L-arginine, thus raising plasma and tissue levels of L-arginine and enhancing NO production. Supplemental L-citrulline has promise as a therapeutic adjunct in disease states associated with L-arginine deficiencies.
Collapse
Affiliation(s)
- Maritza J Romero
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta GA, USA
| | | | | | | |
Collapse
|
20
|
Cheng PNM, Lam TL, Lam WM, Tsui SM, Cheng AWM, Lo WH, Leung YC. Pegylated recombinant human arginase (rhArg-peg5,000mw) inhibits the in vitro and in vivo proliferation of human hepatocellular carcinoma through arginine depletion. Cancer Res 2007; 67:309-17. [PMID: 17210712 DOI: 10.1158/0008-5472.can-06-1945] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is believed to be auxotrophic for arginine through the lack of expression of argininosuccinate synthetase (ASS). The successful use of the arginine-depleting enzyme arginine deiminase (ADI) to treat ASS-deficient tumors has opened up new possibilities for effective cancer therapy. Nevertheless, many ASS-positive HCC cell lines are found to be resistant to ADI treatment, although most require arginine for proliferation. Thus far, an arginine-depleting enzyme for killing ASS-positive tumors has not been reported. Here, we provide direct evidence that recombinant human arginase (rhArg) inhibits ASS-positive HCCs. All the five human HCC cell lines we used were sensitive to rhArg but ADI had virtually no effect on these cells. They all expressed ASS, but not ornithine transcarbamylase (OTC), the enzyme that converts ornithine, the product of degradation of arginine with rhArg, to citrulline, which is converted back to arginine via ASS. Transfection of HCC cells with OTC resulted in resistance to rhArg. Thus, OTC expression alone may be sufficient to induce rhArg resistance in ASS-positive HCC cells. This surprising correlation between the lack of OTC expression and sensitivity of ASS-positive HCC cells shows that OTC-deficient HCCs are sensitive to rhArg-mediated arginine depletion. Therefore, pretreatment tumor gene expression profiling of ASS and OTC could aid in predicting tumor response to arginine depletion with arginine-depleting enzymes. We have also shown that the rhArg native enzyme and the pegylated rhArg (rhArg-peg(5,000mw)) gave similar anticancer efficacy in vitro. Furthermore, the growth of the OTC-deficient Hep3B tumor cells (ASS-positive and ADI-resistant) in mice was inhibited by treatment with rhArg-peg(5,000mw), which is active alone and is synergistic in combination with 5-fluorouracil. Thus, our data suggest that rhArg-peg(5,000mw) is a novel agent for effective cancer therapy.
Collapse
Affiliation(s)
- Paul Ning-Man Cheng
- Cancer Drug R&D Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang M, Basu A, Palm T, Hua J, Youngster S, Hwang L, Liu HC, Li X, Peng P, Zhang Y, Zhao H, Zhang Z, Longley C, Mehlig M, Borowski V, Sai P, Viswanathan M, Jang E, Petti G, Liu S, Yang K, Filpula D. Engineering an Arginine Catabolizing Bioconjugate: Biochemical and Pharmacological Characterization of PEGylated Derivatives of Arginine Deiminase fromMycoplasma arthritidis. Bioconjug Chem 2006; 17:1447-59. [PMID: 17105223 DOI: 10.1021/bc060198y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arginine is an important metabolite in the normal function of several biological systems, and arginine deprivation has been investigated in animal models and human clinical trials for its effects on inhibition of tumor growth, angiogenesis, or nitric oxide synthesis. In order to design an optimal arginine-catabolizing enzyme bioconjugate, a novel recombinant arginine deiminase (ADI) from Mycoplasma arthritidis was prepared, and multi-PEGylated derivatives were examined for enzymatic and biochemical properties in vitro, as well as pharmacokinetic and pharmacodynamic behavior in rats and mice. ADI bioconjugates constructed with 12 kDa or 20 kDa monomethoxy-poly(ethylene glycol) polymers with linear succinimidyl carbonate linkers were investigated via intravenous, intramuscular, or subcutaneous administration in rodents. The selected PEG-ADI compounds have 22 +/- 2 PEG strands per protein dimer, providing an additional molecular mass of about 0.2-0.5 x 10(6) Da and prolonging the plasma mean residence time of the enzyme over 30-fold in mice. Prolonged plasma arginine deprivation was demonstrated with each injection route for these bioconjugates. Pharmacokinetic analysis employed parallel measurement of enzyme activity in bioassays and enzyme assays and demonstrated a correlation with the pharmacodynamic analysis of plasma arginine concentrations. Either ADI bioconjugate depressed plasma arginine to undetectable levels for 10 days when administered intravenously at 5 IU per mouse, while the subcutaneous and intramuscular routes exhibited only slightly reduced potency. Both bioconjugates exhibited potent growth inhibition of several cultured tumor lines that are deficient in the anabolic enzyme, argininosuccinate synthetase. Investigations of structure-activity optimization for PEGylated ADI compounds revealed a benefit to constraining the PEG size and number of attachments to both conserve catabolic activity and streamline manufacturing of the experimental therapeutics. Specifically, ADI with either 12 kDa or 20 kDa PEG attachments on 33% of the primary amines retained about 60% or 48% of enzyme activity, respectively; the Km and pH profiles were nearly unchanged; IC50 values were diminished by less than 30%; while stability studies demonstrated full retention of activity at 4 degrees C for 5 months. A comparison of the enzymatic properties of a second ADI from Pseudomonas putida illustrated the superior characteristics of the M. arthritidis ADI enzyme.
Collapse
Affiliation(s)
- Maoliang Wang
- Enzon Pharmaceuticals, 20 Kingsbridge Road, Piscataway, New Jersey 08854-3969, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wheatley DN. Arginine deprivation and metabolomics: important aspects of intermediary metabolism in relation to the differential sensitivity of normal and tumour cells. Semin Cancer Biol 2005; 15:247-53. [PMID: 15886013 DOI: 10.1016/j.semcancer.2005.04.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Arginine deprivation causes many types of tumour cells to die, often because they cannot recover or convert urea cycle intermediates into arginine. The powerful homeostatic mechanisms that kicks in to restore arginine levels in vivo are lacking in vitro, where there is no supply of citrulline. Comparison between cells deprived of arginine by direct elimination methods or indirectly via arginine degrading enzymes should show differences depending on their ability to handle alternative intermediates (ornithine, citrulline and argininosuccinate) of the urea cycle. The internal state of cells that can, versus those that cannot, use intermediates will metabolically be quite different. These differences should provide clear indicators regarding the sensitivity (susceptibility) of cells to arginine deprivation, from which we will be in a much better position to judge which tumours to treat, and possibly how to design the best treatment to eliminate them.
Collapse
Affiliation(s)
- Denys N Wheatley
- BioMedES, Leggat House, Keithhall, Inverurie, Aberdeen AB51 0LX, UK.
| |
Collapse
|