1
|
Olek M, Machorowska-Pieniążek A, Czuba ZP, Cieślar G, Kawczyk-Krupka A. Immunomodulatory Effect of Hypericin-Mediated Photodynamic Therapy on Oral Cancer Cells. Pharmaceutics 2023; 16:42. [PMID: 38258051 PMCID: PMC10819034 DOI: 10.3390/pharmaceutics16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
In 2020, there were 377,713 new oral and lip cancer diagnoses and 177,757 deaths. Oral cancer is a malignancy of the head and neck region, and 90% of cases are squamous cell carcinomas (OSCCs). One of the alternative methods of treating pre-cancerous lesions and oral cancer is photodynamic therapy (PDT). In addition to the cytotoxic effect, an important mechanism of PDT action is the immunomodulatory effect. This study used the OSCC (SCC-25) cell line and the healthy gingival fibroblast (HGF-1) line. A compound of natural origin-hypericin (HY)-was used as the photosensitizer (PS). The HY concentrations of 0-1 µM were used. After two hours of incubation with PS, the cells were irradiated with light doses of 0-20 J/cm2. The MTT test determined sublethal doses of PDT. Cell supernatants subjected to sublethal PDT were assessed for interleukin 6 (IL-6), soluble IL-6 receptor alpha (sIL-6Ralfa), sIL-6Rbeta, IL-8, IL-10, IL-11 IL-20, IL-32, and Pentraxin-3 using the Bio-Plex ProTM Assay. The phototoxic effect was observed starting with a light dose of 5 J/cm2 and amplified with increasing HY concentration and a light dose. HY-PDT affected the SCC-25 cell secretion of sIL-6Rbeta, IL-20, and Pentraxin-3. HY alone increased IL-8 secretion. In the case of HGF-1, the effect of HY-PDT on the secretion of IL-8 and IL-32 was found.
Collapse
Affiliation(s)
- Marcin Olek
- Doctoral School of Medical University of Silesia, 40-055 Katowice, Poland
- Department of Orthodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | | | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
2
|
Bejjanki NK, Zhong Y, Liu J, Li Q, Xu H, Shen H, Xie M. Surface charge transition nano-theranostics based on ultra-small Fe 3O 4 nanoparticles for enhanced photodynamic and photothermal therapy against nasopharyngeal carcinoma. Biochem Biophys Res Commun 2021; 557:240-246. [PMID: 33894409 DOI: 10.1016/j.bbrc.2021.03.168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/13/2023]
Abstract
Platinum-based concurrent chemo-radiotherapy is the most common strategy for the treatment of Nasopharyngeal carcinoma. However, low efficacy and side effects are the two major problems associated with this approach. Therefore, it is urgent need to explore novel therapeutic modalities to meet clinically standards. Photothermal therapy (PTT) and photodynamic therapy (PDT) are non-invasive and light trigger modalities received great attention to overcome the limitations and significantly improved cancer therapy. Here, we developed acidity surface charge transformable nanocluster (NCs) composed of Indocyanine green (ICG), Fe3O4, and Palmitoyl ascorbic acid (PA) with pH-responsive PEG-b-PAEMA-PDMA for enhanced synergistic PDT/PTT. NCs has the neutral hydrophilic surface helps to prolong blood circulation and instantly transformed to positively charged surface at tumoral acidic pH (6.5), which promoted the cellular uptake. Under laser irradiation (808 nm, 1 W/cm2), NCs produced PTT effect, concurrently it converts singlet oxygen (1O2) into H2O2, which can be further involved in Fenton reaction and produce toxic hydroxyl radical (•OH) enhances therapy efficacy. In vitro experiments on HNE-1 cancer cells showed improved intracellular uptake of NCs at low pH and simultaneously induced higher cytotoxicity medicated by synergetic PDT/PTT effect. In vivo therapeutic study revealed that NCs treatment under laser irradiation showed superior inhibition of tumor growth in HNE-1 tumor bearing mice model. Taken together, the present findings suggest that NCs could be used as "all in one" nano theranostic agent for enhanced PDT/PTT of cancer therapy.
Collapse
Affiliation(s)
- Naveen Kumar Bejjanki
- Institute for Solar Energy Systems, C501, School of Engineering, Sun Yat-sen University, Higher Education Mega Center, Panyu District, Guangzhou 510006, China; Department of Otolaryngology Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, 519000, Guangdong, China
| | - Ying Zhong
- Department of Otolaryngology Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, 519000, Guangdong, China; Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Jie Liu
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Quanming Li
- Department of Otolaryngology Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, 519000, Guangdong, China
| | - Hongfa Xu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai, 519000, Guangdong, China
| | - Hui Shen
- Institute for Solar Energy Systems, C501, School of Engineering, Sun Yat-sen University, Higher Education Mega Center, Panyu District, Guangzhou 510006, China.
| | - Minqiang Xie
- Department of Otolaryngology Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, 519000, Guangdong, China; Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
3
|
Dong X, Zeng Y, Zhang Z, Fu J, You L, He Y, Hao Y, Gu Z, Yu Z, Qu C, Yin X, Ni J, Cruz LJ. Hypericin-mediated photodynamic therapy for the treatment of cancer: a review. J Pharm Pharmacol 2020; 73:425-436. [PMID: 33793828 DOI: 10.1093/jpp/rgaa018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Hypericin is a polycyclic aromatic naphthodianthrone that occurs naturally. It is also an active ingredient in some species of the genus Hypericum. Emerging evidence suggests that hypericin has attracted great attention as a potential anticancer drug and exhibits remarkable antiproliferative effect upon irradiation on various tumour cells. This paper aims to summarise the anticancer effect and molecular mechanisms modulated by hypericin-medicated photodynamic therapy and its potential role in the cancer treatment. KEY FINDINGS Hypericin-medicated photodynamic therapy could inhibit the proliferation of various tumour cells including bladder, colon, breast, cervical, glioma, leukaemia, hepatic, melanoma, lymphoma and lung cancers. The effect is primarily mediated by p38 mitogen-activated protein kinase (MAPK), JNK, PI3K, CCAAT-enhancer-binding protein homologous protein (CHOP)/TRIB3/Akt/mTOR, TRAIL/TRAIL-receptor, c-Met and Ephrin-Eph, the mitochondria and extrinsic signalling pathways. Furthermore, hypericin-medicated photodynamic therapy in conjunction with chemotherapeutic agents or targeted therapies is more effective in inhibiting the growth of tumour cells. SUMMARY During the past few decades, the anticancer properties of photoactivated hypericin have been extensively investigated. Hypericin-medicated photodynamic therapy can modulate a variety of proteins and genes and exhibit a great potential to be used as a therapeutic agent for various types of cancer.
Collapse
Affiliation(s)
- Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Fu
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan He
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Hao
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Zili Gu
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhenfeng Yu
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | - Changhai Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Luis J Cruz
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Kaleta-Richter M, Aebisher D, Jaworska D, Czuba Z, Cieślar G, Kawczyk-Krupka A. The Influence of Hypericin-Mediated Photodynamic Therapy on Interleukin-8 and -10 Secretion in Colon Cancer Cells. Integr Cancer Ther 2020; 19:1534735420918931. [PMID: 32508149 PMCID: PMC7278300 DOI: 10.1177/1534735420918931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to measure the secretion of interleukin (IL)-8 and -10 during an elicited immune response following sublethal doses of hypericin-mediated photodynamic therapy (HY-PDT) in experimental models of residual colon cancer cells in vitro. Investigations were performed on the cancer cell lines SW480 and SW620. Each cell line was exposed to 3 different concentrations of the photosensitizer HY and various doses of irradiation. The cell metabolic activity using an MTT assay was performed and then the measurement of IL-8 and IL-10 secretion was achieved using the Bio-Plex ProTMAssay. There was a statistically significant amplification of IL-8 secretion during HY-PDT in the SW620 cell line (at 1 J/cm2: P = .01, 5 J/cm2: P = .002, and 10 J/cm2: P = .025) and a statistically significant decrease in IL-8 during HY-PDT in the SW480 cell line (at 1 J/cm2: P = .05, 5 J/cm2: P = .035, and 10 J/cm2: P = .035). No statistically significant differences in IL-10 concentration were found following HY-PDT in the SW480 (at 1 J/cm2: P > .4, 5 J/cm2: P = .1, and 10 J/cm2: P = .075) or in the SW620 cell line (at 1 J/cm2: P > .4, 5 J/cm2: P > .4, and 10 J/cm2: P > .4). HY-PDT can both eliminate and control a primary tumor via cytotoxic effects, and at sublethal doses, it can affect IL release by colon cancer cells. In this experiment, this influence depended on the level of tumor cell metastatic activity.
Collapse
Affiliation(s)
- Marta Kaleta-Richter
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland.,Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Dagmara Jaworska
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Grzegorz Cieślar
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| |
Collapse
|
5
|
Xu L, Zhang X, Cheng W, Wang Y, Yi K, Wang Z, Zhang Y, Shao L, Zhao T. Hypericin-photodynamic therapy inhibits the growth of adult T-cell leukemia cells through induction of apoptosis and suppression of viral transcription. Retrovirology 2019; 16:5. [PMID: 30782173 PMCID: PMC6381730 DOI: 10.1186/s12977-019-0467-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adult T-cell leukemia (ATL) is an aggressive neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1). ATL carries a poor prognosis due to chemotherapy resistance. Thus, it is urgent to develop new treatment strategies. Hypericin (HY) is a new-type of photosensitizer in the context of photodynamic therapy (PDT) due to its excellent photosensitizing properties and anti-tumor activities. RESULTS In the present study, we investigated the efficacy of hypericin in ATL cells. Clinically achievable concentrations of hypericin in association with PDT induced the inhibition of cell proliferation in ATL cell lines with minimal effect on peripheral blood CD4+ T lymphocytes. Moreover, hypericin-PDT treatment caused apoptosis and G2/M phase cell cycle arrest in leukemic cells. Western blot analyses revealed that hypericin-PDT treatment resulted in downregulation of Bcl-2 and enhanced the expression of Bad, cytochrome C, and AIF. Cleavage of caspases-3/-7/-9/-8, Bid, and PARP was increased in hypericin-PDT-treated ATL cells. In a luciferase assay, hypericin-PDT treatment was able to activate the promoter activity of Bax and p53, resulting in enhanced expression of Bax and p53 proteins. Finally, hypericin-PDT treatment suppressed the expression of viral protein HBZ and Tax by blocking the promoter activity via HTLV-1 5'LTR and 3'LTR. CONCLUSIONS Our results revealed that hypericin-PDT is highly effective against ATL cells by induction of apoptosis and suppression of viral transcription. These studies highlight the promising use of hypericin-PDT as a targeted therapy for ATL.
Collapse
Affiliation(s)
- Lingling Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Xueqing Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Wenzhao Cheng
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China.,Biomedical Department, Huaqiao University, Quanzhou, China
| | - Yong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Kaining Yi
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Zhilong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Yiling Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Linxiang Shao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, Zhejiang, China.
| |
Collapse
|
6
|
Kue CS, Kamkaew A, Voon SH, Kiew LV, Chung LY, Burgess K, Lee HB. Tropomyosin Receptor Kinase C Targeted Delivery of a Peptidomimetic Ligand-Photosensitizer Conjugate Induces Antitumor Immune Responses Following Photodynamic Therapy. Sci Rep 2016; 6:37209. [PMID: 27853305 PMCID: PMC5112560 DOI: 10.1038/srep37209] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
Tropomyosin receptor kinase C (TrkC) targeted ligand-photosensitizer construct, IYIY-diiodo-boron-dipyrromethene (IYIY-I2-BODIPY) and its scrambled counterpart YIYI-I2-BODIPY have been prepared. IYIY-I2-BODIPY binds TrkC similar to neurotrophin-3 (NT-3), and NT-3 has been reported to modulate immune responses. Moreover, it could be shown that photodynamic therapy (PDT) elevates antitumor immune responses. This prompted us to investigate the immunological impacts mediated by IYIY-I2-BODIPY in pre- and post-PDT conditions. We demonstrated that IYIY-I2-BODIPY (strong response) and YIYI-I2-BODIPY (weak response) at 10 mg/kg, but not I2-BODIPY control, increased the levels of IL-2, IL-4, IL-6 and IL-17, but decreased the levels of systemic immunoregulatory mediators TGF-β, myeloid-derived suppressor cells and regulatory T-cells. Only IYIY-I2-BODIPY enhanced the IFN-γ+ and IL-17+ T-lymphocytes, and delayed tumor growth (~20% smaller size) in mice when administrated daily for 5 days. All those effects were observed without irradiation; when irradiated (520 nm, 100 J/cm2, 160 mW/cm2) to produce PDT effects (drug-light interval 1 h), IYIY-I2-BODIPY induced stronger responses. Moreover, photoirradiated IYIY-I2-BODIPY treated mice had high levels of effector T-cells compared to controls. Adoptive transfer of immune cells from IYIY-I2-BODIPY-treated survivor mice that were photoirradiated gave significantly delayed tumor growth (~40–50% smaller size) in recipient mice. IYIY-I2-BODIPY alone and in combination with PDT modulates the immune response in such a way that tumor growth is suppressed. Unlike immunosuppressive conventional chemotherapy, IYIY-I2-BODIPY can act as an immune-stimulatory chemotherapeutic agent with potential applications in clinical cancer treatment.
Collapse
Affiliation(s)
- Chin Siang Kue
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A &M University, Box 30012, College Station, Texas 77842, United States
| | - Siew Hui Voon
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kevin Burgess
- Department of Chemistry, Texas A &M University, Box 30012, College Station, Texas 77842, United States
| | - Hong Boon Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Boosting Tumor-Specific Immunity Using PDT. Cancers (Basel) 2016; 8:cancers8100091. [PMID: 27782066 PMCID: PMC5082381 DOI: 10.3390/cancers8100091] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with a long-standing history. It employs the application of nontoxic components, namely a light-sensitive photosensitizer and visible light, to generate reactive oxygen species (ROS). These ROS lead to tumor cell destruction, which is accompanied by the induction of an acute inflammatory response. This inflammatory process sends a danger signal to the innate immune system, which results in activation of specific cell types and release of additional inflammatory mediators. Activation of the innate immune response is necessary for subsequent induction of the adaptive arm of the immune system. This includes the priming of tumor-specific cytotoxic T lymphocytes (CTL) that have the capability to directly recognize and kill cells which display an altered self. The past decades have brought increasing appreciation for the importance of the generation of an adaptive immune response for long-term tumor control and induction of immune memory to combat recurrent disease. This has led to considerable effort to elucidate the immune effects PDT treatment elicits. In this review we deal with the progress which has been made during the past 20 years in uncovering the role of PDT in the induction of the tumor-specific immune response, with special emphasis on adaptive immunity.
Collapse
|
8
|
Cirak C, Radusiene J, Jakstas V, Ivanauskas L, Seyis F, Yayla F. Secondary metabolites of seven Hypericum species growing in Turkey. PHARMACEUTICAL BIOLOGY 2016; 54:2244-2253. [PMID: 26958815 DOI: 10.3109/13880209.2016.1152277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context The genus Hypericum (Hypericaceae) has attracted remarkable scientific interest as its members have yielded many bioactive compounds. Objective The current study presents investigations on the accumulation of hypericin, pseudohypericin, hyperforin, adhyperforin, chlorogenic acid, neochlorogenic acid, caffeic acid, 2,4-dihydroxybenzoic acid, 13,118-biapigenin, hyperoside, isoquercitrin, quercitrin, quercetin, avicularin, rutin, (+)-catechin and (-)-epicatechin in seven Hypericum (Hypericaceae) species growing wild in Turkey, namely, H. aviculariifolium Jaup. and Spach subsp. aviculariifolium (Freyn and Bornm.) Robson var. albiflorum (endemic), H. bithynicum Boiss., H. calycinum L., H. cardiophyllum Boiss., H. elongatum L. subsp. microcalycinum (Boiss. and Heldr.) Robson, H. hirsutum L. and H. xylosteifolium (Spach) N. Robson. Materials and methods The plant materials were collected at flowering period and dissected in different tissues. Air-dried plant material including stems, leaves and flowers was mechanically powdered with a laboratory mill and samples (0.1 g) were extracted in 10 mL of 100% methanol by ultrasonication at 40 °C for 30 min for HPLC-PDA analyses. Results Accumulation levels of the investigated compounds varied greatly depending on species and plant part. Discussion For the first time, the detailed chemical profiles of corresponding Turkish Hypericum species were reported and the results were discussed from a phytochemical point of view. Conclusions The present data have importance in evaluation of plant resources of Hypericum genus in selecting the new potential sources of bioactive compounds.
Collapse
Affiliation(s)
- Cuneyt Cirak
- a Vocational High School of Bafra , University of Ondokuz Mayis , Samsun , Turkey
| | - Jolita Radusiene
- b Nature Research Centre , Institute of Botany , Vilnius LT , Lithuania
| | - Valdas Jakstas
- c Medical Academy, Lithuanian University of Health Sciences , Kaunas LT , Lithuania
| | - Liudas Ivanauskas
- c Medical Academy, Lithuanian University of Health Sciences , Kaunas LT , Lithuania
| | - Fatih Seyis
- d Department of Field Crops, Faculty of Agriculture and Natural Sciences , Recep Tayyip Erdoğan University , Rize , Turkey
| | - Fatih Yayla
- e Department of Biology, Faculty of Arts and Sciences , Gaziantep University , Gaziantep , Turkey
| |
Collapse
|
9
|
Broekgaarden M, Weijer R, van Gulik TM, Hamblin MR, Heger M. Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev 2015; 34:643-90. [PMID: 26516076 PMCID: PMC4661210 DOI: 10.1007/s10555-015-9588-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a promising alternative to conventional cancer therapies such as surgery, chemotherapy, and radiotherapy. PDT comprises the administration of a photosensitizer, its accumulation in tumor tissue, and subsequent irradiation of the photosensitizer-loaded tumor, leading to the localized photoproduction of reactive oxygen species (ROS). The resulting oxidative damage ultimately culminates in tumor cell death, vascular shutdown, induction of an antitumor immune response, and the consequent destruction of the tumor. However, the ROS produced by PDT also triggers a stress response that, as part of a cell survival mechanism, helps cancer cells to cope with the PDT-induced oxidative stress and cell damage. These survival pathways are mediated by the transcription factors activator protein 1 (AP-1), nuclear factor E2-related factor 2 (NRF2), hypoxia-inducible factor 1 (HIF-1), nuclear factor κB (NF-κB), and those that mediate the proteotoxic stress response. The survival pathways are believed to render some types of cancer recalcitrant to PDT and alter the tumor microenvironment in favor of tumor survival. In this review, the molecular mechanisms are elucidated that occur post-PDT to mediate cancer cell survival, on the basis of which pharmacological interventions are proposed. Specifically, pharmaceutical inhibitors of the molecular regulators of each survival pathway are addressed. The ultimate aim is to facilitate the development of adjuvant intervention strategies to improve PDT efficacy in recalcitrant solid tumors.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ruud Weijer
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, USA
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Broekgaarden M, Kos M, Jurg FA, van Beek AA, van Gulik TM, Heger M. Inhibition of NF-κB in Tumor Cells Exacerbates Immune Cell Activation Following Photodynamic Therapy. Int J Mol Sci 2015; 16:19960-77. [PMID: 26307977 PMCID: PMC4581334 DOI: 10.3390/ijms160819960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/01/2023] Open
Abstract
Although photodynamic therapy (PDT) yields very good outcomes in numerous types of superficial solid cancers, some tumors respond suboptimally to PDT. Novel treatment strategies are therefore needed to enhance the efficacy in these therapy-resistant tumors. One of these strategies is to combine PDT with inhibitors of PDT-induced survival pathways. In this respect, the transcription factor nuclear factor κB (NF-κB) has been identified as a potential pharmacological target, albeit inhibition of NF-κB may concurrently dampen the subsequent anti-tumor immune response required for complete tumor eradication and abscopal effects. In contrast to these postulations, this study demonstrated that siRNA knockdown of NF-κB in murine breast carcinoma (EMT-6) cells increased survival signaling in these cells and exacerbated the inflammatory response in murine RAW 264.7 macrophages. These results suggest a pro-death and immunosuppressive role of NF-κB in PDT-treated cells that concurs with a hyperstimulated immune response in innate immune cells.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Milan Kos
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Freek A Jurg
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Adriaan A van Beek
- Department of Cell Biology and Immunology, Wageningen University, 6709 PG Wageningen, The Netherlands.
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Barathan M, Mariappan V, Shankar EM, Abdullah BJJ, Goh KL, Vadivelu J. Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases. Cell Death Dis 2013; 4:e697. [PMID: 23807226 PMCID: PMC3702308 DOI: 10.1038/cddis.2013.219] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) has emerged as a capable therapeutic modality for the treatment of cancer. PDT is a targeted cancer therapy that reportedly leads to tumor cell apoptosis and/or necrosis by facilitating the secretion of certain pro-inflammatory cytokines and expression of multiple apoptotic mediators in the tumor microenvironment. In addition, PDT also triggers oxidative stress that directs tumor cell killing and activation of inflammatory responses. However, the cellular and molecular mechanisms underlying the role of PDT in facilitating tumor cell apoptosis remain ambiguous. Here, we investigated the ability of PDT in association with hypericin (HY) to induce tumor cell apoptosis by facilitating the induction of reactive oxygen species (ROS) and secretion of Th1/Th2/Th17 cytokines in human hepatocellular liver carcinoma cell line (HepG2) cells. To discover if any apoptotic mediators were implicated in the enhancement of cell death of HY-PDT-treated tumor cells, selected gene profiling in response to HY-PDT treatment was implemented. Experimental results showed that interleukin (IL)-6 was significantly increased in all HY-PDT-treated cells, especially in 1 μg/ml HY-PDT, resulting in cell death. In addition, quantitative real-time PCR analysis revealed that the expression of apoptotic genes, such as BH3-interacting-domain death agonist (BID), cytochrome complex (CYT-C) and caspases (CASP3, 6, 7, 8 and 9) was remarkably higher in HY-PDT-treated HepG2 cells than the untreated HepG2 cells, entailing that tumor destruction of immune-mediated cell death occurs only in PDT-treated tumor cells. Hence, we showed that HY-PDT treatment induces apoptosis in HepG2 cells by facilitating cytotoxic ROS, and potentially recruits IL-6 and apoptosis mediators, providing additional hints for the existence of alternative mechanisms of anti-tumor immunity in hepatocellular carcinoma, which contribute to long-term suppression of tumor growth following PDT.
Collapse
Affiliation(s)
- M Barathan
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
12
|
Brackett CM, Owczarczak B, Ramsey K, Maier PG, Gollnick SO. IL-6 potentiates tumor resistance to photodynamic therapy (PDT). Lasers Surg Med 2012; 43:676-85. [PMID: 22057495 DOI: 10.1002/lsm.21107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Photodynamic therapy (PDT) is an anticancer modality approved for the treatment of early disease and palliation of late stage disease. PDT of tumors results in the generation of an acute inflammatory response. The extent and duration of the inflammatory response is dependent upon the PDT regimen employed and is characterized by rapid induction of proinflammatory cytokines, such as IL-6, and activation and mobilization of innate immune cells. The importance of innate immune cells in long-term PDT control of tumor growth has been well defined. In contrast the role of IL-6 in long-term tumor control by PDT is unclear. Previous studies have shown that IL-6 can diminish or have no effect on PDT antitumor efficacy. STUDY DESIGN/MATERIALS AND METHODS In the current study we used mice deficient for IL-6, Il6(-/-) , to examine the role of IL-6 in activation of antitumor immunity and PDT efficacy by PDT regimens known to enhance antitumor immunity. RESULTS Our studies have shown that elimination of IL-6 had no effect on innate cell mobilization into the treated tumor bed or tumor draining lymph node (TDLN) and did not affect primary antitumor T-cell activation by PDT. However, IL-6 does appear to negatively regulate the generation of antitumor immune memory and PDT efficacy against murine colon and mammary carcinoma models. The inhibition of PDT efficacy by IL-6 appears also to be related to regulation of Bax protein expression. Increased apoptosis was observed following treatment of tumors in Il6(-/-) mice 24 hours following PDT. CONCLUSIONS The development of PDT regimens that enhance antitumor immunity has led to proposals for the use of PDT as an adjuvant treatment. However, our results show that the potential for PDT induced expression of IL-6 to enhance tumor survival following PDT must be considered.
Collapse
Affiliation(s)
- Craig M Brackett
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
13
|
Li B, Chen Z, Liu L, Huang Z, Huang Z, Xie S. Differences in sensitivity to HMME-mediated photodynamic therapy between EBV+ C666-1 and EBV− CNE2 cells. Photodiagnosis Photodyn Ther 2010; 7:204-9. [DOI: 10.1016/j.pdpdt.2010.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 11/30/2022]
|
14
|
Koon HK, Lo KW, Leung KN, Lung ML, Chang CCK, Wong RNS, Leung WN, Mak NK. Photodynamic therapy-mediated modulation of inflammatory cytokine production by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Cell Mol Immunol 2010; 7:323-6. [PMID: 20228836 PMCID: PMC4003233 DOI: 10.1038/cmi.2010.4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/08/2010] [Accepted: 01/19/2010] [Indexed: 12/18/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant disease associated with Epstein-Barr virus (EBV) infection. This study aims to examine the effects of EBV infection on the production of proinflammatory cytokines in NPC cells after the Zn-BC-AM photodynamic therapy (PDT) treatment. Cells were treated with the photosensitiser Zn-BC-AM for 24 h before light irradiation. Quantitative ELISA was used to evaluate the production of cytokines. Under the same experimental condition, HK-1-EBV cells produced a higher basal level of IL-1alpha (1561 pg/ml), IL-1beta (16.6 pg/ml) and IL-8 (422.9 pg/ml) than the HK-1 cells. At the light dose of 0.25-0.5 J/cm(2), Zn-BC-AM PDT-treated HK-1-EBV cells were found to produce a higher level of IL-1alpha and IL-1beta than the HK-1 cells. The production of IL-1beta appeared to be mediated via the IL-1beta-converting enzyme (ICE)-independent pathway. In contrast, the production of angiogenic IL-8 was downregulated in both HK-1 and HK-1-EBV cells after Zn-BC-AM PDT. Our results suggest that Zn-BC-AM PDT might indirectly reduce tumour growth through the modulation of cytokine production.
Collapse
Affiliation(s)
- Ho-Kee Koon
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Usami S, Motoyama S, Koyota S, Wang J, Hayashi-Shibuya K, Maruyama K, Takahashi N, Saito H, Minamiya Y, Takasawa S, Ogawa JI, Sugiyama T. Regenerating gene I regulates interleukin-6 production in squamous esophageal cancer cells. Biochem Biophys Res Commun 2010; 392:4-8. [PMID: 20056108 DOI: 10.1016/j.bbrc.2009.12.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/22/2009] [Indexed: 11/18/2022]
Abstract
Regenerating gene (REG) I plays important roles in cancer cell biology. The purpose of this study was to determine whether REG I affects cytokine production in cancer cells. We transfected TE-5 and TE-9 squamous esophageal cancer cells with REG Ialpha and Ibeta and examined its effects on cytokine expression. We found that transfecting TE-5 and TE-9 cells with REG I Ialpha and Ibeta led to significantly increased expression of interleukin (IL)-6 mRNA and protein, but it had little or no effect on expression of IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-17A, interferon-gamma, tumor necrosis factor-alpha, granulocyte-colony stimulating factor or transforming growth factor-beta1. The elevated IL-6 expression seen in REG Ialpha transfectants was silenced by small interfering RNA-mediated knockdown. These finding suggest that REG I may act through IL-6 to exert effects on squamous esophageal cancer cell biology.
Collapse
Affiliation(s)
- Shuetsu Usami
- Department of Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bhuvaneswari R, Gan YY, Soo KC, Olivo M. The effect of photodynamic therapy on tumor angiogenesis. Cell Mol Life Sci 2009; 66:2275-83. [PMID: 19333552 PMCID: PMC11115708 DOI: 10.1007/s00018-009-0016-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/01/2009] [Accepted: 03/09/2009] [Indexed: 01/17/2023]
Abstract
Photodynamic therapy (PDT), the activation of a photosensitive drug in tumor tissue with light of specific wavelength, has been used effectively to treat certain solid tumors. Though therapeutic responses are encouraging, PDT-mediated oxidative stress can act as an angiogenic switch that ultimately leads to neovascularization and tumor recurrence. This article explores the effect of PDT on angiogenesis in different tumor models. Overexpression of proangiogenic vascular endothelial growth factor, cyclooxygenase-2 and matrix metalloproteases has often been reported post-illumination. Recent clinical studies have demonstrated that inhibiting angiogenesis after chemotherapy and radiotherapy is an attractive and valuable approach to cancer treatment. In this review, we report the effective therapeutic strategy of combining angiogenesis inhibitors with PDT to control and treat tumors.
Collapse
Affiliation(s)
| | - Yik Yuen Gan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616 Singapore
| | - Khee Chee Soo
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Malini Olivo
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, 11 Biopolis Way, #02-02 Helios, Singapore, 138667 Singapore
- Department of Pharmacy, National University of Singapore, No. 18 Science Drive 4, Block S4, Singapore, 117543 Singapore
| |
Collapse
|
17
|
Pazos MDC, Nader HB. Effect of photodynamic therapy on the extracellular matrix and associated components. ACTA ACUST UNITED AC 2008; 40:1025-35. [PMID: 17665038 DOI: 10.1590/s0100-879x2006005000142] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 05/11/2007] [Indexed: 12/12/2022]
Abstract
In many countries, photodynamic therapy (PDT) has been recognized as a standard treatment for malignant conditions (for example, esophageal and lung cancers) and non-malignant ones such as age-related macular degeneration and actinic keratoses. The administration of a non-toxic photosensitizer, its selective retention in highly proliferating cells and the later activation of this molecule by light to form reactive oxygen species that cause cell death is the principle of PDT. Three important mechanisms are responsible for the PDT effectiveness: a) direct tumor cell kill; b) damage of the tumor vasculature; c) post-treatment immunological response associated with the leukocyte stimulation and release of many inflammatory mediators like cytokines, growth factors, components of the complement system, acute phase proteins, and other immunoregulators. Due to the potential applications of this therapy, many studies have been reported regarding the effect of the treatment on cell survival/death, cell proliferation, matrix assembly, proteases and inhibitors, among others. Studies have demonstrated that PDT alters the extracellular matrix profoundly. For example, PDT induces collagen matrix changes, including cross-linking. The extracellular matrix is vital for tissue organization in multicellular organisms. In cooperation with growth factors and cytokines, it provides cells with key signals in a variety of physiological and pathological processes, for example, adhesion/migration and cell proliferation/differentiation/death. Thus, the focus of the present paper is related to the effects of PDT observed on the extracellular matrix and on the molecules associated with it, such as, adhesion molecules, matrix metalloproteinases, growth factors, and immunological mediators.
Collapse
Affiliation(s)
- M d C Pazos
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, 04044-020 São Paulo, SP, Brazil.
| | | |
Collapse
|