1
|
Li XL, Sun YP, Wang M, Wang ZB, Kuang HX. Alkaloids in Chelidonium majus L: a review of its phytochemistry, pharmacology and toxicology. Front Pharmacol 2024; 15:1440979. [PMID: 39239653 PMCID: PMC11374730 DOI: 10.3389/fphar.2024.1440979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Chelidonium majus L. (C. majus), commonly known as "Bai Qu Cai" in China, belongs to the genus Chelidonium of the Papaveraceae family. It has rich medicinal value, such as alleviating coughs, asthma, spasms and pain. Recent studies have demonstrated that C. majus is abundant in various alkaloids, which are the primary components of C. majus and have a range of pharmacological effects, including anti-microbial, anti-inflammatory, anti-viral, and anti-tumor effects. So far, 94 alkaloids have been isolated from C. majus, including benzophenanthridine, protoberberine, aporphine, protopine and other types of alkaloids. This paper aims to review the research progress in phytochemistry, pharmacology and toxicology of C. majus alkaloids, in order to provide a theoretical basis for the application of C. majus in the field of medicinal chemistry and to afford reference for further research and development efforts.
Collapse
Affiliation(s)
- Xin-Lan Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Ping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Loe MWC, Lee RCH, Chin WX, Min N, Teo ZY, Ho SX, Yi B, Chu JJH. Chelerythrine chloride inhibits Zika virus infection by targeting the viral NS4B protein. Antiviral Res 2023; 219:105732. [PMID: 37832876 DOI: 10.1016/j.antiviral.2023.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne virus that has re-emerged as a significant threat to global health in the recent decade. Whilst infections are primarily asymptomatic, the virus has been associated with the manifestation of severe neurological complications. At present, there is still a lack of approved antivirals for ZIKV infections. In this study, chelerythrine chloride, a benzophenanthridine alkaloid, was identified from a mid-throughput screen conducted on a 502-compound natural products library to be a novel and potent inhibitor of ZIKV infection in both in-vitro and in-vivo assays. Subsequent downstream studies demonstrated that the compound inhibits a post-entry step of the viral replication cycle and is capable of disrupting viral RNA synthesis and protein expression. The successful generation and sequencing of a ZIKV resistant mutant revealed that a single S61T mutation on the viral NS4B allowed ZIKV to overcome chelerythrine chloride inhibition. Further investigation revealed that chelerythrine chloride could directly inhibit ZIKV protein synthesis, and that the NS4B-S61T mutation confers resistance to this inhibition. This study has established chelerythrine chloride as a potential candidate for further development as a therapeutic agent against ZIKV infection.
Collapse
Affiliation(s)
- Marcus Wing Choy Loe
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wei-Xin Chin
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Nyo Min
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zi Yun Teo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Si Xian Ho
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Bowen Yi
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 117597, Singapore; Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore.
| |
Collapse
|
3
|
Croley CR, Pumarol J, Delgadillo BE, Cook AC, Day F, Kaceli T, Ward CC, Husain I, Husain A, Banerjee S, Bishayee A. Signaling pathways driving ocular malignancies and their targeting by bioactive phytochemicals. Pharmacol Ther 2023:108479. [PMID: 37330112 DOI: 10.1016/j.pharmthera.2023.108479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Ocular cancers represent a rare pathology. The American Cancer Society estimates that 3,360 cases of ocular cancer occur annually in the United States. The major types of cancers of the eye include ocular melanoma (also known as uveal melanoma), ocular lymphoma, retinoblastoma, and squamous cell carcinoma. While uveal melanoma is one of the primary intraocular cancers with the highest occurrence in adults, retinoblastoma remains the most common primary intraocular cancer in children, and squamous cell carcinoma presents as the most common conjunctival cancer. The pathophysiology of these diseases involves specific cell signaling pathways. Oncogene mutations, tumor suppressor mutations, chromosome deletions/translocations and altered proteins are all described as causal events in developing ocular cancer. Without proper identification and treatment of these cancers, vision loss, cancer spread, and even death can occur. The current treatments for these cancers involve enucleation, radiation, excision, laser treatment, cryotherapy, immunotherapy, and chemotherapy. These treatments present a significant burden to the patient that includes a possible loss of vision and a myriad of side effects. Therefore, alternatives to traditional therapy are urgently needed. Intercepting the signaling pathways for these cancers with the use of naturally occurring phytochemicals could be a way to relieve both cancer burden and perhaps even prevent cancer occurrence. This research aims to present a comprehensive review of the signaling pathways involved in various ocular cancers, discuss current therapeutic options, and examine the potential of bioactive phytocompounds in the prevention and targeted treatment of ocular neoplasms. The current limitations, challenges, pitfalls, and future research directions are also discussed.
Collapse
Affiliation(s)
- Courtney R Croley
- Healthcare Corporation of America, Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Hudson, FL 34667, USA
| | - Joshua Pumarol
- Ross University School of Medicine, Miramar, FL 33027, USA
| | - Blake E Delgadillo
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Andrew C Cook
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Faith Day
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tea Kaceli
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Caroline C Ward
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Imran Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Ali Husain
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
4
|
Wang P, Zheng SY, Jiang RL, Wu HD, Li YA, Lu JL, Ye X, Han B, Lin L. Necroptosis signaling and mitochondrial dysfunction cross-talking facilitate cell death mediated by chelerythrine in glioma. Free Radic Biol Med 2023; 202:76-96. [PMID: 36997101 DOI: 10.1016/j.freeradbiomed.2023.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
Glioma is the most common primary malignant brain tumor with poor survival and limited therapeutic options. Chelerythrine (CHE), a natural benzophenanthridine alkaloid, has been reported to exhibit the anti-tumor effects in a variety of cancer cells. However, the molecular target and the signaling process of CHE in glioma remain elusive. Here we investigated the underlying mechanisms of CHE in glioma cell lines and glioma xenograft mice model. Our results found that CHE-induced cell death is associated with RIP1/RIP3-dependent necroptosis rather than apoptotic cell death in glioma cells at the early time. Mechanism investigation revealed the cross-talking between necroptosis and mitochondria dysfunction that CHE triggered generation of mitochondrial ROS, mitochondrial depolarization, reduction of ATP level and mitochondrial fragmentation, which was the important trigger for RIP1-dependent necroptosis activation. Meanwhile, PINK1 and parkin-dependent mitophagy promoted clearance of impaired mitochondria in CHE-incubated glioma cells, and inhibition of mitophagy with CQ selectively enhanced CHE-induced necroptosis. Furthermore, early cytosolic calcium from the influx of extracellular Ca2+ induced by CHE acted as important "priming signals" for impairment of mitochondrial dysfunction and necroptosis. Suppression of mitochondrial ROS contributed to interrupting positive feedback between mitochondrial damage and RIPK1/RIPK3 necrosome. Lastly, subcutaneous tumor growth in U87 xenograft was suppressed by CHE without significant body weight loss and multi-organ toxicities. In summary, the present study helped to elucidate necroptosis was induced by CHE via mtROS-mediated formation of the RIP1-RIP3-Drp1 complex that promoted Drp1 mitochondrial translocation to enhance necroptosis. Our findings indicated that CHE could potentially be further developed as a novel therapeutic strategy for treatment of glioma.
Collapse
Affiliation(s)
- Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shi-Yi Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruo-Lin Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao-Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong-Ang Li
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, 317500, China
| | - Jiang-Long Lu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiong Ye
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Bo Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Mahboubi-Rabbani M, Abbasi M, Zarghi A. Natural-Derived COX-2 Inhibitors as Anticancer Drugs: A Review of their Structural Diversity and Mechanism of Action. Anticancer Agents Med Chem 2023; 23:15-36. [PMID: 35638275 DOI: 10.2174/1389450123666220516153915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 02/08/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a key-type enzyme playing a crucial role in cancer development, making it a target of high interest for drug designers. In the last two decades, numerous selective COX-2 inhibitors have been approved for various clinical conditions. However, data from clinical trials propose that the prolonged use of COX-2 inhibitors is associated with life-threatening cardiovascular side effects. The data indicate that a slight structural modification can help develop COX-2 selective inhibitors with comparative efficacy and limited side effects. In this regard, secondary metabolites from natural sources offer great hope for developing novel COX-2 inhibitors with potential anticancer activity. In recent years, various nature-derived organic scaffolds are being explored as leads for developing new COX-2 inhibitors. The current review attempts to highlight the COX-2 inhibition activity of some naturally occurring secondary metabolites, concerning their capacity to inhibit COX-1 and COX-2 enzymes and inhibit cancer development, aiming to establish a structure-activity relationship.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Mazur O, Bałdysz S, Warowicka A, Nawrot R. Tap the sap - investigation of latex-bearing plants in the search of potential anticancer biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2022; 13:979678. [PMID: 36388598 PMCID: PMC9664067 DOI: 10.3389/fpls.2022.979678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Latex-bearing plants have been in the research spotlight for the past couple of decades. Since ancient times their extracts have been used in folk medicine to treat various illnesses. Currently they serve as promising candidates for cancer treatment. Up to date there have been several in vitro and in vivo studies related to the topic of cytotoxicity and anticancer activity of extracts from latex-bearing plants towards various cell types. The number of clinical studies still remains scarce, however, over the years the number is systematically increasing. To the best of our knowledge, the scientific community is still lacking in a recent review summarizing the research on the topic of cytotoxicity and anticancer activity of latex-bearing plant extracts. Therefore, the aim of this paper is to review the current knowledge on in vitro and in vivo studies, which focus on the cytotoxicity and anticancer activities of latex-bearing plants. The vast majority of the studies are in vitro, however, the interest in this topic has resulted in the substantial growth of the number of in vivo studies, leading to a promising number of plant species whose latex can potentially be tested in clinical trials. The paper is divided into sections, each of them focuses on specific latex-bearing plant family representatives and their potential anticancer activity, which in some instances is comparable to that induced by commonly used therapeutics currently available on the market. The cytotoxic effect of the plant's crude latex, its fractions or isolated compounds, is analyzed, along with a study of cell apoptosis, chromatin condensation, DNA damage, changes in gene regulation and morphology changes, which can be observed in cell post plant extract addition. The in vivo studies go beyond the molecular level by showing significant reduction of the tumor growth and volume in animal models. Additionally, we present data regarding plant-mediated biosynthesis of nanoparticles, which is regarded as a new branch in plant latex research. It is solely based on the green-synthesis approach, which presents an interesting alternative to chemical-based nanoparticle synthesis. We have analyzed the cytotoxic effect of these particles on cells. Data regarding the cytotoxicity of such particles raises their potential to be involved in the design of novel cancer therapies, which further underlines the significance of latex-bearing plants in biotechnology. Throughout the course of this review, we concluded that plant latex is a rich source of many compounds, which can be further investigated and applied in the design of anticancer pharmaceuticals. The molecules, to which this cytotoxic effect can be attributed, include alkaloids, flavonoids, tannins, terpenoids, proteases, nucleases and many novel compounds, which still remain to be characterized. They have been studied extensively in both in vitro and in vivo studies, which provide an excellent starting point for their rapid transfer to clinical studies in the near future. The comprehensive study of molecules from latex-bearing plants can result in finding a promising alternative to several pharmaceuticals on the market and help unravel the molecular mode of action of latex-based preparations.
Collapse
Affiliation(s)
- Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alicja Warowicka
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
7
|
Cao Z, Zhu S, Xue Z, Zhang F, Zhang L, Zhang Y, Guo Y, Zhan G, Zhang X, Guo Z. Isoquinoline alkaloids from Hylomecon japonica and their potential anti-breast cancer activities. PHYTOCHEMISTRY 2022; 202:113321. [PMID: 35921889 DOI: 10.1016/j.phytochem.2022.113321] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Four pairs of undescribed enantiomeric isoquinoline alkaloids (6S/R-(N,N-diethylacetamido)yl-dihydrochelerythrine, 6R/S-acetonyl-9-hydroxy-dihydrochelerythrine, 6S/R-acroleinyl-dihydrochelerythrine, 6S/R-acetatemethyl-dihydrochelerythrine), five undescribed isoquinoline alkaloids (6,10-dimethoxydihydrochelerythrine, 6-ethoxy-ethaniminyl-dihydrochelandine, 9-hydroxy-dihydrochelerythrine, 9-methoxy-10-hydroxy-norchelerythrine, chelidoniumine A), together with 13 known isoquinoline alkaloids were isolated from an extract of the roots and rhizomes of Hylomecon japonica. The structures of the undescribed compounds were identified by NMR, HRESIMS, UV, IR, and their absolute configurations were defined via electronic circular dichroism data and optical rotation. All of the isolated compounds were tested for their anti-breast cancer activities in MCF-7 cells. Among them, the undescribed alkaloids 6S/R-acroleinyl-dihydrochelerythrine, 6,10-dimethoxydihydrochelerythrine, 6-ethoxy-ethaniminyl-dihydrochelandine, 9-methoxy-10-hydroxy-norchelerythrine and other known alkaloids 6-methoxydihydrosanguinarine, 6-acetaldehyde-dihyrochelerythrine, dihydrosanguinaline and 10-methoxy boconoline had good inhibitory effects on MCF-7 cells of breast cancer with an IC50 lower than 20 μM.
Collapse
Affiliation(s)
- Zhen Cao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Shangjun Zhu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Zhaowei Xue
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Fuxin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Lei Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yu Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yuting Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Guanqun Zhan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xinxin Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Zengjun Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
8
|
Chelerythrine-Induced Apoptotic Cell Death in HepG2 Cells Involves the Inhibition of Akt Pathway and the Activation of Oxidative Stress and Mitochondrial Apoptotic Pathway. Antioxidants (Basel) 2022; 11:antiox11091837. [PMID: 36139911 PMCID: PMC9495744 DOI: 10.3390/antiox11091837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chelerythrine (CHE) is a majorly harmful isoquinoline alkaloid ingredient in Chelidonium majus that could trigger potential hepatotoxicity, but the pivotal molecular mechanisms remain largely unknown. In the present study, CHE-induced cytotoxicity and the underlying toxic mechanisms were investigated using human HepG2 cells in vitro. Data showed that CHE treatment (at 1.25–10 μM)-induced cytotoxicity in HepG2 cells is dose-dependent. CHE treatment increased the production of ROS and induced oxidative stress in HepG2 cells. Additionally, CHE treatment triggered the loss of mitochondrial membrane potential, decreased the expression of mitochondrial complexes, upregulated the expression of Bax, CytC, and cleaved-PARP1 proteins and the activities of caspase-9 and caspase-3, and downregulated the expression of Bcl-XL, and HO-1 proteins, finally resulting in cell apoptosis. N-acetylcysteine supplementation significantly inhibited CHE-induced ROS production and apoptosis. Furthermore, CHE treatment significantly downregulated the expression of phosphorylation (p)-Akt (Ser473), p-mTOR (Ser2448), and p-AMPK (Thr172) proteins in HepG2 cells. Pharmacology inhibition of Akt promoted CHE-induced the downregulation of HO-1 protein, caspase activation, and apoptosis. In conclusion, CHE-induced cytotoxicity may involve the inhibition of Akt pathway and the activation of oxidative stress-mediated mitochondrial apoptotic pathway in HepG2 cells. This study sheds new insights into understanding the toxic mechanisms and health risks of CHE.
Collapse
|
9
|
Chelerythrine Chloride Inhibits Stemness of Melanoma Cancer Stem-Like Cells (CSCs) Potentially via Inducing Reactive Oxygen Species and Causing Mitochondria Dysfunction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4000733. [PMID: 35761835 PMCID: PMC9233603 DOI: 10.1155/2022/4000733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023]
Abstract
Growing evidence has demonstrated that high heterogeneity contributes to poor prognosis and malignancies. The existence of melanoma cancer stem-like cells (CSCs), which are a small subpopulation of melanoma cells, is responsible for tumour resistance to therapies. Recently, plant secondary metabolites have attracted attention because they are considered promising compounds that are isolated from herbs that could help to target different subpopulations of tumours. In the present study, we aimed to identify the antitumourigenic activities of the medicinal compound chelerythrine chloride (CHE) on melanoma CSCs. CHE (30-40 μmol/L) induced apoptosis in A375 and A2058 CSCs. A relatively low dose of CHE (1-5 μmol/L) inhibited the stemness of melanoma CSCs without inducing apoptosis. Coculture of CHE with A375 and A2058 cells also inhibited sphere formation and decreased stemness factors, including Nanog, Oct4, and Sox2. In functional characterizations, we observed that CHE treatment increased both cellular reactive oxygen species (ROS) and mitochondrial ROS, which resulted in a decrease in mitochondrial energy production and sphere formation. Abolishing CHE-induced ROS by N-acetyl-L-cysteine (NAC), a ROS scavenger, reversed the inhibitory effects of CHE on sphere formation, suggesting that CHE-induced ROS are the potential cause of the inhibition of sphere formation. In conclusion, CHE may exert its antitumour effect as an antistem cell natural compound, suggesting that selection of the antistem cell effects of natural compounds might be a promising strategy to overcome the poor prognosis of melanoma due to the presence of CSCs.
Collapse
|
10
|
Chen N, Qi Y, Ma X, Xiao X, Liu Q, Xia T, Xiang J, Zeng J, Tang J. Rediscovery of Traditional Plant Medicine: An Underestimated Anticancer Drug of Chelerythrine. Front Pharmacol 2022; 13:906301. [PMID: 35721116 PMCID: PMC9198297 DOI: 10.3389/fphar.2022.906301] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
In many studies, the extensive and significant anticancer activity of chelerythrine (CHE) was identified, which is the primary natural active compound in four traditional botanical drugs and can be applied as a promising treatment in various solid tumors. So this review aimed to summarize the anticancer capacities and the antitumor mechanism of CHE. The literature searches revolving around CHE have been carried out on PubMed, Web of Science, ScienceDirect, and MEDLINE databases. Increasing evidence indicates that CHE, as a benzophenanthridine alkaloid, exhibits its excellent anticancer activity as CHE can intervene in tumor progression and inhibit tumor growth in multiple ways, such as induction of cancer cell apoptosis, cell cycle arrest, prevention of tumor invasion and metastasis, autophagy-mediated cell death, bind selectively to telomeric G-quadruplex and strongly inhibit the telomerase activity through G-quadruplex stabilization, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and PKC. The role of CHE against diverse types of cancers has been investigated in many studies and has been identified as the main antitumor drug candidate in drug discovery programs. The current complex data suggest the potential value in clinical application and the future direction of CHE as a therapeutic drug in cancer. Furthermore, the limitations and the present problems are also highlighted in this review. Despite the unclearly delineated molecular targets of CHE, extensive research in this area provided continuously fresh data exploitable in the clinic while addressing the present requirement for further studies such as toxicological studies, combination medication, and the development of novel chemical methods or biomaterials to extend the effects of CHE or the development of its derivatives and analogs, contributing to the effective transformation of this underestimated anticancer drug into clinical practice. We believe that this review can provide support for the clinical application of a new anticancer drug in the future.
Collapse
Affiliation(s)
- Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Qi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Xia
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juyi Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Opposing Effects of Chelidonine on Tyrosine and Serine Phosphorylation of STAT3 in Human Uveal Melanoma Cells. Int J Mol Sci 2021; 22:ijms222312974. [PMID: 34884773 PMCID: PMC8658041 DOI: 10.3390/ijms222312974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
STAT3 is a transcription factor that regulates various cellular processes with oncogenic potential, thereby promoting tumorigenesis when activated uncontrolled. STAT3 activation is mediated by its tyrosine phosphorylation, triggering dimerization and nuclear translocation. STAT3 also contains a serine phosphorylation site, with a postulated regulatory role in STAT3 activation and G2/M transition. Interleukin-6, a major activator of STAT3, is present in elevated concentrations in uveal melanomas, suggesting contribution of dysregulated STAT3 activation to their pathogenesis. Here, we studied the impact of chelidonine on STAT3 signaling in human uveal melanoma cells. Chelidonine, an alkaloid isolated from Chelidonium majus, disrupts microtubules, causes mitotic arrest and provokes cell death in numerous tumor cells. According to our flow cytometry and confocal microscopy data, chelidonine abrogated IL-6-induced activation and nuclear translocation, but amplified constitutive serine phosphorylation of STAT3. Both effects were restricted to a fraction of cells only, in an all-or-none fashion. A partial overlap could be observed between the affected subpopulations; however, no direct connection could be proven. This study is the first proof on a cell-by-cell basis for the opposing effects of a microtubule-targeting agent on the two types of STAT3 phosphorylation.
Collapse
|
12
|
Khan AQ, Rashid K, AlAmodi AA, Agha MV, Akhtar S, Hakeem I, Raza SS, Uddin S. Reactive oxygen species (ROS) in cancer pathogenesis and therapy: An update on the role of ROS in anticancer action of benzophenanthridine alkaloids. Biomed Pharmacother 2021; 143:112142. [PMID: 34536761 DOI: 10.1016/j.biopha.2021.112142] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species play crucial role in biological homeostasis and pathogenesis of human diseases including cancer. In this line, now it has become evident that ROS level/concentration is a major factor in the growth, progression and stemness of cancer cells. Moreover, cancer cells maintain a delicate balance between ROS and antioxidants to promote pathogenesis and clinical challenges via targeting a battery of signaling pathways converging to cancer hallmarks. Recent findings also entail the therapeutic importance of ROS for the better clinical outcomes in cancer patients as they induce apoptosis and autophagy. Moreover, poor clinical outcomes associated with cancer therapies are the major challenge and use of natural products have been vital in attenuation of these challenges due to their multitargeting potential with less adverse effects. In fact, most available drugs are derived from natural resources, either directly or indirectly and available evidence show the clinical importance of natural products in the management of various diseases, including cancer. ROS play a critical role in the anticancer actions of natural products, particularly phytochemicals. Benzophenanthridine alkaloids of the benzyl isoquinoline family of alkaloids, such as sanguinarine, possess several pharmacological properties and are thus being studied for the treatment of different human diseases, including cancer. In this article, we review recent findings, on how benzophenanthridine alkaloid-induced ROS play a critical role in the attenuation of pathological changes and stemness features associated with human cancers. In addition, we highlight the role of ROS in benzophenanthridine alkaloid-mediated activation of the signaling pathway associated with cancer cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid Rashid
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Maha Victor Agha
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ishrat Hakeem
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Syed Shadab Raza
- Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
13
|
Patel A, Vanecha R, Patel J, Patel D, Shah U, Bambharoliya T. Development of Natural Bioactive Alkaloids: Anticancer perspective. Mini Rev Med Chem 2021; 22:200-212. [PMID: 34254913 DOI: 10.2174/1389557521666210712111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/11/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a frightful disease that still poses a 'nightmare' worldwide, causing millions of casualties annually due to one of the human race's most significant healthcare challenges that requires a pragmatic treatment strategy. However, plants and plant-derived products revolutionize the field as they are quick, cleaner, eco-friendly, low-cost, effective, and less toxic than conventional treatment methods. Plants are repositories for new chemical entities and have a promising cancer research path, supplying 60% of the anticancer agents currently used. Alkaloids are important chemical compounds that serve as a rich reservoir for drug discovery and development. However, some alkaloids derived from natural herbs display anti-proliferation and antimetastatic activity on different forms of cancer, both in vitro and in vivo. Alkaloids have also been widely formulated as anticancer medications, such as camptothecin and vinblastine. Still, more research and clinical trials are required before final recommendations can be made on specific alkaloids. This review focuses on the naturally-derived bioactive alkaloids with prospective anticancer properties based on the information in the literature.
Collapse
Affiliation(s)
- Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Ravi Vanecha
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Jay Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Divy Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT-Campus, Changa-388421, Anand, Gujarat, India
| | | |
Collapse
|
14
|
Wang J, Song Y, Zhang N, Li N, Liu C, Wang B. Using Liposomes to Alleviate the Toxicity of Chelerythrine, a Natural PKC Inhibitor, in Treating Non-Small Cell Lung Cancer. Front Oncol 2021; 11:658543. [PMID: 34123813 PMCID: PMC8190388 DOI: 10.3389/fonc.2021.658543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Aim of the Study CHE can inhibit the proliferation of lung cancer cells and induce apoptosis. However, despite having in vivo toxicity, CHE has not been thoroughly investigated in term of its in vivo antitumor effect. The present study evaluated the antitumor effect of CHE on non-small cell lung cancer cell line HCC827. Methods The antitumor effect of CHE on HCC827 was evaluated, and its potential work mechanism was investigated. CHE long circulation liposomes (CHELPs) modified with polyethylene glycol have been optimized and characterized by in vivo pharmacokinetic studies. A HCC827 xenograft model was developed on BALB/c nude mice for the assessment of the effects of CHE and CHELP. Results CHE might inhibit HCC827 growth through the ROS/PKC-ϵ/caspase 3 pathway and glycolysis. The optimized CHELP remained stable after storage for 10 days at 4°C and exhibited sustained drug release, showing approximately one-fifteenth of the in vivo clearance rate and 86 times the absorption concentration of free drug. While increasing the bioavailability of CHE, CHELP showed a good therapeutic effect on HCC827 tumor-bearing nude mice and reduced the toxicity of the free drug, improving the safety of CHE. Conclusions CHE is a candidate drug for NSCLC, and liposomes are effective in alleviating the toxicity of CHE.
Collapse
Affiliation(s)
- Jiahui Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijie Song
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Li
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Congying Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Khurana S, Kukreti S, Kaushik M. Designing a two-stage colorimetric sensing strategy based on citrate reduced gold nanoparticles: Sequential detection of Sanguinarine (anticancer drug) and visual sensing of DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119039. [PMID: 33080515 DOI: 10.1016/j.saa.2020.119039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Distance dependent optical properties of colloidal gold nanoparticles offer designing of colorimetric sensing modalities for detection of a variety of analytes. Herein, we report a simple and facile colorimetric detection assay for an anti-cancer drug, Sanguinarine (SNG) and Calf Thymus DNA (Ct-DNA) based on citrate reduced gold nanoparticles (CI-Au NPs). The electrostatic interaction between SNG and CI-Au NPs induce aggregation of Au NPs accompanied with visible colour change of colloidal solution. The assay conditions like salt concentration, pH and reaction time had been adjusted to achieve highly sensitive and fast colorimetric response. Furthermore, the optimized CI-Au NPs/SNG sensing system is used for the detection of Ct-DNA based on the mechanism of anti-aggregation of CI-Au NPs. The simultaneous presence of SNG and Ct-DNA prevent aggregation of Au NPs owing to preferential formation of Ct-DNA-SNG intercalation complex and colour of the Au NPs solution tends to remain red, depending on the concentration of Ct-DNA in solution. The degree of aggregation and anti-aggregation of CI-Au NPs was monitored using Transmission electron microscopic (TEM) measurements and UV-Visible spectrophotometry by analysing the ratio of absorptions for aggregated and dispersed Au NPs. The intercalation mode of binding between SNG and Ct-DNA in CI-Au NPs/SNG sensing system was determined by Fluorescence spectral studies and UV-thermal melting studies. The absorption ratio (A627/A525) of Au NPs exhibited a linear correlation with SNG concentrations in the range from 0 to 0.9 μM with detection limit as 0.046 μM. This optical method can determine Ct-DNA as low as 0.36 μM and the calibration is linear for concentration range 0 to 5 μM. The proposed sensing strategy enables detection as well as quantification of SNG & Ct-DNA in real samples with satisfactory results and finds application in drug or DNA monitoring.
Collapse
Affiliation(s)
- Sonia Khurana
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
16
|
Lin Q, Ma C, Guan H, Chen L, Xie Q, Cheng X, Wang C. Metabolites identification and reversible interconversion of chelerythrine and dihydrochelerythrine in vitro/in vivo in rats using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2020; 189:113462. [DOI: 10.1016/j.jpba.2020.113462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022]
|
17
|
Xie YJ, Gao WN, Wu QB, Yao XJ, Jiang ZB, Wang YW, Wang WJ, Li W, Hussain S, Liu L, Leung ELH, Fan XX. Chelidonine selectively inhibits the growth of gefitinib-resistant non-small cell lung cancer cells through the EGFR-AMPK pathway. Pharmacol Res 2020; 159:104934. [PMID: 32464330 DOI: 10.1016/j.phrs.2020.104934] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) have been widely used for the clinical treatment of patients with non-small cell lung cancer (NSCLC) harboring mutations in the EGFR. Unfortunately, due to the secondary mutation in EGFR, eventual drug-resistance is inevitable. Therefore, to overcome the resistance, new agent is urgently required. Chelidonine, extracted from the roots of Chelidonium majus, was proved to effectively suppress the growth of NSCLC cells with EGFR double mutation. Proteomics analysis indicated that mitochondrial respiratory chain was significantly inhibited by chelidonine, and inhibitor of AMPK effectively blocked the apoptosis induced by chelidonine. Molecular dynamics simulations indicated that chelidonine could directly bind to EGFR and showed a much higher binding affinity to EGFRL858R/T790M than EGFRWT, which demonstrated that chelidonine could selectively inhibit the phosphorylation of EGFR in cells with EGFR double-mutation. In vivo study revealed that chelidonine has a similar inhibitory effect like second generation TKI Afatinib. In conclusion, targeting EGFR and inhibition of mitochondrial function is a promising anti-cancer therapeutic strategy for inhibiting NSCLC with EGFR mutation and TKI resistance.
Collapse
Affiliation(s)
- Ya-Jia Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Wei-Na Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China; Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Ze-Bo Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Wen-Jun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Wei Li
- TianJin NanKai Hospital, TianJin, PR China
| | - Shahid Hussain
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China.
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China.
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, PR China.
| |
Collapse
|
18
|
Qian L, Chen K, Wang C, Chen Z, Meng Z, Wang P. Targeting NRAS-Mutant Cancers with the Selective STK19 Kinase Inhibitor Chelidonine. Clin Cancer Res 2020; 26:3408-3419. [PMID: 32156748 DOI: 10.1158/1078-0432.ccr-19-2604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 03/05/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncogenic mutations in NRAS promote tumorigenesis. Although novel anti-NRAS inhibitors are urgently needed for the treatment of cancer, the protein is generally considered "undruggable" and no effective therapies have yet reached the clinic. STK19 kinase was recently reported to be a novel activator of NRAS and a potential therapeutic target for NRAS-mutant melanomas. Here, we describe a new pharmacologic inhibitor of STK19 kinase for the treatment of NRAS-mutant cancers. EXPERIMENTAL DESIGN The STK19 kinase inhibitor was identified from a natural compound library using a luminescent phosphorylation assay as the primary screen followed by verification with an in vitro kinase assay and immunoblotting of treated cell extracts. The antitumor potency of chelidonine was investigated in vitro and in vivo using a panel of NRAS-mutant and NRAS wild-type cancer cells. RESULTS Chelidonine was identified as a potent and selective inhibitor of STK19 kinase activity. In vitro, chelidonine treatment inhibited NRAS signaling, leading to reduced cell proliferation and induction of apoptosis in a panel of NRAS-mutant cancer cell lines, including melanoma, liver, lung, and gastric cancer. In vivo, chelidonine suppressed the growth of NRAS-driven tumor cells in nude mice while exhibiting minimal toxicity. CONCLUSIONS Chelidonine suppresses NRAS-mutant cancer cell growth and could have utility as a new treatment for such malignancies.
Collapse
Affiliation(s)
- Ling Qian
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kun Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Chen R, Yang S, Zhang L, Zhou YJ. Advanced Strategies for Production of Natural Products in Yeast. iScience 2020; 23:100879. [PMID: 32087574 PMCID: PMC7033514 DOI: 10.1016/j.isci.2020.100879] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Natural products account for more than 50% of all small-molecule pharmaceutical agents currently in clinical use. However, low availability often becomes problematic when a bioactive natural product is promising to become a pharmaceutical or leading compound. Advances in synthetic biology and metabolic engineering provide a feasible solution for sustainable supply of these compounds. In this review, we have summarized current progress in engineering yeast cell factories for production of natural products, including terpenoids, alkaloids, and phenylpropanoids. We then discuss advanced strategies in metabolic engineering at three different dimensions, including point, line, and plane (corresponding to the individual enzymes and cofactors, metabolic pathways, and the global cellular network). In particular, we comprehensively discuss how to engineer cofactor biosynthesis for enhancing the biosynthesis efficiency, other than the enzyme activity. Finally, current challenges and perspective are also discussed for future engineering direction.
Collapse
Affiliation(s)
- Ruibing Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Shan Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Biomedical Innovation R&D Center, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| |
Collapse
|
20
|
Chelerythrine Chloride Downregulates β-Catenin and Inhibits Stem Cell Properties of Non-Small Cell Lung Carcinoma. Molecules 2020; 25:molecules25010224. [PMID: 31935827 PMCID: PMC6983151 DOI: 10.3390/molecules25010224] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 01/10/2023] Open
Abstract
Plant secondary metabolites have been seen as alternatives to seeking new medicines for treating various diseases. Phytochemical scientists remain hopeful that compounds isolated from natural sources could help alleviate the leading problem in oncology—the lung malignancy that kills an estimated two million people annually. In the present study, we characterized a medicinal compound benzophenanthridine alkaloid, called chelerythrine chloride for its anti-tumorigenic activities. Cell viability assays confirmed its cytotoxicity and anti-proliferative activity in non-small cell lung carcinoma (NSCLC) cell lines. Immunofluorescence staining of β-catenin revealed that there was a reduction of nuclear content as well as overall cellular content of β-catenin after treating NCI-H1703 with chelerythrine chloride. In functional characterizations, we observed favorable inhibitory activities of chelerythrine chloride in cancer stem cell (CSC) properties, which include soft agar colony-forming, migration, invasion, and spheroid forming abilities. Interesting observations in chelerythrine chloride treatment noted that its action abides to certain concentration-specific-targeting behavior in modulating β-catenin expression and apoptotic cell death. The downregulation of β-catenin implicates the downregulation of CSC transcription factors like SOX2 and MYC. In conclusion, chelerythrine chloride has the potential to mitigate cancer growth due to inhibitory actions toward the tumorigenic activity of CSC in lung cancer and it can be flexibly adjusted according to concentration to modulate specific targeting in different cell lines.
Collapse
|
21
|
Bisai V, Saina Shaheeda MK, Gupta A, Bisai A. Biosynthetic Relationships and Total Syntheses of Naturally Occurring Benzo[
c
]Phenanthridine Alkaloids. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vishnumaya Bisai
- Department of Chemistry Indian Institute of Science Education and Research Berhampur Transit Campus: Government ITIEngineering School Junction, Berhampur Odisha- 760 010 India
| | - M. K. Saina Shaheeda
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhauri Bhopal- 462 066, MP India
| | - Aditi Gupta
- Department of Chemistry St. Stephen CollegeDelhi University India
| | - Alakesh Bisai
- Department of ChemistryIndian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhauri Bhopal- 462 066, MP India
- Department of Chemical SciencesIndian Institute of Science Education and Research Kolkata Mohanpur- 741 246, Nadia, WB India
| |
Collapse
|
22
|
Liu Y, Cui T, Peng Y, Ji M, Zheng J. Mechanism-based inactivation of cytochrome P450 2D6 by chelidonine. J Biochem Mol Toxicol 2018; 33:e22251. [PMID: 30368994 DOI: 10.1002/jbt.22251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/19/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
Abstract
Chelidonine (CHE) is a major bioactive constituent of greater celandine, a plant used in traditional herbal medicines. CHE has widely been used as an analgesic in clinical settings. We evaluated the inhibitory effects of CHE on human cytochrome P450 enzymes. CHE produced time-, concentration-, and NADPH-dependent inhibition of CYP2D6, with K I and k inact values of 20.49 μM and 11.05 min -1 , respectively. Approximately 76% of CYP2D6 activity was suppressed after 9 minute incubation with CHE (50 μM). The loss of enzyme activity was not restored following dialysis. The estimated partition ratio of the inactivation was about 156. Quinidine, a competitive inhibitor of CYP2D6, attenuated the CHE-mediated enzyme inactivation, while glutathione and catalase/superoxide dismutase did not markedly ameliorate the inhibitory effect. Upon oxidation using potassium ferricyanide, the 15.1% activity of CYP2D6 was restored. These findings indicate that CHE acted as a mechanism-based inactivator of CYP2D6 and the observed effects may induce potential drug-drug interactions.
Collapse
Affiliation(s)
- Yuyang Liu
- College of Plant Protection, Shenyang Agricultural University, Liaoning, Shenyang, China
| | - Tiantian Cui
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, Shenyang, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, Shenyang, China
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Liaoning, Shenyang, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, Shenyang, China
| |
Collapse
|
23
|
Kemény-Beke Á, Berényi E, Facskó A, Damjanovich J, Horváth A, Bodnár A, Berta A, Aradi J. Antiproliferative Effect of 4-Thiouridylate on OCM-1 Uveal Melanoma Cells. Eur J Ophthalmol 2018. [DOI: 10.1177/112067210601600504] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose Brachytherapy is a well-established, effective treatment for uveal melanoma with a failure rate of 15%. The fatal consequence of unsuccessful treatments offers reason for improvement of the method. The authors propose using an apoptosis inducing agent locally, concomitantly with the well-established therapy, to sensitize the tumor cells. The authors propose a new nontoxic moderately active apoptosis inducing agent, 4-thio-uridylate (s4UMP), for this purpose. Methods OCM-1 uveal melanoma cells were treated with various concentrations of s4UMP and its effect was monitored by measuring the cell viability (MTT assay). The following apoptosis detecting methods were performed to reveal the mechanism of decreased cell viability: light microscopy, DNA fragmentation assay, determination of caspase 9 activity, and FACS analysis. Results The viability of uveal melanoma cells was decreased by 32%, 40%, and 9% after 24, 48, and 72 hours of treatment with 10 μg/mL (30 μM) S4UMP. The effect was not dose dependent; it rather followed a saturation-type inhibition and the cells at lower drug concentration recovered after 72 hours. Characteristic apoptotic cell morphology and DNA fragmentation was detected in treated cells. The caspase-9 was activated upon treatment showing maximal activity at 48 hours suggesting the induction of apoptosis. The annexin binding activity further verified the apoptogenic activity of s4UMP. Conclusions Uveal melanoma, more than other solid tumors, is resistant to most of the chemotherapeutic protocols as indicated by the high mortality rate of metastatic disease. The authors showed that s4UMP, a naturally occurring nucleotide, could induce apoptosis in uveal melanoma cells, suggesting a potential supplementary therapeutic application of the compound.
Collapse
Affiliation(s)
- Á. Kemény-Beke
- Department of Ophthalmology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
| | - E. Berényi
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
- Research Center for Molecular Medicine, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
| | - A. Facskó
- Department of Ophthalmology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
| | - J. Damjanovich
- Department of Ophthalmology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
| | - A. Horváth
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
- Research Center for Molecular Medicine, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
| | - A. Bodnár
- Research Center for Molecular Medicine, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
- Cell Biophysics Research Group of the Hungarian Academy of Sciences, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
| | - A. Berta
- Department of Ophthalmology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
| | - J. Aradi
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
- Research Center for Molecular Medicine, Medical and Health Science Center, Faculty of Medicine, University of Debrecen, Debrecen - Hungary
| |
Collapse
|
24
|
Bhuiya S, Haque L, Das S. Association of iminium and alkanolamine forms of the benzo[c]phenanthridine alkaloid chelerythrine with human serum albumin: photophysical, thermodynamic and theoretical approach. NEW J CHEM 2018. [DOI: 10.1039/c7nj02972a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Association of isoforms of chelerythrine (CHL) with HSA.
Collapse
Affiliation(s)
- Sutanwi Bhuiya
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Lucy Haque
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Suman Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| |
Collapse
|
25
|
Dobrucka R, Dlugaszewska J, Kaczmarek M. Cytotoxic and antimicrobial effects of biosynthesized ZnO nanoparticles using of Chelidonium majus extract. Biomed Microdevices 2017; 20:5. [PMID: 29177803 PMCID: PMC5702625 DOI: 10.1007/s10544-017-0233-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The basic goal of this study was to synthesize zinc oxide nanoparticles using the Chelidonium majus extract and asses their cytotoxic and antimicrobial properties. The synthesized ZnO NPs were characterized by UV-Vis, Scanning Electron Microscopy (SEM) with EDS profile, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The aforementioned methods confirmed that the size of synthesized ZnO nanoparticles was at the range of 10 nm. The antimicrobial activity of ZnO nanoparticles synthesized using the Ch. majus extract was tested against standard strains of bacteria (Staphylococcus aureus NCTC 4163, Pseudomonas aeruginosa NCTC 6749, Escherichia coli ATCC 25922), yeast (Candida albicans ATCC 10231), filamentous fungi (molds: Aspergillus niger ATCC 16404, dermatophytes: Trichophyton rubrum ATCC 28188), clinical strains of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus) and yeast (Candida albicans). The study showed that zinc oxide nanoparticles were excellent antimicrobial agents. What is more, biologically synthesized ZnO nanoparticles demonstrate high efficiency in treatment of human non-small cell lung cancer A549.
Collapse
Affiliation(s)
- Renata Dobrucka
- Department of Industrial Products Quality and Ecology, Faculty of Commodity Science, Poznan University of Economics, al. Niepodległości 10, 61-875, Poznan, Poland.
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781, Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznan, Poland
| |
Collapse
|
26
|
Lin L, Liu YC, Huang JL, Liu XB, Qing ZX, Zeng JG, Liu ZY. Medicinal plants of the genus Macleaya (Macleaya cordata, Macleaya microcarpa): A review of their phytochemistry, pharmacology, and toxicology. Phytother Res 2017; 32:19-48. [PMID: 29130543 DOI: 10.1002/ptr.5952] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022]
Abstract
In the genus Macleaya, Macleaya cordata and Macleaya microcarpa have been recognized as traditional herbs that are primarily distributed in China, North America, and Europe and have a long history of medicinal usage. These herbs have been long valued and studied for detumescence, detoxification, and insecticidal effect. This review aims to provide comprehensive information on botanical, phytochemical, pharmacological, and toxicological studies on plants in the genus Macleaya. Plants from the genus of Macleaya provide a source of bioactive compounds, primarily alkaloids, with remarkable diversity and complex architectures, thereby having attracted attention from researchers. To date, 291 constituents have been identified and/or isolated from this group. These purified compounds and/or crude extract possess antitumor, anti-inflammatory, insecticidal, and antibacterial activities in addition to certain potential toxicities. Macleaya species hold potential for medicinal applications. However, despite the pharmacological studies on these plants, the mechanisms underlying the biological activities of active ingredients derived from Macleaya have not been thoroughly elucidated to date. Additionally, there is a need for research focusing on in vivo medical effects of Macleaya compounds and, eventually, for clinical trials.
Collapse
Affiliation(s)
- Li Lin
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, 410128, China
| | - Yan-Chun Liu
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, 410128, China
| | - Jia-Lu Huang
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, 410128, China
| | - Xiu-Bin Liu
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhi-Xing Qing
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jian-Guo Zeng
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, 410128, China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhao-Ying Liu
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha, 410128, China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.,Hunan Engineering Research Center of Veterinary Drug, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
27
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Molecular targets and anticancer potential of sanguinarine-a benzophenanthridine alkaloid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 34:143-153. [PMID: 28899497 DOI: 10.1016/j.phymed.2017.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/06/2017] [Accepted: 08/06/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Cancer is an enormous global health burden, and should be effectively addressed with better therapeutic strategies. Currently, over 60% of the clinically approved anticancer agents are either directly isolated from natural sources or are modified from natural lead molecules. Sanguinarine (SNG), a quaternary benzophenanthridine alkaloid has gained increasing attention in recent years as a potential anticancer agent. PURPOSE There is a large untapped source of phytochemical-based anticancer agents remaining to be explored. This review article aims to recapitulate different anticancer properties of SNG, and describes some of the molecular targets involved in exerting its effect. It also depicts the pharmacokinetic and toxicological properties of SNG, two parameters important in determining the druggability of a molecule. METHODS Numerous in vivo and in vitro published studies have signified the anticancer properties of SNG. In order to collate and decipher these properties, an extensive literature search was conducted in PubMed, ScienceDirect, and Scopus using keywords followed by the evaluation of the relevant articles where the relevant reports are integrated and analyzed. RESULTS Apart from inducing cell death, SNG inhibits pro-tumorigenic processes such as invasion, angiogenesis, and metastasis in different cancers. Moreover, SNG has been shown to synergistically enhance the sensitivity of several chemotherapeutic agents and is effective against a variety of multi-drug resistant cancers.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Anees Rahman
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science (Biology), Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, UAE.
| |
Collapse
|
28
|
Fernandes TS, Copetti D, do Carmo G, Neto AT, Pedroso M, Silva UF, Mostardeiro MA, Burrow RE, Dalcol II, Morel AF. Phytochemical analysis of bark from Helietta apiculata Benth and antimicrobial activities. PHYTOCHEMISTRY 2017; 141:131-139. [PMID: 28614729 DOI: 10.1016/j.phytochem.2017.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Extraction and characterization of natural products from the bark of the trunk of Helietta apiculata Benth (Rutaceae) afforded nine alkaloids, eight furoquinoline and one quinolone, limonine, three cinnamic acid derivatives, three neolignans, tetracosanoic acid, six coumarins, of which apiculin A and apiculin B (neolignans), and tanizin (coumarin) are previously undescribed compounds. The structures of all compounds were determined by spectroscopic methods, and the crystal structures of two of the newly undescribed compounds, apiculin A and apiculin B, were determined by X-ray analysis. Extracts and pure compounds isolated from Helietta apiculata showed promising antimicrobial activities.
Collapse
Affiliation(s)
- Tanize S Fernandes
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Daniele Copetti
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Gabriele do Carmo
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Alexandre T Neto
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Marcelo Pedroso
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Ubiratan F Silva
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Marco A Mostardeiro
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Robert E Burrow
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Ionara I Dalcol
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Ademir F Morel
- Department of Chemistry, Federal University of Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
29
|
UPLC-MS/MS Profile of Alkaloids with Cytotoxic Properties of Selected Medicinal Plants of the Berberidaceae and Papaveraceae Families. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9369872. [PMID: 28951771 PMCID: PMC5603144 DOI: 10.1155/2017/9369872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 11/19/2022]
Abstract
Cancer is one of the most occurring diseases in developed and developing countries. Plant-based compounds are still researched for their anticancer activity and for their quantity in plants. Therefore, the modern chromatographic methods are applied to quantify them in plants, for example, UPLC-MS/MS (ultraperformance liquid chromatography tandem mass spectrometry). Therefore, the aim of the present study was to evaluate the content of sanguinarine, berberine, protopine, and chelidonine in Dicentra spectabilis (L.) Lem., Fumaria officinalis L., Glaucium flavum Crantz, Corydalis cava L., Berberis thunbergii DC., Meconopsis cambrica (L.) Vig., Mahonia aquifolium (Pursh) Nutt., Macleaya cordata Willd., and Chelidonium majus L. For the first time, N,N-dimethyl-hernovine was identified in M. cambrica, B. thunbergii, M. aquifolium, C. cava, G. flavum, and C. majus; methyl-hernovine was identified in G. flavum; columbamine was identified in B. thunbergii; and methyl-corypalmine, chelidonine, and sanguinarine were identified in F. officinalis L. The richest source of protopine among all the examined species was M. cordata (5463.64 ± 26.3 μg/g). The highest amounts of chelidonine and sanguinarine were found in C. majus (51,040.0 ± 1.8 μg/g and 7925.8 ± 3.3 μg/g, resp.), while B. thunbergi contained the highest amount of berberine (6358.4 ± 4.2 μg/g).
Collapse
|
30
|
Basu P, Kumar GS. Sanguinarine and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:155-172. [PMID: 27671816 DOI: 10.1007/978-3-319-41334-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of natural products derived from plants as medicines precedes even the recorded human history. In the past few years there were renewed interests in developing natural compounds and understanding their target specificity for drug development for many devastating human diseases. This has been possible due to remarkable advancements in the development of sensitive chemistry and biology tools. Sanguinarine is a benzophenanthridine alkaloid derived from rhizomes of the plant species Sanguinaria canadensis. The alkaloid can exist in the cationic iminium and neutral alkanolamine forms. Sanguinarine is an excellent DNA and RNA intercalator where only the iminium ion binds. Both forms of the alkaloid, however, shows binding to functional proteins like serum albumins, lysozyme and hemoglobin. The molecule is endowed with remarkable biological activities and large number of studies on its various activities has been published potentiating its development as a therapeutic agent particularly for chronic human diseases like cancer, asthma, etc. In this article, we review the properties of this natural alkaloid, and its diverse medicinal applications in relation to how it modulates cell death signaling pathways and induce apoptosis through different ways, its utility as a therapeutic agent for chronic diseases and its biological effects in animal and human models. These data may be useful to understand the therapeutic potential of this important and highly abundant alkaloid that may aid in the development of sanguinarine-based therapeutic agents with high efficacy and specificity.
Collapse
Affiliation(s)
- Pritha Basu
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
31
|
Protein kinase C inhibitor chelerythrine selectively inhibits proliferation of triple-negative breast cancer cells. Sci Rep 2017; 7:2022. [PMID: 28515445 PMCID: PMC5435721 DOI: 10.1038/s41598-017-02222-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/07/2017] [Indexed: 12/25/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer lacking targeted therapy currently. Recent studies imply that protein kinase C may play important roles in TNBC development and could be a specific target. In this study, we evaluated the anti-proliferative activity of PKC inhibitor chelerythrine on a panel of breast cancer cell lines. Chelerythrine selectively inhibited the growth of TNBC cell lines compared to non-TNBC cell lines as demonstrated by in vitro cell proliferation assay and colony formation assay, as well as evidenced by in vivo xenograft assay. The selective anti-proliferative effect of chelerythrine was associated with induction of apoptosis in TNBC cell lines. We further demonstrated that PKN2, one of the PKC subtypes, was highly expressed in TNBC cell lines, and knocking down PKN2 in TNBC cells inhibited colony formation and xenograft growth. This indicates that PKN2 is required for the survival of TNBC cells, and could be the target mediates the selective activity of chelerythrine. Finally, combination of chelerythrine and chemotherapy reagent taxol showed synergistic/additive effect on TNBC cell lines. Our results suggest chelerythrine or other PKC inhibitors may be promising regimens for TNBC tumors.
Collapse
|
32
|
Shams T, Lu X, Zhu L, Zhou F. The inhibitory effects of five alkaloids on the substrate transport mediated through human organic anion and cation transporters. Xenobiotica 2017; 48:197-205. [DOI: 10.1080/00498254.2017.1282647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tahiatul Shams
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia and
| | - Xiaoxi Lu
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia and
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia and
| |
Collapse
|
33
|
Banerjee A, Sanyal S, Dutta S, Chakraborty P, Das PP, Jana K, Vasudevan M, Das C, Dasgupta D. The plant alkaloid chelerythrine binds to chromatin, alters H3K9Ac and modulates global gene expression. J Biomol Struct Dyn 2016; 35:1491-1499. [PMID: 27494525 DOI: 10.1080/07391102.2016.1188154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chelerythrine (CHL), a plant alkaloid, possesses antimicrobial, anti-inflammatory, and antitumor properties. Although CHL influences several key signal transduction pathways, its ability to interact directly with nucleoprotein complex chromatin, in eukaryotic cells has so far not been looked into. Here we have demonstrated its association with hierarchically assembled chromatin components, viz. long chromatin, chromatosome, nucleosome, chromosomal DNA, and histone H3 and the consequent effect on chromatin structure. CHL was found to repress acetylation at H3K9. It is more target-specific in terms of gene expression alteration and less cytotoxic compared to its structural analog sanguinarine.
Collapse
Affiliation(s)
- Amrita Banerjee
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Sulagna Sanyal
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Shreyasi Dutta
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Payal Chakraborty
- b Genome Informatics Research Group , Bionivid Technology Pvt Ltd. , Bangalore 560043 , India
| | - Prajna Paramita Das
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Kuladip Jana
- c Division of Molecular Medicine, Centre for Translational Animal Research , Bose Institute , P 1/12, C. I. T. Road, Scheme - VIIM, Kolkata 700054 , India
| | - Madavan Vasudevan
- b Genome Informatics Research Group , Bionivid Technology Pvt Ltd. , Bangalore 560043 , India
| | - Chandrima Das
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| | - Dipak Dasgupta
- a Biophysics and Structural Genomics Division , Saha Institute of Nuclear Physics , Block - AF Sector-I, Bidhan Nagar, Kolkata 700064 , India
| |
Collapse
|
34
|
CHEN XIAOMENG, ZHANG MENG, FAN PENGLI, QIN YUHUA, ZHAO HONGWEI. Chelerythrine chloride induces apoptosis in renal cancer HEK-293 and SW-839 cell lines. Oncol Lett 2016; 11:3917-3924. [PMID: 27313717 PMCID: PMC4888265 DOI: 10.3892/ol.2016.4520] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/23/2015] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that the benzo[c]phenanthridine alkaloid chelerythrine chloride (CC) has inhibitory effects on various tumors. However, the anticancer activity of CC and its underlying mechanisms have not been elucidated in renal cancer cells. The present study examined the effects of CC on growth inhibition and apoptosis of renal cancer cells in vitro and in vivo. Flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays revealed that CC markedly suppressed the growth of HEK-293 and human renal cancer SW-839 cells in a time- and dose-dependent manner. The xenograft mouse model, which was performed in nude mice, exhibited a reduced tumor growth following CC treatment. In addition, the present study revealed that CC significantly decreased the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, which was accompanied by upregulation of p53, B-cell lymphoma 2 (Bcl-2)-associated X protein, cleaved caspase-3 and cleaved poly (adenosine diphosphate-ribose) polymerase (PARP), and downregulation of Bcl-2, caspase-3 and PARP. Furthermore, the use of PD98059, a specific mitogen-activated protein kinase kinase inhibitor, potentiated the proapoptotic effects of CC, which indicated that CC may induce apoptosis in renal cancer cells partly via inhibition of ERK activity. Overall, the results of the present study demonstrated that CC may be developed as a potential anticancer treatment for patients with renal cancer.
Collapse
Affiliation(s)
- XIAO-MENG CHEN
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - MENG ZHANG
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - PENG-LI FAN
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - YU-HUA QIN
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - HONG-WEI ZHAO
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
35
|
Havelek R, Seifrtova M, Kralovec K, Krocova E, Tejkalova V, Novotny I, Cahlikova L, Safratova M, Opletal L, Bilkova Z, Vavrova J, Rezacova M. Comparative cytotoxicity of chelidonine and homochelidonine, the dimethoxy analogues isolated from Chelidonium majus L. (Papaveraceae), against human leukemic and lung carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:253-66. [PMID: 26969379 DOI: 10.1016/j.phymed.2016.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND The search for new anticancer compounds is a crucial element of natural products research. PURPOSE In this study the effects of naturally occurring homochelidonine in comparison to chelidonine on cell cycle progression and cell death in leukemic T-cells with different p53 status are described. METHODS The mechanism of cytotoxic, antiproliferative, apoptosis-inducing effects and the effect on expressions of cell cycle regulatory proteins was investigated using XTT assay, Trypan blue exclusion assay, flow cytometry, Western blot analysis, xCELLigence, epi-fluorescence and 3D super resolution microscopy. A549 cells were used for xCELLigence, clonogenic assay and for monitoring microtubule stability. RESULTS We found that homochelidonine and chelidonine displayed significant cytotoxicity in examined blood cancer cells with the exception of HEL 92.1.7 and U-937 exposed to homochelidonine. Unexpectedly, homochelidonine and chelidonine-induced cytotoxicity was more pronounced in Jurkat cells contrary to MOLT-4 cells. Homochelidonine showed an antiproliferative effect on A549 cells but it was less effective compared to chelidonine. Biphasic dose-depended G1 and G2/M cell cycle arrest along with the population of sub-G1 was found after treatment with homochelidonine in MOLT-4 cells. In variance thereto, an increase in G2/M cells was detected after treatment with homochelidonine in Jurkat cells. Treatment with chelidonine induced cell cycle arrest in the G2/M cell cycle in both MOLT-4 and Jurkat cells. MOLT-4 and Jurkat cells treated with homochelidonine and chelidonine showed features of apoptosis such as phosphatidylserine exposure, a loss of mitochondrial membrane potential and an increase in the caspases -3/7, -8 and -9. Western blots indicate that homochelidonine and chelidonine exposure activates Chk1 and Chk2. Studies conducted with fluorescence microscopy demonstrated that chelidonine and homochelidonine inhibit tubulin polymerization in A549 cells. CONCLUSION Collectively, the data indicate that chelidonine and homochelidonine are potent inducers of cell death in cancer cell lines, highlighting their potential relevance in leukemic cells.
Collapse
Affiliation(s)
- Radim Havelek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic.
| | - Martina Seifrtova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 500 38, Czech Republic
| | - Karel Kralovec
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic
| | - Eliska Krocova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic
| | - Veronika Tejkalova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic
| | - Ivan Novotny
- Flow Cytometry and Light Microscopy, Institute of Molecular Genetics of the ASCR, Videnska 1083, Prague 142 20, Czech Republic
| | - Lucie Cahlikova
- ADINACO Research group, Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Marcela Safratova
- ADINACO Research group, Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Lubomir Opletal
- ADINACO Research group, Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, Pardubice 532 10, Czech Republic
| | - Jirina Vavrova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence in Brno, Trebesska 1575, Hradec Kralove 500 01, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 500 38, Czech Republic
| |
Collapse
|
36
|
In silico target fishing and pharmacological profiling for the isoquinoline alkaloids of Macleaya cordata (Bo Luo Hui). Chin Med 2015; 10:37. [PMID: 26691584 PMCID: PMC4683977 DOI: 10.1186/s13020-015-0067-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/10/2015] [Indexed: 01/01/2023] Open
Abstract
Background Some isoquinoline alkaloids from Macleaya cordata (Willd). R. Br. (Bo Luo Hui) exhibited antibacterial, antiparasitic, antitumor, and analgesic effects. The targets of these isoquinoline alkaloids are undefined. This study aims to investigate the compound–target interaction network and potential pharmacological actions of isoquinoline alkaloids of M. cordata by reverse pharmacophore database screening. Methods The targets of 26 isoquinoline alkaloids identified from M. cordata were predicted by a pharmacophore-based target fishing approach. Discovery Studio 3.5 and two pharmacophore databases (PharmaDB and HypoDB) were employed for the target profiling. A compound–target interaction network of M. cordata was constructed and analyzed by Cytoscape 3.0. Results Thirteen of the 65 predicted targets identified by PharmaDB were confirmed as targets by HypoDB screening. The targets in the interaction network of M. cordata were involved in cancer (31 targets), microorganisms (12 targets), neurodegeneration (10 targets), inflammation and autoimmunity (8 targets), parasitosis (5 targets), injury (4 targets), and pain (3 targets). Dihydrochelerythrine (C6) was found to hit 23 fitting targets. Macrophage migration inhibitory factor (MIF) hits 15 alkaloids (C1–2, C11–16, C19–25) was the most promising target related to cancer. Conclusion Through in silico target fishing, the anticancer, anti-inflammatory, and analgesic effects of M. cordata were the most significant among many possible activities. The possible anticancer effects were mainly contributed by the isoquinoline alkaloids as active components.
Collapse
|
37
|
Capistrano I R, Wouters A, Lardon F, Gravekamp C, Apers S, Pieters L. In vitro and in vivo investigations on the antitumour activity of Chelidonium majus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1279-87. [PMID: 26626193 DOI: 10.1016/j.phymed.2015.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Chelidonium majus L. (Papaveraceae) (greater celandine) is a medicinal herb that is widely spread in Europe. Antitumoural activity has been reported for C. majus extracts. HYPOTHESIS/PURPOSE To investigate the antitumour activity of a C. majus extract in vitro and in vivo. STUDY DESIGN Cytotoxic effects of C. majus extracts were evaluated on human cancer cell lines, i.e. PANC-1 (pancreas cancer), HT-29 (colon cancer), MDA-MB-231 (breast cancer), PC-EM005 and PC-EM002 (primary endometrium cancer cells), and PANC02 (murine pancreatic adenocarcinoma cells). A preliminary in vivo study was performed to evaluate the effect of a defatted C. majus extract and Ukrain(TM) in a highly metastatic murine pancreatic model. METHODS Chelidonium majus L. herb containing 1.26% (dry weight) of total alkaloids expressed as chelidonine was used to prepare an 80% ethanolic extract (CM2). This crude extract was then defatted with n-hexane, resulting in a defatted C. majus extract (CM2B). Cytotoxic effects of the two extracts (CM2 and CM2B) were evaluated on human and murine cell lines in vitro. CM2B and Ukrain(TM) were evaluated in a highly metastatic murine pancreatic model. RESULTS Four main benzylisoquinoline alkaloids were identified in CM2B, i.e. chelidonine, sanguinarine, chelerythrine and protopine, using HPLC-UV. CM2 showed a high cytotoxic activity against PANC-1 (IC50, 20.7 µg/ml) and HT-29 (IC50, 20.6 µg/ml), and a moderate cytotoxic activity against MDA-MB-231 (IC50, 73.9 µg/ml). CM2 as well as CM2B showed a moderate to high cytotoxic activity against the PANC02 cell line (IC50, 34.4 and 36.0 µg/ml). Low to almost no cytotoxic effect was observed on primary endometrium cancer cells PC-EM005, PC-EM002 and on normal fibroblast cells 3T3, when treated with CM2B. Significantly less metastases were counted in mice treated with 1.2 mg/kg CM2B, but not with 3.6 mg/kg Ukrain(TM), compared to the control group. The extract, however, did not affect the weight of the primary tumours.
Collapse
Affiliation(s)
- Rica Capistrano I
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine New York, NY, USA
| | - Sandra Apers
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| |
Collapse
|
38
|
Qu Z, Zou X, Zhang X, Sheng J, Wang Y, Wang J, Wang C, Ji Y. Chelidonine induces mitotic slippage and apoptotic-like death in SGC-7901 human gastric carcinoma cells. Mol Med Rep 2015; 13:1336-44. [PMID: 26677104 DOI: 10.3892/mmr.2015.4683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/24/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the effect of chelidonine on mitotic slippage and apoptotic-like death in SGC-7901 human gastric cancer cells. The MTT assay was performed to detect the antiproliferative effect of chelidonine. Following treatment with chelidonine (10 µmol/l), the ultrastructure changes in SGC-7901, MCF-7 and HepG2 cells were observed by transmission electron microscopy. The effects of chelidonine on G2/M phase arrest and apoptosis of SGC-7901 cells were determined by flow cytometry. Indirect immunofluorescence assay and laser scanning confocal microscopy (LSCM) were used to detect the phosphorylation level of histone H3 (Ser10) and microtubule formation was detected using LSCM following immunofluorescent labeling. Subsequent to treatment with chelidonine (10 µmol/l), expression levels of mitotic slippage-associated proteins, including BUB1 mitotic checkpoint serine/threonine kinase B (BubR1), cyclin-dependent kinase 1 (Cdk1) and cyclin B1, and apoptosis-associated protein, caspase-3 were examined by western blotting at 24, 48 and 72 h. The half maximal inhibitory concentration of chelidonine was 23.13 µmol/l over 48 h and chelidonine induced G2/M phase arrest of cells. The phosphorylation of histone H3 at Ser10 was significantly increased following treatment with chelidonine for 24 h, indicating that chelidonine arrested the SGC-7901 cells in the M phase. Chelidonine inhibited microtubule polymerization, destroyed microtubule structures and induced cell cycle arrest in the M phase. Giant cells were observed with multiple micronuclei of varying sizes, which indicated that following a prolonged arrest in the M phase, the cells underwent mitotic catastrophe. Western blotting demonstrated that the protein expression levels of BubR1, cyclin B1 and Cdk1 decreased significantly between 48 and 72 h. Low expression levels of BubR1 and inactivation of the cyclin B1-Cdk1 complex results in the cells being arrested at mitosis and leads to mitotic slippage. In addition, apoptotic morphological changes in multinucleated cells were observed, the apoptosis rates increased gradually with administration of chelidonine in a time-dependent manner and the protein levels of caspase-3 increased significantly between 24 and 72 h. Thus, chelidonine induces mitotic slippage, and apoptotic-like death occurs in SGC-7901 cells undergoing mitotic catastrophe. Gastric cancer is a common malignancy, and ranks second in overall cancer-associated mortalities worldwide. The present study demonstrated that chelidonine induces M phase arrest and mitotic slippage of SGC-7901 human gastric carcinoma cells via downregulating the expression of BubR1, Cdk1 and cyclin B1 proteins. With the prolongation of chelidonine treatment, the giant cells with multiple micronuclei underwent mitotic slippage and were maintained in the G1 phase and did not survive. A number of multinucleated cells underwent apoptosis via a caspase-dependent signaling pathway. The current study proposes that chelidonine induces mitotic slippage and apoptotic-like death of SGC-7901 cells.
Collapse
Affiliation(s)
- Zhongyuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Xiang Zou
- Engineering Research Center of Natural Antineoplastic Drugs, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Xiujuan Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Jiejing Sheng
- School of Pharmacy, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Yumeng Wang
- Engineering Research Center of Natural Antineoplastic Drugs, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Jiaqi Wang
- Engineering Research Center of Natural Antineoplastic Drugs, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Chao Wang
- Engineering Research Center of Natural Antineoplastic Drugs, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| | - Yubin Ji
- Engineering Research Center of Natural Antineoplastic Drugs, Harbin University of Commerce, Harbin, Heilongjiang 150076, P.R. China
| |
Collapse
|
39
|
Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD. De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng 2015; 31:74-83. [PMID: 26166409 DOI: 10.1016/j.ymben.2015.06.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 12/28/2022]
Abstract
Microbial biosynthesis for plant-based natural products, such as the benzylisoquinoline alkaloids (BIAs), has the potential to address limitations in plant-based supply of established drugs and make new molecules available for drug discovery. While yeast strains have been engineered to produce a variety of downstream BIAs including the opioids, these strains have relied on feeding an early BIA substrate. We describe the de novo synthesis of the major BIA branch point intermediate reticuline via norcoclaurine in Saccharomyces cerevisiae. Modifications were introduced into yeast central metabolism to increase supply of the BIA precursor tyrosine, allowing us to achieve a 60-fold increase in production of the early benzylisoquinoline scaffold from fed dopamine with no supply of exogenous tyrosine. Yeast strains further engineered to express a mammalian tyrosine hydroxylase, four mammalian tetrahydrobiopterin biosynthesis and recycling enzymes, and a bacterial DOPA decarboxylase produced norcoclaurine de novo. We further increased production of early benzylisoquinoline scaffolds by 160-fold through introducing mutant tyrosine hydroxylase enzymes, an optimized plant norcoclaurine synthase variant, and optimizing culture conditions. Finally, we incorporated five additional plant enzymes--three methyltransferases, a cytochrome P450, and its reductase partner--to achieve de novo production of the key branch point molecule reticuline with a titer of 19.2 μg/L. These strains and reconstructed pathways will serve as a platform for the biosynthesis of diverse natural and novel BIAs.
Collapse
Affiliation(s)
- Isis J Trenchard
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305, United States
| | - Michael S Siddiqui
- Department of Chemical Engineering; Stanford University, Stanford, CA 94305, United States
| | - Kate Thodey
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305, United States
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305, United States.
| |
Collapse
|
40
|
Engineering strategies for the fermentative production of plant alkaloids in yeast. Metab Eng 2015; 30:96-104. [PMID: 25981946 DOI: 10.1016/j.ymben.2015.05.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/25/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
Microbial hosts engineered for the biosynthesis of plant natural products offer enormous potential as powerful discovery and production platforms. However, the reconstruction of these complex biosynthetic schemes faces numerous challenges due to the number of enzymatic steps and challenging enzyme classes associated with these pathways, which can lead to issues in metabolic load, pathway specificity, and maintaining flux to desired products. Cytochrome P450 enzymes are prevalent in plant specialized metabolism and are particularly difficult to express heterologously. Here, we describe the reconstruction of the sanguinarine branch of the benzylisoquinoline alkaloid pathway in Saccharomyces cerevisiae, resulting in microbial biosynthesis of protoberberine, protopine, and benzophenanthridine alkaloids through to the end-product sanguinarine, which we demonstrate can be efficiently produced in yeast in the absence of the associated biosynthetic enzyme. We achieved titers of 676 μg/L stylopine, 548 μg/L cis-N-methylstylopine, 252 μg/L protopine, and 80 μg/L sanguinarine from the engineered yeast strains. Through our optimization efforts, we describe genetic and culture strategies supporting the functional expression of multiple plant cytochrome P450 enzymes in the context of a large multi-step pathway. Our results also provided insight into relationships between cytochrome P450 activity and yeast ER physiology. We were able to improve the production of critical intermediates by 32-fold through genetic techniques and an additional 45-fold through culture optimization.
Collapse
|
41
|
KIM OKHWA, HWANGBO CHEOL, KIM JUNHYEONG, LI DONGHAO, MIN BYUNGSUN, LEE JEONGHYUNG. Chelidonine suppresses migration and invasion of MDA-MB-231 cells by inhibiting formation of the integrin-linked kinase/PINCH/α-parvin complex. Mol Med Rep 2015; 12:2161-8. [DOI: 10.3892/mmr.2015.3621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 08/12/2014] [Indexed: 11/05/2022] Open
|
42
|
Recognition of chelerythrine to human telomeric DNA and RNA G-quadruplexes. Sci Rep 2014; 4:6767. [PMID: 25341562 PMCID: PMC4208030 DOI: 10.1038/srep06767] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/29/2014] [Indexed: 01/25/2023] Open
Abstract
A study on binding of antitumor chelerythrine to human telomeric DNA/RNA G-quadruplexes was performed by using DNA polymerase stop assay, UV-melting, ESI-TOF-MS, UV-Vis absorption spectrophotometry and fluorescent triazole orange displacement assay. Chelerythrine selectively binds to and stabilizes the K(+)-form hybrid-type human telomeric DNA G-quadruplex of biological significance, compared with the Na(+)-form antiparallel-type DNA G-quadruplex. ESI-TOF-MS study showed that chelerythrine possesses a binding strength for DNA G-quadruplex comparable to that of TMPyP4 tetrachloride. Both 1:1 and 2:1 stoichiometries were observed for chelerythrine's binding with DNA and RNA G-quadruplexes. The binding strength of chelerythrine with RNA G-quadruplex is stronger than that with DNA G-quadruplex. Fluorescent triazole orange displacement assay revealed that chelerythrine interacts with human telomeric RNA/DNA G-quadruplexes by the mode of end- stacking. The relative binding strength of chelerythrine for human telomeric RNA and DNA G-quadruplexes obtained from ESI-TOF-MS experiments are respectively 6.0- and 2.5-fold tighter than that with human telomeric double-stranded hairpin DNA. The binding selectivity of chelerythrine for the biologically significant K(+)-form human telomeric DNA G-quadruplex over the Na(+)-form analogue, and binding specificity for human telomeric RNA G-quadruplex established it as a promising candidate in the structure-based design and development of G-quadruplex specific ligands.
Collapse
|
43
|
Structure-activity relationship of benzophenanthridine alkaloids from Zanthoxylum rhoifolium having antimicrobial activity. PLoS One 2014; 9:e97000. [PMID: 24824737 PMCID: PMC4019524 DOI: 10.1371/journal.pone.0097000] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/15/2014] [Indexed: 11/19/2022] Open
Abstract
Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1-3), and nine benzophenanthridine alkaloids (4-12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect considering the decrease in TBARS and AOPP (advanced oxidized protein products) levels when compared to the control group.
Collapse
|
44
|
Shan XF, Meng QF, Kang YH, Bian Y, Gao YH, Wang WL, Qian AD. Isolation of active compounds from methanol extracts of Toddalia asiatica against Ichthyophthirius multifiliis in goldfish (Carassius auratus). Vet Parasitol 2014; 199:250-4. [DOI: 10.1016/j.vetpar.2013.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
45
|
Liu M, Lin YL, Chen XR, Liao CC, Poo WK. In vitro assessment of Macleaya cordata crude extract bioactivity and anticancer properties in normal and cancerous human lung cells. ACTA ACUST UNITED AC 2013; 65:775-87. [DOI: 10.1016/j.etp.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
46
|
De S, Mishra S, Kakde BN, Dey D, Bisai A. Expeditious Approach to Pyrrolophenanthridones, Phenanthridines, and Benzo[c]phenanthridines via Organocatalytic Direct Biaryl-Coupling Promoted by Potassium tert-Butoxide. J Org Chem 2013; 78:7823-44. [DOI: 10.1021/jo400890k] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Subhadip De
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal MP-462
023, India
| | - Sourabh Mishra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal MP-462
023, India
| | - Badrinath N. Kakde
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal MP-462
023, India
| | - Dhananjay Dey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal MP-462
023, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal MP-462
023, India
| |
Collapse
|
47
|
Kumar S, Acharya A. Chelerythrine induces reactive oxygen species-dependent mitochondrial apoptotic pathway in a murine T cell lymphoma. Tumour Biol 2013; 35:129-40. [PMID: 23900672 DOI: 10.1007/s13277-013-1016-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/11/2013] [Indexed: 01/01/2023] Open
Abstract
Chelerythrine is a well-known protein kinase C inhibitor and potential antiproliferative and antitumor pharmacological agent. Chelerythrine inhibits/suppresses the HSF1 phosphorylation by inhibiting PKC and blocks the nuclear migration and subsequent synthesis of hsp70 leading to reduced cell viability and activation of apoptotic machinery. Chelerythrine is also known to enhance the production of reactive oxygen intermediate that is strong activator of apoptosis in high concentration. Therefore, the present study intended to investigate the role of chelerythrine-induced reactive oxygen intermediate on the viability and apoptosis of Dalton's lymphoma cells. Enhanced production of reactive oxygen species in Dalton's lymphoma (DL) cells was observed upon treatment of chelerythrine only which was seen completely abolished on treatment of mitochondrial complex inhibitors rotenone and malonate, and anti-oxidant, N-acetyl-L-cysteine. Increased number of DL cells undergoing apoptosis, as observed by fluorescent microscopy and flow cytometry analysis, in chelerythrine only-treated group was seen that was significantly inhibited on treatment of mitochondrial complex inhibitors and anti-oxidants. Staurosporine, on the other hand, does not lead to enhanced production of reactive oxygen intermediate in DL cells.
Collapse
Affiliation(s)
- Sanjay Kumar
- Centre of Advance Study in Zoology, Faculty of Science, Banaras Hindu University, Varanasi, 221-005, UP, India
| | | |
Collapse
|
48
|
Rapid human melanoma cell death induced by sanguinarine through oxidative stress. Eur J Pharmacol 2013; 705:109-18. [PMID: 23499690 DOI: 10.1016/j.ejphar.2013.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 12/14/2022]
Abstract
Sanguinarine is a natural isoquinoline alkaloid derived from the root of Sanguinaria canadensis and from other poppy fumaria species, and is known to have a broad spectrum of pharmacological properties. Here we have found that sanguinarine, at low micromolar concentrations, showed a remarkably rapid killing activity against human melanoma cells. Time-lapse videomicroscopy showed rapid morphological changes compatible with an apoptotic cell death, which was further supported by biochemical markers, including caspase activation, poly(ADP-ribose) polymerase (PARP) cleavage and DNA breakdown. Pan-caspase inhibition blocked sanguinarine-induced cell death. Sanguinarine treatment also induced an increase in intracellular calcium concentration, which was inhibited by dantrolene, and promoted cleavage of BAP-31, thus suggesting a putative role for Ca(2+) release from endoplasmic reticulum and a cross-talk between endoplasmic reticulum and mitochondria in the anti-melanoma action of sanguinarine. Sanguinarine disrupted the mitochondrial transmembrane potential (ΔΨm), released cytochrome c and Smac/DIABLO from mitochondria to cytosol, and induced oxidative stress. Overexpression of Bcl-XL by gene transfer did not prevent sanguinarine-mediated cell death, oxidative stress or release of mitochondrial apoptogenic proteins. However, preincubation with N-acetyl-l-cysteine (NAC) prevented sanguinarine-induced oxidative stress, PARP cleavage, release of apoptogenic mitochondrial proteins, and cell death. Pretreatment with glutathione (GSH) also inhibited the anti-melanoma activity of sanguinarine. Thus, pretreatment with the thiol antioxidants NAC and GSH abrogated the killing activity of sanguinarine. Taking together, our data indicate that sanguinarine is a very rapid inducer of human melanoma caspase-dependent cell death that is mediated by oxidative stress.
Collapse
|
49
|
Herman B, Gudrun A, Potopalsky AI, Chroboczek J, Tcherniuk SO. Amitozyn impairs chromosome segregation and induces apoptosis via mitotic checkpoint activation. PLoS One 2013; 8:e57461. [PMID: 23505430 PMCID: PMC3591406 DOI: 10.1371/journal.pone.0057461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 01/24/2013] [Indexed: 11/23/2022] Open
Abstract
Amitozyn (Am) is a semi-synthetic drug produced by the alkylation of major celandine (Chelidonium majus L.) alkaloids with the organophosphorous compound N,N'N'-triethylenethiophosphoramide (ThioTEPA). We show here that the treatment of living cells with Am reversibly perturbs the microtubule cytoskeleton, provoking a dose-dependent cell arrest in the M phase. Am changed the dynamics of tubulin polymerization in vitro, promoted the appearance of aberrant mitotic phenotypes in HeLa cells and induced apoptosis by the activation of caspase-9, caspase-3 and PARP, without inducing DNA breaks. Am treatment of HeLa cells induced changes in the phosphorylation of the growth suppressor pRb that coincided with maximum mitotic index. The dose-dependent and reversible anti-proliferative effect of Am was observed in several transformed cell lines. Importantly, the drug was also efficient against multidrug-resistant, paclitaxel-resistant or p53-deficient cells. Our results thus open the way to further pre-clinical evaluation of Am.
Collapse
Affiliation(s)
- Bastien Herman
- Institut de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
| | - Aldrian Gudrun
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Anatoly I. Potopalsky
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine (NAN Ukraine), Kiev, Ukraine
| | - Jadwiga Chroboczek
- Institut de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAN), Warsaw, Poland
- Thérapeutique Recombinante Expérimentale/Techniques de l’Ingénierie Médicale et de la Complexité/Informatique, Mathématiques et Applications de Grenoble (Therex/TIMC/IMAG), Centre National de la Recherche Scientifique (CNRS)/Université Joseph Fourier (UJF), Domaine de la Merci, La Tronche, France
| | - Sergey O. Tcherniuk
- Institut de Biologie Structurale, Centre National de la Recherche Scientifique (CNRS), Grenoble, France
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Department of Biological Sciences, Academy of Young Scientists of Ukraine (AYSU), Kiev, Ukraine
| |
Collapse
|
50
|
Zhang Z, Guo Y, Zhang L, Zhang J, Wei X. Chelerythrine chloride from Macleaya cordata induces growth inhibition and apoptosis in human gastric cancer BGC-823 cells. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2011.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|