1
|
Tsou MH, Wu ZY, Chen GW, Lee CC, Lee ZH, Yuan WT, Lin SM, Lin HM. Diatom-derived mesoporous silica nanoparticles loaded with fucoidan for enhanced chemo-photodynamic therapy. Int J Biol Macromol 2023; 253:127078. [PMID: 37769769 DOI: 10.1016/j.ijbiomac.2023.127078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Combination therapy merges chemical photodynamic therapy (CPDT) to improve cancer treatment. It synergizes chemotherapy with photodynamic therapy (PDT), using photosensitizers to produce reactive oxygen species (ROS) when exposed to light, effectively killing drug-resistant cancer cells. It is not affected by drug resistance, making it an attractive option for combination with chemotherapy. In this study, the focus was on the design of a combination therapy of chemotherapy and PDT. They synthesized diatomaceous earth mesoporous silica nanoparticles (dMSN) containing lanthanide metal ions in a PDT composition. These nanoparticles can generate ROS under near-infrared light irradiation and have MRI and fluorescence imaging capabilities, confirming their phototherapeutic effect on HCT116 cancer cells at a 200 μg/mL concentration. Fucoidan, derived from brown algae, was used as the chemotherapy component. The fucoidan extracted from Sargassum oligocystum in Pingtung Haikou showed the highest anticancer activity, with cell viability of 57.4 % at 200 μg/mL on HCT116 cancer cells. For combination therapy, fucoidan was loaded into nanoparticles (dMSN-EuGd@fucoidan). Cell viability experiments revealed that at 200 μg/mL, the cell survival rate of dMSN-EuGd@Fucoidan on HCT116 cancer cells was 47.7 %. Combination therapy demonstrated superior anticancer efficacy compared to PDT or chemotherapy alone, successfully synthesizing nanoparticles for combined chemotherapy and photodynamic therapy.
Collapse
Affiliation(s)
- Min-Hsuan Tsou
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Zhi-Yuan Wu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Wei Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Cheng-Chang Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Zui-Harng Lee
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wei Ting Yuan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Showe-Mei Lin
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Hsiu-Mei Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| |
Collapse
|
2
|
Bin Kanner Y, Teng QX, Ganoth A, Peer D, Wang JQ, Chen ZS, Tsfadia Y. Cytotoxicity and reversal effect of sertraline, fluoxetine, and citalopram on MRP1- and MRP7-mediated MDR. Front Pharmacol 2023; 14:1290255. [PMID: 38026953 PMCID: PMC10651738 DOI: 10.3389/fphar.2023.1290255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the development of resistance to chemotherapy drugs is a major challenge in treating malignancies. In recent years, researchers have focused on understanding the mechanisms of multidrug resistance (MDR) in cancer cells and have identified the overexpression of ATP-binding cassette (ABC) transporters, including ABCC1/MRP1 and ABCC10/MRP7, as a key factor in the development of MDR. In this study, we aimed to investigate whether three drugs (sertraline, fluoxetine, and citalopram) from the selective serotonin reuptake inhibitor (SSRI) family, commonly used as antidepressants, could be repurposed as inhibitors of MRP1 and MRP7 transporters and reverse MDR in cancer cells. Using a combination of in silico predictions and in vitro validations, we analyzed the interaction of MRP1 and MRP7 with the drugs and evaluated their ability to hinder cell resistance. We used computational tools to identify and analyze the binding site of these three molecules and determine their binding energy. Subsequently, we conducted experimental assays to assess cell viability when treated with various standard chemotherapies, both with and without the presence of SSRI inhibitors. Our results show that all three SSRI drugs exhibited inhibitory/reversal effects in the presence of chemotherapies on both MRP1-overexpressed cells and MRP7-overexpressed cells, suggesting that these medications have the potential to be repurposed to target MDR in cancer cells. These findings may open the door to using FDA-approved medications in combination therapy protocols to treat highly resistant malignancies and improve the efficacy of chemotherapy treatment. Our research highlights the importance of investigating and repurposing existing drugs to overcome MDR in cancer treatment.
Collapse
Affiliation(s)
- Yuval Bin Kanner
- George S. Wise Faculty of Life Sciences, The School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Assaf Ganoth
- Department of Physical Therapy, Sackler Faculty of Medicine, School of Health Professions, Tel Aviv University, Tel Aviv, Israel
- Reichman University, Herzliya, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, George S. Wise Faculty of Life Sciences, Shmunis School for Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Yossi Tsfadia
- George S. Wise Faculty of Life Sciences, The School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Chomchoei C, Brimson JM, Brimson S. Repurposing fluoxetine to treat lymphocytic leukemia: Apoptosis induction, sigma-1 receptor upregulation, inhibition of IL-2 cytokine production, and autophagy induction. Expert Opin Ther Targets 2022; 26:1087-1097. [PMID: 36620917 DOI: 10.1080/14728222.2022.2166829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Childhood cancer has a cure rate of as low as 15% in low-income countries, suggesting a need for cheaper treatment options. Fluoxetine is a thoroughly safety-tested drug that may target the sigma-1 receptor (σ1-R). RESEARCH DESIGN AND METHODS Using the human leukemic cell line, Jurkat, we investigated the effects of fluoxetine on cell survival using XTT and trypan blue staining. Apoptosis was measured using AnnexinV/PI staining and western blot analysis of caspase cleavage. IL-2 secretion of Jurkat cells in response to PHA/PMA was measured using ELISA, and the expression of AKT/pAKT and the σ1-R were measured using western blotting. RESULTS Fluoxetine-induced apoptosis and G-2 cell cycle arrest. Fluoxetine reduced IL-2 secretion dose-dependently and could be further potentiated by σ1-R antagonist BD1047 (P < 0.05). Fluoxetine inhibited pAKT six hours post-treatment (P < 0.05). The expression of the σ1-R showed a significant increase between 12 to 48 hours in Jurkat cells (P < 0.05). At the same time, there was a substantial increase in autophagy. CONCLUSIONS Fluoxetine may have the potential for acute leukemia treatment. Co-treatment with a σ1-R antagonist increases fluoxetine-induced apoptosis, possibly targeting AKT phosphorylation and autophagy activation.
Collapse
Affiliation(s)
- Chanichon Chomchoei
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - James Michael Brimson
- Innovation and International Affair, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Jujuboside B Reverse CUMS-Promoted Tumor Progression via Blocking PI3K/Akt and MAPK/ERK and Dephosphorylating CREB Signaling. J Immunol Res 2022; 2022:5211368. [PMID: 36254198 PMCID: PMC9569198 DOI: 10.1155/2022/5211368] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/14/2022] [Indexed: 12/01/2022] Open
Abstract
Background Jujuboside B (JUB) is a saponins isolated from the seeds of Zizyphi jujuba var. spinosi, which is used to treat mental illness and is reported recently to induce cancer cell apoptosis. As our previous research showed chronic stress promoted tumor growth, this work aims to investigate whether JUB exert antitumor effect in addition to its antidepressant effect and possible mechanism. Methods 56 female C57BL/6 mice were grouped into 7 groups: A (blank control), B (tumor-bearing control), C (tumor-bearing + JUB), D (CUMS control), E (CUMS + JUB), F (tumor-bearing + CUMS), and G (tumor-bearing + CUMS + JUB). Groups C, E, G, B, D, and F were administered, respectively, with JUB (40 mg/kg/day) or vehicle for 2 weeks. Serum 5-HT, Trp (tryptophane), inflammatory cytokines TNF-α, IL-4, -6, and -10 levels were detected by ELISA. The tumors in groups B and F were isolated for RNA-seq sequencing. Protein and mRNA expression of Bax, Bcl-2, p-PI3K, p-Akt, p-MAPK, p-ERK, and p-CREB in tumor tissues were detected. In vitro, A549 cells were stimulated with JUB (60 μmol/L), in which proliferation rate and colony formation rate were detected. The PI3K/Akt and, MAPK/ERK pathway were measured. Results Chronic stress successfully induced the depression-like phenotype (group D vs. A) and promoted tumor growth (group B vs. F). JUB significantly ameliorated the depression-like phenotype and increased 5-HT, Trp levels (group D vs. E), and reversing CUMS-induced tumor progression. Meanwhile, JUB decreased inflammatory cytokine levels. Chronic stress upregulated the phosphorylation levels of PI3K/Akt/MAPK/ERK/CREB; JUB reversed this regulation. JUB significantly inhibited cell viability, colony formation rate, and downregulated the phosphorylation levels of PI3K/Akt/MAPK/ERK/CREB in vitro. Conclusions JUB reverses CUMS-promoted tumor progression in tumor-bearing mice with depression-like phenotype. JUB exerts the dual beneficial effect on tumor growth and depression-like phenotype by blocking the signal transduction pathway of PI3K/Akt, MAPK/ERK, and dephosphorylating the downstream signaling regulator CREB.
Collapse
|
5
|
Movileanu C, Anghelache M, Turtoi M, Voicu G, Neacsu IA, Ficai D, Trusca R, Oprea O, Ficai A, Andronescu E, Calin M. Folic acid-decorated PEGylated magnetite nanoparticles as efficient drug carriers to tumor cells overexpressing folic acid receptor. Int J Pharm 2022; 625:122064. [PMID: 35952802 DOI: 10.1016/j.ijpharm.2022.122064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
The improved drug delivery systems (DDS) are needed for the targeted delivery of their therapeutic cargo (biologically active protein/peptide molecules, nucleic acids, vaccines, etc.) to diseased cells. Thus, we aimed to develop magnetite nanoparticles (Fe3O4), stabilized with polyethylene glycol (PEG) and decorated (surface-functionalized) with folic acid (FA) (Fe3O4@PEG@FA) to ensure targeted internalization in cells expressing the folic acid receptors (FR). The Fe3O4@PEG@FA nanoparticles were synthesized by co-precipitation in a one-pot methodology. Curcumin (Curc), a polyphenol with anti-tumoral activity, was loaded on the nanoparticles, and FA-targeted (Fe3O4@PEG@FA@Curc) and non-targeted (Fe3O4@PEG@Curc) systems were obtained. The internalization of Fe3O4@PEG@FA@Curc and Fe3O4@PEG@Curc nanoparticles was determined in two tumor cell lines, the FR-positive MCF-7 human breast carcinoma cell line and A549 human lung adenocarcinoma cell line, expressing a low level of FR. The results showed that MCF-7 cells internalize FA-functionalized nanoparticles to a greater extent than non-targeted ones and also than A549 cells. The competitive studies performed in the presence of FA in excess suggested that internalization is an FR-dependent process. The increased internalization of Fe3O4@PEG@FA@Curc nanoparticles in MCF-7 cells is correlated with increased cytotoxicity in this cell line compared to A549 cells. In conclusion, the FA-functionalized magnetic systems can ensure a better internalization of the nanoparticles and can be used to deliver various therapeutic agents, both in cancer treatment and also in the treatment of other inflammation-associated diseases such as rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, Crohn's disease or atherosclerosis.
Collapse
Affiliation(s)
- Codina Movileanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Mihaela Turtoi
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Roxana Trusca
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania
| | - Ovidiu Oprea
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania; National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Indendentei 313, 060042 Bucharest, Romania; Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania.
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| |
Collapse
|
6
|
Turossi-Amorim ED, Camargo B, do Nascimento DZ, Schuelter-Trevisol F. Potential Drug Interactions Between Psychotropics and Intravenous Chemotherapeutics Used by Patients With Cancer. J Pharm Technol 2022; 38:159-168. [PMID: 35600279 PMCID: PMC9116124 DOI: 10.1177/87551225211073942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction: Patients undergoing cancer treatment usually have comorbidities, and psychiatric disorders are commonly seen in these patients. For the treatment of these psychiatric disorders, the use of psychotropic drugs is common, turning these patients susceptible to untoward drug interactions. Therefore, the aim of this study was to estimate the prevalence of clinically relevant drug-drug interactions (DDI) between chemotherapeutic and psychotropic agents in patients with cancer treated at an oncology service in southern Brazil. Methods: An observational epidemiological study with a cross-sectional census-type design was carried out between October and December 2020. The drug-drug interactions were identified through consultation and analysis of the Medscape Drug Interaction Check and Micromedex databases. The interactions were classified as major, when the interaction can be fatal and/or require medical intervention to avoid or minimize serious adverse effects and moderate, when the interaction can exacerbate the patient's condition and/or requires changes in therapy. Results: A total of 74 patients was included in the study among the 194 patients seen in the oncology service during the period studied. A total of 24 (32.4%) DDIs were found, 21 (87.5%) of which were classified as being of major risk and 3 (12.5%) as moderate risk. According to the mechanism of action, 19 (79.1%) were classified as pharmacodynamic interactions and 5 (20.9%) as pharmacokinetic interactions. Conclusion: It was shown that a considerable percentage of patients undergoing intravenous chemotherapy are at risk of pharmacological interaction with psychotropic drugs. Thus, it is essential that the oncologist considers all psychotropic drugs and other drugs used by patients in order to avoid drug-drug interactions.
Collapse
Affiliation(s)
- Eric Diego Turossi-Amorim
- State University of Londrina, Tubarao,
Brazil,Eric Diego Turossi Amorim, PhD in
Physiological Sciences, University of Southern Santa Catarina, Avenida José
Acácio Moreira, 787, Tubarao 121 88704-900, Brazil.
| | - Bruna Camargo
- University of Southern Santa Catarina,
Tubarao, Brazil
| | | | | |
Collapse
|
7
|
Lipoperoxide Nanoemulsion as Adjuvant in Cisplatin Cancer Therapy: In Vitro Study on Human Colon Adenocarcinoma DLD-1 Cells. NANOMATERIALS 2021; 11:nano11061365. [PMID: 34064174 PMCID: PMC8224288 DOI: 10.3390/nano11061365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022]
Abstract
Cisplatin is a first-choice chemotherapeutic agent used to treat solid tumors even though the onset of multi-drug resistance and the time-dose side-effects impair its mono-therapeutic application. Therefore, new drug-delivery approaches, based on nanomedicine strategies, are needed to enhance its therapeutic potential in favor of a dose-reduction of cisplatin. Polyunsaturated fatty acids and their metabolism-derived intermediates, as well as lipid peroxidation end-products, are used as adjuvants to improve the effectiveness of chemotherapy. Lipid hydroperoxides, derived from the oxidation of edible oils, can contribute to cell death, generating breakdown products (e.g., reactive aldehydes). In this regard, the aim of this present study was to evaluate an invitro combinatory strategy between a lecithin-based nanoemulsion system of K600, a patented mixture of peroxidated oil and peroxidated cholesterol, and cisplatin on DLD1 human adenocarcinoma cells. Our findings showed that nanoemulsions, acting in synergy with cisplatin, improve cisplatin bioactivity, in terms of enhancing its anti-cancer activity, towards DLD1 cells. Indeed, this combination approach, whilst maintaining cisplatin at low concentrations, induces a significant reduction in DLD1 cell viability, an increase in pro-apoptotic markers, and genotoxic damage. Therefore, K600 nanoemulsions as an efficient targeted delivery system of cisplatin allow for the reduction in the chemotherapeutic agent doses.
Collapse
|
8
|
Ye D, Xu H, Xia H, Zhang C, Tang Q, Bi F. Targeting SERT promotes tryptophan metabolism: mechanisms and implications in colon cancer treatment. J Exp Clin Cancer Res 2021; 40:173. [PMID: 34006301 PMCID: PMC8132442 DOI: 10.1186/s13046-021-01971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
Background Serotonin signaling has been associated with tumorigenesis and tumor progression. Targeting the serotonin transporter to block serotonin cellular uptake confers antineoplastic effects in various tumors, including colon cancer. However, the antineoplastic mechanism of serotonin transporter inhibition and serotonin metabolism alterations in the absence of serotonin transporter have not been elucidated, especially in colon cancer, which might limit anti-tumor effects associating with targeting serotonin transporter. Methods The promotion in the uptake and catabolism of extracellular tryptophan and targeting serotonin transporter was detected by using quantitative reverse-transcription polymerase chain reaction, western blotting and liquid chromatography tandem mass spectrometry. Western blotting Immunoprecipitation and immunofluorescence was utilized to research the serotonylation of mTOR by serotonin and serotonin transporter inhibition. The primary mouse model, homograft model and tissue microarry was used to explore the tryptophan pathway in colon cancer. The cell viability assay, western blotting, xenograft and primary colon cancer mouse model were used to identify whether the combination of sertraline and tryptophan restriction had a synergistic effect. Results Targeting serotonin transporter through genetic ablation or pharmacological inhibition in vitro and in vivo induced a compensatory effect by promoting the uptake and catabolism of extracellular tryptophan in colon cancer. Mechanistically, targeting serotonin transporter suppressed mTOR serotonylation, leading to mTOR inactivation and increased tryptophan uptake. In turn, this process promoted serotonin biosynthesis and oncogenic metabolite kynurenine production through enhanced tryptophan catabolism. Tryptophan deprivation, or blocking its uptake by using trametinib, a MEK inhibitor, can sensitize colon cancer to selective serotonin reuptake inhibitors. Conclusions The present study elucidated a novel feedback mechanism involved in the regulation of serotonin homeostasis and suggested innovative strategies for selective serotonin reuptake inhibitors-based treatment of colon cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01971-1.
Collapse
Affiliation(s)
- Di Ye
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Hongwei Xia
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chenliang Zhang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Qiulin Tang
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center and Laboratory of Molecular, Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
9
|
|
10
|
Montazerabadi A, Beik J, Irajirad R, Attaran N, Khaledi S, Ghaznavi H, Shakeri-Zadeh A. Folate-modified and curcumin-loaded dendritic magnetite nanocarriers for the targeted thermo-chemotherapy of cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:330-340. [DOI: 10.1080/21691401.2018.1557670] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alireza Montazerabadi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jaber Beik
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Rasoul Irajirad
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Neda Attaran
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sajed Khaledi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran
| | - Ali Shakeri-Zadeh
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
11
|
Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:295-305. [PMID: 30043651 DOI: 10.1080/21691401.2018.1457039] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer nanotherapeutics are swiftly progressing and are being applied to solve several limitations of conventional drug delivery systems such as non-specific biodistribution and targeting, lack of water solubility and poor oral bioavailability. Advances in protein engineering and materials science have contributed to novel nanoscale targeting approaches that may bring new hope to cancer patients. Several therapeutic nanocarriers have been approved for clinical use. Nanoparticles have been designed for optimal size and surface characteristics to improve their biodistribution and to increase their circulation time in the bloodstream. By selectively using the unique pathophysiology of tumours, such as their enhanced permeability and retention effect nanotherapeutics are able to carry loaded active drug to cancer cells. In addition to this passive targeting mechanism, active targeting strategies using ligands or antibodies directed against selected tumour targets magnify the specificity of these therapeutic nanoparticles. Drug resistance, another obstacle can also be overcome or reduced by using nanoparticles. Multifunctional and multiplex nanoparticles are now being actively investigated and are on the horizon as the next generation of nanoparticles, facilitating personalized and tailored cancer treatment.
Collapse
Affiliation(s)
- Ankita Dadwal
- a Department of Pharmaceutics , I.S.F. College of Pharmacy , Moga , India.,b Department of Pharmaceutical Science and Technology , Maharaja Ranjit Singh Punjab Technical University , Bathinda , India
| | - Ashish Baldi
- b Department of Pharmaceutical Science and Technology , Maharaja Ranjit Singh Punjab Technical University , Bathinda , India
| | - Raj Kumar Narang
- a Department of Pharmaceutics , I.S.F. College of Pharmacy , Moga , India
| |
Collapse
|
12
|
Keshavarz M, Moloudi K, Paydar R, Abed Z, Beik J, Ghaznavi H, Shakeri-Zadeh A. Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy. J Biomater Appl 2018; 33:161-169. [PMID: 29933708 DOI: 10.1177/0885328218782355] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biomedical applications of gold nanoparticles (AuNPs) have experienced rapid growth in recent years, due to their expected benefits in medical imaging and therapy. In this work, we report the development of a theranostic nanocomplex constructed from alginate hydrogel co-loaded with cisplatin and AuNPs (abbreviated as ACA) for simultaneous drug delivery and computed tomography imaging. CT26 cells derived from mouse colon adenocarcinoma were exposed to various concentrations of ACA nanocomplex (for 24 h) and the cytotoxicity was measured using MTT assay. Moreover, the cells treated with ACA nanocomplex were imaged in a computed tomography scanner and the contrast enhancement due to the presence of nanocomplex was assessed. The cytotoxicity results showed that ACA nanocomplex had a more potent chemotherapy efficacy than free cisplatin, so that ACA nanocomplex at the concentration of 5 µg/ml (per cisplatin) and 20 µg/ml of free cisplatin resulted in the same cytotoxicity (survival rate: 66%). The computed tomography imaging study revealed that ACA nanocomplex increased the brightness of computed tomography images, the computed tomography number value, and contrast-to-noise ratio (CNR). ACA nanocomplex can be presented as a computed tomography-traceable nanocarrier that allows to monitor the delivery of therapeutics by assessing their localized accumulation and in vivo biodistribution.
Collapse
Affiliation(s)
- Marzieh Keshavarz
- 1 Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Kave Moloudi
- 2 Radiation Sciences Department, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Paydar
- 2 Radiation Sciences Department, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.,3 Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ziaeddin Abed
- 1 Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Jaber Beik
- 1 Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Habib Ghaznavi
- 4 Cellular and Molecular Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran
| | - Ali Shakeri-Zadeh
- 1 Department of Medical Physics, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.,3 Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Kuzu OF, Gowda R, Noory MA, Robertson GP. Modulating cancer cell survival by targeting intracellular cholesterol transport. Br J Cancer 2017; 117:513-524. [PMID: 28697173 PMCID: PMC5558686 DOI: 10.1038/bjc.2017.200] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/11/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Demand for cholesterol is high in certain cancers making them potentially sensitive to therapeutic strategies targeting cellular cholesterol homoeostasis. A potential approach involves disruption of intracellular cholesterol transport, which occurs in Niemann–Pick disease as a result of acid sphingomyelinase (ASM) deficiency. Hence, a class of lysosomotropic compounds that were identified as functional ASM inhibitors (FIASMAs) might exhibit chemotherapeutic activity by disrupting cancer cell cholesterol homoeostasis. Methods: Here, the chemotherapeutic utility of ASM inhibition was investigated. The effect of FIASMAs on intracellular cholesterol levels, cholesterol homoeostasis, cellular endocytosis and signalling cascades were investigated. The in vivo efficacy of ASM inhibition was demonstrated using melanoma xenografts and a nanoparticle formulation was developed to overcome dose-limiting CNS-associated side effects of certain FIASMAs. Results: Functional ASM inhibitors inhibited intracellular cholesterol transport leading to disruption of autophagic flux, cellular endocytosis and receptor tyrosine kinase signalling. Consequently, major oncogenic signalling cascades on which cancer cells were reliant for survival were inhibited. Two tested ASM inhibitors, perphenazine and fluphenazine that are also clinically used as antipsychotics, were effective in inhibiting xenografted tumour growth. Nanoliposomal encapsulation of the perphenazine enhanced its chemotherapeutic efficacy while decreasing CNS-associated side effects. Conclusions: This study suggests that disruption of intracellular cholesterol transport by targeting ASM could be utilised as a potential chemotherapeutic approach for treating cancer.
Collapse
Affiliation(s)
- Omer F Kuzu
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Mohammad A Noory
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Hershey Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
14
|
Kuzu OF, Toprak M, Noory MA, Robertson GP. Effect of lysosomotropic molecules on cellular homeostasis. Pharmacol Res 2017; 117:177-184. [DOI: 10.1016/j.phrs.2016.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/13/2016] [Indexed: 01/01/2023]
|
15
|
Cunha V, Burkhardt-Medicke K, Wellner P, Santos MM, Moradas-Ferreira P, Luckenbach T, Ferreira M. Effects of pharmaceuticals and personal care products (PPCPs) on multixenobiotic resistance (MXR) related efflux transporter activity in zebrafish (Danio rerio) embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 136:14-23. [PMID: 27810576 DOI: 10.1016/j.ecoenv.2016.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Certain ATP binding cassette (ABC) transporter proteins, such as zebrafish Abcb4, are efflux pumps acting as a cellular defence against a wide range of different, potentially toxic chemical compounds thus mediating so called multixenobiotic resistance (MXR). Certain chemicals target MXR proteins and, as so called chemosensitisers, inhibit the activity of these proteins thus increasing the toxicity of other chemicals that would normally be effluxed. In this study 14 pharmaceuticals and personal care products (PPCPs) that are being increasingly detected in aquatic systems, were assessed for interference with the MXR system of zebrafish (Danio rerio). Concentration dependent effects of test compounds were recorded with the dye accumulation assay using zebrafish embryos and in ATPase assays with recombinant zebrafish Abcb4. In the dye accumulation assay embryos at 24h post fertilisation (hpf) were exposed to 8µm rhodamine 123 along with test compounds for 2h. The rhodamine 123 tissue levels upon the exposure served as a measure for MXR transporter efflux activity of the embryo (low rhodamine levels - high activity; high levels - low activity). The known ABC protein inhibitors MK571, vinblastine and verapamil served as positive controls. All tested PPCPs affected rhodamine 123 accumulation in embryos. For seven compounds rhodamine tissue levels were either both decreased and increased depending on the compound concentration indicating both stimulation and inhibition of rhodamine 123 efflux by those compounds, only increased (inhibition, six compounds) or only decreased (stimulation, one compound). Recombinant zebrafish Abcb4 was obtained with the baculovirus expression system and PPCPs were tested for stimulation/inhibition of basal transporter ATPase activity and for inhibition of the transporter ATPase activity stimulated with verapamil. Eight of the tested PPCPs showed effects on Abcb4 ATPase activity indicating that their effects in the dye accumulation assay may have indeed resulted from interference with Abcb4-mediated rhodamine 123 efflux. Slight stimulatory effects were found for musk xylene, nerol, isoeugenol, α-amylcinnamaldehyde, α-hexylcinnamaldehyde and simvastatin indicating Abcb4 substrate/competitive inhibitor properties of those compounds. Likewise, decreases of the verapamil-stimulated Abcb4 ATPase activity by diclofenac and fluoxetine may indicate competitive transporter inhibition. Sertraline inhibited the basal and verapamil-stimulated Abcb4 ATPase activities suggesting its property as non-competitive Abcb4 inhibitor. Taken together, our finding that chemically diverse PPCPs interfere with MXR efflux activity of zebrafish indicates that (1) efflux transporters may influence bioaccumulation of many PPCPs in fish and that (2) many PPCPs may act as chemosensitisers. Furthermore, it appears that interference of PPCPs with efflux activity in zebrafish embryos is not only from effects on Abcb4 but also on other efflux transporter subtypes.
Collapse
Affiliation(s)
- V Cunha
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Largo Professor Abel Salazar, 2, 4099-003 Porto, Portugal.
| | - K Burkhardt-Medicke
- UFZ-Helmholtz-Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany; Technische Universitaet Dresden, Faculty of Environmental Sciences, Institute of Hydrobiology, 01062 Dresden, Germany
| | - P Wellner
- UFZ-Helmholtz-Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany
| | - M M Santos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; FCUP-Dept of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; 5IBMC-Institute for Molecular and Cell Biology, University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - P Moradas-Ferreira
- ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Largo Professor Abel Salazar, 2, 4099-003 Porto, Portugal; I3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Institute for Molecular and Cell Biology, Porto, Portugal
| | - T Luckenbach
- UFZ-Helmholtz-Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstraße 15, 04318 Leipzig, Germany
| | - M Ferreira
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; School of Marine Studies, Faculty of Science, Technology and Environment, The University of South Pacific, Laucala Bay Road, Suva, Fiji Islands
| |
Collapse
|
16
|
Cunha V, Rodrigues P, Santos MM, Moradas-Ferreira P, Ferreira M. Danio rerio embryos on Prozac - Effects on the detoxification mechanism and embryo development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:182-189. [PMID: 27513977 DOI: 10.1016/j.aquatox.2016.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
In the past decade the presence of psychopharmaceuticals, including fluoxetine (FLU), in the aquatic environment has been associated with the increasing trend in human consumption of these substances. Aquatic organisms are usually exposed to chronic low doses and, therefore, risk assessments should evaluate the effects of these compounds in non-target organisms. Teleost fish possess an array of active defence mechanisms to cope with the deleterious effects of xenobiotics. These include ABC transporters, phase I and II of cellular detoxification and oxidative stress enzymes. Hence, the present study aimed at characterising the effect of FLU on embryo development of the model teleost zebrafish (Danio rerio) concomitantly with changes in the detoxification mechanisms during early developmental phases. Embryos were exposed to different concentrations of FLU (0.0015, 0.05, 0.1, 0.5 and 0.8μM) for 80hours post fertilization. Development was screened and the impact in the transcription of key genes, i.e., abcb4, abcc1, abcc2, abcg2, cyp1a, cyp3a65, gst, sod, cat, ahr, pxr, pparα, pparβ, pparγ, rxraa, rxrab, rxrbb, rxrga, rxrgb, raraa, rarab, rarga evaluated. In addition, accumulation assays were performed to measure the activity of ABC proteins and antioxidant enzymes (CAT and Cu/ZnSOD) after exposure to FLU. Embryo development was disrupted at the lowest FLU concentration tested (0.0015μM), which is in the range of concentrations found in WWTP effluents. Embryos exposed to higher concentrations of FLU decreased Cu/Zn SOD, and increased CAT (0.0015 and 0.5μM) enzymatic activity. Exposure to higher concentrations of FLU decreased the expression of most genes belonging to the detoxification system and upregulated cat at 0.0015μM of FLU. Most of the tested concentrations downregulated pparα, pparβ, pparγ, and raraa, rxraa, rxrab, rxrbb rxrgb and ahr gene expression while pxr was significantly up regulated at all tested concentrations. In conclusion, this study shows that FLU can impact zebrafish embryo development, at concentrations found in effluents of WWTPs, concomitantly with changes in antioxidant enzymes, and the transcription of key genes involved in detoxification and development. These finding raises additional concerns supporting the need to monitor the presence of this compound in aquatic reservoirs.
Collapse
Affiliation(s)
- V Cunha
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - P Rodrigues
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M M Santos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; FCUP-Dept of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - P Moradas-Ferreira
- ICBAS/UP-Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; I3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Institute for Molecular and Cell Biology, Porto, Portugal
| | - M Ferreira
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, Coastal and Marine Environmental Toxicology Lab, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; School of Marine Studies, Faculty of Science, Techonology and Environment, The University of South Pacific, Laucala Bay Road, Suva, Fiji Islands
| |
Collapse
|
17
|
Lin YM, Yu BC, Chiu WT, Sun HY, Chien YC, Su HC, Yen SY, Lai HW, Bai CH, Young KC, Tsao CW. Fluoxetine regulates cell growth inhibition of interferon-α. Int J Oncol 2016; 49:1746-54. [DOI: 10.3892/ijo.2016.3650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/25/2016] [Indexed: 11/05/2022] Open
|
18
|
Wang Y, Zhao R, Wang S, Liu Z, Tang R. In vivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. Biomaterials 2015; 75:71-81. [PMID: 26491996 DOI: 10.1016/j.biomaterials.2015.09.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 01/06/2023]
Abstract
Multidrug resistance is one of major obstacles to the effective cancer chemotherapy. To address this issue, we developed the effective circumvention of multidrug resistance in cancer cells by a yolk-shell Fe3O4@MgSiO3 nanoplatform with the polymerpoly(ethylene glycol) and folic acid modifications can achieve active targeted delivery of anti-cancer drug by using combined magnetic and ligand targeting. The direct intracellular drug delivery of doxorubicin by nanocarrier was much more effectively than free DOX for multidrug resistant Hep-G2/MDR cancer cells. Besides the excellent biocompatibility, high drug loading efficiency, dual-targeting delivery, and controlled releasing behavior, in vivo experiments demonstrate that this nanocarrier can specifically deliver and concentrate doxorubicin hydrochloride in tumor sites to overcome drug resistance. It follows an alternative strategy for effective chemotherapy against drug resistant cancers by using rationally designed nanomaterial.
Collapse
Affiliation(s)
- Yang Wang
- Centre for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China
| | - Ruibo Zhao
- Centre for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China
| | - Shibing Wang
- Clinical Research Centre, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, PR China
| | - Zhaoming Liu
- Centre for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China
| | - Ruikang Tang
- Centre for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, PR China; Qiushi Academy for Advanced Studies, Zhejiang University, Hanghzou, Zhejiang 310027, China.
| |
Collapse
|
19
|
Sun L, Wu Q, Peng F, Liu L, Gong C. Strategies of polymeric nanoparticles for enhanced internalization in cancer therapy. Colloids Surf B Biointerfaces 2015; 135:56-72. [PMID: 26241917 DOI: 10.1016/j.colsurfb.2015.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/19/2015] [Accepted: 07/07/2015] [Indexed: 02/05/2023]
Abstract
In order to achieve long circulation time and high drug accumulation in the tumor sites via the EPR effects, anticancer drugs have to be protected by non-fouling polymers such as poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO), dextran, and poly(acrylic acid) (PAA). However, the dense layer of stealth polymer also prohibits efficient uptake of anticancer drugs by target cancer cells. For cancer therapy, it is often more desirable to accomplish rapid cellular uptake after anticancer drugs arriving at the pathological site, which could on one hand maximize the therapeutic efficacy and on the other hand reduce probability of drug resistance in cells. In this review, special attention will be focused on the recent potential strategies that can enable drug-loaded polymeric nanoparticles to rapidly recognize cancer cells, leading to enhanced internalization.
Collapse
Affiliation(s)
- Lu Sun
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qinjie Wu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Feng Peng
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lei Liu
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Changyang Gong
- Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
20
|
A novel multiple drug release system in vitro based on adjusting swelling core of emulsion electrospun nanofibers with core–sheath structure. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:109-16. [DOI: 10.1016/j.msec.2014.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/05/2014] [Accepted: 08/02/2014] [Indexed: 11/20/2022]
|
21
|
Abstract
INTRODUCTION Cancer remains the leading cause of death worldwide. Numerous therapeutic strategies that include smart biological treatments toward specific cellular pathways are being developed. Yet, inherent and acquired multidrug resistance (MDR) to chemotherapeutic drugs remains the major obstacle in effective cancer treatments. AREAS COVERED Herein, we focused on an implementation of nanoscale drug delivery strategies (nanomedicines) to treat tumors that resist MDR. Specifically, we briefly discuss the MDR phenomenon and provide structural and functional characterization of key proteins that account for MDR. We next describe the strategies to target tumors using nanoparticles and provide a mechanistic overview of how changes in the influx:efflux ratio result in overcoming MDR. EXPERT OPINION Various strategies have been applied in preclinical and clinical settings to overcome cancer MDR. Among them are the use of chemosensitizers that aim to sensitize the cancer cells to chemotherapeutic treatment and the use of nanomedicines as delivery vehicles that can increase the influx of drugs into cancer cells. These strategies can enhance the therapeutic response in resistant tumors by bypassing efflux pumps or by increasing the nominal amounts of therapeutic payloads into the cancer cells at a given time point.
Collapse
Affiliation(s)
- Assaf Ganoth
- The Interdisciplinary Center (IDC) , P.O. Box 167, Herzliya 46150 , Israel
| | | | | |
Collapse
|
22
|
Drinberg V, Bitcover R, Rajchenbach W, Peer D. Modulating cancer multidrug resistance by sertraline in combination with a nanomedicine. Cancer Lett 2014; 354:290-8. [PMID: 25173796 DOI: 10.1016/j.canlet.2014.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 12/22/2022]
Abstract
Inherent and acquired multiple drug resistance (MDR) to chemotherapeutic drugs is a major obstacle in cancer treatment. The ATP Binding Cassettes (ABC) transporter super family that act as extrusion pumps such as P-glycoprotein and multidrug-resistance-associated-proteins have prominent roles in cancer MDR. One of the most efficient strategies to modulate this active drug efflux from the cells is to physically block the pump proteins and thus change the balance between drug influx and efflux toward an accumulation of drug inside the cell, which eventually cumulates into cell death. MDR modulators (also known as chemosensitizers) were found among drugs approved for non-cancer indications. Yet, toxicity, adverse effects, and poor solubility at doses required for MDR reversal prevent their clinical application. Previous reports have shown that drugs belonging to the selective serotonin reuptake inhibitors (SSRI) family, which are clinically used as antidepressants, can act as effective chemosensitizers both in vitro and in vivo in tumor bearing mouse models. Here, we set out to explore whether sertraline (Zoloft®), a molecule belonging to the SSRI family, can be used as an MDR modulator. Combining sertraline with another FDA approved drug, Doxil® (pegylated liposomal doxorubicin), is expected to enhance the effect of chemotherapy while potentially reducing adverse effects. Our findings reveal that sertraline acts as a pump modulator in cellular models of MDR. In addition, in an aggressive and highly resistant human ovarian xenograft mouse model the use of sertraline in combination with Doxil® generated substantial reduction in tumor progression, with extension of the median survival of tumor-bearing mice. Taken together, our results show that sertraline could act as a clinically relevant cancer MDR inhibitor. Moreover, combining two FDA approved drugs, DOXIL®, which favor the influx of chemotherapy inside the malignant cell with sertraline, which blocks the extrusion pumps, could readily be available for clinical translation in the battle against resistant tumors.
Collapse
Affiliation(s)
- Velthe Drinberg
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rivka Bitcover
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wolf Rajchenbach
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
23
|
Bielecka AM, Obuchowicz E. Antidepressant drugs as a complementary therapeutic strategy in cancer. Exp Biol Med (Maywood) 2014; 238:849-58. [PMID: 23970405 DOI: 10.1177/1535370213493721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In the last decade, it has been increasingly recognized that antidepressant drugs may exert a range of effects, in addition to their well-documented ability to modulate neurotransmission. Although as a group they act on monoaminergic systems and receptors in different ways, a number of studies have demonstrated that at least some antidepressants might have other properties in common, including immunomodulatory, cyto/neuroprotective, analgesic and anti-inflammatory activities. These properties are partly related to the influence of antidepressants on glial cell function. Recently, emerging information about the possible anticancer properties of antidepressants has sparked increased interest within scientific community, and there is now evidence that these drugs affect the key cellular mechanisms of carcinogenesis. This review examines the putative cellular targets for the anticancer action of antidepressant drugs, and presents examples of the interaction between antidepressants and anticancer drugs. By reviewing the current state of research in this area, we hope to focus the attention of oncologists and researchers engaged in the study of cancer on the role that antidepressant drugs could play in the complementary therapy of cancer.
Collapse
Affiliation(s)
- Anna M Bielecka
- Medical University of Silesia, Department of Pharmacology, Medyków 18, 40-752 Katowice, Poland.
| | | |
Collapse
|
24
|
Zhang Y, Zhou T, Duan J, Xiao Z, Li G, Xu F. Inhibition of P-glycoprotein and glutathione S-transferase-pi mediated resistance by fluoxetine in MCF-7/ADM cells. Biomed Pharmacother 2013; 67:757-62. [PMID: 23731711 DOI: 10.1016/j.biopha.2013.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/22/2013] [Indexed: 01/16/2023] Open
Abstract
Chemotherapy is important in the systematic treatment of breast cancer. While multidrug resistance (MDR) is the main obstacle in chemotherapy, a reversal reagent with high reversal effect but low toxicity is the hotspot issue at present to overcome MDR. Antidepressant fluoxetine (FLX) is a potential new highly effective chemosensitizer, however, the possible mechanism is unclear. In this study, the effect of FLX on multidrug resistance mediated by P-glycoprotein (P-gp) and glutathione S-transferase-pi (GST-π) were researched in resistant/sensitive breast cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to determine the cells viability after being incubated with FLX/Adriamycin (ADM)/Paclitaxel (PTX) alone or FLX-ADM, FLX-PTX combination. Western blot was performed to assay the expression of P-gp and GST-π proteins. Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qRT-PCR) were performed to assay the level of MDR1 mRNA. The results showed that pre-treatment with FLX enhance cytotoxicity significantly both on resistant and sensitive cells, downregulated the expression of P-gp and GST-π proteins in resistance cells, decreased the MDR1 mRNA by FLX-PTX combination only. No P-gp and GST-π were detected in sensitive cells. Our research thus indicated that FLX reverse the breast cancer cell's resistance and enhance the chemosensitivity by regulating P-gp and GST-π levels.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Clinical Pharmacology, Fengxian Central Hospital, Shanghai Jiao Tong University, Shanghai 201406, China
| | | | | | | | | | | |
Collapse
|
25
|
Xing AY, Shi DB, Liu W, Chen X, Sun YL, Wang X, Zhang JP, Gao P. Restoration of chemosensitivity in cancer cells with MDR phenotype by deoxyribozyme, compared with ribozyme. Exp Mol Pathol 2013; 94:481-5. [PMID: 23531420 DOI: 10.1016/j.yexmp.2013.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/15/2013] [Indexed: 01/11/2023]
Abstract
One of the main mechanisms for multidrug resistance (MDR) involves multidrug resistance gene 1 (MDR1) which encodes P-glycoprotein (Pgp). Pgp acts as a drug efflux pump and exports chemotherapeutic agents from cancer cells. Specific inhibition of Pgp expression by gene therapy is considered a well-respective strategy having less innate toxicities. At present, the investigation of DRz in reversal MDR is scarce. In the study, phosphorothioate DRz that targets to the translation initiation codon AUG was synthesized and transfected into breast cancer cells and leukemia cells with MDR phenotype. ASODN (antisense oligonucleotide) and ribozyme targets to the same region were also synthesized for comparison analysis. Alterations in MDR1 mRNA and Pgp were determined by RT-PCR, Northern blot, flow cytometry and Rh123 retention tests. Chemosensitivity of the treated cells was determined by MTT assay. The results showed that DRz could significantly suppress expression of MDR1 mRNA and inhibit synthesis of Pgp. The efflux activity of Pgp was inhibited accordingly. Chemosensitivity assay showed that a 21-fold reduction in drug resistance for Adriamycin and a 45-fold reduction in drug resistance for Vinblastine were found in the treated cells 36h after transfection. These data suggest that DRz targeted to the translation initiation codon AUG can reverse MDR phenotype in cancer cells and restore their chemosensitivity. Moreover, the reversal efficiency of DRz is better than that of ribozyme and ASODN targets to the same region of MDR1 mRNA.
Collapse
Affiliation(s)
- Ai-Yan Xing
- Department of Pathology, School of Medicine, Shandong University, Jinan 250012, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Adeli M, Soleyman R, Beiranvand Z, Madani F. Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chem Soc Rev 2013; 42:5231-56. [DOI: 10.1039/c3cs35431h] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Bhuiyan M, Petropoulos S, Gibb W, Matthews SG. Sertraline alters multidrug resistance phosphoglycoprotein activity in the mouse placenta and fetal blood-brain barrier. Reprod Sci 2012; 19:407-15. [PMID: 22510699 DOI: 10.1177/1933719111424438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phosphoglycoprotein (P-gp) is highly expressed in the placental syncytiotrophoblast and prevents xenobiotics from entering the fetus. In tumor cells, P-gp-mediated substrate efflux is inhibited by selective serotonin reuptake inhibitors (SSRIs). However, nothing is known regarding the effects of SSRIs on P-gp function in the placenta or fetal tissues. We hypothesized that the SSRI sertraline would decrease P-gp-mediated drug efflux at the placenta and fetal blood-brain barrier (BBB)-increasing P-gp substrate transfer from the mother to the fetus and fetal brain. In contrast to our hypothesis, this study presents the novel findings that sertraline (4 hours exposure) increases placental P-gp-mediated efflux (P < .001), resulting in decreased drug transfer to the fetus. Meanwhile, sertraline decreases fetal (P < .001) and maternal (P < .05) BBB P-gp-mediated efflux, resulting in increased drug transfer into the fetal and maternal brain from the circulation. This suggests that P-gp regulation by sertraline is tissue specific. These findings have important clinical implications with respect to fetal protection during maternal drug therapy in pregnancy.
Collapse
Affiliation(s)
- Manzerul Bhuiyan
- Department of Physiology, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
28
|
Zhou T, Duan J, Wang Y, Chen X, Zhou G, Wang R, Fu L, Xu F. Fluoxetine synergys with anticancer drugs to overcome multidrug resistance in breast cancer cells. Tumour Biol 2012; 33:1299-306. [PMID: 22549660 DOI: 10.1007/s13277-012-0377-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/06/2012] [Indexed: 12/15/2022] Open
Abstract
Multidrug resistance (MDR) is the main obstacle in breast cancer chemotherapy, a reversal reagent with high reversal effect but low toxicity is the hotpot issue at present. The antidepressant fluoxetine (FLX) is a new highly effective chemosensitizer; however, the possible mechanism of FLX in reversal of MDR is unclear. In this study, the effect of FLX on MDR mediated by apoptosis was researched in resistant/sensitive breast cancer cells, which treated by FLX/adriamycin (ADM)/paclitaxel (PTX) alone or FLX-ADM, FLX-PTX combination. Apoptosis assay demonstrated that FLX combined with ADM enhanced the proportion of apoptosis remarkably in MCF-7/ADM but not MCF-7 cells; however, increased the apoptosis rates in both cells when FLX-PTX combination. Results of apoptosis proteins assay showed a upgrade of p53 and a downgrade of Bcl-2 level by FLX-ADM or FLX-PTX combinations in both cells. Our findings indicated that by synergism with anticancer drugs, FLX modulation of apoptosis via targeting p53 and Bcl-2 expression, FLX reverse the breast cancer cell's resistance and enhance the chemosensitivity to ADM and PTX.
Collapse
Affiliation(s)
- Ting Zhou
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:219-33. [PMID: 22231928 PMCID: PMC3288878 DOI: 10.1002/wnan.1157] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Modifying surfaces of nanoparticles (NPs) with polyethylene glycol (PEG), the so-called PEGylation, is the most commonly used method for reducing premature clearance of NPs from the circulation. However, several reports point out that PEGylation may negatively influence the performance of NPs as a drug carrier. Alternative surface modification strategies, including substitute polymers, conditional removal of PEG, and biomimetic surface modification, may provide solutions for the limitations of PEG.
Collapse
Affiliation(s)
- Zohreh Amoozgar
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
30
|
Gao P, Wei JM, Li PY, Zhang CJ, Jian WC, Zhang YH, Xing AY, Zhou GY. Screening of deoxyribozyme with high reversal efficiency against multidrug resistance in breast carcinoma cells. J Cell Mol Med 2012; 15:2130-8. [PMID: 21155975 PMCID: PMC4394223 DOI: 10.1111/j.1582-4934.2010.01240.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Specific inhibition of P-glycoprotein (Pgp) expression, which is encoded by multidrug resistance gene-1 (MDR1), is considered a well-respected strategy to overcome multidrug resistance (MDR). Deoxyribozymes (DRz) are catalytic nucleic acids that could cleave a target RNA in sequence-specific manner. However, it is difficult to select an effective target site for DRz in living cells. In this study, target sites of DRz were screened according to MDR1 mRNA secondary structure by RNA structure analysis software. Twelve target sites on the surface of MDR1 mRNA were selected. Accordingly, 12 DRzs were synthesized and their suppression effect on the MDR phenotype in breast cancer cells was confirmed. The results showed that 4 (DRz 2, 3, 4, 9) of the 12 DRzs could, in a dose-dependent response, significantly suppress MDR1 mRNA expression and restore chemosensitivity in breast cancer cells with MDR phenotype. This was especially true of DRz 3, which targets the 141 site purine-pyrimidine dinucleotide. Compared with antisense oligonucleotide or anti-miR-27a inhibitor, DRz 3 was more efficient in suppressing MDR1 mRNA and Pgp protein expression or inhibiting Pgp function. The chemosensitivity assay also proved DRz 3 to be the best one to reverse the MDR phenotype. The present study suggests that screening targets of DRzs according to MDR1 mRNA secondary structure could be a useful method to obtain workable ones. We provide evidence that DRzs (DRz 2, 3, 4, 9) are highly efficient at reversing the MDR phenotype in breast carcinoma cells and restoring chemosensitivity.
Collapse
Affiliation(s)
- Peng Gao
- Department of Pathology, Shandong University, School of Medicine, Jinan, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang XQ, Xu X, Lam R, Giljohann D, Ho D, Mirkin CA. Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA-nanoparticle conjugates. ACS NANO 2011; 5:6962-70. [PMID: 21812457 PMCID: PMC3200554 DOI: 10.1021/nn201446c] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Paclitaxel, a potent chemotherapeutic utilized in a variety of cancers, can be limited in its effectiveness due to inherent insolubility in aqueous media and acquired chemoresistance within certain cells. An approach has been developed for increasing Paclitaxel solubility and effectiveness by covalent attachment to gold nanoparticles via DNA linkers. The resulting conjugates are highly soluble in aqueous buffer, exhibiting greater than a 50-fold increase in solubility over the unconjugated drug. DNA linkers are labeled with a fluorophore, which affords a convenient means of visualizing resultant conjugates within cells. Internalized conjugates demonstrate increased activity as compared with free drug across a variety of cell types, including a Paclitaxel-resistant cell line. Attachment to DNA-nanoparticle conjugates may become a general strategy for solubilizing and enhancing a wide variety of therapeutic agents in aqueous media.
Collapse
Affiliation(s)
- Xue-Qing Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
| | - Xiaoyang Xu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Robert Lam
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208
| | - David Giljohann
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Dean Ho
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611
- To whom correspondence should be addressed. ;
| | - Chad A. Mirkin
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208
- To whom correspondence should be addressed. ;
| |
Collapse
|
32
|
Wei DD, Wang JS, Kong LY. Reversal Effects of Components from the Fruits of Illicium simonsii on Human Adriamycin-resistant MCF-7 and 5-Fluorouracil-resistant Bel7402 Cells. Phytother Res 2011; 26:562-7. [DOI: 10.1002/ptr.3599] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/06/2011] [Accepted: 05/24/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Dan-Dan Wei
- Department of Natural Medicinal Chemistry; China Pharmaceutical University; Nanjing; PR China
| | - Jun-Song Wang
- School of Traditional Chinese Pharmacy; China Pharmaceutical University; Nanjing; PR China
| | - Ling-Yi Kong
- Department of Natural Medicinal Chemistry; China Pharmaceutical University; Nanjing; PR China
| |
Collapse
|
33
|
Dikmen M, Cantürk Z, Oztürk Y. Escitalopram oxalate, a selective serotonin reuptake inhibitor, exhibits cytotoxic and apoptotic effects in glioma C6 cells. Acta Neuropsychiatr 2011; 23:173-8. [PMID: 25379795 DOI: 10.1111/j.1601-5215.2011.00550.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dikmen M, Cantürk Z, Öztürk Y. Escitalopram oxalate, a selective serotonin reuptake inhibitor, exhibits cytotoxic and apoptotic effects in glioma C6 cells.Objective: Various antidepressants, mainly tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs), have been reported to exhibit potent anticancer properties in different cancer cells. In this study, we evaluated the antiproliferative and apoptotic effects of escitalopram oxalate (25, 50, 100 and 200 µM) on rat C6 glioma cells.Methods: Cell proliferations were measured by [3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide] (MTT) assay, apoptosis was observed by flow cytometric analysis on C6 cells.Results: Significant decreases in the proliferation of C6 glioma cells were detected depending on increases in the escitalopram concentrations and incubation periods. When compared to controls, C6 cell proliferations after 24 h incubation were determined with 97.7, 85.9, 74.5 and 67.9% for 25, 50, 100 and 200 µM escitalopram, respectively, while the cell proliferations after 48 h were established as 96.5, 68.0, 50.7 and 39.9% for 25, 50, 100 and 200 µM concentrations, respectively. IC50 value of escitalopram was able to be calculated as 106.97 µM after 48 h. Based on Annexin V-propidium iodide (PI) binding capacity for 25, 50, 100 and 200 µM escitalopram, apoptotic effects were determined as 17.0, 22.3, 12.5 and 7.8%, respectively.Conclusion: Based on our findings, escitalopram oxalate was observed to induce cytotoxic and apoptotic activities in C6 cells.
Collapse
Affiliation(s)
- Miriş Dikmen
- Faculty of Pharmacy, Department of Pharmacology, Anadolu University, Eskisehir, Turkey
| | - Zerrin Cantürk
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Anadolu University, Eskisehir, Turkey
| | - Yusuf Oztürk
- Faculty of Pharmacy, Department of Pharmacology, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
34
|
Ma J, Qiu Y, Yang L, Peng L, Xia Z, Hou LN, Fang C, Qi H, Chen HZ. Desipramine induces apoptosis in rat glioma cells via endoplasmic reticulum stress-dependent CHOP pathway. J Neurooncol 2010; 101:41-8. [PMID: 20549303 DOI: 10.1007/s11060-010-0237-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/16/2010] [Indexed: 02/07/2023]
Abstract
Various antidepressants, mainly tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs), have exhibited potent anticancer properties in different cancer cell types. In the present study, desipramine (DMI), a representative of TCAs, was examined with respect to its apoptosis-inducing activity in rat C6 glioma cells and the underlying mechanism of action. DMI induced typical apoptotic morphology of chromatin condensation in rat glioma C6 cells and activated intracellular caspase 9 and caspase 3 with no change in mitochondrial membrane potential. Simultaneously, DMI significantly elevated expression of endoplasmic reticulum stress regulator CHOP/GADD153 and its targeting molecule GADD34. However, knockdown of CHOP by CHOP-specific short interfering RNA (siRNA) could decrease the activity of intracellular caspase 3 and the cytotoxicity of DMI to C6 cells. These results revealed that the CHOP-dependent endoplasmic reticulum (ER) stress pathway is responsible for DMI-induced apoptosis in C6 cells.
Collapse
Affiliation(s)
- Jian Ma
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Argov M, Bod T, Batra S, Margalit R. Novel steroid carbamates reverse multidrug-resistance in cancer therapy and show linkage among efficacy, loci of drug action and P-glycoprotein's cellular localization. Eur J Pharm Sci 2010; 41:53-9. [PMID: 20553861 DOI: 10.1016/j.ejps.2010.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
P-glycoprotein (Pgp) is a major ABC transporter responsible for multidrug-resistance (MDR) in cancer chemotherapy. Pre-clinical MDR modulation studies identified promising chemosensitizers, but none are in the clinic yet. Two novel progesterone-derived carbamates (11-carbamic acid N,N-dibenzyl progesterone ester and 11-carbamic acid N,N-dibutyl progesterone ester) were examined as potential chemosensitizers in the Pgp-expressing human colon cancer line HCT-15, applying the classical MDR-drugs paclitaxel and doxorubicin. The major findings were: (1) Pgp was expressed in the HCT-15 cells in both the cell and the nuclear membranes, (2) at the low dose range of 1-5 microM, each new candidate: (i) increased cytotoxicity of doxorubicin (15-fold) and (separately) of paclitaxel (40-fold), (ii) induced an increase in intracellular accumulation, 60% (4h) for doxorubicin and 300% (18h) for paclitaxel, (iii) reduced drug efflux from the cell, 2-fold and 4-fold for doxorubicin and for paclitaxel, respectively. Based on detailed kinetic analysis, using liposomes to model paclitaxel diffusion through cell membranes, efflux slowdown can be attributed to reduction in the rate constant of drug diffusion through Pgp, and not to Pgp blockage. Chemosensitization was consistently-better for paclitaxel (cytosol-operating) than for doxorubicin (nuclear-operating) implying linkage between P-glycoprotein localization and loci of drug action. Mapping intracellular locations of MDR-pumps may assist therapeutic strategies.
Collapse
Affiliation(s)
- Mirit Argov
- Department of Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
36
|
Argov M, Kashi R, Peer D, Margalit R. Treatment of resistant human colon cancer xenografts by a fluoxetine-doxorubicin combination enhances therapeutic responses comparable to an aggressive bevacizumab regimen. Cancer Lett 2008; 274:118-25. [PMID: 18851896 DOI: 10.1016/j.canlet.2008.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 07/21/2008] [Accepted: 09/03/2008] [Indexed: 12/14/2022]
Abstract
Pre-clinical studies of multidrug resistance (MDR) usually address severe resistance, yet moderate MDR is already clinically-impeding. The purpose of this study was to characterize moderate drug resistance in human colon cancer, and it's modulation by fluoxetine. In vitro fluoxetine enhanced doxorubicin's cytotoxicity (10-fold), increased doxorubicin's intracellular accumulation (32%) and decreased efflux of intracellular doxorubicin (70%). In vivo, mild treatment with a doxorubicin-fluoxetine combination slowed-down tumor progression significantly (p<0.001 vs. doxorubicin alone), comparable to aggressive treatment with bevacizumab. Collectively, our results suggest that combinations of fluoxetine with chemotherapeutic drugs (P-glycoprotein substrates) are worthy of further pursuit for moderate MDR in the clinic.
Collapse
Affiliation(s)
- Mirit Argov
- Department of Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
37
|
Shi H, Lu D, Shu Y, Shi W, Lu S, Wang K. Expression of multidrug-resistance-related proteins P-glycoprotein, glutathione-S-transferases, topoisomerase-II and lung resistance protein in primary gastric cardiac adenocarcinoma. Cancer Invest 2008; 26:344-51. [PMID: 18443954 DOI: 10.1080/07357900701788072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM Multidrug resistance (MDR) is closely correlated to an unfavorable prognosis in various human cancers. However, the clinical significance of the expression of MDR-related proteins p-glycoprotein (PGP), glutathione-s-transferases (GST-pi), topoisomerase-II (Topo-II) and lung resistance protein (LRP) in primary gastric cardiac adenocarcinoma (PGCA) remains unclear. In this present study, the total of the four kinds of MDR-related proteins mentioned above were detected by using immunohistochemistry, and their clinical significance in chemoresistance were also investigated. METHODS This retrospective study included 69 resected specimens from patients with PGCA. The expression of PGP, GST-pi, Topo-II and LRP in formalin-fixed paraffin-embedded tissue sections was determined by a labelled streptavidin-biotin immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. RESULTS The positive rates of expression of PGP, GST-pi, Topo-II and LRP in malignant tissues (49.2%, 75.4%, 68.1% and 58%, respectively) were all higher than that of the normal tissues(0, 30%, 20% and 0, respectively, P < 0.01). PGP expression in tumors that had metastasized was significantly more frequent than in tumors that had not metastasized (67.5% vs 24.1%, P < 0.01). The expression of PGP was closely related with clinicopathologic staging (staging 1/2 vs 3/4, 28.6% vs 58.3%, P < 0.05). No significant correlation was shown between PGP and increasing differentiated degree (40%, 42.4% and 61.5%, P > 0.05). GST-pi expression status progressively increased with increasing differentiated degree (40%, 75.8% and 88.5%, P < 0.05) and clinicopathologic stage (staging 1/2 vs 3/4, 57.1% vs 83.3%, P < 0.05). In addition, a significant positive correlation was also observed between GST-pi and lymphatic metastasis (with vs. without metastasis, 87.5% vs 58.6%, P < 0.05). The expression of Topo-II was associated with increasing differentiated degree (33.3%, 69.7 and 80.7%, P < 0.01). No significant differences with Topo-II expression were found in relation to the clinicopathologic stage (staging 1/2 vs 3/4, 57.1% vs 72.9%, P > 0.05) and lymphatic metastasis (with vs. without metastasis, 65.0% vs 72.4%, P > 0.05). Moreover, a significant difference with the expression of LRP was found in relation to the clinicopathologic stage (staging 1/2 vs 3/4, 38% vs 66.6%, P < 0.05), and lymphatic metastasis (with vs without metastasis, 70.0% vs 41.4%, P < 0.05). Comparing the well, moderately and poorly differentiated cohort, a non-statistical increasing trend towards LRP expression status was noted (50.0%, 54.5% and 65.3%, respectively, P > 0.05). Besides, the co-expression of all four tested MDR-related proteins also existed. The positive rates of co-expression of PGP and GST-pi, PGP and Topo-II, PGP and LRP, GST-pi and Topo-II, LRP and GST-pi, LRP and Topo-II, PGP, GST-pi, Topo-II and LRP in malignant cells were 23.2%, 15.9%, 11.6%, 13.0, 26.1, 7.24, 5.8, respectively. CONCLUSIONS MDR-related proteins PGP, GST-pi, Topo-II alpha and LRP are involved in multiple mechanisms of drug resistance in PGCA. Combined determination of PGP, GST-pi, Topo-II and LRP may be prospectively valuable for optimizing the chemotherapy regimes, developing high quality anti-cancer drugs, and further predicting the outcomes of those patients with PGCA.
Collapse
Affiliation(s)
- Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical College, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | | | | | | | | | | |
Collapse
|
38
|
Krishnan A, Hariharan R, Nair SA, Pillai MR. Fluoxetine mediates G0/G1 arrest by inducing functional inhibition of cyclin dependent kinase subunit (CKS)1. Biochem Pharmacol 2008; 75:1924-34. [PMID: 18371935 DOI: 10.1016/j.bcp.2008.02.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 02/10/2008] [Accepted: 02/12/2008] [Indexed: 01/01/2023]
Abstract
Fluoxetine, a well-known antidepressant used clinically for mental depression has gained attention in cancer research owing to its chemosensitizing potential in drug resistant cell lines. Some preliminary reports, however, suggested its independent cytotoxic potential which is not yet well characterized. Our aim in this study was to characterize its antiproliferative activity in tumor cells and to further elucidate the mechanism. We found that fluoxetine sensitized the effect of cyclophosphamide even in drug sensitive MDA MB 231 and SiHa cells. IC(50) values of 28 and 32 microM were obtained for fluoxetine mediated antiproliferative response in these cells. Further, PARP and caspase 3 cleavage analyses confirmed fluoxetine mediated apoptosis at molecular level. Cell cycle analysis showed that fluoxetine arrested cells at G0/G1 phase in a time dependent manner. The application of bioinformatics tools at this juncture predicted CKS1 as one of the possible targets of fluoxetine, which is of relevance to cell cycle biology. Fluoxetine showed the potential to disrupt skp2-CKS1 assembly required for ubiquitination and proteasomal degradation of p27 and p21. Our in vitro results were in agreement with the predictions made in silico. We found that fluoxetine treatment could accumulate p27 and p21, an immediate outcome characteristic of functional inhibition of CKS1. This was accompanied by the accumulation of cyclin E, another possible target of CKS1. We observed CKS1 downregulation also upon prolonged fluoxetine treatment. Fluoxetine had downregulated cyclin A which confirmed G0/G1 arrest at the molecular level. We conclude that fluoxetine induced cell cycle arrest is CKS1 dependent.
Collapse
Affiliation(s)
- Anand Krishnan
- Translational Cancer Research Laboratory, Department of Molecular Medicine, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India.
| | | | | | | |
Collapse
|
39
|
Huang M, Jin J, Sun H, Liu GT. Reversal of P-glycoprotein-mediated multidrug resistance of cancer cells by five schizandrins isolated from the Chinese herb Fructus Schizandrae. Cancer Chemother Pharmacol 2008; 62:1015-26. [PMID: 18270702 DOI: 10.1007/s00280-008-0691-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 01/21/2008] [Indexed: 11/27/2022]
Abstract
PURPOSE Fructus Schizandrae (FS) is commonly used as a tonic in traditional Chinese medicine. Recently, FS was found to significantly improve liver dysfunction in chronic hepatitis patients. The present study was to assess the reversal effect of five schizandrins and crude extract from FS (named LCC) on multidrug resistance (MDR) of cancer cells, both in vitro and in vivo. Chemically, the five schizandins are derivatives of dibenzo-(a, c)-cyclooctene lignan with distinct structures differing from any known MDR reversal agents. METHODS A panel of sensitive and resistant cancer cell lines were treated with various concentrations of LCC and schizandrins. Drug sensitivity, accumulation of Doxorubicin (Dox), expression of P-glycoprotein and protein kinase C (PKC), and apoptosis were determined in vitro. The in vivo effect was tested in nude mice grafted with sensitive and resistant human epidermal cancer cell line to vincristine (VCR) (KB, KBv200). RESULTS The tested five compounds at 25 muM showed various levels of MDR reversal activity, of which, schizandrin A (Sin A) was the most potent one. Sin A reversed VCR resistance in KBv200 cells, MCF-7/Dox cells and Bel7402 cells by 309-, 38-, and 84-folds, respectively. Also, Sin A reversed the resistance of Dox in the above cancer cell lines. LCC at 25 mug/ml reversed VCR resistance by 619-folds in KBv200, 181-folds in MCF-7/Dox cell line, and 1,563-folds in innate resistance of human hepatic cellular carcinoma Bel7402 cells to VCR. Furthermore, LCC and its active component Sin A potently reversed the cross-resistance to paclitaxel in those cell lines. Both Sin A and LCC markedly increased intracellular Dox accumulation and enhanced apoptosis, down-regulated Pgp protein and mRNA and total PKC expression in MDR cells. Coadministration of LCC (p.o.) significantly potentiated the inhibitory effect of VCR (i.p.) on tumor growth in nude mice bearing KBv200 xenograft. CONCLUSIONS The LCC and its active component Sin A have remarkable reversal effect on MDR in cancer cells by inhibition of both the function and expression of Pgp and total PKC.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- Animals
- Apoptosis/drug effects
- Cell Line, Tumor/drug effects
- Cyclooctanes/pharmacology
- Cyclooctanes/therapeutic use
- Dioxoles/pharmacology
- Doxorubicin/metabolism
- Doxorubicin/therapeutic use
- Drug Evaluation, Preclinical
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Fruit/chemistry
- Genes, MDR/drug effects
- Humans
- Lignans/pharmacology
- Lignans/therapeutic use
- Mice
- Mice, Nude
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Phytotherapy
- Plant Preparations/pharmacology
- Plant Preparations/therapeutic use
- Polycyclic Compounds/pharmacology
- Polycyclic Compounds/therapeutic use
- Protein Kinase C/biosynthesis
- Protein Kinase C/genetics
- Schisandra/chemistry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Min Huang
- Division of Oncology, Department of Internal Medicine, Stanford University, Stanford, CA 94301, USA
| | | | | | | |
Collapse
|
40
|
Lieb J. The multifaceted value of antidepressants in cancer therapeutics. Eur J Cancer 2007; 44:172-4. [PMID: 18063359 DOI: 10.1016/j.ejca.2007.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 11/03/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
|
41
|
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. NATURE NANOTECHNOLOGY 2007; 2:751-60. [PMID: 18654426 DOI: 10.1038/nnano.2007.387] [Citation(s) in RCA: 5885] [Impact Index Per Article: 346.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Nanotechnology has the potential to revolutionize cancer diagnosis and therapy. Advances in protein engineering and materials science have contributed to novel nanoscale targeting approaches that may bring new hope to cancer patients. Several therapeutic nanocarriers have been approved for clinical use. However, to date, there are only a few clinically approved nanocarriers that incorporate molecules to selectively bind and target cancer cells. This review examines some of the approved formulations and discusses the challenges in translating basic research to the clinic. We detail the arsenal of nanocarriers and molecules available for selective tumour targeting, and emphasize the challenges in cancer treatment.
Collapse
Affiliation(s)
- Dan Peer
- Department of Anesthesia, Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
42
|
Gao P, Zhou GY, Lei DP, Zhang XF, Li L, Xu JW, Lin XY. Selection of antisense oligonucleotides for reversal of multidrug resistance in breast carcinoma cells. Cytotherapy 2007; 9:795-801. [PMID: 17917879 DOI: 10.1080/14653240701656087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) is a major obstacle in cancer treatment. In the present study, six regions of the mdr1 gene associated with transcription control or translation initiation were selected as targets. Six antisense oligonucleotides (ASODN; AS1-AS6) complementary to the corresponding sequence of the mdr1 gene were synthesized to investigate whether or not blocking the transcription control sites with ASODN could reverse MDR and which ASODN had the best efficiency for reversing MDR in breast carcinoma cells. METHODS Forty-eight hours after transfection, mdr1 mRNA and P-glycoprotein (Pgp) were determined by RT-PCR, flow cytometry and Rhodamine 123 (Rh123) retention assay. The chemosensitivity of the treated cells was evaluated by MTT assay. RESULTS A significant reduction in expression of mdr1 mRNA and Pgp was found in four groups (AS1, AS3, AS5 and AS6), accompanying a dysfunction of Pgp. The lowest levels of mdr1 index and Pgp expression were observed in the AS6 group. MTT assay showed that a significant reduction of drug resistance was found in the four groups, especially in the AS6 group, which showed an 8.4-fold reduction in drug resistance for adriamycin and a 10.5-fold reduction in drug resistance for vinblastine. DISCUSSION These data suggest that the MDR phenotype of breast carcinoma cells could be reversed by ASODN complementary to the transcription control site or translation initiation region. AS6, which is complementary to the translation initiation codon (ATG) of mdr1 cDNA, has the best reversal efficiency.
Collapse
Affiliation(s)
- P Gao
- Department of Pathology, School of Medicine, Jinan, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Motl S, Zhuang Y, Waters CM, Stewart CF. Pharmacokinetic considerations in the treatment of CNS tumours. Clin Pharmacokinet 2007; 45:871-903. [PMID: 16928151 DOI: 10.2165/00003088-200645090-00002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite aggressive therapy, the majority of primary and metastatic brain tumour patients have a poor prognosis with brief survival periods. This is because of the different pharmacokinetic parameters of systemically administered chemotherapeutic agents between the brain and the rest of the body. Specifically, before systemically administered drugs can distribute into the CNS, they must cross two membrane barriers, the blood-brain barrier (BBB) and blood-cerebrospinal fluid (CSF) barrier (BCB). To some extent, these structures function to exclude xenobiotics, such as anticancer drugs, from the brain. An understanding of these unique barriers is essential to predict when and how systemically administered drugs will be transported to the brain. Specifically, factors such as physiological variables (e.g. blood flow), physicochemical properties of the drug (e.g. molecular weight), as well as influx and efflux transporter expression at the BBB and BCB (e.g. adenosine triphosphate-binding cassette transporters) determine what compounds reach the CNS. A large body of preclinical and clinical research exists regarding brain penetration of anticancer agents. In most cases, a surrogate endpoint (i.e. CSF to plasma area under the concentration-time curve [AUC] ratio) is used to describe how effectively agents can be transported into the CNS. Some agents, such as the topoisomerase I inhibitor, topotecan, have high CSF to plasma AUC ratios, making them valid therapeutic options for primary and metastatic brain tumours. In contrast, other agents like the oral tyrosine kinase inhibitor, imatinib, have a low CSF to plasma AUC ratio. Knowledge of these data can have important clinical implications. For example, it is now known that chronic myelogenous leukaemia patients treated with imatinib might need additional CNS prophylaxis. Since most anticancer agents have limited brain penetration, new pharmacological approaches are needed to enhance delivery into the brain. BBB disruption, regional administration of chemotherapy and transporter modulation are all currently being evaluated in an effort to improve therapeutic outcomes. Additionally, since many chemotherapeutic agents are metabolised by the cytochrome P450 3A enzyme system, minimising drug interactions by avoiding concomitant drug therapies that are also metabolised through this system may potentially enhance outcomes. Specifically, the use of non-enzyme-inducing antiepileptic drugs and curtailing nonessential corticosteroid use may have an impact.
Collapse
Affiliation(s)
- Susannah Motl
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | |
Collapse
|