1
|
Abrantes R, Lopes J, Lopes D, Gomes J, Melo SA, Reis CA. Sialyl-Tn glycan epitope as a target for pancreatic cancer therapies. Front Oncol 2024; 14:1466255. [PMID: 39346741 PMCID: PMC11427427 DOI: 10.3389/fonc.2024.1466255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Pancreatic cancer (PC) is the sixth leading cause of cancer-related deaths worldwide, primarily due to late-stage diagnosis and limited treatment options. While novel biomarkers and immunotherapies are promising, further research into specific molecular targets is needed. Glycans, which are carbohydrate structures mainly found on cell surfaces, play crucial roles in health and disease. The Thomsen-Friedenreich-related carbohydrate antigen Sialyl-Tn (STn), a truncated O-glycan structure, is selectively expressed in epithelial tumors, including PC. In this study, we performed a comprehensive analysis of STn expression patterns in normal, premalignant, and malignant pancreatic lesions. Additionally, we analyzed the association between STn expression and various clinicopathological features. STn expression was statistically associated with pathological diagnosis; it was absent in normal pancreatic tissue but prevalent in pancreatic carcinoma lesions, including pancreatic ductal adenocarcinoma (PDAC), pancreatic acinar cell carcinoma, and pancreatic adenosquamous carcinoma. Moreover, we found a significant association between STn expression and tumor stage, with higher STn levels observed in stage II tumors compared to stage I. However, STn expression did not correlate with patient survival or outcomes. Furthermore, STn expression was assessed in PDAC patient-derived xenograft (PDX) models, revealing consistent STn levels throughout engraftment and tumor growth cycles. This finding supports the PDX model as a valuable tool for testing new anti-STn therapeutic strategies for PC in clinical setting.
Collapse
Affiliation(s)
- Rafaela Abrantes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Joanne Lopes
- Department of Pathology, Unidade Local de Saúde (ULS) de São João, Porto, Portugal
| | - Daniel Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Joana Gomes
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Sónia A. Melo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), Porto, Portugal
| |
Collapse
|
2
|
Radziejewska I. Tumor-associated carbohydrate antigens of MUC1 - Implication in cancer development. Biomed Pharmacother 2024; 174:116619. [PMID: 38643541 DOI: 10.1016/j.biopha.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Glycosylation of cancerous epithelial MUC1 protein is specifically altered in comparison to that which is presented by healthy cells. One of such changes is appearing tumor-associated carbohydrate antigens (TACAs) which are rare in normal tissues and are highly correlated with poor clinical outcomes and cancer progression. This review summarizes and describes the role of Tn, T antigens, their sialylated forms as well as fucosylated Lewis epitopes in different aspects of tumor development, progression, and metastasis. Finally, applications of MUC1 glycan epitopes as potential targets for therapeutic strategy of cancers are notified. One of the novelties of this review is presentation of TACAs as inherently connected with MUC1 mucin.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2, Białystok 15-222, Poland.
| |
Collapse
|
3
|
Zhang SZ, Lobo A, Li PF, Zhang YF. Sialylated glycoproteins and sialyltransferases in digestive cancers: Mechanisms, diagnostic biomarkers, and therapeutic targets. Crit Rev Oncol Hematol 2024; 197:104330. [PMID: 38556071 DOI: 10.1016/j.critrevonc.2024.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.
Collapse
Affiliation(s)
- Shao-Ze Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Amara Lobo
- Department of Critical Care Medicine Holy Family Hospital, St Andrew's Road, Bandra (West), Mumbai 400050, India
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
4
|
Pujari R, Dubey SK. Relevance of glyco-biomakers and glycan profiles in cancer stem cells. Glycobiology 2024; 34:cwad019. [PMID: 36864577 DOI: 10.1093/glycob/cwad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Altered and aberrant glycosylation signatures have been linked to being a hallmark in a variety of human disorders including cancer. Cancer stem cells (CSCs), capable of self-renewal and differentiation, have recently been credited with a unique notion of disease genesis and implicated as the cause for initiation and recurrence of the disease in a new regime of neoplastic transformations hypothesis. Many biomarkers relating to diagnostic and prognostic intents have been discovered using the ubiquitous and abundant surface glycan patterns on CSCs. Various technological advancements have been developed to identify and determine concerns with glycosylation structure. However, the nature and purpose of the glycan moiety on these glycosylation pattern have not yet been thoroughly investigated. This review, thus, summarizes the process of glycosylation in CSCs, variations in glycosylation patterns in various stem cells, aberrant glycosylation patterns in cancer, the role of glycosylation in tumor cell adhesion, cell-matrix interactions, and signaling, as well as cancer detection and treatment. The function of carbohydrates as prospective serum biomarkers, some clinically authorized biomarkers, and potential novel biomarkers relating to cancer disease diagnosis and prognosis are also discussed in the review.
Collapse
Affiliation(s)
- Rohit Pujari
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| | - Shiv Kumar Dubey
- Department of Biochemistry, C.B.S.H., G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
5
|
dos Santos SN, Junior DSG, Pereira JPM, Iadocicco NM, Silva AH, do Nascimento T, Dias LAP, de Oliveira Silva FR, Ricci-Junior E, Santos-Oliveira R, Bernardes ES. Development of glycan-targeted nanoparticles as a novel therapeutic opportunity for gastric cancer treatment. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
AbstractChemotherapy resistance remains a major cause of therapeutic failure in gastric cancer. The combination of genetic material such as interference RNAs (iRNAs) to silence cancer-associated genes with chemotherapeutics has become a novel approach for cancer treatment. However, finding the right target genes and developing non-toxic, highly selective nanocarrier systems remains a challenge. Here we developed a novel sialyl-Tn-targeted polylactic acid—didodecyldimethylammonium bromide nanoparticle (PLA-DDAB) nanoparticles (NPs) loaded with dsRNA targeting ST6GalNac-I and/or galectin-3 genes. Using single photon emission computed tomography (SPECT), we have demonstrated that 99mtechnetium radiolabeled sialyl-Tn-targeted nanoparticles can reach the tumor site and downregulate ST6GalNAc-I and galectin-3 RNA expression levels when injected intravenously. Furthermore, using an in vivo gastric tumor model, these nanoparticles increased the effectiveness of 5-FU in reducing tumor growth. Our findings indicate that cancer-associated glycan-targeted NPs loaded with dsRNA targeting ST6GalNAc-I and/or galectin-3 in combination with standard chemotherapy, have the potential to become a novel therapeutic tool for gastric cancer.
Collapse
|
6
|
Harduin-Lepers A. The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases. Glycoconj J 2023; 40:473-492. [PMID: 37247156 PMCID: PMC10225777 DOI: 10.1007/s10719-023-10123-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Every eukaryotic cell is covered with a thick layer of complex carbohydrates with essential roles in their social life. In Deuterostoma, sialic acids present at the outermost positions of glycans of glycoconjugates are known to be key players in cellular interactions including host-pathogen interactions. Their negative charge and hydrophilic properties enable their roles in various normal and pathological states and their expression is altered in many diseases including cancers. Sialylation of glycoproteins and glycolipids is orchestrated by the regulated expression of twenty sialyltransferases in human tissues with distinct enzymatic characteristics and preferences for substrates and linkages formed. However, still very little is known on the functional organization of sialyltransferases in the Golgi apparatus and how the sialylation machinery is finely regulated to provide the ad hoc sialome to the cell. This review summarizes current knowledge on sialyltransferases, their structure-function relationships, molecular evolution, and their implications in human biology.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
7
|
Martins ÁM, Lopes TM, Diniz F, Pires J, Osório H, Pinto F, Freitas D, Reis CA. Differential Protein and Glycan Packaging into Extracellular Vesicles in Response to 3D Gastric Cancer Cellular Organization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300588. [PMID: 37340602 PMCID: PMC10460857 DOI: 10.1002/advs.202300588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/26/2023] [Indexed: 06/22/2023]
Abstract
Alterations of the glycosylation machinery are common events in cancer, leading to the synthesis of aberrant glycan structures by tumor cells. Extracellular vesicles (EVs) play a modulatory role in cancer communication and progression, and interestingly, several tumor-associated glycans have already been identified in cancer EVs. Nevertheless, the impact of 3D tumor architecture in the selective packaging of cellular glycans into EVs has never been addressed. In this work, the capacity of gastric cancer cell lines with differential glycosylation is evaluated in producing and releasing EVs when cultured under conventional 2D monolayer or in 3D culture conditions. Furthermore, the proteomic content is identified and specific glycans are studied in the EVs produced by these cells, upon differential spatial organization. Here, it is observed that although the proteome of the analyzed EVs is mostly conserved, an EV differential packaging of specific proteins and glycans is found. In addition, protein-protein interaction and pathway analysis reveal individual signatures on the EVs released by 2D- and 3D-cultured cells, suggesting distinct biological functions. These protein signatures also show a correlation with clinical data. Overall, this data highlight the importance of tumor cellular architecture when assessing the cancer-EV cargo and its biological role.
Collapse
Affiliation(s)
- Álvaro M. Martins
- i3S‐Institute for Research and Innovation in HealthUniversity of PortoRua Alfredo Allen 208Porto4200-135Portugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 45Porto4200-135Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)University of PortoR. Jorge de Viterbo FerreiraPorto4050-313Portugal
| | - Tânia M. Lopes
- i3S‐Institute for Research and Innovation in HealthUniversity of PortoRua Alfredo Allen 208Porto4200-135Portugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 45Porto4200-135Portugal
| | - Francisca Diniz
- i3S‐Institute for Research and Innovation in HealthUniversity of PortoRua Alfredo Allen 208Porto4200-135Portugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 45Porto4200-135Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)University of PortoR. Jorge de Viterbo FerreiraPorto4050-313Portugal
| | - José Pires
- i3S‐Institute for Research and Innovation in HealthUniversity of PortoRua Alfredo Allen 208Porto4200-135Portugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 45Porto4200-135Portugal
- Faculty of Medicine of the University of PortoAlameda Prof. Hernâni MonteiroPorto4200-319Portugal
| | - Hugo Osório
- i3S‐Institute for Research and Innovation in HealthUniversity of PortoRua Alfredo Allen 208Porto4200-135Portugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 45Porto4200-135Portugal
- Faculty of Medicine of the University of PortoAlameda Prof. Hernâni MonteiroPorto4200-319Portugal
| | - Filipe Pinto
- i3S‐Institute for Research and Innovation in HealthUniversity of PortoRua Alfredo Allen 208Porto4200-135Portugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 45Porto4200-135Portugal
| | - Daniela Freitas
- i3S‐Institute for Research and Innovation in HealthUniversity of PortoRua Alfredo Allen 208Porto4200-135Portugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 45Porto4200-135Portugal
| | - Celso A. Reis
- i3S‐Institute for Research and Innovation in HealthUniversity of PortoRua Alfredo Allen 208Porto4200-135Portugal
- IPATIMUP‐Institute of Molecular Pathology and ImmunologyUniversity of PortoRua Júlio Amaral de Carvalho 45Porto4200-135Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)University of PortoR. Jorge de Viterbo FerreiraPorto4050-313Portugal
- Faculty of Medicine of the University of PortoAlameda Prof. Hernâni MonteiroPorto4200-319Portugal
| |
Collapse
|
8
|
Fonseca LMD, Diniz-Lima I, da Costa Santos MAR, Franklim TN, da Costa KM, Santos ACD, Morrot A, Decote-Ricardo D, Valente RDC, Freire-de-Lima CG, Dos Reis JS, Freire-de-Lima L. Bittersweet Sugars: How Unusual Glycan Structures May Connect Epithelial-to-Mesenchymal Transition and Multidrug Resistance in Cancer. MEDICINES (BASEL, SWITZERLAND) 2023; 10:36. [PMID: 37367731 DOI: 10.3390/medicines10060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
Cancer cells are characterized by metabolic reprogramming, which enables their survival in of-ten inhospitable conditions. A very well-documented example that has gained attraction in re-cent years and is already considered a hallmark of transformed cells is the reprogramming of carbohydrate metabolism. Such a feature, in association with the differential expression of en-zymes involved in the biosynthesis of glycoconjugates, generically known as glycosyltransfer-ases, contributes to the expression of structurally atypical glycans when compared to those ex-pressed in healthy tissues. The latest studies have demonstrated that glycophenotypic alterations are capable of modulating multifactorial events essential for the development and/or progres-sion of the disease. Herein, we will address the importance of glycobiology in modern medi-cine, focusing on the ability of unusual/truncated O-linked glycans to modulate two complex and essential phenomena for cancer progression: the acquisition of the multidrug resistance (MDR) phenotype and the activation of molecular pathways associated with the epithelial-mesenchymal transition (EMT) process, an event deeply linked with cancer metastasis.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Israel Diniz-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Tatiany Nunes Franklim
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Kelli Monteiro da Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ariely Costa Dos Santos
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Alexandre Morrot
- Instituto Oswaldo Cruz, Fiocruz, Laboratório de Imunoparasitologia, Rio de Janeiro 21040-360, Brazil
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Departamento de Microbiologia e Imunologia Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil
| | - Raphael do Carmo Valente
- Núcleo Multidisciplinar de Pesquisa em Biologia, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias, Rio de Janeiro 25250-470, Brazil
| | - Celio Geraldo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Jhenifer Santos Dos Reis
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
9
|
Liang D, Gao Q, Meng Z, Li W, Song J, Xue K. Glycosylation in breast cancer progression and mammary development: Molecular connections and malignant transformations. Life Sci 2023; 326:121781. [PMID: 37207809 DOI: 10.1016/j.lfs.2023.121781] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The cellular behavior in normal mammary gland development and the progression of breast cancer is like the relationship between an object and its mirror image: they may appear similar, but their essence is completely different. Breast cancer can be considered as temporal and spatial aberrations of normal development in mammary gland. Glycans have been shown to regulate key pathophysiological steps during mammary development and breast cancer progression, and the glycoproteins that play a key role in both processes can affect the normal differentiation and development of mammary cells, and even cause malignant transformation or accelerate tumorigenesis due to differences in their type and level of glycosylation. KEY FINDINGS In this review, we summarize the roles of glycan alterations in essential cellular behaviors during breast cancer progression and mammary development, and also highlight the importance of key glycan-binding proteins such as epidermal growth factor receptor, transforming growth factor β receptors and other proteins, which are pivotal in the modulation of cellular signaling in mammary gland. Our review takes an overall view of the molecular interplay, signal transduction and cellular behaviors in mammary gland development and breast cancer progression from a glycobiological perspective. SIGNIFICANCE This review will give a better understanding of the similarities and differences in glycosylation between mammary gland development and breast cancer progression, laying the foundation for elucidating the key molecular mechanisms of glycobiology underlying the malignant transformation of mammary cells.
Collapse
Affiliation(s)
- Dongyang Liang
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Qian Gao
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Zixuan Meng
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China
| | - Jiazhe Song
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| | - Kai Xue
- College of Basic Medical Sciences, Dalian Medical University, Liaoning, China.
| |
Collapse
|
10
|
Miró L, López J, Guerrero PE, Martínez-Bosch N, Manero-Rupérez N, Moreno M, Ortiz MR, Llop E, Navarro P, Peracaula R. Sialyltransferase Inhibitor Ac 53F axNeu5Ac Reverts the Malignant Phenotype of Pancreatic Cancer Cells, and Reduces Tumor Volume and Favors T-Cell Infiltrates in Mice. Cancers (Basel) 2022; 14:cancers14246133. [PMID: 36551619 PMCID: PMC9776040 DOI: 10.3390/cancers14246133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Hypersialylation is a feature of pancreatic ductal adenocarcinoma (PDA) and it has been related to tumor malignancy and immune suppression. In this work, we have evaluated the potential of the sialyltransferase inhibitor, Ac53FaxNeu5Ac, to decrease tumor sialoglycans in PDA and to revert its malignant phenotype. Sialoglycans on PDA cells were evaluated by flow cytometry, and the functional impact of Ac53FaxNeu5Ac was assessed using E-selectin adhesion, migration, and invasion assays. PDA tumors were generated in syngeneic mice from KC cells and treated with Ac53FaxNeu5Ac to evaluate tumor growth, mice survival, and its impact on blocking sialic acid (SA) and on the tumor immune component. Ac53FaxNeu5Ac treatment on human PDA cells decreased α2,3-SA and sialyl-Lewisx, which resulted in a reduction in their E-selectin adhesion, and in their migratory and invasive capabilities. Subcutaneous murine tumors treated with Ac53FaxNeu5Ac reduced their volume, their SA expression, and modified their immune component, with an increase in CD8+ T-lymphocytes and NK cells. In conclusion, Ac53FaxNeu5Ac treatment weakened PDA cells' malignant phenotype, thereby reducing tumor growth while favoring anti-tumor immune surveillance. Altogether, these results show the positive impact of reducing SA expression by inhibiting cell sialyltransferases and open the way to use sialyltransferase inhibitors to target this dismal disease.
Collapse
Affiliation(s)
- Laura Miró
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Júlia López
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Pedro E. Guerrero
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain
| | - Noemí Manero-Rupérez
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain
| | - Mireia Moreno
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain
| | - M. Rosa Ortiz
- Pathology Department, Josep Trueta University Hospital, 17007 Girona, Spain
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB)-CSIC, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, 17003 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
- Correspondence: ; Tel.: +34-972418370
| |
Collapse
|
11
|
Diniz F, Azevedo M, Sousa F, Osório H, Campos D, Sampaio P, Gomes J, Sarmento B, Reis CA. Polymeric nanoparticles targeting Sialyl-Tn in gastric cancer: A live tracking under flow conditions. Mater Today Bio 2022; 16:100417. [PMID: 36105678 PMCID: PMC9465339 DOI: 10.1016/j.mtbio.2022.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Drug delivery using nanoparticles (NPs) represents a potential approach for therapy in cancer, such gastric cancer (GC) due to their targeting ability and controlled release properties. The use of advanced nanosystems that deliver anti-cancer drugs specifically to tumor cells may strongly rely on the expression of cancer-associated targets. Glycans aberrantly expressed by cancer cells are attractive targets for such delivery strategy. Sialylated glycans, such as Sialyl-Tn (STn) are aberrantly expressed in several epithelial tumors, including GC, being a potential target for a delivery nanosystem. The aim of this study was the development of NPs surface-functionalized with a specific antibody targeting the STn glycan and further evaluate this nanosystem effectiveness regarding its specificity and recognition capacity. Our results showed that the NPs surface-functionalized with anti-STn antibody efficiently are recognized by cells displaying the cancer-associated STn antigen under static and live cell monitoring flow conditions. This uncovers the potential use of such NPs for drug delivery in cancer. However, flow exposure was disclosed as an important biomechanical parameter to be taken into consideration. Here we presented an innovative and successful methodology to live track the NPs targeting STn antigen under shear stress, simulating the physiological flow. We demonstrate that unspecific binding of NPs agglomerates did not occur under flow conditions, in contrast with static assays. This robust approach can be applied for in vitro drug studies, giving valuable insights for in vivo studies.
Collapse
Affiliation(s)
- Francisca Diniz
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Flávia Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- CESPU-IUCS, 4585-116 Gandra, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Diana Campos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB- Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- CESPU-IUCS, 4585-116 Gandra, Portugal
| | - Celso A. Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- FMUP- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Corresponding author. i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
12
|
Aberrant Sialylation in Cancer: Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14174248. [PMID: 36077781 PMCID: PMC9454432 DOI: 10.3390/cancers14174248] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.
Collapse
|
13
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success? Front Med 2022; 16:322-338. [PMID: 35687277 DOI: 10.1007/s11684-021-0901-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022]
Abstract
Immune-based therapies have experienced a pronounced breakthrough in the past decades as they acquired multiple US Food and Drug Administration (FDA) approvals for various indications. To date, six chimeric antigen receptor T cell (CAR-T) therapies have been permitted for the treatment of certain patients with relapsed/refractory hematologic malignancies. However, several clinical trials of solid tumor CAR-T therapies were prematurely terminated, or they reported life-threatening treatment-related damages to healthy tissues. The simultaneous expression of target antigens by healthy organs and tumor cells is partly responsible for such toxicities. Alongside targeting tumor-specific antigens, targeting the aberrantly glycosylated glycoforms of tumor-associated antigens can also minimize the off-tumor effects of CAR-T therapies. Tn, T, and sialyl-Tn antigens have been reported to be involved in tumor progression and metastasis, and their expression results from the dysregulation of a series of glycosyltransferases and the endoplasmic reticulum protein chaperone, Cosmc. Moreover, these glycoforms have been associated with various types of cancers, including prostate, breast, colon, gastric, and lung cancers. Here, we discuss how underglycosylated antigens emerge and then detail the latest advances in the development of CAR-T-based immunotherapies that target some of such antigens.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, P.O. Box 44771/66595, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran. .,Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, P.O. Box 14115/111, Iran.
| |
Collapse
|
14
|
Leite-Gomes E, Dias AM, Azevedo CM, Santos-Pereira B, Magalhães M, Garrido M, Amorim R, Lago P, Marcos-Pinto R, Pinho SS. Bringing to Light the Risk of Colorectal Cancer in Inflammatory Bowel Disease: Mucosal Glycosylation as a Key Player. Inflamm Bowel Dis 2022; 28:947-962. [PMID: 34849933 DOI: 10.1093/ibd/izab291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Colitis-associated cancer is a major complication of inflammatory bowel disease remaining an important clinical challenge in terms of diagnosis, screening, and prognosis. Inflammation is a driving factor both in inflammatory bowel disease and cancer, but the mechanism underlying the transition from colon inflammation to cancer remains to be defined. Dysregulation of mucosal glycosylation has been described as a key regulatory mechanism associated both with colon inflammation and colorectal cancer development. In this review, we discuss the major molecular mechanisms of colitis-associated cancer pathogenesis, highlighting the role of glycans expressed at gut epithelial cells, at lamina propria T cells, and in serum proteins in the regulation of intestinal inflammation and its progression to colon cancer, further discussing its potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Eduarda Leite-Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Ana M Dias
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mariana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Mónica Garrido
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Rita Amorim
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Pediatrics Department, Centro Hospitalar e Universitário São João, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| | - Paula Lago
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Ricardo Marcos-Pinto
- Department of Gastroenterology, Centro Hospitalar e Universitário do Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Centre for Research in Health Technologies and Information Systems, University of Porto, Portugal
| | - Salomé S Pinho
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.,Medical Faculty, University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Glycosyltransferases in Cancer: Prognostic Biomarkers of Survival in Patient Cohorts and Impact on Malignancy in Experimental Models. Cancers (Basel) 2022; 14:cancers14092128. [PMID: 35565254 PMCID: PMC9100214 DOI: 10.3390/cancers14092128] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Glycosylation changes are a main feature of cancer. Some carbohydrate epitopes and expression levels of glycosyltransferases have been used or proposed as prognostic markers, while many experimental works have investigated the role of glycosyltransferases in malignancy. Using the transcriptomic data of the 21 TCGA cohorts, we correlated the expression level of 114 glycosyltransferases with the overall survival of patients. Methods: Using the Oncolnc website, we determined the Kaplan−Meier survival curves for the patients falling in the 15% upper or lower percentile of mRNA expression of each glycosyltransferase. Results: Seventeen glycosyltransferases involved in initial steps of N- or O-glycosylation and of glycolipid biosynthesis, in chain extension and sialylation were unequivocally associated with bad prognosis in a majority of cohorts. Four glycosyltransferases were associated with good prognosis. Other glycosyltransferases displayed an extremely high predictive value in only one or a few cohorts. The top were GALNT3, ALG6 and B3GNT7, which displayed a p < 1 × 10−9 in the low-grade glioma (LGG) cohort. Comparison with published experimental data points to ALG3, GALNT2, B4GALNT1, POFUT1, B4GALT5, B3GNT5 and ST3GAL2 as the most consistently malignancy-associated enzymes. Conclusions: We identified several cancer-associated glycosyltransferases as potential prognostic markers and therapeutic targets.
Collapse
|
16
|
Pan S, Chen R. Pathological implication of protein post-translational modifications in cancer. Mol Aspects Med 2022; 86:101097. [PMID: 35400524 PMCID: PMC9378605 DOI: 10.1016/j.mam.2022.101097] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Protein post-translational modifications (PTMs) profoundly influence protein functions and play crucial roles in essentially all cell biological processes. The diverse realm of PTMs and their crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. The pathological roles of various PTMs are implicated in all aspects of cancer hallmark functions, cancer metabolism and regulation of tumor microenvironment. Study of PTMs has become an important area in cancer research to understand cancer biology and discover novel biomarkers and therapeutic targets. With a limited scope, this review attempts to discuss some PTMs of high frequency with recognized importance in cancer biology, including phosphorylation, acetylation, glycosylation, palmitoylation and ubiquitination, as well as their implications in clinical applications. These protein modifications are among the most abundant PTMs and profoundly implicated in carcinogenesis.
Collapse
|
17
|
Diniz F, Coelho P, Duarte HO, Sarmento B, Reis CA, Gomes J. Glycans as Targets for Drug Delivery in Cancer. Cancers (Basel) 2022; 14:cancers14040911. [PMID: 35205658 PMCID: PMC8870586 DOI: 10.3390/cancers14040911] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Alterations in glycosylation are frequently observed in cancer cells. Different strategies have been proposed to increase drug delivery to the tumor site in order to improve the therapeutic efficacy of anti-cancer drugs and avoid collateral cytotoxicity. The exploitation of drug delivery approaches directed to cancer-associated glycans has the potential to pave the way for better and more efficient personalized treatment practices. Such strategies taking advantage of aberrant cell surface glycosylation patterns enhance the targeting efficiency and optimize the delivery of clinically used drugs to cancer cells, with major potential for the clinical applications. Abstract Innovative strategies have been proposed to increase drug delivery to the tumor site and avoid cytotoxicity, improving the therapeutic efficacy of well-established anti-cancer drugs. Alterations in normal glycosylation processes are frequently observed in cancer cells and the resulting cell surface aberrant glycans can be used as direct molecular targets for drug delivery. In the present review, we address the development of strategies, such as monoclonal antibodies, antibody–drug conjugates and nanoparticles that specific and selectively target cancer-associated glycans in tumor cells. The use of nanoparticles for drug delivery encompasses novel applications in cancer therapy, including vaccines encapsulated in synthetic nanoparticles and specific nanoparticles that target glycoproteins or glycan-binding proteins. Here, we highlight their potential to enhance targeting approaches and to optimize the delivery of clinically approved drugs to the tumor microenvironment, paving the way for improved personalized treatment approaches with major potential importance for the pharmaceutical and clinical sectors.
Collapse
Affiliation(s)
- Francisca Diniz
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Pedro Coelho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Henrique O. Duarte
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- CESPU—Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| | - Celso A. Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (C.A.R.); (J.G.); Tel.: +351-220-408-800 (C.A.R. & J.G.)
| | - Joana Gomes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (F.D.); (P.C.); (H.O.D.); (B.S.)
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Correspondence: (C.A.R.); (J.G.); Tel.: +351-220-408-800 (C.A.R. & J.G.)
| |
Collapse
|
18
|
Nagao K, Maeda K, Hosomi K, Morioka K, Inuzuka T, Ohtsubo K. Sialyl-Tn antigen facilitates extracellular vesicle-mediated transfer of FAK and enhances motility of recipient cells. J Biochem 2022; 171:543-554. [PMID: 35106570 DOI: 10.1093/jb/mvac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/18/2022] [Indexed: 11/14/2022] Open
Abstract
Protein glycosylation plays a pivotal role in tumor development by modulating molecular interactions and cellular signals. Sialyl-Tn (sTn) antigen is a tumor associating carbohydrate epitope whose expression correlates with metastasis and poor prognosis of various cancers; however, its pathophysiological function is poorly understood. Extracellular vesicles (EVs) derived from cancer cells act as a signal mediator among tumor microenvironments by transferring cargo molecules. sTn antigen has been found in the glycans of EVs, thereby the functional relevance of sTn antigen to the regulation of tumor microenvironments could be expected. In the present study, we showed that sTn antigen induced TP53 and tumor suppressor activated pathway 6 (TSAP6), and consequently enhanced EV-production. Besides, the genetic attenuation of TSAP6 resulted in the reduction of the EV-production in the sTn antigen expressing cells. The enhanced EV-production in the sTn antigen expressing cells consequently augmented the delivery of EVs to recipient cells. The produced EVs selectively and abundantly encased focal adhesion kinase and transferred it to EV-recipient cells, and thus their cellular motility was enhanced. These findings would contribute to facilitate the elucidation of the pathophysiological significance of the sTn antigen in the tumor microenvironments and tumor development.
Collapse
Affiliation(s)
- Keisuke Nagao
- Department of Analytical Biochemistry, Graduate school of health sciences, Kumamoto University, Kumamoto, Japan, 862-0976
| | - Kento Maeda
- Department of Analytical Biochemistry, Graduate school of health sciences, Kumamoto University, Kumamoto, Japan, 862-0976.,Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan, 541-8567
| | - Kasumi Hosomi
- Department of Analytical Biochemistry, Graduate school of health sciences, Kumamoto University, Kumamoto, Japan, 862-0976
| | - Kaito Morioka
- Department of Analytical Biochemistry, Graduate school of health sciences, Kumamoto University, Kumamoto, Japan, 862-0976
| | | | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry, Graduate school of health sciences, Kumamoto University, Kumamoto, Japan, 862-0976.,Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan, 862-0976
| |
Collapse
|
19
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
20
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
The role of O-glycosylation in human disease. Mol Aspects Med 2021; 79:100964. [PMID: 33775405 DOI: 10.1016/j.mam.2021.100964] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
O-glycosylation is a highly frequent post-translation modification of proteins, with important functional implications in both physiological and disease contexts. The biosynthesis of O-glycans depends on several layers of regulation of the cellular glycosylation machinery, being organ-, tissue- and cell-specific. This review provides insights on the molecular mechanism underlying O-glycan biosynthesis and modification, and highlights illustrative examples of diseases that are triggered or modulated by aberrant cellular O-glycosylation. Particular relevance is given to genetic disorders of glycosylation, infectious diseases and cancer. Finally, we address the potential of O-glycans and their biosynthetic pathways as targets for novel therapeutic strategies.
Collapse
|
22
|
Cotton S, Ferreira D, Soares J, Peixoto A, Relvas-Santos M, Azevedo R, Piairo P, Diéguez L, Palmeira C, Lima L, Silva AMN, Lara Santos L, Ferreira JA. Target Score-A Proteomics Data Selection Tool Applied to Esophageal Cancer Identifies GLUT1-Sialyl Tn Glycoforms as Biomarkers of Cancer Aggressiveness. Int J Mol Sci 2021; 22:ijms22041664. [PMID: 33562270 PMCID: PMC7915893 DOI: 10.3390/ijms22041664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer (EC) is a life-threatening disease, demanding the discovery of new biomarkers and molecular targets for precision oncology. Aberrantly glycosylated proteins hold tremendous potential towards this objective. In the current study, a series of esophageal squamous cell carcinomas (ESCC) and EC-derived circulating tumor cells (CTCs) were screened by immunoassays for the sialyl-Tn (STn) antigen, a glycan rarely expressed in healthy tissues and widely observed in aggressive gastrointestinal cancers. An ESCC cell model was glycoengineered to express STn and characterized in relation to cell proliferation and invasion in vitro. STn was found to be widely present in ESCC (70% of tumors) and in CTCs in 20% of patients, being associated with general recurrence and reduced survival. Furthermore, STn expression in ESCC cells increased invasion in vitro, while reducing cancer cells proliferation. In parallel, an ESCC mass spectrometry-based proteomics dataset, obtained from the PRIDE database, was comprehensively interrogated for abnormally glycosylated proteins. Data integration with the Target Score, an algorithm developed in-house, pinpointed the glucose transporter type 1 (GLUT1) as a biomarker of poor prognosis. GLUT1-STn glycoproteoforms were latter identified in tumor tissues in patients facing worst prognosis. Furthermore, healthy human tissues analysis suggested that STn glycosylation provided cancer specificity to GLUT1. In conclusion, STn is a biomarker of worst prognosis in EC and GLUT1-STn glycoforms may be used to increase its specificity on the stratification and targeting of aggressive ESCC forms.
Collapse
Affiliation(s)
- Sofia Cotton
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (S.C.); (D.F.); (J.S.); (A.P.); (M.R.-S.); (C.P.); (L.L.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute for Biomedical Engineering (INEB), 4200-135 Porto, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (S.C.); (D.F.); (J.S.); (A.P.); (M.R.-S.); (C.P.); (L.L.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute for Biomedical Engineering (INEB), 4200-135 Porto, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (S.C.); (D.F.); (J.S.); (A.P.); (M.R.-S.); (C.P.); (L.L.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- QOPNA/LAQV, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (S.C.); (D.F.); (J.S.); (A.P.); (M.R.-S.); (C.P.); (L.L.); (L.L.S.)
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute for Biomedical Engineering (INEB), 4200-135 Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (S.C.); (D.F.); (J.S.); (A.P.); (M.R.-S.); (C.P.); (L.L.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute for Biomedical Engineering (INEB), 4200-135 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Rita Azevedo
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland;
| | - Paulina Piairo
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (P.P.); (L.D.)
| | - Lorena Diéguez
- Medical Devices Research Group, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal; (P.P.); (L.D.)
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (S.C.); (D.F.); (J.S.); (A.P.); (M.R.-S.); (C.P.); (L.L.); (L.L.S.)
- Department of Immunology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal
- Health Science Faculty, University of Fernando Pessoa, 4249-004 Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (S.C.); (D.F.); (J.S.); (A.P.); (M.R.-S.); (C.P.); (L.L.); (L.L.S.)
- Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
| | - André M. N. Silva
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (S.C.); (D.F.); (J.S.); (A.P.); (M.R.-S.); (C.P.); (L.L.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Health Science Faculty, University of Fernando Pessoa, 4249-004 Porto, Portugal
- Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (S.C.); (D.F.); (J.S.); (A.P.); (M.R.-S.); (C.P.); (L.L.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000 (ext. 5111)
| |
Collapse
|
23
|
Peixoto A, Cotton S, Santos LL, Ferreira JA. The Tumour Microenvironment and Circulating Tumour Cells: A Partnership Driving Metastasis and Glycan-Based Opportunities for Cancer Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:1-33. [PMID: 34664231 DOI: 10.1007/978-3-030-73119-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circulating tumour cells (CTC) are rare cells that actively detach or are shed from primary tumours into the lymph and blood. Some CTC subpopulations gain the capacity to survive, home and colonize distant locations, forming metastasis. This results from a multifactorial process in which cancer cells optimize motility, invasion, immune escape and cooperative relationships with microenvironmental cues. Here we present evidences of a self-fuelling molecular crosstalk between cancer cells and the tumour stroma supporting the main milestones leading to metastasis. We discuss how the tumour microenvironment supports pre-metastatic niches and CTC development and ultimately dictates CTC fate in targeted organs. Finally, we highlight the key role played by protein glycosylation in metastasis development, its prompt response to microenvironmental stimuli and the tremendous potential of glycan-based molecular signatures for liquid biopsies and targeted therapeutics.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal. .,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal. .,Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal. .,Institute for Biomedical Engineering (INEB), Porto, Portugal. .,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal.
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3s), University of Porto, Porto, Portugal.,Institute for Biomedical Engineering (INEB), Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Centre (P.ccc), Porto, Portugal
| |
Collapse
|
24
|
Houvast RD, Vankemmelbeke M, Durrant LG, Wuhrer M, Baart VM, Kuppen PJK, de Geus-Oei LF, Vahrmeijer AL, Sier CFM. Targeting Glycans and Heavily Glycosylated Proteins for Tumor Imaging. Cancers (Basel) 2020; 12:cancers12123870. [PMID: 33371487 PMCID: PMC7767531 DOI: 10.3390/cancers12123870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Distinguishing malignancy from healthy tissue is essential for oncologic surgery. Targeted imaging during an operation aids the surgeon to operate better. The present tracers for detecting cancer are directed against proteins that are overexpressed on the membrane of tumor cells. This review evaluates the use of tumor-associated sugar molecules as an alternative for proteins to image cancer tissue. These sugar molecules are present as glycans on glycosylated membrane proteins and glycolipids. Due to their location and large numbers per cell, these sugar molecules might be better targets for tumor imaging than proteins. Abstract Real-time tumor imaging techniques are increasingly used in oncological surgery, but still need to be supplemented with novel targeted tracers, providing specific tumor tissue detection based on intra-tumoral processes or protein expression. To maximize tumor/non-tumor contrast, targets should be highly and homogenously expressed on tumor tissue only, preferably from the earliest developmental stage onward. Unfortunately, most evaluated tumor-associated proteins appear not to meet all of these criteria. Thus, the quest for ideal targets continues. Aberrant glycosylation of proteins and lipids is a fundamental hallmark of almost all cancer types and contributes to tumor progression. Additionally, overexpression of glycoproteins that carry aberrant glycans, such as mucins and proteoglycans, is observed. Selected tumor-associated glyco-antigens are abundantly expressed and could, thus, be ideal candidates for targeted tumor imaging. Nevertheless, glycan-based tumor imaging is still in its infancy. In this review, we highlight the potential of glycans, and heavily glycosylated proteoglycans and mucins as targets for multimodal tumor imaging by discussing the preclinical and clinical accomplishments within this field. Additionally, we describe the major advantages and limitations of targeting glycans compared to cancer-associated proteins. Lastly, by providing a brief overview of the most attractive tumor-associated glycans and glycosylated proteins in association with their respective tumor types, we set out the way for implementing glycan-based imaging in a clinical practice.
Collapse
Affiliation(s)
- Ruben D. Houvast
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
| | - Lindy G. Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.V.); (L.G.D.)
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Victor M. Baart
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (R.D.H.); (V.M.B.); (P.J.K.K.); (A.L.V.)
- Percuros BV, 2333 ZA Leiden, The Netherlands
- Correspondence: ; Tel.: +31-752662610
| |
Collapse
|
25
|
Läubli H, Kawanishi K, George Vazhappilly C, Matar R, Merheb M, Sarwar Siddiqui S. Tools to study and target the Siglec-sialic acid axis in cancer. FEBS J 2020; 288:6206-6225. [PMID: 33251699 DOI: 10.1111/febs.15647] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
Siglecs are widely expressed on leucocytes and bind to ubiquitously presented glycans containing sialic acids (sialoglycans). Most Siglecs carry an immunoreceptor tyrosine-based inhibition motif (ITIM) and elicit an inhibitory intracellular signal upon ligand binding. A few Siglec receptors can, however, recruit immunoreceptor tyrosine-based activation motif (ITAM)-containing factors, which activate cells. The role of hypersialylation (the enhanced expression of sialoglycans) has recently been explored in cancer progression. Mechanistic studies have shown that hypersialylation on cancer cells can engage inhibitory Siglecs on the surface of immune cells and induce immunosuppression. These recent studies strongly suggest that the Siglec-sialic acid axis can act as a potential target for cancer immunotherapy. Moreover, the use of new tools and techniques is facilitating these studies. In this review, we summarise techniques used to study Siglecs, including different mouse models, monoclonal antibodies, Siglec fusion proteins, and sialoglycan arrays. Furthermore, we discuss the recent major developments in the study of Siglecs in cancer immunosuppression, tools, and techniques used in targeting the Siglec-sialic acid axis and the possibility of clinical intervention.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, and Medical Oncology, Department of Internal Medicine, University Hospital Basel, Switzerland
| | - Kunio Kawanishi
- Kidney and Vascular Pathology, University of Tsukuba, Ibaraki, Japan
| | | | - Rachel Matar
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | - Maxime Merheb
- Department of Biotechnology, American University of Ras Al Khaimah (AURAK), UAE
| | | |
Collapse
|
26
|
Sayed A, Munir M, Eweis N, Wael D, Shazly O, Awad AK, Elbadawy MA, Eissa S. An overview on precision therapy in bladder cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1801346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ahmed Sayed
- Faculty of Medicine, Undergraduate Medical Students, Ain Shams University, Cairo, Egypt
| | - Malak Munir
- Faculty of Medicine, Undergraduate Medical Students, Ain Shams University, Cairo, Egypt
| | - Noor Eweis
- Faculty of Medicine, Undergraduate Medical Students, Ain Shams University, Cairo, Egypt
| | - Doaa Wael
- Faculty of Medicine, Undergraduate Medical Students, Ain Shams University, Cairo, Egypt
| | - Omar Shazly
- Faculty of Medicine, Undergraduate Medical Students, Ain Shams University, Cairo, Egypt
| | - Ahmed K. Awad
- Faculty of Medicine, Undergraduate Medical Students, Ain Shams University, Cairo, Egypt
| | - Marihan A. Elbadawy
- Faculty of Medicine, Undergraduate Medical Students, Ain Shams University, Cairo, Egypt
| | - Sanaa Eissa
- Faculty of Medicine, Professor of Medical Biochemistry and Molecular Biology, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Houvast RD, Baart VM, Bhairosingh SS, Cordfunke RA, Chua JX, Vankemmelbeke M, Parsons T, Kuppen PJK, Durrant LG, Vahrmeijer AL, Sier CFM. Glycan-Based Near-infrared Fluorescent (NIRF) Imaging of Gastrointestinal Tumors: a Preclinical Proof-of-Concept In Vivo Study. Mol Imaging Biol 2020; 22:1511-1522. [PMID: 32780212 PMCID: PMC7666282 DOI: 10.1007/s11307-020-01522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 11/28/2022]
Abstract
Purpose Aberrantly expressed glycans in cancer are of particular interest for tumor targeting. This proof-of-concept in vivo study aims to validate the use of aberrant Lewis glycans as target for antibody-based, real-time imaging of gastrointestinal cancers. Procedures Immunohistochemical (IHC) staining with monoclonal antibody FG88.2, targeting Lewisa/c/x, was performed on gastrointestinal tumors and their healthy counterparts. Then, FG88.2 and its chimeric human/mouse variant CH88.2 were conjugated with near-infrared fluorescent (NIRF) IRDye 800CW for real-time imaging. Specific binding was evaluated in vitro on human gastrointestinal cancer cell lines with cell-based plate assays, flow cytometry, and immune-fluorescence microscopy. Subsequently, mice bearing human colon and pancreatic subcutaneous tumors were imaged in vivo after intravenous administration of 1 nmol (150 μg) CH88.2-800CW with the clinical Artemis NIRF imaging system using the Pearl Trilogy small animal imager as reference. One week post-injection of the tracer, tumors and organs were resected and tracer uptake was analyzed ex vivo. Results IHC analysis showed strong FG88.2 staining on colonic, gastric, and pancreatic tumors, while staining on their normal tissue counterparts was limited. Next, human cancer cell lines HT-29 (colon) and BxPC-3 and PANC-1 (both pancreatic) were identified as respectively high, moderate, and low Lewisa/c/x-expressing. Using the clinical NIRF camera system for tumor-bearing mice, a mean tumor-to-background ratio (TBR) of 2.2 ± 0.3 (Pearl: 3.1 ± 0.8) was observed in the HT-29 tumors and a TBR of 1.8 ± 0.3 (Pearl: 1.9 ± 0.5) was achieved in the moderate expression BxPC-3 model. In both models, tumors could be adequately localized and delineated by NIRF for up to 1 week. Ex vivo analysis confirmed full tumor penetration of the tracer and low fluorescence signals in other organs. Conclusions Using a novel chimeric Lewisa/c/x-targeting tracer in combination with a clinical NIRF imager, we demonstrate the potential of targeting Lewis glycans for fluorescence-guided surgery of gastrointestinal tumors. Electronic supplementary material The online version of this article (10.1007/s11307-020-01522-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruben D Houvast
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Victor M Baart
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Shadhvi S Bhairosingh
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Robert A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jia Xin Chua
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Mireille Vankemmelbeke
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Tina Parsons
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
- Percuros BV, Leiden, the Netherlands.
| |
Collapse
|
28
|
Jiang Y, Wen T, Yan R, Kim SR, Stowell SR, Wang W, Wang Y, An G, Cummings RD, Ju T. O-glycans on death receptors in cells modulate their sensitivity to TRAIL-induced apoptosis through affecting on their stability and oligomerization. FASEB J 2020; 34:11786-11801. [PMID: 32692906 DOI: 10.1096/fj.201900053rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/14/2020] [Accepted: 06/19/2020] [Indexed: 11/11/2022]
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in cells by signaling through the O-glycosylated death receptors (DR4 and DR5), but the sensitivity to TRAIL-induced apoptosis of cells varies, and the attributes of this phenomenon are complex. Human carcinoma cells often express truncated O-glycans, Tn (GalNAcα1-Ser/Thr), and Sialyl-Tn (Siaα2-6GalNAcα1-Ser/Thr, STn) on their surface glycoproteins, yet molecular mechanisms in terms of advantages for tumor cells to have these truncated O-glycans remain elusive. Normal extended O-glycan biosynthesis is regulated by a specific molecular chaperone Cosmc through assisting of the correct folding of Core 1 β3 Galactosyltransferase (T-synthase). Here, we use tumor cell lines harboring mutations in Cosmc, and therefore expressing Tn and STn antigens to study the role of O-glycans in TRAIL-induced apoptosis. Expression of Tn and STn in tumor cells attenuates their sensitivity to TRAIL treatment; when transfected with wild-type Cosmc, these tumor cells thus express normal extended O-glycans and become more sensitive to TRAIL treatment. Mechanistically, Tn/STn antigens impair homo-oligomerization and stability of DR4 and DR5. These results represent the first mechanistic insight into how O-glycan structures on cell surface modulate their sensitivity to apoptotic stimuli, suggesting expression of Tn/STn may offer tumor cell survival advantages through altering DR4 and/or DR5 activity.
Collapse
Affiliation(s)
- Yuliang Jiang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.,Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Tao Wen
- Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Rui Yan
- Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Su-Ryun Kim
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Sean R Stowell
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wenyi Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Guangyu An
- Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.,Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.,Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
29
|
Loureiro LR, Feldmann A, Bergmann R, Koristka S, Berndt N, Máthé D, Hegedüs N, Szigeti K, Videira PA, Bachmann M, Arndt C. Extended half-life target module for sustainable UniCAR T-cell treatment of STn-expressing cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:77. [PMID: 32370811 PMCID: PMC7201957 DOI: 10.1186/s13046-020-01572-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Background Adapter chimeric antigen receptor (CAR) approaches have emerged has promising strategies to increase clinical safety of CAR T-cell therapy. In the UniCAR system, the safety switch is controlled via a target module (TM) which is characterized by a small-size and short half-life. The rapid clearance of these TMs from the blood allows a quick steering and self-limiting safety switch of UniCAR T-cells by TM dosing. This is mainly important during onset of therapy when tumor burden and the risk for severe side effects are high. For long-term UniCAR therapy, the continuous infusion of TMs may not be an optimal setting for the patients. Thus, in later stages of treatment, single infusions of TMs with an increased half-life might play an important role in long-term surveillance and eradication of residual tumor cells. Given this, we aimed to develop and characterize a novel TM with extended half-life targeting the tumor-associated carbohydrate sialyl-Tn (STn). Methods The extended half-life TM is composed of the STn-specific single-chain variable fragment (scFv) and the UniCAR epitope, fused to the hinge region and Fc domain of a human immunoglobulin 4 (IgG4) antibody. Specific binding and functionality of the αSTn-IgG4 TM as well as pharmacokinetic features were assessed using in vitro and in vivo assays and compared to the already established small-sized αSTn TM. Results The novel αSTn-IgG4 TM efficiently activates and redirects UniCAR T-cells to STn-expressing tumors in a target-specific and TM-dependent manner, thereby promoting the secretion of proinflammatory cytokines and tumor cell lysis in vitro and in experimental mice. Moreover, PET-imaging results demonstrate the specific enrichment of the αSTn-IgG4 TM at the tumor site, while presenting a prolonged serum half-life compared to the short-lived αSTn TM. Conclusion In a clinical setting, the combination of TMs with different formats and pharmacokinetics may represent a promising strategy for retargeting of UniCAR T-cells in a flexible, individualized and safe manner at particular stages of therapy. Furthermore, as these molecules can be used for in vivo imaging, they pose as attractive candidates for theranostic approaches.
Collapse
Affiliation(s)
- Liliana R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Nikolett Hegedüs
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany. .,National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany. .,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Tumor Immunology, University CancerCenter (UCC), University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany.
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| |
Collapse
|
30
|
Fernandes E, Sores J, Cotton S, Peixoto A, Ferreira D, Freitas R, Reis CA, Santos LL, Ferreira JA. Esophageal, gastric and colorectal cancers: Looking beyond classical serological biomarkers towards glycoproteomics-assisted precision oncology. Am J Cancer Res 2020; 10:4903-4928. [PMID: 32308758 PMCID: PMC7163443 DOI: 10.7150/thno.42480] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal (OC), gastric (GC) and colorectal (CRC) cancers are amongst the digestive track tumors with higher incidence and mortality due to significant molecular heterogeneity. This constitutes a major challenge for patients' management at different levels, including non-invasive detection of the disease, prognostication, therapy selection, patient's follow-up and the introduction of improved and safer therapeutics. Nevertheless, important milestones have been accomplished pursuing the goal of molecular-based precision oncology. Over the past five years, high-throughput technologies have been used to interrogate tumors of distinct clinicopathological natures, generating large-scale biological datasets (e.g. genomics, transcriptomics, and proteomics). As a result, GC and CRC molecular subtypes have been established to assist patient stratification in the clinical settings. However, such molecular panels still require refinement and are yet to provide targetable biomarkers. In parallel, outstanding advances have been made regarding targeted therapeutics and immunotherapy, paving the way for improved patient care; nevertheless, important milestones towards treatment personalization and reduced off-target effects are also to be accomplished. Exploiting the cancer glycoproteome for unique molecular fingerprints generated by dramatic alterations in protein glycosylation may provide the necessary molecular rationale towards this end. Therefore, this review presents functional and clinical evidences supporting a reinvestigation of classical serological glycan biomarkers such as sialyl-Tn (STn) and sialyl-Lewis A (SLeA) antigens from a tumor glycoproteomics perspective. We anticipate that these glycobiomarkers that have so far been employed in non-invasive cancer prognostication may hold unexplored value for patients' management in precision oncology settings.
Collapse
|
31
|
Flores AR, Lemos I, Rema A, Taulescu M, Seixas F, Reis CA, Gärtner F, Amorim I. Tn and Sialyl-Tn antigens in canine gastric tissues. Vet Comp Oncol 2020; 18:615-625. [PMID: 32134186 DOI: 10.1111/vco.12586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
Malignant transformation is often associated with abnormal protein glycosylation expressed, amongst others, by the accumulation of simple mucin-type carbohydrates namely Tn and Sialyl-Tn (STn) antigens. These are usually limited in normal tissues and their increased expression has been associated with cancer progression and poor prognosis. This study aims to evaluate the role of Tn and STn antigens in the neoplastic transformation of the canine gastric mucosa and to correlate their putative immunoexpression alterations with some pathological features. Tn and STn antigens expression were immunohistochemically evaluated in canine normal gastric mucosa (n = 3), gastric polyps (n = 9) and gastric carcinomas (n = 25), neoplastic emboli (n = 12) and metastases (n = 8). In normal gastric mucosa, Tn antigen was detected in the gastric epithelial cells, while STn antigen was absent. Similarly, all gastric polyps expressed Tn antigen, but none displayed STn antigen immunostaining. In carcinomas, Tn antigen was expressed in 96% of the cases and STn antigen in 68% of the neoplasms. STn antigen was significantly higher in carcinomas compared with normal mucosa (P < .05). No correlation was found between each antigen and the different subtypes of tumours according to WHO classification, tumour differentiation, lymph vascular invasion or metastasis. All neoplastic emboli expressed both antigens, and the expression score was similar or higher than that displayed by the neoplastic cells of the primary tumour. The high prevalence of STn antigen in gastric carcinomas compared with normal mucosa highlights the cancer-associated nature of this antigen. Our results link STn antigen expression to neoplastic transformation and suggest that it may be a useful marker of gastric cancer progression in dogs.
Collapse
Affiliation(s)
- Ana R Flores
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Center of Animal and Veterinary Sciences (CECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Isabel Lemos
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Alexandra Rema
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marian Taulescu
- Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Fernanda Seixas
- Center of Animal and Veterinary Sciences (CECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Celso A Reis
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Institute for Research and Innovation in Health, (i3S), University of Porto, Porto, Portugal.,Department of Molecular Biology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Fátima Gärtner
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Institute for Research and Innovation in Health, (i3S), University of Porto, Porto, Portugal
| | - Irina Amorim
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal.,Institute for Research and Innovation in Health, (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Gupta R, Leon F, Rauth S, Batra SK, Ponnusamy MP. A Systematic Review on the Implications of O-linked Glycan Branching and Truncating Enzymes on Cancer Progression and Metastasis. Cells 2020; 9:E446. [PMID: 32075174 PMCID: PMC7072808 DOI: 10.3390/cells9020446] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Glycosylation is the most commonly occurring post-translational modifications, and is believed to modify over 50% of all proteins. The process of glycan modification is directed by different glycosyltransferases, depending on the cell in which it is expressed. These small carbohydrate molecules consist of multiple glycan families that facilitate cell-cell interactions, protein interactions, and downstream signaling. An alteration of several types of O-glycan core structures have been implicated in multiple cancers, largely due to differential glycosyltransferase expression or activity. Consequently, aberrant O-linked glycosylation has been extensively demonstrated to affect biological function and protein integrity that directly result in cancer growth and progression of several diseases. Herein, we provide a comprehensive review of several initiating enzymes involved in the synthesis of O-linked glycosylation that significantly contribute to a number of different cancers.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 681980-5900, USA
- Department of Pathology and Microbiology, UNMC, Omaha, NE 68198-5900, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 681980-5900, USA
| |
Collapse
|
33
|
Indramanee S, Sawanyawisuth K, Silsirivanit A, Dana P, Phoomak C, Kariya R, Klinhom-On N, Sorin S, Wongkham C, Okada S, Wongkham S. Terminal fucose mediates progression of human cholangiocarcinoma through EGF/EGFR activation and the Akt/Erk signaling pathway. Sci Rep 2019; 9:17266. [PMID: 31754244 PMCID: PMC6872661 DOI: 10.1038/s41598-019-53601-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrant glycosylation is recognized as a cancer hallmark that is associated with cancer development and progression. In this study, the clinical relevance and significance of terminal fucose (TFG), by fucosyltransferase-1 (FUT1) in carcinogenesis and progression of cholangiocarcinoma (CCA) were demonstrated. TFG expression in human and hamster CCA tissues were determined using Ulex europaeus agglutinin-I (UEA-I) histochemistry. Normal bile ducts rarely expressed TFG while 47% of CCA human tissues had high TFG expression and was correlated with shorter survival of patients. In the CCA-hamster model, TFG was elevated in hyperproliferative bile ducts and gradually increased until CCA was developed. This evidence indicates the involvement of TFG in carcinogenesis and progression of CCA. The mechanistic insight was performed in 2 CCA cell lines. Suppression of TFG expression using siFUT1 or neutralizing the surface TFG with UEA-I significantly reduced migration, invasion and adhesion of CCA cells in correlation with the reduction of Akt/Erk signaling and epithelial-mesenchymal transition. A short pulse of EGF could stimulate Akt/Erk signaling via activation of EGF-EGFR cascade, however, decreasing TFG using siFUT1 or UEA-I treatment reduced the EGF-EGFR activation and Akt/Erk signaling. This evidence provides important insight into the relevant role and molecular mechanism of TFG in progression of CCA.
Collapse
Grants
- -Cholangiocarcinoma Research Institute, Khon Kaen University, (05/2556) -JASSO program for short training in Kumamoto University, Japan. -Faculty of Medicine, Khon Kaen University, Thailand (IN58234)
- The Mekong Health Science Research Institute (MeHSRI), Khon Kaen University.
- -Khon Kaen University, Thailand (601801) -Faculty of Medicine, Khon Kaen University, Thailand (IN58234),
Collapse
Affiliation(s)
- Somsiri Indramanee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kanlayanee Sawanyawisuth
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Paweena Dana
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chatchai Phoomak
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Nathakan Klinhom-On
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supannika Sorin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Center for Translational Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
34
|
Xu Y, Huang Y, Lu W, Liu S, Xiao Y, Yu J. 4-Carboxyphenylboronic acid-decorated, redox-sensitive rod-shaped nano-micelles fabricated through co-assembling strategy for active targeting and synergistic co-delivery of camptothecin and gemcitabine. Eur J Pharm Biopharm 2019; 144:193-206. [DOI: 10.1016/j.ejpb.2019.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
|
35
|
Pudova EA, Lukyanova EN, Nyushko KM, Mikhaylenko DS, Zaretsky AR, Snezhkina AV, Savvateeva MV, Kobelyatskaya AA, Melnikova NV, Volchenko NN, Efremov GD, Klimina KM, Belova AA, Kiseleva MV, Kaprin AD, Alekseev BY, Krasnov GS, Kudryavtseva AV. Differentially Expressed Genes Associated With Prognosis in Locally Advanced Lymph Node-Negative Prostate Cancer. Front Genet 2019; 10:730. [PMID: 31447885 PMCID: PMC6697060 DOI: 10.3389/fgene.2019.00730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Older age is one of the main risk factors for cancer development. The incidence of prostate cancer, as a multifactorial disease, also depends upon demographic factors, race, and genetic predisposition. Prostate cancer most frequently occurs in men over 60 years of age, indicating a clear association between older age and disease onset. Carcinogenesis is followed by the deregulation of many genes, and some of these changes could serve as biomarkers for diagnosis, prognosis, prediction of drug therapy efficacy, as well as possible therapeutic targets. We have performed a bioinformatic analysis of a The Cancer Genome Atlas (TCGA) data and RNA-Seq profiling of a Russian patient cohort to reveal prognostic markers of locally advanced lymph node-negative prostate cancer (lymph node-negative LAPC). We also aimed to identify markers of the most common molecular subtype of prostate cancer carrying a fusion transcript TMPRSS2-ERG. We have found several genes that were differently expressed between the favorable and unfavorable prognosis groups and involved in the enriched KEGG pathways based on the TCGA (B4GALNT4, PTK6, and CHAT) and Russian patient cohort data (AKR1C1 and AKR1C3). Additionally, we revealed such genes for the TMPRSS2-ERG prostate cancer molecular subtype (B4GALNT4, ASRGL1, MYBPC1, RGS11, SLC6A14, GALNT13, and ST6GALNAC1). Obtained results contribute to a better understanding of the molecular mechanisms behind prostate cancer progression and could be used for further development of the LAPC prognosis marker panel.
Collapse
Affiliation(s)
- Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill M. Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry S. Mikhaylenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew R. Zaretsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Maria V. Savvateeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda N. Volchenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Gennady D. Efremov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya M. Klimina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya A. Belova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y. Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
I-branched carbohydrates as emerging effectors of malignant progression. Proc Natl Acad Sci U S A 2019; 116:13729-13737. [PMID: 31213534 DOI: 10.1073/pnas.1900268116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell surface carbohydrates, termed "glycans," are ubiquitous posttranslational effectors that can tune cancer progression. Often aberrantly displayed or found at atypical levels on cancer cells, glycans can impact essentially all progressive steps, from malignant transformation to metastases formation. Glycans are structural entities that can directly bind promalignant glycan-binding proteins and help elicit optimal receptor-ligand activity of growth factor receptors, integrins, integrin ligands, lectins, and other type-1 transmembrane proteins. Because glycans play an integral role in a cancer cell's malignant activity and are frequently uniquely expressed, preclinical studies on the suitability of glycans as anticancer therapeutic targets and their promise as biomarkers of disease progression continue to intensify. While sialylation and fucosylation have predominated the focus of cancer-associated glycan modifications, the emergence of blood group I antigens (or I-branched glycans) as key cell surface moieties capable of modulating cancer virulence has reenergized investigations into the role of the glycome in malignant progression. I-branched glycans catalyzed principally by the I-branching enzyme GCNT2 are now indicated in several malignancies. In this Perspective, the putative role of GCNT2/I-branching in cancer progression is discussed, including exciting insights on how I-branches can potentially antagonize the cancer-promoting activity of β-galactose-binding galectins.
Collapse
|
37
|
Freitas D, Balmaña M, Poças J, Campos D, Osório H, Konstantinidi A, Vakhrushev SY, Magalhães A, Reis CA. Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. J Extracell Vesicles 2019; 8:1621131. [PMID: 31236201 PMCID: PMC6571546 DOI: 10.1080/20013078.2019.1621131] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/17/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of small secreted particles involved in intercellular communication and mediating a broad spectrum of biological functions. EVs cargo is composed of a large repertoire of molecules, including glycoconjugates. Herein, we report the first study on the impact of the isolation strategy on the EV populations’ glycosylation profile. The use of different state-of-the-art protocols, namely differential ultracentrifugation (UC), total exosome isolation (TEI), OptiPrepTM density gradient (ODG) and size exclusion chromatography (SEC) resulted in EV populations displaying different sets of glycoconjugates. The EV populations obtained by UC, ODG and SEC methods displayed similar protein and glycan profiles, whereas TEI methodology isolated the most distinct EV population. In addition, ODG and SEC isolation protocols provided an enhanced EV glycoproteins detection. Remarkably, proteins displaying the tumour-associated glycan sialyl-Tn (STn) were identified as packaged cargo into EVs independently of the isolation methodology. STn carrying EV samples isolated by UC, ODG and SEC presented a considerable set of cancer-related proteins that were not detected in EVs isolated by TEI. Our work demonstrates the impact of using different isolation methodologies in the populations of EVs that are obtained, with consequences in the glycosylation profile of the isolated population. Furthermore, our results highlight the importance of selecting adequate EV isolation protocols and cell culture conditions to determine the structural and functional complexity of the EV glycoconjugates.
Collapse
Affiliation(s)
- Daniela Freitas
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Meritxell Balmaña
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Juliana Poças
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Diana Campos
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Hugo Osório
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Celso A Reis
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP -Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
38
|
Peixoto A, Relvas-Santos M, Azevedo R, Santos LL, Ferreira JA. Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front Oncol 2019; 9:380. [PMID: 31157165 PMCID: PMC6530332 DOI: 10.3389/fonc.2019.00380] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Decades of research have disclosed a plethora of alterations in protein glycosylation that decisively impact in all stages of disease and ultimately contribute to more aggressive cell phenotypes. The biosynthesis of cancer-associated glycans and its reflection in the glycoproteome is driven by microenvironmental cues and these events act synergistically toward disease evolution. Such intricate crosstalk provides the molecular foundations for the activation of relevant oncogenic pathways and leads to functional alterations driving invasion and disease dissemination. However, it also provides an important source of relevant glyco(neo)epitopes holding tremendous potential for clinical intervention. Therefore, we highlight the transversal nature of glycans throughout the currently accepted cancer hallmarks, with emphasis on the crosstalk between glycans and the tumor microenvironment stromal components. Focus is also set on the pressing need to include glycans and glycoconjugates in comprehensive panomics models envisaging molecular-based precision medicine capable of improving patient care. We foresee that this may provide the necessary rationale for more comprehensive studies and molecular-based intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Tumour and Microenvironment Interactions Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center, Porto, Portugal
| |
Collapse
|
39
|
Le T, O’Brien C, Gupta U, Sousa G, Daoutidis P, Hu W. An integrated platform for mucin‐type
O
‐glycosylation network generation and visualization. Biotechnol Bioeng 2019; 116:1341-1354. [DOI: 10.1002/bit.26952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/19/2018] [Accepted: 02/08/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Tung Le
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis Minnesota
| | - Conor O’Brien
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis Minnesota
| | - Udit Gupta
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis Minnesota
| | - Guilherme Sousa
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis Minnesota
| | - Prodromos Daoutidis
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis Minnesota
| | - Wei‐Shou Hu
- Department of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolis Minnesota
| |
Collapse
|
40
|
Freitas D, Campos D, Gomes J, Pinto F, Macedo JA, Matos R, Mereiter S, Pinto MT, Polónia A, Gartner F, Magalhães A, Reis CA. O-glycans truncation modulates gastric cancer cell signaling and transcription leading to a more aggressive phenotype. EBioMedicine 2019; 40:349-362. [PMID: 30662000 PMCID: PMC6413340 DOI: 10.1016/j.ebiom.2019.01.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Changes in glycosylation are known to play critical roles during gastric carcinogenesis. Expression of truncated O-glycans, such as the Sialyl-Tn (STn) antigen, is a common feature shared by many cancers and is associated with cancer aggressiveness and poor-prognosis. METHODS Glycoengineered cell lines were used to evaluate the impact of truncated O-glycans in cancer cell biology using in vitro functional assays, transcriptomic analysis and in vivo models. Tumor patients 'samples and datasets were used for clinical translational significance evaluation. FINDINGS In the present study, we demonstrated that gastric cancer cells expressing truncated O-glycans display major phenotypic alterations associated with higher cell motility and cell invasion. Noteworthy, the glycoengineered cancer cells overexpressing STn resulted in tumor xenografts with less cohesive features which had a critical impact on mice survival. Furthermore, truncation of O-glycans induced activation of EGFR and ErbB2 receptors and a transcriptomic signature switch of gastric cancer cells. The disclosed top activated genes were further validated in gastric tumors, revealing that SRPX2 and RUNX1 are concomitantly overexpressed in gastric carcinomas and its expression is associated with patients' poor-survival, highlighting their prognosis potential in clinical practice. INTERPRETATION This study discloses novel molecular links between O-glycans truncation frequently observed in cancer and key cellular regulators with major impact in tumor progression and patients' clinical outcome.
Collapse
Affiliation(s)
- Daniela Freitas
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal
| | - Diana Campos
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Joana Gomes
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Filipe Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Joana A Macedo
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Rita Matos
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Stefan Mereiter
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Marta T Pinto
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - António Polónia
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal
| | - Fátima Gartner
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal
| | - Ana Magalhães
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal.
| | - Celso A Reis
- i3S-Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; IPATIMUP -Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira n.228, Porto 4050-313, Portugal; Faculty of Medicine of the University of Porto, Al. Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
| |
Collapse
|
41
|
Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell Immunol 2018; 333:46-57. [DOI: 10.1016/j.cellimm.2018.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/20/2023]
|
42
|
Neves M, Azevedo R, Lima L, Oliveira MI, Peixoto A, Ferreira D, Soares J, Fernandes E, Gaiteiro C, Palmeira C, Cotton S, Mereiter S, Campos D, Afonso LP, Ribeiro R, Fraga A, Tavares A, Mansinho H, Monteiro E, Videira PA, Freitas PP, Reis CA, Santos LL, Dieguez L, Ferreira JA. Exploring sialyl-Tn expression in microfluidic-isolated circulating tumour cells: A novel biomarker and an analytical tool for precision oncology applications. N Biotechnol 2018; 49:77-87. [PMID: 30273682 DOI: 10.1016/j.nbt.2018.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Circulating tumour cells (CTCs) originating from a primary tumour, lymph nodes and distant metastases hold great potential for liquid biopsies by providing a molecular fingerprint for disease dissemination and its temporal evolution through the course of disease management. CTC enumeration, classically defined on the basis of surface expression of Epithelial Cell Adhesion Molecule (EpCAM) and absence of the pan-leukocyte marker CD45, has been shown to correlate with clinical outcome. However, existing approaches introduce bias into the subsets of captured CTCs, which may exclude biologically and clinically relevant subpopulations. Here we explore the overexpression of the membrane protein O-glycan sialyl-Tn (STn) antigen in advanced bladder and colorectal tumours, but not in blood cells, to propose a novel CTC isolation technology. Using a size-based microfluidic device, we show that the majority (>90%) of CTCs isolated from the blood of patients with metastatic bladder and colorectal cancers express the STn antigen, supporting a link with metastasis. STn+ CTC counts were significantly higher than EpCAM-based detection in colorectal cancer, providing a more efficient cell-surface biomarker for CTC isolation. Exploring this concept, we constructed a glycan affinity-based microfluidic device for selective isolation of STn+ CTCs and propose an enzyme-based strategy for the recovery of viable cancer cells for downstream investigations. Finally, clinically relevant cancer biomarkers (transcripts and mutations) in bladder and colorectal tumours, were identified in cells isolated by microfluidics, confirming their malignant origin and highlighting the potential of this technology in the context of precision oncology.
Collapse
Affiliation(s)
- Manuel Neves
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Rita Azevedo
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Luís Lima
- Portuguese Institute of Oncology, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | - Marta I Oliveira
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Andreia Peixoto
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | | | - Janine Soares
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Elisabete Fernandes
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | - Cristiana Gaiteiro
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | | | - Sofia Cotton
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Stefan Mereiter
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | - Diana Campos
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal
| | | | - Ricardo Ribeiro
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; INEB-Institute for Biomedical Engineering of Porto, Portugal
| | - Avelino Fraga
- Hospital Centre- Hospital of Santo António of Porto, Portugal
| | - Ana Tavares
- Portuguese Institute of Oncology, Porto, Portugal
| | - Hélder Mansinho
- Hemato-Oncology Clinic, Hospital Garcia de Orta, EPE, Almada, Portugal; Gupo de Investigação do Cancro Digestivo-GICD, Portugal
| | | | - Paula A Videira
- Glycoimmunology Group, UCIBIO, Departamento Ciências da Vida, Faculdade de Ciência e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paulo P Freitas
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal; INESC - Microsistemas e Nanotecnologias, Lisboa, Lisbon, Portugal
| | - Celso A Reis
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal; Faculty of Medicine, University of Porto, Portugal
| | - Lúcio Lara Santos
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; UFP: School of Health Sciences, Fernando Pessoa University of Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - Lorena Dieguez
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - José Alexandre Ferreira
- Portuguese Institute of Oncology, Porto, Portugal; Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal; International Iberian Nanotechnology Laboratory (INL), Braga, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Portugal.
| |
Collapse
|
43
|
Loureiro LR, Sousa DP, Ferreira D, Chai W, Lima L, Pereira C, Lopes CB, Correia VG, Silva LM, Li C, Santos LL, Ferreira JA, Barbas A, Palma AS, Novo C, Videira PA. Novel monoclonal antibody L2A5 specifically targeting sialyl-Tn and short glycans terminated by alpha-2-6 sialic acids. Sci Rep 2018; 8:12196. [PMID: 30111774 PMCID: PMC6093877 DOI: 10.1038/s41598-018-30421-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 07/30/2018] [Indexed: 11/09/2022] Open
Abstract
Incomplete O-glycosylation is a feature associated with malignancy resulting in the expression of truncated glycans such as the sialyl-Tn (STn) antigen. Despite all the progress in the development of potential anti-cancer antibodies, their application is frequently hindered by low specificities and cross-reactivity. In this study, a novel anti-STn monoclonal antibody named L2A5 was developed by hybridoma technology. Flow cytometry analysis showed that L2A5 specifically binds to sialylated structures on the cell surface of STn-expressing breast and bladder cancer cell lines. Moreover, immunoblotting assays demonstrated reactivity to tumour-associated O-glycosylated proteins, such as MUC1. Tumour recognition was further observed using immunohistochemistry assays, which demonstrated a high sensitivity and specificity of L2A5 mAb towards cancer tissue, using bladder and colorectal cancer tissues. L2A5 staining was exclusively tumoural, with a remarkable reactivity in invasive and metastasis sites, not detectable by other anti-STn mAbs. Additionally, it stained 20% of cases of triple-negative breast cancers, suggesting application in diseases with unmet clinical needs. Finally, the fine specificity was assessed using glycan microarrays, demonstrating a highly specific binding of L2A5 to core STn antigens and additional ability to bind 2-6-linked sialyl core-1 probes. In conclusion, this study describes a novel anti-STn antibody with a unique binding specificity that can be applied for cancer diagnostic and future development of new antibody-based therapeutic applications.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antigens, Tumor-Associated, Carbohydrate/immunology
- Antigens, Tumor-Associated, Carbohydrate/physiology
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Female
- Glycosylation
- Humans
- Hybridomas
- Mice
- Mice, Inbred BALB C
- Neoplasm Proteins/metabolism
- Polysaccharides/chemistry
- Polysaccharides/immunology
- Sialic Acids/metabolism
- Urinary Bladder Neoplasms/pathology
Collapse
Affiliation(s)
- Liliana R Loureiro
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, 2780, Portugal
| | - Diana P Sousa
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
| | - Wengang Chai
- Glycosciences Laboratory - Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, 4200, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, 4200, Porto, Portugal
| | - Carina Pereira
- CINTESIS - Center for Health Technology and Services Research, University of Porto, Porto, 4200, Portugal
- Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center, Portuguese Oncology Institute of Porto, Porto, 4200, Portugal
| | - Carla B Lopes
- Joaquim Chaves Saúde, Anatomical Pathology Laboratory, Lisboa, 1170, Portugal
| | - Viviana G Correia
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
| | - Lisete M Silva
- Glycosciences Laboratory - Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
| | - Chunxia Li
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, 4200, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology of Porto, Porto, 4200, Portugal
- Institute for Research and Innovation in Health (I3S), University of Porto, 4200, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050, Portugal
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715, Portugal
| | - Ana Barbas
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, 2780, Portugal
- Bayer Portugal, Carnaxide, 2790, Portugal
| | - Angelina S Palma
- Glycosciences Laboratory - Department of Medicine, Imperial College London, London, W12 0NN, United Kingdom
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal
| | - Carlos Novo
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal.
- UEIPM, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, 1349, Portugal.
| | - Paula A Videira
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, NOVA University of Lisbon, Lisbon, 2829, Portugal.
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, 2829, Portugal.
| |
Collapse
|
44
|
Rodrigues E, Macauley MS. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers (Basel) 2018; 10:cancers10060207. [PMID: 29912148 PMCID: PMC6025361 DOI: 10.3390/cancers10060207] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Cell surface glycosylation is dynamic and often changes in response to cellular differentiation under physiological or pathophysiological conditions. Altered glycosylation on cancers cells is gaining attention due its wide-spread occurrence across a variety of cancer types and recent studies that have documented functional roles for aberrant glycosylation in driving cancer progression at various stages. One change in glycosylation that can correlate with cancer stage and disease prognosis is hypersialylation. Increased levels of sialic acid are pervasive in cancer and a growing body of evidence demonstrates how hypersialylation is advantageous to cancer cells, particularly from the perspective of modulating immune cell responses. Sialic acid-binding receptors, such as Siglecs and Selectins, are well-positioned to be exploited by cancer hypersialylation. Evidence is also mounting that Siglecs modulate key immune cell types in the tumor microenvironment, particularly those responsible for maintaining the appropriate inflammatory environment. From these studies have come new and innovative ways to block the effects of hypersialylation by directly reducing sialic acid on cancer cells or blocking interactions between sialic acid and Siglecs or Selectins. Here we review recent works examining how cancer cells become hypersialylated, how hypersialylation benefits cancer cells and tumors, and proposed therapies to abrogate hypersialylation of cancer.
Collapse
Affiliation(s)
- Emily Rodrigues
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
45
|
Peixoto A, Fernandes E, Gaiteiro C, Lima L, Azevedo R, Soares J, Cotton S, Parreira B, Neves M, Amaro T, Tavares A, Teixeira F, Palmeira C, Rangel M, Silva AMN, Reis CA, Santos LL, Oliveira MJ, Ferreira JA. Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension. Oncotarget 2018; 7:63138-63157. [PMID: 27542232 PMCID: PMC5325352 DOI: 10.18632/oncotarget.11257] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 07/26/2016] [Indexed: 12/18/2022] Open
Abstract
Invasive bladder tumours express the cell-surface Sialyl-Tn (STn) antigen, which stems from a premature stop in protein O-glycosylation. The STn antigen favours invasion, immune escape, and possibly chemotherapy resistance, making it attractive for target therapeutics. However, the events leading to such deregulation in protein glycosylation are mostly unknown. Since hypoxia is a salient feature of advanced stage tumours, we searched into how it influences bladder cancer cells glycophenotype, with emphasis on STn expression. Therefore, three bladder cancer cell lines with distinct genetic and molecular backgrounds (T24, 5637 and HT1376) were submitted to hypoxia. To disclose HIF-1α-mediated events, experiments were also conducted in the presence of Deferoxamine Mesilate (Dfx), an inhibitor of HIF-1α proteasomal degradation. In both conditions all cell lines overexpressed HIF-1α and its transcriptionally-regulated protein CA-IX. This was accompanied by increased lactate biosynthesis, denoting a shift toward anaerobic metabolism. Concomitantly, T24 and 5637 cells acquired a more motile phenotype, consistent with their more mesenchymal characteristics. Moreover, hypoxia promoted STn antigen overexpression in all cell lines and enhanced the migration and invasion of those presenting more mesenchymal characteristics, in an HIF-1α-dependent manner. These effects were reversed by reoxygenation, demonstrating that oxygen affects O-glycan extension. Glycoproteomics studies highlighted that STn was mainly present in integrins and cadherins, suggesting a possible role for this glycan in adhesion, cell motility and invasion. The association between HIF-1α and STn overexpressions and tumour invasion was further confirmed in bladder cancer patient samples. In conclusion, STn overexpression may, in part, result from a HIF-1α mediated cell-survival strategy to adapt to the hypoxic challenge, favouring cell invasion. In addition, targeting STn-expressing glycoproteins may offer potential to treat tumour hypoxic niches harbouring more malignant cells.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Biomaterials for Multistage Drug and Cell Delivery, INEB-Institute for Biomedical Engineering, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Sofia Cotton
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Beatriz Parreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Teresina Amaro
- Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Filipe Teixeira
- LAQV-REQUIMTE, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Carlos Palmeira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Health School of University Fernando Pessoa, Porto, Portugal
| | - Maria Rangel
- UCIBIO-REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - André M N Silva
- UCIBIO-REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, Porto University, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Health School of University Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - Maria José Oliveira
- New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| |
Collapse
|
46
|
Munkley J, Elliott DJ. Hallmarks of glycosylation in cancer. Oncotarget 2018; 7:35478-89. [PMID: 27007155 PMCID: PMC5085245 DOI: 10.18632/oncotarget.8155] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022] Open
Abstract
Aberrant glycosylation plays a fundamental role in key pathological steps of tumour development and progression. Glycans have roles in cancer cell signalling, tumour cell dissociation and invasion, cell-matrix interactions, angiogenesis, metastasis and immune modulation. Aberrant glycosylation is often cited as a ‘hallmark of cancer’ but is notably absent from both the original hallmarks of cancer and from the next generation of emerging hallmarks. This review discusses how glycosylation is clearly an enabling characteristic that is causally associated with the acquisition of all the hallmark capabilities. Rather than aberrant glycosylation being itself a hallmark of cancer, another perspective is that glycans play a role in every recognised cancer hallmark.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
47
|
Bai Q, Liu L, Xi W, Wang J, Xia Y, Qu Y, Xiong Y, Long Q, Xu J, Guo J. Prognostic significance of ST6GalNAc-1 expression in patients with non-metastatic clear cell renal cell carcinoma. Oncotarget 2018; 9:3112-3120. [PMID: 29423033 PMCID: PMC5790450 DOI: 10.18632/oncotarget.11258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sialyltransferase ST6GalNAc-1 is highly expressed in tumor cells and associated with tumor aggressiveness and poor prognosis. In the present study, we aimed to investigate the clinical and prognostic significance of sialyltransferase ST6GalNAc-1 in patients with non-metastatic ccRCC. RESULTS High expression of ST6GalNAc-1 in tumor tissue was an independent prognostic factor for overall survival (p<0.001) and recurrence free survival (p<0.001) in multivariate analysis. The nomograms could give better prediction for overall survival and recurrence free survival in ccRCC patients. METHODS 264 patients diagnosed with non-metastatic clear cell renal cell carcinoma were enrolled in the present study. Immunohistochemical staining was performed on tissue microarrays to evaluate the intratumoral ST6GalNAc-1 expression. Kaplan-Meier method and Cox proportional hazard model were applied to assess the prognostic value of ST6GalNAc-1. Nomograms were generated to refine individual risk stratification in ccRCC patients. CONCLUSION ST6GalNAc-1 was an independent adverse prognostic factor for both overall survival and recurrence free survival in patients with non-metastatic ccRCC.
Collapse
Affiliation(s)
- Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Xi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
48
|
In silico approaches for unveiling novel glycobiomarkers in cancer. J Proteomics 2018; 171:95-106. [DOI: 10.1016/j.jprot.2017.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022]
|
49
|
Lima L, Neves M, Oliveira MI, Dieguez L, Freitas R, Azevedo R, Gaiteiro C, Soares J, Ferreira D, Peixoto A, Fernandes E, Montezuma D, Tavares A, Ribeiro R, Castro A, Oliveira M, Fraga A, Reis CA, Santos LL, Ferreira JA. Sialyl-Tn identifies muscle-invasive bladder cancer basal and luminal subtypes facing decreased survival, being expressed by circulating tumor cells and metastases. Urol Oncol 2017; 35:675.e1-675.e8. [PMID: 28911924 DOI: 10.1016/j.urolonc.2017.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES To evaluate the potential of sialyl-Tn (STn), a cancer-associated glycan antigen present in membrane glycoproteins, to improve a recent molecular model for stratification and prognostication of advanced stage bladder tumors based on keratins (KRT14, 5, and 20) expression. In addition, determine the association between STn and disease dissemination based on the evaluation of circulating tumor cells (CTCs) and the metastasis, which is a critical matter to improve patient management. PATIENTS AND METHODS A retrospective series of 80 muscle-invasive primary bladder tumors and associated metastasis were screened for KRT14, 5, and 20 and STn by real-time polymerase chain reaction and immunohistochemistry. Peripheral blood was collected in a patients' subset, CTCs were isolated through a size-based microfluidic chip and screened for KRTs and STn. RESULTS Basal-like lesions presented worse cancer-specific and disease-free survival compared to luminal tumors. STn antigen inclusion discriminated patients with worst survival in each subgroup (P = 0.047 for luminal; P = 0.027 for basal-like tumors). STn expression in CTCs and distant metastasis was also demonstrated. CONCLUSION This work reinforces the potential of the KRT-based model for bladder cancer management and the association of STn with aggressiveness, supporting its inclusion in predictive molecular models toward patient-tailored precision medicine. Moreover, we describe for the first time that CTCs and the metastasis present a basal phenotype and express the STn antigen, highlighting its link with disease dissemination. Future studies should focus on determining the biological and clinical significance of these observations in the context of liquid biopsies. Given the membrane nature of STn, highly specific targeted therapeutics may also be envisaged.
Collapse
Affiliation(s)
- Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal; Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Marta I Oliveira
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Lorena Dieguez
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Rui Freitas
- Department of Urology, Portuguese Institute of Oncology, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal; Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal; Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Janine Soares
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal; Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal; New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal; Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Biomaterials for Multistage Drug and Cell Delivery, INEB-Institute for Biomedical Engineering, Porto, Portugal
| | - Diana Montezuma
- Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal; Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Ricardo Ribeiro
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Tumour and Microenvironment Interactions, INEB-Institute for Biomedical Engineering, Porto, Portugal; Laboratory of Genetics, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Molecular Oncology Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Ana Castro
- Department of Medical Oncology, Porto Hospital Centre, Hospital of Santo António, Porto, Portugal
| | - Manuel Oliveira
- Department of Urology, Porto Hospital Centre, Hospital of Santo António, Porto, Portugal
| | - Avelino Fraga
- Department of Urology, Porto Hospital Centre, Hospital of Santo António, Porto, Portugal
| | - Celso A Reis
- Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Department of Pathology and Oncology, Faculty of Medicine, Porto University, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal; Health School of University Fernando Pessoa, Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center, Portuguese Institute of Oncology, Porto, Portugal; Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal; International Iberian Nanotechnology Laboratory, Braga, Portugal; Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.
| |
Collapse
|
50
|
Persson N, Stuhr-Hansen N, Risinger C, Mereiter S, Polónia A, Polom K, Kovács A, Roviello F, Reis CA, Welinder C, Danielsson L, Jansson B, Blixt O. Epitope mapping of a new anti-Tn antibody detecting gastric cancer cells. Glycobiology 2017; 27:635-645. [DOI: 10.1093/glycob/cwx033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
|