1
|
Cornett K, Puderbaugh A, Back O, Craven R. GAPDH in neuroblastoma: Functions in metabolism and survival. Front Oncol 2022; 12:979683. [PMID: 36267982 PMCID: PMC9577191 DOI: 10.3389/fonc.2022.979683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroblastoma is a pediatric cancer of neural crest cells. It develops most frequently in nerve cells around the adrenal gland, although other locations are possible. Neuroblastomas rely on glycolysis as a source of energy and metabolites, and the enzymes that catalyze glycolysis are potential therapeutic targets for neuroblastoma. Furthermore, glycolysis provides a protective function against DNA damage, and there is evidence that glycolysis inhibitors may improve outcomes from other cancer treatments. This mini-review will focus on glyceraldehyde 3-phosphate dehydrogenase (GAPDH), one of the central enzymes in glycolysis. GAPDH has a key role in metabolism, catalyzing the sixth step in glycolysis and generating NADH. GAPDH also has a surprisingly diverse number of localizations, including the nucleus, where it performs multiple functions, and the plasma membrane. One membrane-associated function of GAPDH is stimulating glucose uptake, consistent with a role for GAPDH in energy and metabolite production. The plasma membrane localization of GAPDH and its role in glucose uptake have been verified in neuroblastoma. Membrane-associated GAPDH also participates in iron uptake, although this has not been tested in neuroblastoma. Finally, GAPDH activates autophagy through a nuclear complex with Sirtuin. This review will discuss these activities and their potential role in cancer metabolism, treatment and drug resistance.
Collapse
|
2
|
Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections. Int J Mol Sci 2022; 23:ijms23126556. [PMID: 35742999 PMCID: PMC9223570 DOI: 10.3390/ijms23126556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/23/2022] Open
Abstract
The majority of transcribed RNAs do not codify for proteins, nevertheless they display crucial regulatory functions by affecting the cellular protein expression profile. MicroRNAs (miRNAs) and transfer RNA-derived small RNAs (tsRNAs) are effectors of interfering mechanisms, so that their biogenesis is a tightly regulated process. Onconase (ONC) is an amphibian ribonuclease known for cytotoxicity against tumors and antiviral activity. Additionally, ONC administration in patients resulted in clinical effectiveness and in a well-tolerated feature, at least for lung carcinoma and malignant mesothelioma. Moreover, the ONC therapeutic effects are actually potentiated by cotreatment with many conventional antitumor drugs. This review not only aims to describe the ONC activity occurring either in different tumors or in viral infections but also to analyze the molecular mechanisms underlying ONC pleiotropic and cellular-specific effects. In cancer, data suggest that ONC affects malignant phenotypes by generating tRNA fragments and miRNAs able to downregulate oncogenes expression and upregulate tumor-suppressor proteins. In cells infected by viruses, ONC hampers viral spread by digesting the primer tRNAs necessary for viral DNA replication. In this scenario, new therapeutic tools might be developed by exploiting the action of ONC-elicited RNA derivatives.
Collapse
|
3
|
Castro J, Ribó M, Vilanova M, Benito A. Strengths and Challenges of Secretory Ribonucleases as AntiTumor Agents. Pharmaceutics 2021; 13:82. [PMID: 33435285 PMCID: PMC7828032 DOI: 10.3390/pharmaceutics13010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
Approaches to develop effective drugs to kill cancer cells are mainly focused either on the improvement of the currently used chemotherapeutics or on the development of targeted therapies aimed at the selective destruction of cancer cells by steering specific molecules and/or enhancing the immune response. The former strategy is limited by its genotoxicity and severe side effects, while the second one is not always effective due to tumor cell heterogeneity and variability of targets in cancer cells. Between these two strategies, several approaches target different types of RNA in tumor cells. RNA degradation alters gene expression at different levels inducing cell death. However, unlike DNA targeting, it is a pleotropic but a non-genotoxic process. Among the ways to destroy RNA, we find the use of ribonucleases with antitumor properties. In the last few years, there has been a significant progress in the understanding of the mechanism by which these enzymes kill cancer cells and in the development of more effective variants. All the approaches seek to maintain the requirements of the ribonucleases to be specifically cytotoxic for tumor cells. These requirements start with the competence of the enzymes to interact with the cell membrane, a process that is critical for their internalization and selectivity for tumor cells and continue with the downstream effects mainly relying on changes in the RNA molecular profile, which are not only due to the ribonucleolytic activity of these enzymes. Although the great improvements achieved in the antitumor activity by designing new ribonuclease variants, some drawbacks still need to be addressed. In the present review, we will focus on the known mechanisms used by ribonucleases to kill cancer cells and on recent strategies to solve the shortcomings that they show as antitumor agents, mainly their pharmacokinetics.
Collapse
Affiliation(s)
- Jessica Castro
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| | - Marc Ribó
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| | - Maria Vilanova
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| | - Antoni Benito
- Laboratori d’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, Carrer Maria Aurèlia Capmany, 40, 17003 Girona, Spain; (J.C.); (M.R.)
- Institut d’Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Hospital de Santa Caterina, Carrer del Dr. Castany, s/n, 17190 Salt, Spain
| |
Collapse
|
4
|
The antitumour drug ABTL0812 impairs neuroblastoma growth through endoplasmic reticulum stress-mediated autophagy and apoptosis. Cell Death Dis 2020; 11:773. [PMID: 32943619 PMCID: PMC7498451 DOI: 10.1038/s41419-020-02986-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Neuroblastoma is the leading cause of cancer death in children aged 1 to 4 years. Particularly, five-year overall survival for high-risk neuroblastoma is below 50% with no curative options when refractory or relapsed. Most of current therapies target cell division and proliferation, thereby inducing DNA damage and programmed cell death. However, aggressive tumours often present alterations of these processes and are resistant to therapy. Therefore, exploring alternative pathways to induce tumour cell death will provide new therapeutic opportunities for these patients. In this study we aimed at testing the therapeutic potential of ABTL0812, a novel anticancer drug that induces cytotoxic autophagy to eliminate cancer cells, which is currently in phase II clinical trials of adult tumours. Here, we show that ABTL0812 impaired the viability of clinical representative neuroblastoma cell lines regardless of genetic alterations associated to bad prognosis and resistance to therapy. Oral administration of ABTL0812 to mice bearing neuroblastoma xenografts impaired tumour growth. Furthermore, our findings revealed that, in neuroblastoma, ABTL0812 induced cancer cell death via induction of endoplasmic reticulum stress, activation of the unfolded protein response, autophagy and apoptosis. Remarkably, ABTL0812 potentiated the antitumour activity of chemotherapies and differentiating agents such as irinotecan and 13-cis-retinoic acid. In conclusion, ABTL0812 distinctive mechanism of action makes it standout to be used alone or in combination in high-risk neuroblastoma patients.
Collapse
|
5
|
Huang S, Gu S. Targeting autophagy in neuroblastoma. WORLD JOURNAL OF PEDIATRIC SURGERY 2020; 3:e000121. [DOI: 10.1136/wjps-2020-000121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022] Open
Abstract
BackgroundNeuroblastoma (NB) is the most common extracellular solid tumor among children accounting for serious mortality. Macroautophagy, a common housekeeping mechanism to maintain cellular homeostasis in eukaryotic cells, is involved in tumorigenesis and chemoresistance in a spectrum of cancers.Data resourcesBased on the terms of ‘autophagy’ and ‘neuroblastoma’, all the recent literature was searched and reviewed through PubMed.ResultsAutophagy is associated with apoptosis, histone modifications, angiogenesis, metabolism in NB. With those facts we assume that NB is an autophagy-dependent tumor, which means that autophagy inhibition therapy is desirable.ConclusionAutophagy in NB is pro-oncogenic, so inhibiting autophagy in high-risk NB may benefit treatment outcomes.
Collapse
|
6
|
Kortylewicz ZP, Coulter DW, Baranowska-Kortylewicz J. In vitro and in vivo evaluation of radiolabeled methyl N-[5-(3'-halobenzoyl)-1H-benzimidazol-2-yl]carbamate for cancer radiotherapy. Drug Dev Res 2019; 81:62-69. [PMID: 31593323 DOI: 10.1002/ddr.21604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 09/04/2019] [Indexed: 02/03/2023]
Abstract
The role of theranostics in cancer management is growing so is the selection of vectors used to deliver these modalities to cancer cells. We describe biological evaluation of a novel theranostic agent targeted to microtubules. Methyl N-[5-(3'-[131 I]iodobenzoyl)-1H-benzimidazol-2-yl]carbamate (1) and methyl N-[5-(3'-[125 I]iodobenzoyl)-1H-benzimidazol-2-yl]carbamate (2) were synthesized from a common precursor 3'-stannylated derivative (4). Antiproliferative effects and radiotoxicity of 131 I-labeled β-particle emitting 1 were examined in vitro in human neuroblastoma and glioblastoma cells lines. The therapeutic potential of 1 was also examined in a subcutaneous mouse model of human glioblastoma U-87 MG. Compound 1 at the extracellular radioactive concentration of 0.35 MBq/mL, easily achievable in vivo, kills >90% of neuroblastoma cells and >60% glioblastoma cells as measured in a clonogenic assay. D10 doses established for 1 indicate that as few as 3,000 decays are sufficient to kill 90% of BE(2)-C cells. Even U-87 MG cells, the least sensitive of the tested cell lines, require <20,000 decays of intracellular 131 I to reduce number of clonogenic cells by 90%. Biodistribution studies of 2 delivered either intratumorally or intraperitoneally show a similar tissue distribution for both routes of the drug administration. The whole body clearance half-lives were on average 6 hr. Intratumor administration of 1 produces significant tumor growth delay. After a single dose of 8.4 ± 0.3 MBq of compound 1, the tumor doubling times were 3.2 ± 0.1 and 7.9 ± 0.6 days in control and treated mice, respectively. Methyl N-[5-(3'-radiohalobenzoyl)-1H-benzimidazol-2-yl]carbamates have properties compatible with a theranostic approach to cancer management.
Collapse
Affiliation(s)
- Zbigniew P Kortylewicz
- Department of Radiation Oncology, J. Bruce Henriksen Cancer Research Laboratories, Omaha, Nebraska
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, Nebraska
| | | |
Collapse
|
7
|
Zhang Y, Chen T, Zheng W, Li ZH, Ying RF, Tang ZX, Shi LE. Active sites and thermostability of a non-specific nuclease from Yersinia enterocoliticasubsp . palearcticaby site-directed mutagenesis. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1489738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Yu Zhang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Tao Chen
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Wei Zheng
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Zhen Hua Li
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Rui-Feng Ying
- Department of Food Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, PR China
| | - Zhen-Xing Tang
- Hangzhou Tianlong Group Co. Ltd, Hangzhou, Zhejiang, PR China
| | - Lu-E Shi
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
8
|
Michaelis M, Rothweiler F, Wurglics M, Aniceto N, Dittrich M, Zettl H, Wiese M, Wass M, Ghafourian T, Schubert-Zsilavecz M, Cinatl J. Substrate-specific effects of pirinixic acid derivatives on ABCB1-mediated drug transport. Oncotarget 2017; 7:11664-76. [PMID: 26887049 PMCID: PMC4905501 DOI: 10.18632/oncotarget.7345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Pirinixic acid derivatives, a new class of drug candidates for a range of diseases, interfere with targets including PPARα, PPARγ, 5-lipoxygenase (5-LO), and microsomal prostaglandin and E2 synthase-1 (mPGES1). Since 5-LO, mPGES1, PPARα, and PPARγ represent potential anti-cancer drug targets, we here investigated the effects of 39 pirinixic acid derivatives on prostate cancer (PC-3) and neuroblastoma (UKF-NB-3) cell viability and, subsequently, the effects of selected compounds on drug-resistant neuroblastoma cells. Few compounds affected cancer cell viability in low micromolar concentrations but there was no correlation between the anti-cancer effects and the effects on 5-LO, mPGES1, PPARα, or PPARγ. Most strikingly, pirinixic acid derivatives interfered with drug transport by the ATP-binding cassette (ABC) transporter ABCB1 in a drug-specific fashion. LP117, the compound that exerted the strongest effect on ABCB1, interfered in the investigated concentrations of up to 2μM with the ABCB1-mediated transport of vincristine, vinorelbine, actinomycin D, paclitaxel, and calcein-AM but not of doxorubicin, rhodamine 123, or JC-1. In silico docking studies identified differences in the interaction profiles of the investigated ABCB1 substrates with the known ABCB1 binding sites that may explain the substrate-specific effects of LP117. Thus, pirinixic acid derivatives may offer potential as drug-specific modulators of ABCB1-mediated drug transport.
Collapse
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main 60596, Germany.,Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.,Current address: Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main 60596, Germany
| | - Mario Wurglics
- Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main 60438, Germany
| | - Natália Aniceto
- Medway School of Pharmacy, Universities of Kent and Greenwich in Medway, Chatham, Kent ME4 4TB, UK
| | - Michaela Dittrich
- Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main 60438, Germany
| | - Heiko Zettl
- Institute for Pharmaceutical Chemistry, Goethe-University, Frankfurt am Main 60438, Germany
| | - Michael Wiese
- Medway School of Pharmacy, Universities of Kent and Greenwich in Medway, Chatham, Kent ME4 4TB, UK.,Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Mark Wass
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | | | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Frankfurt am Main 60596, Germany
| |
Collapse
|
9
|
Vert A, Castro J, Ribó M, Benito A, Vilanova M. Activating transcription factor 3 is crucial for antitumor activity and to strengthen the antiviral properties of Onconase. Oncotarget 2017; 8:11692-11707. [PMID: 28035074 PMCID: PMC5355296 DOI: 10.18632/oncotarget.14302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
Onconase is a ribonuclease that presents both antitumor and antiviral properties linked to its ribonucleolytic activity and represents a new class of RNA-damaging drugs. It has reached clinical trials for the treatment of several cancers and human papilloma virus warts. Onconase targets different RNAs in the cell cytosol but Onconase-treated cells present features that are different from a simple arrest of protein synthesis. We have used microarray-derived transcriptional profiling to identify Onconase-regulated genes in two ovarian cancer cell lines (NCI/ADR-RES and OVCAR-8). RT-qPCR analyses have confirmed the microarray findings. We have identified a network of up-regulated genes implicated in different signaling pathways that may explain the cytotoxic effects exerted by Onconase. Among these genes, activating transcription factor 3 (ATF3) plays a central role in the key events triggered by Onconase in treated cancer cells that finally lead to apoptosis. This mechanism, mediated by ATF3, is cell-type independent. Up-regulation of ATF3 may also explain the antiviral properties of this ribonuclease because this factor is involved in halting viral genome replication, keeping virus latency or preventing viral oncogenesis. Finally, Onconase-regulated genes are different from those affected by nuclear-directed ribonucleases.
Collapse
Affiliation(s)
- Anna Vert
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Jessica Castro
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Antoni Benito
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Maria Vilanova
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.,Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| |
Collapse
|
10
|
Hodge T, Draper K, Brasel T, Freiberg A, Squiquera L, Sidransky D, Sulley J, Taxman DJ. Antiviral effect of ranpirnase against Ebola virus. Antiviral Res 2016; 132:210-8. [PMID: 27350309 DOI: 10.1016/j.antiviral.2016.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 10/21/2022]
Abstract
The recent epidemic of Ebola has intensified the need for the development of novel antiviral therapeutics that prolong and improve survival against deadly viral diseases. We sought to determine whether ranpirnase, an endoribonuclease from Rana pipiens with a demonstrated human safety profile in phase III oncology trials, can reduce titers of Ebola virus (EBOV) in infected cells, protect mice against mouse-adapted EBOV challenge, and reduce virus levels in infected mice. Our results demonstrate that 0.50 μg/ml ranpirnase is potently effective at reducing EBOV Zaire Kikwit infection in cultured Vero E6 cells (Selectivity Index 47.8-70.2). In a prophylactic study, a single intravenous dose of 0.1 mg/kg ranpirnase protected 70% of mice from progressive infection. Additionally, in a post-exposure prophylactic study, 100% of female mice survived infection after intraperitoneal administration of 0.1 mg/kg ranpirnase for ten days beginning 1 h post challenge. Most of the male counterparts were sacrificed due to weight loss by Study Day 8 or 9; however, the Clinical Activity/Behavior scores of these mice remained low and no significant microscopic pathologies could be detected in the kidneys, livers or spleens. Furthermore, live virus could not be detected in the sera of ranpirnase-treated mice by Study Day 8 or in the kidneys, livers or spleens by Study Day 12, and viral RNA levels declined exponentially by Study Day 12. Because ranpirnase is exceptionally stable and has a long track record of safe intravenous administration to humans, this drug provides a promising new candidate for clinical consideration in the treatment of Ebola virus disease alone or in combination with other therapeutics.
Collapse
Affiliation(s)
- Thomas Hodge
- Tamir Biotechnology, 12625 High Bluff Dr, Suite 113, San Diego, CA 92130, USA.
| | - Ken Draper
- Tamir Biotechnology, 12625 High Bluff Dr, Suite 113, San Diego, CA 92130, USA.
| | - Trevor Brasel
- University of Texas Medical Branch (UTMB), 301University Blvd, Galveston, TX 77555, USA.
| | - Alexander Freiberg
- University of Texas Medical Branch (UTMB), 301University Blvd, Galveston, TX 77555, USA.
| | - Luis Squiquera
- Tamir Biotechnology, 12625 High Bluff Dr, Suite 113, San Diego, CA 92130, USA.
| | - David Sidransky
- Tamir Biotechnology, 12625 High Bluff Dr, Suite 113, San Diego, CA 92130, USA.
| | - Jamie Sulley
- Tamir Biotechnology, 12625 High Bluff Dr, Suite 113, San Diego, CA 92130, USA.
| | - Debra J Taxman
- Tamir Biotechnology, 12625 High Bluff Dr, Suite 113, San Diego, CA 92130, USA.
| |
Collapse
|
11
|
Piskareva O, Harvey H, Nolan J, Conlon R, Alcock L, Buckley P, Dowling P, Henry M, O'Sullivan F, Bray I, Stallings RL. The development of cisplatin resistance in neuroblastoma is accompanied by epithelial to mesenchymal transition in vitro. Cancer Lett 2015; 364:142-55. [PMID: 25960282 DOI: 10.1016/j.canlet.2015.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/10/2015] [Accepted: 05/04/2015] [Indexed: 12/30/2022]
Abstract
Neuroblastoma is a challenging childhood malignancy, with a very high percentage of patients relapsing following acquisition of drug resistance, thereby necessitating the identification of mechanisms of drug resistance as well as new biological targets contributing to the aggressive pathogenicity of the disease. In order to investigate the molecular pathways that are involved with drug resistance in neuroblastoma, we have developed and characterised cisplatin resistant sublines SK-N-ASCis24, KellyCis83 and CHP-212Cis100, integrating data of cell behaviour, cytotoxicity, genomic alterations and modulation of protein expression. All three cisplatin resistant cell lines demonstrated cross resistance to temozolomide, etoposide and irinotecan, all of which are drugs in re-initiation therapy. Array CGH analysis indicated that resistant lines have acquired additional genomic imbalances. Differentially expressed proteins were identified by mass spectrometry and classified by bioinformatics tools according to their molecular and cellular functions and their involvement into biological pathways. Significant changes in the expression of proteins involved with pathways such as actin cytoskeletal signalling (p = 9.28E-10), integrin linked kinase (ILK) signalling (p = 4.01E-8), epithelial adherens junctions signalling (p = 5.49E-8) and remodelling of epithelial adherens junctions (p = 5.87E-8) pointed towards a mesenchymal phenotype developed by cisplatin resistant SK-N-ASCis24. Western blotting and confocal microscopy of MYH9, ACTN4 and ROCK1 coupled with invasion assays provide evidence that elevated levels of MYH9 and ACTN4 and reduced levels of ROCK1 contribute to the increased ROCK1-independent migratory potential of SK-N-ASCis24. Therefore, our results suggest that epithelial-to-mesenchymal transition is a feature during the development of drug resistance in neuroblastoma.
Collapse
Affiliation(s)
- Olga Piskareva
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland.
| | - Harry Harvey
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - John Nolan
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Ross Conlon
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Leah Alcock
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Patrick Buckley
- Molecular Pathology Laboratory, Beaumont Hospital, Dublin 9, Ireland
| | - Paul Dowling
- Department of Biology, The National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | - Finbarr O'Sullivan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Isabella Bray
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Raymond L Stallings
- Cancer Genetics Group, Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| |
Collapse
|
12
|
Ayers D, Mestdagh P, Van Maerken T, Vandesompele J. Identification of miRNAs contributing to neuroblastoma chemoresistance. Comput Struct Biotechnol J 2015; 13:307-19. [PMID: 25973145 PMCID: PMC4427660 DOI: 10.1016/j.csbj.2015.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The emergence of the role of microRNAs (miRNAs) in exacerbating drug resistance of tumours is recently being highlighted as a crucial research field for future clinical management of drug resistant tumours. The purpose of this study was to identify dys-regulations in expression of individual and/or networks of miRNAs that may have direct effect on neuroblastoma (NB) drug resistance. METHODS Individual subcultures of chemosensitive SH-SY5Y and UKF-NB-3 cells were rendered chemoresistant to doxorubicin (SH-SY5Y, UKF-NB-3) or etoposide (SH-SY5Y). In each validated chemoresistance model, the parental and subcultured cell lines were analysed for miRNA expression profiling, using a high-throughput quantitative polymerase chain reaction (RT-qPCR) miRNA profiling platform for a total of 668 miRNAs. RESULTS A unique expression signature of miRNAs was found to be differentially expressed (higher than 2-fold change) within all three NB chemoresistance models. Four miRNAs were upregulated in the subcultured chemoresistant cell line. Three miRNAs were found to be downregulated in the chemoresistant cell lines for all models. CONCLUSIONS Based on the initial miRNA findings, this study elucidates the dys-regulation of four miRNAs in three separate NB chemoresistant cell line models, spanning two cell lines (SH-SY5Y and UKF-NB-3) and two chemotherapeutic agents (doxorubicin and etoposide). These miRNAs may thus be possibly linked to chemoresistance induction in NB. Such miRNAs are good candidates to be novel drug targets for future miRNA based therapies against aggressive tumours that are not responding to conventional chemotherapy.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta ; Manchester Institute of Biotechnology, Faculty of Medical and Human Sciences, The University of Manchester, United Kingdom
| | - Pieter Mestdagh
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Tom Van Maerken
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
13
|
Mani J, Vallo S, Rakel S, Antonietti P, Gessler F, Blaheta R, Bartsch G, Michaelis M, Cinatl J, Haferkamp A, Kögel D. Chemoresistance is associated with increased cytoprotective autophagy and diminished apoptosis in bladder cancer cells treated with the BH3 mimetic (-)-Gossypol (AT-101). BMC Cancer 2015; 15:224. [PMID: 25885284 PMCID: PMC4409725 DOI: 10.1186/s12885-015-1239-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/20/2015] [Indexed: 12/19/2022] Open
Abstract
Background Acquired resistance to standard chemotherapy causes treatment failure in patients with metastatic bladder cancer. Overexpression of pro-survival Bcl-2 family proteins has been associated with a poor chemotherapeutic response, suggesting that Bcl-2-targeted therapy may be a feasible strategy in patients with these tumors. The small-molecule pan-Bcl-2 inhibitor (−)-gossypol (AT-101) is known to induce apoptotic cell death, but can also induce autophagy through release of the pro-autophagic BH3 only protein Beclin-1 from Bcl-2. The potential therapeutic effects of (−)-gossypol in chemoresistant bladder cancer and the role of autophagy in this context are hitherto unknown. Methods Cisplatin (5637rCDDP1000, RT4rCDDP1000) and gemcitabine (5637rGEMCI20, RT4rGEMCI20) chemoresistant sub-lines of the chemo-sensitive bladder cancer cell lines 5637 and RT4 were established for the investigation of acquired resistance mechanisms. Cell lines carrying a stable lentiviral knockdown of the core autophagy regulator ATG5 were created from chemosensitive 5637 and chemoresistant 5637rGEMCI20 and 5637rCDDP1000 cell lines. Cell death and autophagy were quantified by FACS analysis of propidium iodide, Annexin and Lysotracker staining, as well as LC3 translocation. Results Here we demonstrate that (−)-gossypol induces an apoptotic type of cell death in 5637 and RT4 cells which is partially inhibited by the pan-caspase inhibitor z-VAD. Cisplatin- and gemcitabine-resistant bladder cancer cells exhibit enhanced basal and drug-induced autophagosome formation and lysosomal activity which is accompanied by an attenuated apoptotic cell death after treatment with both (−)-gossypol and ABT-737, a Bcl-2 inhibitor which spares Mcl-1, in comparison to parental cells. Knockdown of ATG5 and inhibition of autophagy by 3-MA had no discernible effect on apoptotic cell death induced by (−)-gossypol and ABT-737 in parental 5637 cells, but evoked a significant increase in early apoptosis and overall cell death in BH3 mimetic-treated 5637rGEMCI20 and 5637rCDDP1000 cells. Conclusions Our findings show for the first time that (−)-gossypol concomitantly triggers apoptosis and a cytoprotective type of autophagy in bladder cancer and support the notion that enhanced autophagy may underlie the chemoresistant phenotype of these tumors. Simultaneous targeting of Bcl-2 proteins and the autophagy pathway may be an efficient new strategy to overcome their “autophagy addiction” and acquired resistance to current therapy.
Collapse
Affiliation(s)
- Jens Mani
- Department of Urology, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | - Stefan Vallo
- Department of Urology, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | - Stefanie Rakel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | - Patrick Antonietti
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | - Florian Gessler
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | - Roman Blaheta
- Department of Urology, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | - Georg Bartsch
- Department of Urology, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | - Martin Michaelis
- Institute for Medical Virology, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. .,School of Biosciences, The University of Kent, Canterbury, Kent, CT2 7NZ, UK.
| | - Jindrich Cinatl
- Institute for Medical Virology, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | - Axel Haferkamp
- Department of Urology, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| | - Donat Kögel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Sato S, Takenaka S. Highly sensitive nuclease assays based on chemically modified DNA or RNA. SENSORS (BASEL, SWITZERLAND) 2014; 14:12437-50. [PMID: 25019631 PMCID: PMC4168492 DOI: 10.3390/s140712437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/25/2014] [Accepted: 07/09/2014] [Indexed: 02/06/2023]
Abstract
Nucleolytic enzymes are associated with various diseases, and several methods have been developed for their detection. DNase expression is modulated in such diseases as acute myocardial infarction, transient myocardial ischemia, oral cancer, stomach cancer, and malignant lymphoma, and DNase I is used in cystic fibroma therapy. RNase is used to treat mesothelial cancer because of its antiproliferative, cytotoxic, and antineoplastic activities. Angiogenin, an angiogenic factor, is a member of the RNase A family. Angiogenin inhibitors are being developed as anticancer drugs. In this review, we describe fluorometric and electrochemical techniques for detecting DNase and RNase in disease. Oligonucleotides having fluorescence resonance energy transfer (FRET)-causing chromophores are non-fluorescent by themselves, yet become fluorescent upon cleavage by DNase or RNase. These oligonucleotides serve as a powerful tool to detect activities of these enzymes and provide a basis for drug discovery. In electrochemical techniques, ferrocenyl oligonucleotides with or without a ribonucleoside unit are used for the detection of RNase or DNase. This technique has been used to monitor blood or serum samples in several diseases associated with DNase and RNase and is unaffected by interferents in these sample types.
Collapse
Affiliation(s)
- Shinobu Sato
- Department of Applied Chemistry and Research Center for Bio-Microsensing Technology, Kyushu Institute of Technology, Kitakyushu, Fukuoka 804-8550, Japan.
| | - Shigeori Takenaka
- Department of Applied Chemistry and Research Center for Bio-Microsensing Technology, Kyushu Institute of Technology, Kitakyushu, Fukuoka 804-8550, Japan.
| |
Collapse
|
15
|
|
16
|
SMOLEWSKI PIOTR, WITKOWSKA MAGDALENA, ZWOLINSKA MALGORZATA, CEBULA-OBRZUT BARBARA, MAJCHRZAK AGATA, JESKE ALEKSANDRA, DARZYNKIEWICZ ZBIGNIEW, ARDELT WOJCIECH, ARDELT BARBARA, ROBAK TADEUSZ. Cytotoxic activity of the amphibian ribonucleases onconase and r-amphinase on tumor cells from B cell lymphoproliferative disorders. Int J Oncol 2014; 45:419-25. [DOI: 10.3892/ijo.2014.2405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/03/2014] [Indexed: 11/05/2022] Open
|
17
|
Liu D, Cardillo TM, Wang Y, Rossi EA, Goldenberg DM, Chang CH. Trop-2-targeting tetrakis-ranpirnase has potent antitumor activity against triple-negative breast cancer. Mol Cancer 2014; 13:53. [PMID: 24606732 PMCID: PMC4015355 DOI: 10.1186/1476-4598-13-53] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/26/2014] [Indexed: 02/07/2023] Open
Abstract
Background Ranpirnase (Rap) is an amphibian ribonuclease with reported antitumor activity, minimal toxicity, and negligible immunogenicity in clinical studies, but the unfavorable pharmacokinetics and suboptimal efficacy hampered its further clinical development. To improve the potential of Rap-based therapeutics, we have used the DOCK-AND-LOCK™ (DNL™) method to construct a class of novel IgG-Rap immunoRNases. In the present study, a pair of these constructs, (Rap)2-E1-(Rap)2 and (Rap)2-E1*-(Rap)2, comprising four copies of Rap linked to the CH3 and CK termini of hRS7 (humanized anti-Trop-2), respectively, were evaluated as potential therapeutics for triple-negative breast cancer (TNBC). Methods The DNL-based immunoRNases, (Rap)2-E1-(Rap)2 and (Rap)2-E1*-(Rap)2, were characterized and tested for biological activities in vitro on a panel of breast cancer cell lines and in vivo in a MDA-MB-468 xenograft model. Results (Rap)2-E1-(Rap)2 was highly purified (>95%), exhibited specific cell binding and rapid internalization in MDA-MB-468, a Trop-2-expressing TNBC line, and displayed potent in vitro cytotoxicity (EC50 ≤ 1 nM) against diverse breast cancer cell lines with moderate to high expression of Trop-2, including MDA-MB-468, BT-20, HCC1806, SKBR-3, and MCF-7. In comparison, structural counterparts of (Rap)2-E1-(Rap)2, generated by substituting hRS7 with selective non-Trop-2-binding antibodies, such as epratuzumab (anti-CD22), were at least 50-fold less potent than (Rap)2-E1-(Rap)2 in MDA-MB-468 and BT-20 cells, both lacking the expression of the cognate antigen. Moreover, (Rap)2-E1-(Rap)2 was less effective (EC50 > 50 nM) in MDA-MB-231 (low Trop-2) or HCC1395 (no Trop-2), and did not show any toxicity to human peripheral blood mononuclear cells. In a mouse TNBC model, a significant survival benefit was achieved with (Rap)2-E1*-(Rap)2 when given the maximal tolerated dose. Conclusions A new class of immunoRNases was generated with enhanced potency for targeted therapy of cancer. The promising results from (Rap)2-E1-(Rap)2 and (Rap)2-E1*-(Rap)2 support their further investigation as a potential treatment option for TNBC and other Trop-2-expressing cancers.
Collapse
Affiliation(s)
- Donglin Liu
- IBC Pharmaceuticals, Inc,, Morris Plains 07950, NJ, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Yiang GT, Tsai HF, Chen JR, Chou PL, Wu TK, Liu HC, Chang WJ, Liu LC, Tseng HH, Yu YL. RC-6 ribonuclease induces caspase activation, cellular senescence and neuron-like morphology in NT2 embryonal carcinoma cells. Oncol Rep 2014; 31:1738-44. [PMID: 24535104 DOI: 10.3892/or.2014.3023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/25/2013] [Indexed: 11/05/2022] Open
Abstract
Frog ribonucleases have been demonstrated to have anticancer activities. However, whether RC-6 ribonuclease exerts anticancer activity on human embryonal carcinoma cells remains unclear. In the present study, RC-6 induced cytotoxicity in NT2 cells (a human embryonal carcinoma cell line) and our studies showed that RC-6 can exert anticancer effects and induce caspase-9 and -3 activities. Moreover, to date, there is no evidence that frog ribonuclease-induced cytotoxicity effects are related to cellular senescence. Therefore, our studies showed that RC-6 can increase p16 and p21 protein levels and induce cellular senescence in NT2 cells. Notably, similar to retinoic acid-differentiated NT2 cells, neuron-like morphology was found on some remaining live cells after RC-6 treatment. In conclusion, our study is the first to demonstrate that RC-6 can induce cytotoxic effects, caspase-9/-3 activities, cellular senescence and neuron-like morphology in NT2 cells.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Hsiu-Feng Tsai
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Jer-Rong Chen
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Pei-Lun Chou
- Division of Allergy-Immunology-Rheumatology, Department of Internal Medicine, Saint Mary's Hospital Luodong, Yilan 265, Taiwan, R.O.C
| | - Tsai-Kun Wu
- Division of Renal Medicine, Tungs' Taichung Metroharbor Hospital, Taichung 435, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Hsu-Hung Tseng
- Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan, R.O.C
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
19
|
miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells. Oncogene 2013; 33:3717-29. [PMID: 23934188 DOI: 10.1038/onc.2013.330] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 12/31/2022]
Abstract
Chemotherapy is the most common treatment for cancer. However, multidrug resistance (MDR) remains a major obstacle to effective chemotherapy, limiting the efficacy of both conventional chemotherapeutic and novel biologic agents. The constitutive androstane receptor (CAR), a xenosensor, is a key regulator of MDR. It functions in xenobiotic detoxification by regulating the expression of phase I drug-metabolizing enzymes and ATP-binding cassette (ABC) transporters, whose overexpression in cancers and whose role in drug resistance make them potential therapeutic targets for reducing MDR. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes, including drug resistance. Here, we report the inversely related expression of miR-137 and CAR in parental and doxorubicin-resistant neuroblastoma cells, wherein miR-137 is downregulated in resistant cells. miR-137 overexpression resulted in downregulation of CAR protein and mRNA (via mRNA degradation); it sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis and increased G2-phase cell cycle arrest) and reduced the in vivo growth rate of neuroblastoma xenografts. We observed similar results in cellular models of hepatocellular and colon cancers, indicating that the doxorubicin-sensitizing effect of miR-137 is not tumor type-specific. Finally, we show for the first time a negative feedback loop whereby miR-137 downregulates CAR expression and CAR downregulates miR-137 expression. Hypermethylation of the miR-137 promoter and negative regulation of miR-137 by CAR contribute in part to reduced miR-137 expression and increased CAR and MDR1 expression in doxorubicin-resistant neuroblastoma cells. These findings demonstrate that miR-137 is a crucial regulator of cancer response to doxorubicin treatment, and they identify miR-137 as a highly promising target to reduce CAR-driven doxorubicin resistance.
Collapse
|
20
|
The inhibition of human tumor cell proliferation by RNase Pol, a member of the RNase T1 family, from Pleurotus ostreatus. Biosci Biotechnol Biochem 2013; 77:1486-91. [PMID: 23832341 DOI: 10.1271/bbb.130133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RNase Po1 is a guanylic acid-specific ribonuclease (a RNase T1 family RNase) from Pleurotus ostreatus. We determined the cDNA sequence encoding RNase Po1 and expressed RNase Po1 in Escherichia coli. A comparison of the enzymatic properties of RNase Po1 and RNase T1 indicated that the optimum temperature for RNase Po1 activity was 20 °C higher than that for RNase T1. An MTT assay indicated that RNase Po1 inhibits the proliferation of human neuroblastoma cells (IMR-32 and SK-N-SH) and human leukemia cells (Jurkat and HL-60). Furthermore, Hoechst 33342 staining showed morphological changes in HL-60 cells due to RNase Po1, and flow cytometry indicated the appearance of a sub-G1 cell population. The extent of these changes was dependent on the concentration of RNase Pol. We suggest that RNase Po1 induces apoptosis in tumor cells.
Collapse
|
21
|
Chemotherapy-associated angiogenesis in neuroblastoma tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1370-7. [PMID: 22285670 DOI: 10.1016/j.ajpath.2011.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 12/01/2011] [Accepted: 12/13/2011] [Indexed: 12/31/2022]
Abstract
The influences of cytotoxic drugs on endothelial cells remain incompletely understood. Herein, we examined the effects of chemotherapeutic agents in experimental angiogenesis models and analyzed vessel densities in clinical neuroblastoma tumor samples. Cisplatin (20 to 500 ng/mL), doxorubicin (4 to 100 ng/mL), and vincristine (0.5 to 4 ng/mL), drugs commonly involved in neuroblastoma therapy protocols, induced pro-angiogenic effects in different angiogenesis models. They enhanced endothelial cell tube formation, endothelial cell sprouting from spheroids, formation of tip cells in the sprouting assay, expression of αvβ3 integrin, and vitronectin binding. All three drugs increased global cellular kinase phosphorylation levels, including the angiogenesis-relevant molecules protein kinase Cβ and Akt. Pharmacological inhibition of protein kinase Cβ or Akt upstream of phosphatidylinositol 3-kinase reduced chemotherapy-induced endothelial cell tube formation. Moreover, the investigated chemotherapeutics dose dependently induced vessel formation in the chick chorioallantoic membrane assay. Tumor samples from seven high-risk patients with neuroblastoma were analyzed for vessel density by IHC. Results revealed that neuroblastoma samples taken after chemotherapy consistently showed an enhanced microvessel density compared with the corresponding samples taken before chemotherapy. In conclusion, our data show that chemotherapy can activate endothelial cells by inducing multiple pro-angiogenic signaling pathways and exert pro-angiogenic effects in vitro and in vivo. Moreover, we report a previously unrecognized clinical phenomenon that might, in part, be explained by our experimental observations: chemotherapy-associated enhanced vessel formation in tumors from patients with neuroblastoma.
Collapse
|
22
|
Casares-Atienza S, Weininger U, Cámara-Artigas A, Balbach J, Garcia-Mira MM. Three-state thermal unfolding of onconase. Biophys Chem 2011; 159:267-74. [PMID: 21840114 DOI: 10.1016/j.bpc.2011.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 10/18/2022]
Abstract
Onconase is a member of the ribonuclease A superfamily currently in phase IIIb clinical trials as a treatment for malign mesothelioma due to its cytotoxic activity selective against tumor-cells. In this work, we have studied the equilibrium thermal unfolding of onconase using a combination of several structural and biophysical techniques. Our results indicate that at least one significantly populated intermediate, which implies the exposure of hydrophobic surface and significant changes in the environment around Trp3, occurs during the equilibrium unfolding process of this protein. The intermediate begins to populate at about 30° below the global unfolding temperature, reaching a maximum population of nearly 60%, 10° below the global unfolding temperature.
Collapse
Affiliation(s)
- Salvador Casares-Atienza
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada. Avda. Fuentenueva s/n. 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
23
|
Porta C, Paglino C, Mutti L. Ranpirnase and its potential for the treatment of unresectable malignant mesothelioma. Biologics 2011; 2:601-9. [PMID: 19707441 PMCID: PMC2727885 DOI: 10.2147/btt.s2383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ribonucleases are a superfamily of enzymes which operate at the crossroads of transcription and translation, catalyzing the degradation of RNA; they can be cytotoxic because the cleavage of RNA renders indecipherable its information. Ranpirnase is a novel ribonuclease which preferentially degrades tRNA, thus leading to inhibition of protein synthesis and, ultimately, to cytostasis and cytotoxicity. Ranpirnase has demonstrated antitumor activity both in vitro and in vivo in several tumor models. The maximum tolerated dose emerging from phase I studies was 960 g/m2, with renal toxicity as the main dose-limiting toxicity. A large phase II trial showed that ranpirnase has disease-modifying activity against malignant mesothelioma. Ranpirnase proved to be superior to doxorubicin in a phase III trial, while preliminary results of another large, phase III trial, suggest that the combination of ranpirnase and doxorubicin could be more effective than doxorubicin alone. In all the above studies, ranpirnase seems to act mainly as a cytostatic rather than a cytotoxic drug, stabilizing progressive disease and potentially prolonging patients’ survival. Ranpirnase may thus find its niche in combination with doxorubicin for mesothelioma as a second-line therapy, where no standard of care presently exists.
Collapse
Affiliation(s)
- Camillo Porta
- Medical Oncology and Laboratory of Pre-Clinical Oncology and Developmental Therapeutics, I.R.C.C.S. San Matteo University Hospital Foundation, Pavia, Italy
| | | | | |
Collapse
|
24
|
|
25
|
Castro J, Ribó M, Navarro S, Nogués MV, Vilanova M, Benito A. A human ribonuclease induces apoptosis associated with p21WAF1/CIP1 induction and JNK inactivation. BMC Cancer 2011; 11:9. [PMID: 21223552 PMCID: PMC3025972 DOI: 10.1186/1471-2407-11-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 01/11/2011] [Indexed: 11/18/2022] Open
Abstract
Background Ribonucleases are promising agents for use in anticancer therapy. Among the different ribonucleases described to be cytotoxic, a paradigmatic example is onconase which manifests cytotoxic and cytostatic effects, presents synergism with several kinds of anticancer drugs and is currently in phase II/III of its clinical trial as an anticancer drug against different types of cancer. The mechanism of cytotoxicity of PE5, a variant of human pancreatic ribonuclease carrying a nuclear localization signal, has been investigated and compared to that of onconase. Methods Cytotoxicity was measured by the MTT method and by the tripan blue exclusion assay. Apoptosis was assessed by flow cytometry, caspase enzymatic detection and confocal microscopy. Cell cycle phase analysis was performed by flow cytometry. The expression of different proteins was analyzed by western blot. Results We show that the cytotoxicity of PE5 is produced through apoptosis, that it does not require the proapoptotic activity of p53 and is not prevented by the multiple drug resistance phenotype. We also show that PE5 and onconase induce cell death at the same extent although the latter is also able to arrest the cell growth. We have compared the cytotoxic effects of both ribonucleases in the NCI/ADR-RES cell line by measuring their effects on the cell cycle, on the activation of different caspases and on the expression of different apoptosis- and cell cycle-related proteins. PE5 increases the number of cells in S and G2/M cell cycle phases, which is accompanied by the increased expression of cyclin E and p21WAF1/CIP1 together with the underphosphorylation of p46 forms of JNK. Citotoxicity of onconase in this cell line does not alter the cell cycle phase distribution and it is accompanied by a decreased expression of XIAP Conclusions We conclude that PE5 kills the cells through apoptosis associated with the p21WAF1/CIP1 induction and the inactivation of JNK. This mechanism is significantly different from that found for onconase.
Collapse
Affiliation(s)
- Jessica Castro
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi s/n E-17071 Girona, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Fechete R, Barth S, Olender T, Munteanu A, Bernthaler A, Inger A, Perco P, Lukas A, Lancet D, Cinatl J, Michaelis M, Mayer B. Synthetic lethal hubs associated with vincristine resistant neuroblastoma. MOLECULAR BIOSYSTEMS 2010; 7:200-14. [PMID: 21031175 DOI: 10.1039/c0mb00082e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chemotherapy of cancer experiences a number of shortcomings including development of drug resistance. This fact also holds true for neuroblastoma utilizing chemotherapeutics as vincristine. We performed a comparative analysis of molecular and cellular mechanisms associated with vincristine resistance utilizing cell line as well as human tissue data. Differential gene expression analysis revealed molecular features, processes and pathways afflicted with drug resistance mechanisms in general, and specifically with vincristine significantly involving actin associated features. However, specific mode of resistance as well as underlying genotype of parental, vincristine sensitive cells apparently exhibited significant heterogeneity. No consensus profile for vincristine resistance could be derived, but resistance-associated changes on the level of individual neuroblastoma cell lines as well as individual patient profiles became clearly evident. Based on these prerequisites we utilized the concept of synthetic lethality aimed at identifying hub proteins which when inhibited promise to induce cell death due to a synthetic lethal interaction with down-regulated, chemoresistance associated features. Our screening procedure identified synthetic lethal hub proteins afflicted with actin associated processes holding synthetic lethal interactions to down-regulated features individually found in all chemoresistant cell lines tested, therefore promising an improved therapeutic window. Verification of such synthetic lethal hub candidates in human neuroblastoma tissue expression profiles indicated the feasibility of this screening approach for addressing vincristine resistance in neuroblastoma.
Collapse
Affiliation(s)
- Raul Fechete
- Emergentec Biodevelopment GmbH, Gersthofer Strasse 29-31, 1180 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ardelt W, Ardelt B, Darzynkiewicz Z. Ribonucleases as potential modalities in anticancer therapy. Eur J Pharmacol 2009; 625:181-9. [PMID: 19825371 PMCID: PMC2784098 DOI: 10.1016/j.ejphar.2009.06.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 05/20/2009] [Accepted: 06/08/2009] [Indexed: 11/24/2022]
Abstract
Antitumor ribonucleases are small (10-28 kDa) basic proteins. They were found among members of both, ribonuclease A and T1 superfamilies. Their cytotoxic properties are conferred by enzymatic activity, i.e., the ability to catalyze cleavages of phosphodiester bonds in RNA. They bind to negatively charged cell membrane, enter cells by endocytosis and translocate to cytosol where they evade mammalian protein ribonuclease inhibitor and degrade RNA. Here, we discuss structures, functions and mechanisms of antitumor activity of several cytotoxic ribonucleases with particular emphasis to the amphibian Onconase, the only enzyme of this class that reached clinical trials. Onconase is the smallest, very stable, less catalytically efficient and more cytotoxic than most RNase A homologues. Its cytostatic, cytotoxic and anticancer effects were extensively studied. It targets tRNA, rRNA, mRNA as well as the non-coding RNA (microRNAs). Numerous cancer lines are sensitive to Onconase; their treatment with 10-100 nM enzyme leads to suppression of cell cycle progression, predominantly through G(1), followed by apoptosis or cell senescence. Onconase also has anticancer properties in animal models. Many effects of this enzyme are consistent with the microRNAs, one of its critical targets. Onconase sensitizes cells to a variety of anticancer modalities and this property is of particular interest, suggesting its application as an adjunct to chemotherapy or radiotherapy in treatment of different tumors. Cytotoxic RNases as exemplified by Onconase represent a new class of antitumor agents, with an entirely different mechanism of action than the drugs currently used in the clinic. Further studies on animal models including human tumors grafted on severe combined immunodefficient (SCID) mice and clinical trials are needed to explore clinical potential of cytotoxic RNases.
Collapse
Affiliation(s)
- Wojciech Ardelt
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, New York, USA.
| | | | | |
Collapse
|
28
|
Van Maerken T, Ferdinande L, Taildeman J, Lambertz I, Yigit N, Vercruysse L, Rihani A, Michaelis M, Cinatl J, Cuvelier CA, Marine JC, De Paepe A, Bracke M, Speleman F, Vandesompele J. Antitumor activity of the selective MDM2 antagonist nutlin-3 against chemoresistant neuroblastoma with wild-type p53. J Natl Cancer Inst 2009; 101:1562-74. [PMID: 19903807 DOI: 10.1093/jnci/djp355] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Restoring p53 function by antagonizing its interaction with the negative regulator MDM2 is an appealing nongenotoxic approach to treating tumors with wild-type p53. Mutational inactivation of p53 is rare in neuroblastoma tumors at diagnosis and occurs in only a subset of multidrug-resistant neuroblastomas. METHODS The antiproliferative and cytotoxic effect of nutlin-3, a small-molecule MDM2 antagonist, was examined in chemosensitive (UKF-NB-3) and matched chemoresistant neuroblastoma cells with wild-type p53 (UKF-NB-3(r)DOX20) or with mutant p53 (UKF-NB-3(r)VCR10). Activation of the p53 pathway was assessed by expression analysis of p53 target genes, flow cytometric cell cycle analysis, and apoptosis assays. Mice with established chemoresistant tumor xenografts were treated orally with nutlin-3 or vehicle control (n = 5-10 mice per group) and were used to evaluate effects on tumor growth, p53 pathway activity, and metastatic tumor burden. All statistical tests were two-sided. RESULTS Nutlin-3 induced a similar activation of the p53 pathway in UKF-NB-3 and UKF-NB-3(r)DOX20 cells, as evidenced by increased expression of p53 target genes, G1 cell cycle arrest, and induction of apoptosis. No such response was observed in UKF-NB-3(r)VCR10 cells with mutant p53. Oral administration of nutlin-3 to UKF-NB-3(r)DOX20 xenograft-bearing mice led to inhibition of primary tumor growth (mean tumor volume after 3 weeks of treatment, nutlin-3- vs vehicle-treated mice: 772 vs 1661 mm3, difference = 890 mm3, 95% confidence interval = 469 to 1311 mm3, P < .001), p53 pathway activation, and reduction in the extent of metastatic disease. The growth of UKF-NB-3(r)VCR10 xenografts was unaffected by nutlin-3. CONCLUSIONS Nutlin-3 activates the p53 pathway and suppresses tumor growth in this model system of chemoresistant neuroblastoma, provided that wild-type p53 is present.
Collapse
Affiliation(s)
- Tom Van Maerken
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Michaelis M, Klassert D, Barth S, Suhan T, Breitling R, Mayer B, Hinsch N, Doerr HW, Cinatl J, Cinatl J. Chemoresistance acquisition induces a global shift of expression of aniogenesis-associated genes and increased pro-angogenic activity in neuroblastoma cells. Mol Cancer 2009; 8:80. [PMID: 19788758 PMCID: PMC2761864 DOI: 10.1186/1476-4598-8-80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 09/29/2009] [Indexed: 01/13/2023] Open
Abstract
Background Chemoresistance acquisition may influence cancer cell biology. Here, bioinformatics analysis of gene expression data was used to identify chemoresistance-associated changes in neuroblastoma biology. Results Bioinformatics analysis of gene expression data revealed that expression of angiogenesis-associated genes significantly differs between chemosensitive and chemoresistant neuroblastoma cells. A subsequent systematic analysis of a panel of 14 chemosensitive and chemoresistant neuroblastoma cell lines in vitro and in animal experiments indicated a consistent shift to a more pro-angiogenic phenotype in chemoresistant neuroblastoma cells. The molecular mechanims underlying increased pro-angiogenic activity of neuroblastoma cells are individual and differ between the investigated chemoresistant cell lines. Treatment of animals carrying doxorubicin-resistant neuroblastoma xenografts with doxorubicin, a cytotoxic drug known to exert anti-angiogenic activity, resulted in decreased tumour vessel formation and growth indicating chemoresistance-associated enhanced pro-angiogenic activity to be relevant for tumour progression and to represent a potential therapeutic target. Conclusion A bioinformatics approach allowed to identify a relevant chemoresistance-associated shift in neuroblastoma cell biology. The chemoresistance-associated enhanced pro-angiogenic activity observed in neuroblastoma cells is relevant for tumour progression and represents a potential therapeutic target.
Collapse
Affiliation(s)
- Martin Michaelis
- Institut für Medizinische Virologie, Klinikum der J,W, Goethe-Universität, Paul Ehrlich-Str, 40, 60596 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem Pharmacol 2009; 79:130-6. [PMID: 19698702 DOI: 10.1016/j.bcp.2009.08.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/10/2009] [Accepted: 08/12/2009] [Indexed: 11/19/2022]
Abstract
Artemisinin derivatives are well-tolerated anti-malaria drugs that also exert anti-cancer activity. Here, we investigated artemisinin and its derivatives dihydroartemisinin and artesunate in a panel of chemosensitive and chemoresistant human neuroblastoma cells as well as in primary neuroblastoma cultures. Only dihydroartemisinin and artesunate affected neuroblastoma cell viability with artesunate being more active. Artesunate-induced apoptosis and reactive oxygen species in neuroblastoma cells. Of 16 cell lines and two primary cultures, only UKF-NB-3(r)CDDP(1000) showed low sensitivity to artesunate. Characteristic gene expression signatures based on a previous analysis of artesunate resistance in the NCI60 cell line panel clearly separated UKF-NB-3(r)CDDP(1000) from the other cell lines. l-Buthionine-S,R-sulfoximine, an inhibitor of GCL (glutamate-cysteine ligase), resensitised in part UKF-NB-3(r)CDDP(1000) cells to artesunate. This finding together with bioinformatic analysis of expression of genes involved in glutathione metabolism showed that this pathway is involved in artesunate resistance. These data indicate that neuroblastoma represents an artesunate-sensitive cancer entity and that artesunate is also effective in chemoresistant neuroblastoma cells.
Collapse
|
31
|
Van Maerken T, Sarkar D, Speleman F, Dent P, Weiss WA, Fisher PB. Adenovirus-mediated hPNPase(old-35) gene transfer as a therapeutic strategy for neuroblastoma. J Cell Physiol 2009; 219:707-15. [PMID: 19202553 DOI: 10.1002/jcp.21719] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Current treatment options for neuroblastoma fail to eradicate the disease in the majority of high-risk patients, clearly mandating development of innovative therapeutic strategies. Gene therapy represents a promising approach for reversing the neoplastic phenotype or driving tumor cells to self-destruction. We presently studied the effects of adenovirus-mediated gene transfer of human polynucleotide phosphorylase (hPNPase(old-35)), a 3',5'-exoribonuclease with growth-inhibitory properties, in neuroblastoma cells. Transgene expression was driven by either the cytomegalovirus (CMV) promoter or by a tumor-selective promoter derived from progression elevated gene-3 (PEG-3). Our data demonstrate that efficient adenoviral transduction of neuroblastoma cells and robust transgene expression are feasible objectives, that the PEG-3 promoter is capable of selectively targeting gene expression in the majority of neuroblastoma cells, and that hPNPase(old-35) induces profound growth suppression and apoptosis of malignant neuroblastoma cells, while exerting limited effects on normal neural crest-derived melanocytes. These findings support future applications of hPNPase(old-35) for targeted gene-based therapy of neuroblastoma and suggest that combination with the PEG-3 promoter holds promise for creating a potent and selective neuroblastoma therapeutic. J. Cell. Physiol. 219: 707-715, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Tom Van Maerken
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
32
|
New approaches to pharmacotherapy of tumors of the nervous system during childhood and adolescence. Pharmacol Ther 2009; 122:44-55. [PMID: 19318043 DOI: 10.1016/j.pharmthera.2009.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Indexed: 12/20/2022]
Abstract
Tumors of the nervous system are among the most common and most chemoresistant neoplasms of childhood and adolescence. Malignant tumors of the brain collectively account for 21% of all cancers and 24% of all cancer-related deaths in this age group. Neuroblastoma, a peripheral nervous system tumor, is the most common extracranial solid tumor of childhood, and 65% of children with this tumor have only a 10 or 15% chance of living 5 years beyond the time of initial diagnosis. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the role of and current challenges to pharmacotherapy of malignant tumors of the nervous system during childhood and adolescence and discusses novel approaches aimed at overcoming these challenges.
Collapse
|
33
|
Reversal of P-glycoprotein–Mediated Multidrug Resistance by the Murine Double Minute 2 Antagonist Nutlin-3. Cancer Res 2009; 69:416-21. [DOI: 10.1158/0008-5472.can-08-1856] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Beck AK, Pass HI, Carbone M, Yang H. Ranpirnase as a potential antitumor ribonuclease treatment for mesothelioma and other malignancies. Future Oncol 2008; 4:341-9. [PMID: 18518759 DOI: 10.2217/14796694.4.3.341] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ranpirnase, originally isolated from oocytes of the northern leopard frog (Rana pipiens), is a member of the pancreatic RNase A superfamily of ribonucleases. Ranpirnase exerts antiproliferative and cytotoxic effects in vitro and in vivo and has been shown to act synergistically with different cancer therapeutic agents. The cytotoxic and cytostatic effects of ranpirnase are the consequence of tRNA degradation that results in the disruption of protein translation and the induction of programmed cell death (apoptosis). Ranpirnase has been shown to target malignant cells both in human cancer cell lines and in animal models, and has demonstrated efficacy in the treatment of several human cancers in clinical studies. Most clinical studies have been conducted in patients with malignant mesothelioma, and a confirmatory Phase IIIb trial is currently underway for the treatment of this disease. Owing to its selective destruction of malignant cells and favorable toxicology profile, ranpirnase is a promising antitumor agent with ideal attributes that are generally lacking in conventional cytotoxic drugs.
Collapse
Affiliation(s)
- Amanda K Beck
- New York University School of Medicine, 530 First Ave., Suite 9V, New York, NY 10016, USA
| | | | | | | |
Collapse
|
35
|
The therapeutic potential of the novel ribonuclease ranpirnase (Onconase®) in the treatment of malignant mesothelioma. Oncol Rev 2008. [DOI: 10.1007/s12156-008-0057-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
36
|
Lee I. Ranpirnase (Onconase®), a cytotoxic amphibian ribonuclease, manipulates tumour physiological parameters as a selective killer and a potential enhancer for chemotherapy and radiation in cancer therapy. Expert Opin Biol Ther 2008; 8:813-27. [DOI: 10.1517/14712598.8.6.813] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Chiarini F, Del Sole M, Mongiorgi S, Gaboardi GC, Cappellini A, Mantovani I, Follo MY, McCubrey JA, Martelli AM. The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 2008; 22:1106-16. [PMID: 18385752 DOI: 10.1038/leu.2008.79] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A significant impediment to the success of cancer chemotherapy is the occurrence of multidrug resistance, which, in many cases, is attributable to overexpression of membrane transport proteins, such as the 170-kDa P-glycoprotein (P-gp). Also, upregulation of the phosphatidylinositol 3-kinase (PI3K)/Akt-signaling pathway is known to play an important role in drug resistance, and has been implicated in the aggressiveness of a number of different cancers, including T-acute lymphoblastic leukemia (T-ALL). We have investigated the therapeutic potential of the novel Akt inhibitor, perifosine (a synthetic alkylphospholipid), on human T-ALL CEM cells (CEM-R), characterized by both overexpression of P-gp and constitutive upregulation of the PI3K/Akt network. Perifosine treatment induced death by apoptosis in CEM-R cells. Apoptosis was characterized by caspase activation, Bid cleavage and cytochrome c release from mitochondria. The proapoptotic effect of perifosine was in part dependent on the Fas/FasL interactions and c-Jun NH(2)-terminal kinase (JNK) activation, as well as on the integrity of lipid rafts. Perifosine downregulated the expression of P-gp mRNA and protein and this effect required JNK activity. Our findings indicate that perifosine is a promising therapeutic agent for treatment of T-ALL cases characterized by both upregulation of the PI3K/Akt survival pathway and overexpression of P-gp.
Collapse
Affiliation(s)
- F Chiarini
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Università, di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|