1
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:149-177. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
2
|
Agosti E, Antonietti S, Ius T, Fontanella MM, Zeppieri M, Panciani PP. A Systematic Review of Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Potential Treatment for Glioblastoma. Brain Sci 2024; 14:1058. [PMID: 39595821 PMCID: PMC11591642 DOI: 10.3390/brainsci14111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an extremely aggressive brain tumor that has few available treatment options and a dismal prognosis. Recent research has highlighted the potential of extracellular vesicles (MSC-EVs) produced from mesenchymal stem cells as a potential treatment approach for GBM. MSC-EVs, including exosomes, microvesicles, and apoptotic bodies, perform a significant function in cellular communication and have shown promise in mediating anti-tumor effects. PURPOSE This systematic literature review aims to consolidate current findings on the therapeutic potential of MSC-EVs in GBM treatment. METHODS A systematic search was conducted across major medical databases (PubMed, Web of Science, and Scopus) up to September 2024 to identify studies investigating the use of MSC-derived EVs in GBM therapy. Keywords included "extracellular vesicles", "mesenchymal stem cells", "targeted therapies", "outcomes", "adverse events", "glioblastoma", and "exosomes". Inclusion criteria were studies published in English involving GBM models both in vivo and in vitro and those reporting on therapeutic outcomes of MSC-EVs. Data were extracted and analyzed based on EV characteristics, mechanisms of action, and therapeutic efficacy. RESULTS The review identified several key studies demonstrating the anti-tumor effects of MSC-EVs in GBM models. A total of three studies were included, focusing on studies conducted between 2021 and 2023. The review included three studies that collectively enrolled a total of 18 patients. These studies were distributed across two years, with two trials published in 2023 (66.7%) and one in 2021 (33.3%). The mean age of the participants ranged from 37 to 57 years. In terms of gender distribution, males were the predominant group in all studies. Prior to receiving MSC-EV therapy, all patients had undergone standard treatments for GBM, including surgery, chemotherapy (CT), and, in some cases, radiation therapy (RT). In all three studies, the targeted treatment involved the administration of herpes simplex virus thymidine kinase (HSVtk) gene therapy delivered to the tumor site, then 14 days of ganciclovir treatment. Outcomes across the studies indicated varying levels of efficacy for the MSC-EV-based therapy. The larger 2023 study reported fewer encouraging outcomes, with a median PFS of 11.0 months (95% CI: 8.3-13.7) and a median OS of 16.0 months (95% CI: 14.3-17.7). Adverse effects were reported in only one of the studies, the 2021 trial, where patients experienced mild-to-moderate side effects, including fever, headache, and cerebrospinal fluid leukocytosis. A total of 11 studies on preclinical trials, using in vitro and in vivo models, were included, covering publications from 2010 to 2024. The studies utilized MSCs as delivery systems for various therapeutic agents (interleukin 12, interleukin 7, doxorubicin, paclitaxel), reflecting the versatility of these cells in targeted cancer therapies. CONCLUSIONS MSC-derived EVs represent a promising therapeutic approach for GBM, offering multiple mechanisms to inhibit tumor growth and enhance treatment efficacy. Their ability to deliver bioactive molecules and modulate the tumor microenvironment underscores their potential as a novel, cell-free therapeutic strategy. Future studies should optimize EV production and delivery methods and fully understand their long-term effects in clinical settings to harness their therapeutic potential in GBM treatment.
Collapse
Affiliation(s)
- Edoardo Agosti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Sara Antonietti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Marco Maria Fontanella
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Pier Paolo Panciani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Division of Neurosurgery, University of Brescia, Piazza Spedali Civili 1, 25123 Brescia, Italy; (E.A.)
| |
Collapse
|
3
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Rayati M, Mansouri V, Ahmadbeigi N. Gene therapy in glioblastoma multiforme: Can it be a role changer? Heliyon 2024; 10:e27087. [PMID: 38439834 PMCID: PMC10909773 DOI: 10.1016/j.heliyon.2024.e27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal cancers with a poor prognosis. Over the past century since its initial discovery and medical description, the development of effective treatments for this condition has seen limited progress. Despite numerous efforts, only a handful of drugs have gained approval for its treatment. However, these treatments have not yielded substantial improvements in both overall survival and progression-free survival rates. One reason for this is its unique features such as heterogeneity and difficulty of drug delivery because of two formidable barriers, namely the blood-brain barrier and the tumor-blood barrier. Over the past few years, significant developments in therapeutic approaches have given rise to promising novel and advanced therapies. Target-specific therapies, such as monoclonal antibodies (mAbs) and small molecules, stand as two important examples; however, they have not yielded a significant improvement in survival among GBM patients. Gene therapy, a relatively nascent advanced approach, holds promise as a potential treatment for cancer, particularly GBM. It possesses the potential to address the limitations of previous treatments and even newer advanced therapies like mAbs, owing to its distinct properties. This review aims to elucidate the current status and advancements in gene therapy for GBM treatment, while also presenting its future prospects.
Collapse
Affiliation(s)
- Mohammad Rayati
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kim JH, Ahn JS, Lee DS, Hong SH, Lee HJ. Anti-Cancer Effect of Neural Stem Cells Transfected with Carboxylesterase and sTRAIL Genes in Animals with Brain Lesions of Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1156. [PMID: 37631070 PMCID: PMC10458428 DOI: 10.3390/ph16081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
A metastatic brain tumor is the most common type of malignancy in the central nervous system, which is one of the leading causes of death in patients with lung cancer. The purpose of this study is to evaluate the efficacy of a novel treatment for metastatic brain tumors with lung cancer using neural stem cells (NSCs), which encode rabbit carboxylesterase (rCE) and the secretion form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). rCE and/or sTRAIL were transduced in immortalized human fetal NSCs, HB1.F3. The cytotoxic effects of the therapeutic cells on human lung cancer cells were evaluated in vitro with the ligands and decoy receptor expression for sTRAIL in the presence of CPT-11. Human NSCs encoding rCE (F3.CE and F3.CE.sTRAIL) significantly inhibited the growth of lung cancer cells in the presence of CPT-11 in vitro. Lung cancer cells were inoculated in immune-deficient mice, and therapeutic cells were transplanted systematically through intracardiac arterial injection and then treated with CPT-11. In resting state, DR4 expression in lung cancer cells and DcR1 in NSCs increased to 70% and 90% after CPT-11 addition, respectively. The volumes of the tumors in immune-deficient mice were reduced significantly in mice with F3.CE.sTRAIL transplantation and CPT-11 treatment. The survival was also significantly prolonged with treatment with F3.sTRAIL and F3.CE plus CPT-11 as well as F3.CE.sTRAIL plus CPT-11. NSCs transduced with rCE and sTRAIL genes showed a significant anti-cancer effect on brain metastatic lung cancer in vivo and in vitro, and the effect may be synergistic when rCE/CPT-11 and sTRAIL are combined. This stem-cell-based study using two therapeutic genes of different biological effects can be translatable to clinical application.
Collapse
Affiliation(s)
- Jung Hak Kim
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
| | - Jae Sung Ahn
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences & Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seok Ho Hong
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hong J. Lee
- Research Institute, Humetacell Inc., Bucheon-si 14786, Republic of Korea
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
6
|
Stem Cell-derived Extracellular Vesicles: A Promising Nano Delivery Platform to the Brain? Stem Cell Rev Rep 2023; 19:285-308. [PMID: 36173500 DOI: 10.1007/s12015-022-10455-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
A very important cause of the frustration with drug therapy for central nervous system (CNS) diseases is the failure of drug delivery. The blood-brain barrier (BBB) prevents most therapeutic molecules from entering the brain while maintaining CNS homeostasis. Scientists are keen to develop new brain drug delivery systems to solve this dilemma. Extracellular vesicles (EVs), as a class of naturally derived nanoscale vesicles, have been extensively studied in drug delivery due to their superior properties. This review will briefly present current brain drug delivery strategies, including invasive and non-invasive techniques that target the brain, and the application of nanocarriers developed for brain drug delivery in recent years, especially EVs. The cellular origin of EVs affects the surface protein, size, yield, luminal composition, and other properties of EVs, which are also crucial in determining whether EVs are useful as drug carriers. Stem cell-derived EVs, which inherit the properties of parental cells and avoid the drawbacks of cell therapy, have always been favored by researchers. Thus, in this review, we will focus on the application of stem cell-derived EVs for drug delivery in the CNS. Various nucleic acids, proteins, and small-molecule drugs are loaded into EVs with or without modification and undergo targeted delivery to the brain to achieve their therapeutic effects. In addition, the challenges facing the clinical application of EVs as drug carriers will also be discussed. The directions of future efforts may be to improve drug loading efficiency and precise targeting.
Collapse
|
7
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
8
|
Tibensky M, Jakubechova J, Altanerova U, Pastorakova A, Rychly B, Baciak L, Mravec B, Altaner C. Gene-Directed Enzyme/Prodrug Therapy of Rat Brain Tumor Mediated by Human Mesenchymal Stem Cell Suicide Gene Extracellular Vesicles In Vitro and In Vivo. Cancers (Basel) 2022; 14:cancers14030735. [PMID: 35159002 PMCID: PMC8833758 DOI: 10.3390/cancers14030735] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Extracellular vesicles— exosomes—secreted by human mesenchymal stem/stromal cells are able to cross the blood–brain barrier and internalize glioblastoma cells. We prepared exosomes possessing a gene message, the product of which is able to convert nontoxic 5-fluorocytosine to cytotoxic drug 5-fluorouracil. Such therapeutic exosomes administered intranasally, intraperitoneally, or subcutaneously to rats bearing intracerebral glioblastoma cells inhibited their growth. The treatment cured a significant number of animals. Abstract MSC-driven, gene-directed enzyme prodrug therapy (GDEPT) mediated by extracellular vesicles (EV) represents a new paradigm—cell-free GDEPT tumor therapy. In this study, we tested the efficacy of yeast cytosine deaminase::uracilphosphoribosyl transferase (yCD::UPRT-MSC)-exosomes, in the form of conditioned medium (CM) to inhibit the growth of C6 glioblastoma cells both in vitro and in vivo. MSCs isolated from human adipose tissue, umbilical cord, or dental pulp engineered to express the yCD::UPRT gene secreted yCD::UPRT-MSC-exosomes that in the presence of the prodrug 5-fluorocytosine (5-FC), inhibited the growth of rat C6 glioblastoma cells and human primary glioblastoma cells in vitro in a dose-dependent manner. CM from these cells injected repeatedly either intraperitoneally (i.p.) or subcutaneously (s.c.), applied intranasally (i.n.), or infused continuously by an ALZET osmotic pump, inhibited the growth of cerebral C6 glioblastomas in rats. A significant number of rats were cured when CM containing yCD::UPRT-MSC-exosomes conjugated with 5-FC was repeatedly injected i.p. or applied i.n. Cured rats were subsequently resistant to challenges with higher doses of C6 cells. Our data have shown that cell-free GDEPT tumor therapy mediated by the yCD::UPRT-MSC suicide gene EVs for high-grade glioblastomas represents a safer and more practical approach that is worthy of further investigation.
Collapse
Affiliation(s)
- Miroslav Tibensky
- Institute of Physiology, Faculty of Medicine, Comenius University, 81372 Bratislava, Slovakia; (M.T.); (B.M.)
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Jana Jakubechova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, 84505 Bratislava, Slovakia;
| | - Ursula Altanerova
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, 84505 Bratislava, Slovakia;
| | - Andrea Pastorakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia;
| | - Boris Rychly
- Alpha Medical, Ltd., 82606 Bratislava, Slovakia;
| | - Ladislav Baciak
- Central Laboratories, Slovak University of Technology, 81237 Bratislava, Slovakia;
| | - Boris Mravec
- Institute of Physiology, Faculty of Medicine, Comenius University, 81372 Bratislava, Slovakia; (M.T.); (B.M.)
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Cestmir Altaner
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia;
- Department of Stem Cell Preparation, St. Elisabeth Cancer Institute, 84505 Bratislava, Slovakia;
- Correspondence:
| |
Collapse
|
9
|
Evaluating a Targeted Cancer Therapy Approach Mediated by RNA trans-Splicing In Vitro and in a Xenograft Model for Epidermolysis Bullosa-Associated Skin Cancer. Int J Mol Sci 2022; 23:ijms23010575. [PMID: 35008999 PMCID: PMC8745581 DOI: 10.3390/ijms23010575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/04/2023] Open
Abstract
Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy.
Collapse
|
10
|
Abstract
The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, hampered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed according to published data.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
11
|
Alekseenko I, Kuzmich A, Kondratyeva L, Kondratieva S, Pleshkan V, Sverdlov E. Step-by-Step Immune Activation for Suicide Gene Therapy Reinforcement. Int J Mol Sci 2021; 22:ijms22179376. [PMID: 34502287 PMCID: PMC8430744 DOI: 10.3390/ijms22179376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Gene-directed enzyme prodrug gene therapy (GDEPT) theoretically represents a useful method to carry out chemotherapy for cancer with minimal side effects through the formation of a chemotherapeutic agent inside cancer cells. However, despite great efforts, promising preliminary results, and a long period of time (over 25 years) since the first mention of this method, GDEPT has not yet reached the clinic. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. The advent of checkpoint immunotherapy has yielded new highly promising avenues of study in cancer therapy. For such therapy, it seems reasonable to use combinations of different immunomodulators alongside traditional methods, such as chemotherapy and radiotherapy, as well as GDEPT. In this review, we focused on non-viral gene immunotherapy systems combining the intratumoral production of toxins diffused by GDEPT and immunomodulatory molecules. Special attention was paid to the applications and mechanisms of action of the granulocyte-macrophage colony-stimulating factor (GM–CSF), a cytokine that is widely used but shows contradictory effects. Another method to enhance the formation of stable immune responses in a tumor, the use of danger signals, is also discussed. The process of dying from GDEPT cancer cells initiates danger signaling by releasing damage-associated molecular patterns (DAMPs) that exert immature dendritic cells by increasing antigen uptake, maturation, and antigen presentation to cytotoxic T-lymphocytes. We hypothesized that the combined action of this danger signal and GM–CSF issued from the same dying cancer cell within a limited space would focus on a limited pool of immature dendritic cells, thus acting synergistically and enhancing their maturation and cytotoxic T-lymphocyte attraction potential. We also discuss the problem of enhancing the cancer specificity of the combined GDEPT–GM–CSF–danger signal system by means of artificial cancer specific promoters or a modified delivery system.
Collapse
Affiliation(s)
- Irina Alekseenko
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
- Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Correspondence: (I.A.); (E.S.)
| | - Alexey Kuzmich
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Sofia Kondratieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Victor Pleshkan
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Correspondence: (I.A.); (E.S.)
| |
Collapse
|
12
|
Wu Y, Huo D, Chen G, Yan A. SAR and QSAR research on tyrosinase inhibitors using machine learning methods. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:85-110. [PMID: 33517778 DOI: 10.1080/1062936x.2020.1862297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Tyrosinase is a key rate-limiting enzyme in the process of melanin synthesis, which is closely related to human pigmentation disorders. Tyrosinase inhibitors can down-regulate tyrosinase to effectively reduce melanin synthesis. In this work, we conducted structure-activity relationship (SAR) study on 1097 diverse mushroom tyrosinase inhibitors. We applied five kinds of machine learning methods to develop 15 classification models. Model 5B built by fully connected neural networks and ECFP4 fingerprints achieved the highest prediction accuracy of 91.36% and Matthews correlation coefficient (MCC) of 0.81 on the test set. The applicability domains (AD) of classification models were defined by d S T D - P R O method. Moreover, we clustered the 1097 inhibitors into eight subsets by K-Means to figure out inhibitors' structural features. In addition, 10 quantitative structure-activity relationship (QSAR) models were constructed by four machine learning methods based on 813 inhibitors. Model 6 J, the best QSAR model, was developed by fully connected neural networks with 50 RDKit descriptors. It resulted in a coefficient of determination (r 2) of 0.770 and a root mean squared error (RMSE) of 0.482 on the test set. The AD of Model 6 J was visualized by Williams plot. The models built in this study can be obtained from the authors.
Collapse
Affiliation(s)
- Y Wu
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| | - D Huo
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| | - G Chen
- College of Life Science and Technology, Beijing University of Chemical Technology , Beijing, China
| | - A Yan
- State Key Laboratory of Chemical Resource Engineering Department of Pharmaceutical Engineering, Beijing University of Chemical Technology , Beijing, P. R. China
| |
Collapse
|
13
|
Kupikowska-Stobba B, Lewińska D. Polymer microcapsules and microbeads as cell carriers for in vivo biomedical applications. Biomater Sci 2020; 8:1536-1574. [PMID: 32110789 DOI: 10.1039/c9bm01337g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer microcarriers are being extensively explored as cell delivery vehicles in cell-based therapies and hybrid tissue and organ engineering. Spherical microcarriers are of particular interest due to easy fabrication and injectability. They include microbeads, composed of a porous matrix, and microcapsules, where matrix core is additionally covered with a semipermeable membrane. Microcarriers provide cell containment at implantation site and protect the cells from host immunoresponse, degradation and shear stress. Immobilized cells may be genetically altered to release a specific therapeutic product directly at the target site, eliminating side effects of systemic therapies. Cell microcarriers need to fulfil a number of extremely high standards regarding their biocompatibility, cytocompatibility, immunoisolating capacity, transport, mechanical and chemical properties. To obtain cell microcarriers of specified parameters, a wide variety of polymers, both natural and synthetic, and immobilization methods can be applied. Yet so far, only a few approaches based on cell-laden microcarriers have reached clinical trials. The main issue that still impedes progress of these systems towards clinical application is limited cell survival in vivo. Herein, we review polymer biomaterials and methods used for fabrication of cell microcarriers for in vivo biomedical applications. We describe their key limitations and modifications aiming at improvement of microcarrier in vivo performance. We also present the main applications of polymer cell microcarriers in regenerative medicine, pancreatic islet and hepatocyte transplantation and in the treatment of cancer. Lastly, we outline the main challenges in cell microimmobilization for biomedical purposes, the strategies to overcome these issues and potential future improvements in this area.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| | - Dorota Lewińska
- Laboratory of Electrostatic Methods of Bioencapsulation, Department of Biomaterials and Biotechnological Systems, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
14
|
A highly efficient non-viral process for programming mesenchymal stem cells for gene directed enzyme prodrug cancer therapy. Sci Rep 2020; 10:14257. [PMID: 32868813 PMCID: PMC7458920 DOI: 10.1038/s41598-020-71224-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) driven gene-directed enzyme prodrug therapy has emerged as a potential strategy for cancer treatment. The tumour-nesting properties of MSCs enable these vehicles to target tumours and metastases with effective therapies. A crucial step in engineering MSCs is the delivery of genetic material with low toxicity and high efficiency. Due to the low efficiency of current transfection methods, viral vectors are used widely to modify MSCs in preclinical and clinical studies. We show, for the first time, the high transfection efficiency (> 80%) of human adipose tissue derived-MSCs (AT-MSCs) using a cost-effective and off-the-shelf Polyethylenimine, in the presence of histone deacetylase 6 inhibitor and fusogenic lipids. Notably, the phenotypes of MSCs remained unchanged post-modification. AT-MSCs engineered with a fused transgene, yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy::UPRT) displayed potent cytotoxic effects against breast, glioma, gastric cancer cells in vitro. The efficiency of eliminating gastric cell lines were effective even when using 7-day post-transfected AT-MSCs, indicative of the sustained expression and function of the therapeutic gene. In addition, significant inhibition of temozolomide resistant glioma tumour growth in vivo was observed with a single dose of therapeutic MSC. This study demonstrated an efficient non-viral modification process for MSC-based prodrug therapy.
Collapse
|
15
|
Parkins KM, Dubois VP, Kelly JJ, Chen Y, Knier NN, Foster PJ, Ronald JA. Engineering Circulating Tumor Cells as Novel Cancer Theranostics. Am J Cancer Res 2020; 10:7925-7937. [PMID: 32685030 PMCID: PMC7359075 DOI: 10.7150/thno.44259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
New ways to target and treat metastatic disease are urgently needed. Tumor “self-homing” describes the recruitment of circulating tumor cells (CTCs) back to a previously excised primary tumor location, contributing to tumor recurrence, as well as their migration to established metastatic lesions. Recently, self-homing CTCs have been exploited as delivery vehicles for anti-cancer therapeutics in preclinical primary tumor models. However, the ability of CTCs to self-home and treat metastatic disease is largely unknown. Methods: Here, we used bioluminescence imaging (BLI) to explore whether systemically administered CTCs home to metastatic lesions and if CTCs armed with both a reporter gene and a cytotoxic prodrug gene therapy can be used to visualize and treat metastatic disease. Results: BLI performed over time revealed a remarkable ability of CTCs to home to and treat tumors throughout the body. Excitingly, metastatic tumor burden in mice that received therapeutic CTCs was lower compared to mice receiving control CTCs. Conclusion: This study demonstrates the noteworthy ability of experimental CTCs to home to disseminated breast cancer lesions. Moreover, by incorporating a prodrug gene therapy system into our self-homing CTCs, we show exciting progress towards effective and targeted delivery of gene-based therapeutics to treat both primary and metastatic lesions.
Collapse
|
16
|
Pastorakova A, Jakubechova J, Altanerova U, Altaner C. Suicide Gene Therapy Mediated with Exosomes Produced by Mesenchymal Stem/Stromal Cells Stably Transduced with HSV Thymidine Kinase. Cancers (Basel) 2020; 12:E1096. [PMID: 32354013 PMCID: PMC7281242 DOI: 10.3390/cancers12051096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) prepared from various human tissues were stably transduced with the suicide gene herpes simplex virus thymidine kinase (HSVTK) by means of retrovirus infection. HSVTK-transduced MSCs express the suicide gene and in prodrug ganciclovir (GCV) presence induced cell death by intracellular conversion of GCV to GCV-triphosphate. The homogenous population of HSVTK-MSCs were found to release exosomes having mRNA of the suicide gene in their cargo. The exosomes were easily internalized by the tumor cells and the presence of ganciclovir caused their death in a dose-dependent manner. Efficient tumor cell killing of glioma cell lines and primary human glioblastoma cells mediated by HSVTK-MSC exosomes is reported. Exosomes produced by suicide gene transduced MSCs represent a new class of highly selective tumor cell targeted drug acting intracellular with curative potential.
Collapse
Affiliation(s)
- Andrea Pastorakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Jana Jakubechova
- Stem Cell Preparation Laboratory, St. Elisabeth Cancer Institute, Heydukova 10, 812 50 Bratislava, Slovakia
| | - Ursula Altanerova
- Stem Cell Preparation Laboratory, St. Elisabeth Cancer Institute, Heydukova 10, 812 50 Bratislava, Slovakia
| | - Cestmir Altaner
- Stem Cell Preparation Laboratory, St. Elisabeth Cancer Institute, Heydukova 10, 812 50 Bratislava, Slovakia
- Biomedical Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
17
|
Ghayas S, Ali Masood M, Parveen R, Aquib M, Farooq MA, Banerjee P, Sambhare S, Bavi R. 3D QSAR pharmacophore-based virtual screening for the identification of potential inhibitors of tyrosinase. J Biomol Struct Dyn 2019; 38:2916-2927. [DOI: 10.1080/07391102.2019.1647287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sana Ghayas
- Department of Pharmaceutics, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan
| | - M. Ali Masood
- Department of Pharmaceutics, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan
| | - Rashida Parveen
- Department of Pharmacy, Superior University Lahore, Lahore, Pakistan
| | - Md Aquib
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P R China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P R China
| | - Parikshit Banerjee
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Taiwan
| | - Susmit Sambhare
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, India
| | - Rohit Bavi
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, China Gulou District
| |
Collapse
|
18
|
Kazlauskas A, Darinskas A, Meškys R, Tamašauskas A, Urbonavičius J. Isocytosine deaminase Vcz as a novel tool for the prodrug cancer therapy. BMC Cancer 2019; 19:197. [PMID: 30832616 PMCID: PMC6399854 DOI: 10.1186/s12885-019-5409-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/26/2019] [Indexed: 01/11/2023] Open
Abstract
Background The cytosine deaminase (CD)/5-fluorocytosine (5-FC) system is among the best explored enzyme/prodrug systems in the field of the suicide gene therapy. Recently, by the screening of the environmental metagenomic libraries we identified a novel isocytosine deaminase (ICD), termed Vcz, which is able of specifically converting a prodrug 5-fluoroisocytosine (5-FIC) into toxic drug 5-fluorouracil (5-FU). The aim of this study is to test the applicability of the ICD Vcz / 5-FIC pair as a potential suicide gene therapy tool. Methods Vcz-expressing human glioblastoma U87 and epithelial colorectal adenocarcinoma Caco-2 cells were treated with 5-FIC, and the Vcz-mediated cytotoxicity was evaluated by performing an MTT assay. In order to examine anti-tumor effects of the Vcz/5-FIC system in vivo, murine bone marrow-derived mesenchymal stem cells (MSC) were transduced with the Vcz-coding lentivirus and co-injected with 5-FIC or control reagents into subcutaneous GL261 tumors evoked in C57/BL6 mice. Results 5-FIC alone showed no significant toxic effects on U87 and Caco-2 cells at 100 μM concentration, whereas the number of cells of both cell lines that express Vcz cytosine deaminase gene decreased by approximately 60% in the presence of 5-FIC. The cytotoxic effects on cells were also induced by media collected from Vcz-expressing cells pre-treated with 5-FIC. The co-injection of the Vcz-transduced mesenchymal stem cells and 5-FIC have been shown to augment tumor necrosis and increase longevity of tumorized mice by 50% in comparison with control group animals. Conclusions We have confirmed that the novel ICD Vcz together with the non-toxic prodrug 5-FIC has a potential of being a new enzyme/prodrug system for suicide gene therapy. Electronic supplementary material The online version of this article (10.1186/s12885-019-5409-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arunas Kazlauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161, Kaunas, Lithuania.
| | - Adas Darinskas
- Laboratory of Immunology, National Cancer Institute, Santariskiu Str. 1, LT-08660, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al.7, LT-10222, Vilnius, Lithuania
| | - Arimantas Tamašauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50161, Kaunas, Lithuania
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio al.7, LT-10222, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio al.11, LT-10221, Vilnius, Lithuania
| |
Collapse
|
19
|
Abstract
Exosomes derived from human mesenchymal stem cells (MSCs) engineered to express the suicide gene yeast cytosine deaminase::uracil phosphoribosyl transferase (yCD::UPRT) represent a new therapeutic approach for tumor-targeted innovative therapy. The yCD::UPRT-MSC-exosomes carry mRNA of the suicide gene in their cargo. Upon internalization by tumor cells, the exosomes inhibit the growth of broad types of cancer cells in vitro, in the presence of a prodrug. Here we describe the method leading to the production and testing of these therapeutic exosomes. The described steps include the preparation of replication-deficient retrovirus possessing the yCD::UPRT suicide gene, and the preparation and selection of MSCs transduced with yCD::UPRT suicide gene. We present procedures to obtain exosomes possessing the ability to induce the death of tumor cells. In addition, we highlight methods for the evaluation of the suicide gene activity of yCD::UPRT-MSC-exosomes.
Collapse
Affiliation(s)
- Cestmir Altaner
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
- Stem Cell Preparation Department, St. Elizabeth Cancer Institute, Bratislava, Slovakia.
| | - Ursula Altanerova
- Stem Cell Preparation Department, St. Elizabeth Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
20
|
Souza MS, Diniz LF, Alvarez N, da Silva CCP, Ellena J. Supramolecular synthesis and characterization of crystalline solids obtained from the reaction of 5-fluorocytosine with nitro compounds. NEW J CHEM 2019. [DOI: 10.1039/c9nj03329g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this manuscript we introduce a broad solid-state characterization of 5-fluorocytosine (5-FC) solid forms obtained with picric (PA) and 3,5-dinitrosalicylic (DNSA) nitro acids.
Collapse
Affiliation(s)
- Matheus S. Souza
- Instituto de Física de São Carlos
- Universidade de São Paulo
- CP 369
- São Carlos
- Brazil
| | - Luan F. Diniz
- Instituto de Física de São Carlos
- Universidade de São Paulo
- CP 369
- São Carlos
- Brazil
| | - Natalia Alvarez
- Facultad de Química
- Universidad de la República
- General Flores 2124
- Uruguay
| | | | - Javier Ellena
- Instituto de Física de São Carlos
- Universidade de São Paulo
- CP 369
- São Carlos
- Brazil
| |
Collapse
|
21
|
Mishra AP, Chandra S, Tiwari R, Srivastava A, Tiwari G. Therapeutic Potential of Prodrugs Towards Targeted Drug Delivery. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2018; 12:111-123. [PMID: 30505359 PMCID: PMC6210501 DOI: 10.2174/1874104501812010111] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 11/22/2022]
Abstract
In designing of Prodrugs, targeting can be achieved in two ways: site-specified drug delivery and site-specific drug bioactivation. Prodrugs can be designed to target specific enzymes or carriers by considering enzyme-substrate specificity or carrier-substrate specificity in order to overcome various undesirable drug properties. There are certain techniques which are used for tumor targeting such as Antibody Directed Enzyme Prodrug Therapy [ADEPT] Gene-Directed Enzyme Prodrug Therapy [GDEPT], Virus Directed Enzyme Prodrug Therapy [VDEPT] and Gene Prodrug Activation Therapy [GPAT]. Our review focuses on the Prodrugs used in site-specific drug delivery system specially on tumor targeting.
Collapse
Affiliation(s)
- Abhinav P Mishra
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway (NH-2), Bhauti, Kanpur, Uttar Pradesh, India
| | - Suresh Chandra
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway (NH-2), Bhauti, Kanpur, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway (NH-2), Bhauti, Kanpur, Uttar Pradesh, India
| | - Ashish Srivastava
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway (NH-2), Bhauti, Kanpur, Uttar Pradesh, India
| | - Gaurav Tiwari
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur-Agra-Delhi National Highway (NH-2), Bhauti, Kanpur, Uttar Pradesh, India
| |
Collapse
|
22
|
Altanerova U, Jakubechova J, Benejova K, Priscakova P, Pesta M, Pitule P, Topolcan O, Kausitz J, Zduriencikova M, Repiska V, Altaner C. Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes. Int J Cancer 2018; 144:897-908. [PMID: 30098225 DOI: 10.1002/ijc.31792] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022]
Abstract
The natural behavior of mesenchymal stem cells (MSCs) and their exosomes in targeting tumors is a promising approach for curative therapy. Human tumor tropic mesenchymal stem cells (MSCs) isolated from various tissues and MSCs engineered to express the yeast cytosine deaminase::uracil phosphoribosyl transferase suicide fusion gene (yCD::UPRT-MSCs) released exosomes in conditional medium (CM). Exosomes from all tissue specific yCD::UPRT-MSCs contained mRNA of the suicide gene in the exosome's cargo. When the CM was applied to tumor cells, the exosomes were internalized by recipient tumor cells and in the presence of the prodrug 5-fluorocytosine (5-FC) effectively triggered dose-dependent tumor cell death by endocytosed exosomes via an intracellular conversion of the prodrug 5-FC to 5-fluorouracil. Exosomes were found to be responsible for the tumor inhibitory activity. The presence of microRNAs in exosomes produced from naive MSCs and from suicide gene transduced MSCs did not differ significantly. MicroRNAs from yCD::UPRT-MSCs were not associated with therapeutic effect. MSC suicide gene exosomes represent a new class of tumor cell targeting drug acting intracellular with curative potential.
Collapse
Affiliation(s)
- Ursula Altanerova
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Jana Jakubechova
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Katarina Benejova
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Petra Priscakova
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, University Hospital Bratislava, Comenius University in Bratislava, Bratislava, Slovakia
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic.,Laboratory of tumor biology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic.,University Hospital in Pilsen, Department of Nuclear Medicine - Immunoanalytic Laboratory, Pilsen, Czech Republic
| | - Pavel Pitule
- Laboratory of tumor biology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Ondrej Topolcan
- University Hospital in Pilsen, Department of Nuclear Medicine - Immunoanalytic Laboratory, Pilsen, Czech Republic
| | - Juraj Kausitz
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia
| | - Martina Zduriencikova
- Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vanda Repiska
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, University Hospital Bratislava, Comenius University in Bratislava, Bratislava, Slovakia
| | - Cestmir Altaner
- St. Elisabeth Cancer Institute, Stem Cell Preparation Department, Bratislava, Slovakia.,Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
23
|
|
24
|
Selective elimination of long INterspersed element-1 expressing tumour cells by targeted expression of the HSV-TK suicide gene. Oncotarget 2018; 8:38239-38250. [PMID: 28415677 PMCID: PMC5503529 DOI: 10.18632/oncotarget.16013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022] Open
Abstract
In gene therapy, effective and selective suicide gene expression is crucial. We exploited the endogenous Long INterspersed Element-1 (L1) machinery often reactivated in human cancers to integrate the Herpes Simplex Virus Thymidine Kinase (HSV-TK) suicide gene selectively into the genome of cancer cells. We developed a plasmid-based system directing HSV-TK expression only when reverse transcribed and integrated in the host genome via the endogenous L1 ORF1/2 proteins and an Alu element. Delivery of these new constructs into cells followed by Ganciclovir (GCV) treatment selectively induced mortality of L1 ORF1/2 protein expressing cancer cells, but had no effect on primary cells that do not express L1 ORF1/2. This novel strategy for selective targeting of tumour cells provides high tolerability as the HSV-TK gene cannot be expressed without reverse transcription and integration, and high selectivity as these processes take place only in cancer cells expressing high levels of functional L1 ORF1/2.
Collapse
|
25
|
Souza MS, Diniz LF, Vogt L, Carvalho PS, D’vries RF, Ellena J. Avoiding irreversible 5-fluorocytosine hydration via supramolecular synthesis of pharmaceutical cocrystals. NEW J CHEM 2018. [DOI: 10.1039/c8nj02647e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular reaction of 5-FC with caffeine, p-aminobenzoic and caprylic acid gave rise to solid forms physically stable in humid environments.
Collapse
Affiliation(s)
- Matheus S. Souza
- Instituto de Física de São Carlos
- Universidade de São Paulo
- 13.560-970 – São Carlos
- Brazil
| | - Luan F. Diniz
- Instituto de Física de São Carlos
- Universidade de São Paulo
- 13.560-970 – São Carlos
- Brazil
| | - Lautaro Vogt
- Instituto de Física de São Carlos
- Universidade de São Paulo
- 13.560-970 – São Carlos
- Brazil
| | - Paulo S. Carvalho
- Instituto de Física de São Carlos
- Universidade de São Paulo
- 13.560-970 – São Carlos
- Brazil
| | - Richard F. D’vries
- Instituto de Física de São Carlos
- Universidade de São Paulo
- 13.560-970 – São Carlos
- Brazil
- Facultad de Ciencias Básicas
| | - Javier Ellena
- Instituto de Física de São Carlos
- Universidade de São Paulo
- 13.560-970 – São Carlos
- Brazil
| |
Collapse
|
26
|
Gaynor AS, Chen W. Induced prodrug activation by conditional protein degradation. J Biotechnol 2017; 260:62-66. [PMID: 28912080 PMCID: PMC6595225 DOI: 10.1016/j.jbiotec.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/24/2017] [Accepted: 09/10/2017] [Indexed: 11/17/2022]
Abstract
Enzyme prodrug therapies hold potential as a targeted treatment option for cancer patients. However, off-target effects can be detrimental to patient health and represent a safety concern. This concern can be alleviated by including a failsafe mechanism that can abort the therapy in healthy cells. This feature can be included in enzyme prodrug therapies by use of conditional degradation tags, which degrade the protein unless stabilized. We call this process Degradation-Directed Enzyme Prodrug Therapy (DDEPT). Herein, we use traceless shielding (TShld), a mechanism that degrades a protein of interest unless it is rescued by the addition of rapamycin, to test this concept. We demonstrated that TShld rapidly yielded only native protein products within 1h after rapamycin addition. The rapid protection phenotype of TShld was further adapted to rescue yeast cytosine deaminase, a prodrug converting enzyme. As expected, cell viability was adversely affected only in the presence of both 5-fluorocytosine (5-FC) and rapamycin. We believe that the DDEPT system can be easily combined with other targeting strategies to further increase the safety of prodrug therapies.
Collapse
Affiliation(s)
- Andrew S Gaynor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, USA.
| |
Collapse
|
27
|
Zhang X, Li X, You Q, Zhang X. Prodrug strategy for cancer cell-specific targeting: A recent overview. Eur J Med Chem 2017; 139:542-563. [DOI: 10.1016/j.ejmech.2017.08.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 01/26/2023]
|
28
|
Wang Q, Hu SC, Yang CS, Chen JC, Zheng JN, Sun XQ, Wang JQ. Inhibition of prostate cancer cell growth in vivo with short hairpin RNA targeting SATB1. Oncol Lett 2017; 14:6592-6596. [PMID: 29151908 PMCID: PMC5678242 DOI: 10.3892/ol.2017.7006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/16/2017] [Indexed: 01/18/2023] Open
Abstract
Despite previous advances, the treatment options for prostate cancer remain limited. For the purposes of gene knockdown, the utility of RNA interference has been demonstrated and is considered to have therapeutic potential. In the present study, a short hairpin RNA (shRNA) was used to assess the effect of special AT-rich sequence binding protein (SATB1) downregulation on the growth and metastatic potential of prostate cancer in xenograft nude mice. A plasmid carrying shRNA targeting SATB1, pSilencer-SATB1-shRNA, was successfully engineered. Using this plasmid, significant downregulation of SATB1 mRNA and protein expression in the DU145 prostate cancer cells was observed. pSilencer-SATB1-shRNA was demonstrated to be markedly efficacious against prostate cancer xenografts in nude mice. These results may lead to a novel method of improving gene therapy efficacy against prostate cancer via regulating the function of SATB1.
Collapse
Affiliation(s)
- Qiang Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, P.R. China
| | - Shi-Cheng Hu
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Chun-Sheng Yang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, P.R. China
| | - Jia-Cun Chen
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jun-Nian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiao-Qing Sun
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Jun-Qi Wang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
29
|
Du B, Li D, Wang J, Wang E. Designing metal-contained enzyme mimics for prodrug activation. Adv Drug Deliv Rev 2017; 118:78-93. [PMID: 28412325 DOI: 10.1016/j.addr.2017.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/22/2017] [Accepted: 04/04/2017] [Indexed: 01/09/2023]
Abstract
Enzyme-activated prodrug therapy (EAPT) is a widely-used and effective treatment method for cancer by converting prodrugs into drugs at the demanded time and space, whose key step is prodrug activation. Traditional prodrug activations are mostly dependent on natural enzymes, which are unstable, expensive and hard to be functionalized. The emerging enzyme mimics, especially the metal-contained enzyme mimics (MEMs), provide a potential chance for improving the traditional EAPT because of their high stability, low cost and easiness of preparation and functionalization. The existing MEMs can be classified into three categories: catalytic core-scaffold MEM (csMEM), nanoparticle MEM (npMEMs) and metal-organic framework (MOF) MEM (mofMEM). These MEMs can mimic diverse functions corresponding to natural enzymes, and some of which are potentially used in prodrug activation, such as DNase, RNase, carbonate esterase, etc. In this review, we briefly summarize the MEMs according to their structure and composition, and highlight the successful and potential applications for prodrug activation mediated by hydrolase-like and oxidoreductase-like MEMs.
Collapse
|
30
|
Vargas AJ, Sittadjody S, Thangasamy T, Mendoza EE, Limesand KH, Burd R. Exploiting Tyrosinase Expression and Activity in Melanocytic Tumors. Integr Cancer Ther 2017; 10:328-40. [DOI: 10.1177/1534735410391661] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Melanoma is an aggressive tumor that expresses the pigmentation enzyme tyrosinase. Tyrosinase expression increases during tumorigenesis, which could allow for selective treatment of this tumor type by strategies that use tyrosinase activity. Approaches targeting tyrosinase would involve gene transcription or signal transduction pathways mediated by p53 in a direct or indirect manner. Two pathways are proposed for exploiting tyrosinase expression: ( a) a p53-dependent pathway leading to apoptosis or arrest and ( b) a reactive oxygen species–mediated induction of endoplasmic reticulum stress in p53 mutant tumors. Both strategies could use tyrosinase-mediated activation of quercetin, a dietary polyphenol that induces the expression of p53 and modulates reactive oxygen species. In addition to antitumor signaling properties, activation of quercetin could complement conventional cancer therapy by the induction of phase II detoxification enzymes resulting in p53 stabilization and transduction of its downstream targets. In conclusion, recent advances in tyrosinase enzymology, prodrug chemistry, and modern chemotherapeutics present an intriguing and selective multitherapy targeting system where dietary bioflavonoids could be used to complement conventional cancer treatments.
Collapse
|
31
|
Abstract
Engineering heterologous nucleoside kinases inside E. coli is a difficult process due to the integral role nucleosides play in cell division and transcription. Nucleoside analogs are used in many kinase screens that depend on cellular metabolization of the analogs. However, metabolic activation of these analogs can be toxic through disruptions of DNA replication and transcription because of the analogs’ structural similarities to native nucleosides. Furthermore, the activity of engineered kinases can be masked by endogenous kinases in the cytoplasm, which leads to more difficulties in assessing target activity. A positive selection method that can discern a heterologous kinases’ enzymatic activity without significantly influencing the cell’s normal metabolic systems would be beneficial. We have developed a means to select for a nucleoside kinase’s activity by transporting the kinase to the periplasmic space of an E. coli strain that has its PhoA alkaline phosphatase knocked out. Our proof-of-principle studies demonstrate that the herpes simplex virus thymidine kinase (HSV-TK) can be transported to the periplasmic space in functional form by attaching a tat-signal sequence to the N-terminus of the protein. HSV-TK phosphorylates the toxic nucleoside analog 3’-azido-3’-deoxythymidine (AZT), and this charged, monophosphate form of AZT cannot cross the inner membrane. The translocation of HSV-TK provides significant resistance to AZT when compared to bacteria lacking a periplasmic HSV-TK. However, resistance decreased dramatically above 40 μg/ml AZT. We propose that this threshold can be used to select for higher activity variants of HSV-TK and other nucleoside kinases in a manner that overcomes the efficiency and localization issues of previous selection schemes. Furthermore, our selection strategy should be a general strategy to select or evaluate nucleoside kinases that phosphorylate nucleosides such as prodrugs that would otherwise be toxic to E. coli.
Collapse
|
32
|
Navarro SA, Carrillo E, Griñán-Lisón C, Martín A, Perán M, Marchal JA, Boulaiz H. Cancer suicide gene therapy: a patent review. Expert Opin Ther Pat 2016; 26:1095-104. [PMID: 27424657 DOI: 10.1080/13543776.2016.1211640] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Cancer is considered the second leading cause of death worldwide despite the progress made in early detection and advances in classical therapies. Advancing in the fight against cancer requires the development of novel strategies, and the suicide gene transfer to tumor cells is providing new possibilities for cancer therapy. AREAS COVERED In this manuscript, authors present an overview of suicide gene systems and the latest innovations done to enhance cancer suicide gene therapy strategies by i) improving vectors for targeted gene delivery using tissue specific promoter and receptors; ii) modification of the tropism; and iii) combining suicide genes and/or classical therapies for cancer. Finally, the authors highlight the main challenges to be addressed in the future. EXPERT OPINION Even if many efforts are needed for suicide gene therapy to be a real alternative for cancer treatment, we believe that the significant progress made in the knowledge of cancer biology and characterization of cancer stem cells accompanied by the development of novel targeted vectors will enhance the effectiveness of this type of therapeutic strategy. Moreover, combined with current treatments, suicide gene therapy will improve the clinical outcome of patients with cancer in the future.
Collapse
Affiliation(s)
- Saúl Abenhamar Navarro
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain
| | - Esmeralda Carrillo
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain.,b Department of Human Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain.,c Biosanitary Institute of Granada (ibs.GRANADA) , University Hospitals of Granada-Univesity of Granada , Granada , Spain
| | - Carmen Griñán-Lisón
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain
| | - Ana Martín
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain
| | - Macarena Perán
- d Department of Health Sciences , University of Jaén , Jaén , Spain
| | - Juan Antonio Marchal
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain.,b Department of Human Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain.,c Biosanitary Institute of Granada (ibs.GRANADA) , University Hospitals of Granada-Univesity of Granada , Granada , Spain
| | - Houria Boulaiz
- a Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research , University of Granada , Granada , Spain.,b Department of Human Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain.,c Biosanitary Institute of Granada (ibs.GRANADA) , University Hospitals of Granada-Univesity of Granada , Granada , Spain
| |
Collapse
|
33
|
Choi SA, Lee YE, Kwak PA, Lee JY, Kim SS, Lee SJ, Phi JH, Wang KC, Song J, Song SH, Joo KM, Kim SK. Clinically applicable human adipose tissue-derived mesenchymal stem cells delivering therapeutic genes to brainstem gliomas. Cancer Gene Ther 2015; 22:302-11. [DOI: 10.1038/cgt.2015.25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022]
|
34
|
Zu B, Shi Y, Xu M, You G, Huang Z, Gao M, Feng W. ARE/SUZ12 dual specifically-regulated adenoviral TK/GCV system for CML blast crisis cells. J Exp Clin Cancer Res 2015; 34:56. [PMID: 26017281 PMCID: PMC4456766 DOI: 10.1186/s13046-015-0139-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treatment of blast phase chronic myeloid leukemia (BP-CML) remains a challenge, and the median survival is less than 6 months. Because effective treatments are lacking, we studied tight targeting of blast crisis CML cells using adenoviral (Ad) vectors expressing a HSV-TK system under dual control of a specific SUZ12 promoter and an antioxidant response element (ARE). METHODS A potential SUZ12 promoter fragment was designed with bioinformatics databases and identified with a luciferase assay. Next, we cloned the ARE element of the NQO1 gene and developed Ad vectors expressing TK kinase or luciferase under the dual control of a specific SUZ12 promoter and an ARE element. An in vitro transfection assay with Ad-ARE/SUZ12-Luc was used to determine promoter activity of ARE/SUZ12 regulatory element in blast crisis CML cells. After incubating human BP-CML-derived cells with Ad-ARE/SUZ12-TK and ganciclovir, Western blot, CCK8, Immunofluorescent assays and Annexin V assays were conducted to assess the efficacy of an ARE/SUZ12 dual-specific TK/GCV system for BP-CML cell lines. RESULTS Here, luciferase data confirmed significantly higher and specificer promoter activity of the ARE/SUZ12 composite component in CML blast crisis-derived cell lines (K562, KCL22, and K562/G01) compared to HepG2 cells, and Ad-AS-TK/GCV system could exhibit enhanced apoptotic effects and decreased cell viability for BP-CML cell lines. Additionally, Ad-AS-TK/GCV system altered expression of cycle-related and apoptosis-related proteins in BP-CML cell lines. CONCLUSIONS Thus, ARE/SUZ12 dual targeting TK/GCV system was effective in killing BP-CML cells. Moreover, efficacy and specificity of CML cell eradication were enhanced by synergistic effects of ARE/SUZ12 dual-specific regulation. We conclude that suicide gene-targeted therapy might hold promise for BP-CML treatment.
Collapse
Affiliation(s)
- Bailing Zu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| | - Yi Shi
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Min Xu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| | - Guoling You
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| | - Miao Gao
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics of Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
35
|
NguyenThai QA, Sharma N, Luong DH, Sodhi SS, Kim JH, Kim N, Oh SJ, Jeong DK. Targeted inhibition of osteosarcoma tumor growth by bone marrow-derived mesenchymal stem cells expressing cytosine deaminase/5-fluorocytosine in tumor-bearing mice. J Gene Med 2015; 17:87-99. [DOI: 10.1002/jgm.2826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/04/2015] [Accepted: 03/05/2015] [Indexed: 01/06/2023] Open
Affiliation(s)
- Quynh-Anh NguyenThai
- Department of Animal Biotechnology; Faculty of Biotechnology, Jeju National University; Jeju Si Jeju-do South Korea
| | - Neelesh Sharma
- Department of Animal Biotechnology; Faculty of Biotechnology, Jeju National University; Jeju Si Jeju-do South Korea
| | - Do Huynh Luong
- Department of Animal Biotechnology; Faculty of Biotechnology, Jeju National University; Jeju Si Jeju-do South Korea
| | - Simrinder Singh Sodhi
- Department of Animal Biotechnology; Faculty of Biotechnology, Jeju National University; Jeju Si Jeju-do South Korea
| | - Jeong-Hyun Kim
- Department of Animal Biotechnology; Faculty of Biotechnology, Jeju National University; Jeju Si Jeju-do South Korea
| | - Nameun Kim
- Department of Animal Biotechnology; Faculty of Biotechnology, Jeju National University; Jeju Si Jeju-do South Korea
| | - Sung-Jong Oh
- Department of Animal Biotechnology; Faculty of Biotechnology, Jeju National University; Jeju Si Jeju-do South Korea
| | - Dong Kee Jeong
- Department of Animal Biotechnology; Faculty of Biotechnology, Jeju National University; Jeju Si Jeju-do South Korea
| |
Collapse
|
36
|
Zhang TY, Huang B, Wu HB, Wu JH, Li LM, Li YX, Hu YL, Han M, Shen YQ, Tabata Y, Gao JQ. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice. J Control Release 2015; 209:260-71. [PMID: 25966361 DOI: 10.1016/j.jconrel.2015.05.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/17/2015] [Accepted: 05/08/2015] [Indexed: 11/30/2022]
Abstract
The success of conventional suicide gene therapy for cancer treatment is still limited because of lack of efficient delivery methods, as well as poor penetration into tumor tissues. Mesenchymal stem cells (MSCs) have recently emerged as potential vehicles in improving delivery issues. However, these stem cells are usually genetically modified using viral gene vectors for suicide gene overexpression to induce sufficient therapeutic efficacy. This approach may result in safety risks for clinical translation. Therefore, we designed a novel strategy that uses non-viral gene vector in modifying MSCs with suicide genes to reduce risks. In addition, these cells were co-administrated with prodrug-encapsulated liposomes for synergistic anti-tumor effects. Results demonstrate that this strategy is effective for gene and prodrug delivery, which co-target tumor tissues, to achieve a significant decrease in tumor colonization and a subsequent increase in survival in a murine melanoma lung metastasis model. Moreover, for the first time, we demonstrated the permeability of MSCs within tumor nests by using an in vitro 3D tumor spheroid model. Thus, the present study provides a new strategy to improve the delivery problem in conventional suicide gene therapy and enhance the therapeutic efficacy. Furthermore, this study also presents new findings to improve our understanding of MSCs in tumor-targeted gene delivery.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Bing Huang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Hai-Bin Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Jia-He Wu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Li-Ming Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yan-Xin Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Yu-Lan Hu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Min Han
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - You-Qing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou, PR China
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jian-Qing Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
37
|
Kanai R, Rabkin SD. Combinatorial strategies for oncolytic herpes simplex virus therapy of brain tumors. CNS Oncol 2015; 2:129-42. [PMID: 23687568 DOI: 10.2217/cns.12.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses, such as the oncolytic herpes simplex virus (oHSV), are an exciting new therapeutic strategy for cancer as they are replication competent in tumor cells but not normal cells. In order to engender herpes simplex virus with oncolytic activity and make it safe for clinical application, mutations are engineered into the virus. Glioblastoma multiforme (GBM) is the most common and deadly primary brain tumor in adults. Despite many advances in therapy, overall survival has not been substantially improved over the last several decades. A number of different oHSVs have been tested as monotherapy in early-phase clinical trials for GBM and have demonstrated safety and anecdotal evidence of efficacy. However, strategies to improve efficacy are likely to be necessary to successfully treat GBM. Cancer treatment usually involves multimodal approaches, so the standard of care for GBM includes surgery, radiotherapy and chemotherapy. In preclinical GBM models, combinations of oHSV with other types of therapy have exhibited markedly improved activity over individual treatments alone. In this review, we will discuss the various combination strategies that have been employed with oHSV, including chemotherapy, small-molecule inhibitors, antiangiogenic agents, radiotherapy and expression of therapeutic transgenes. Effective combinations, especially synergistic ones, are clinically important not just for improved efficacy but also to permit lower and less-toxic doses and potentially overcome resistance.
Collapse
|
38
|
Nemani KV, Ennis RC, Griswold KE, Gimi B. Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug therapy. J Biotechnol 2015; 203:32-40. [PMID: 25820125 DOI: 10.1016/j.jbiotec.2015.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 11/17/2022]
Abstract
Engineered bacterial cells that are designed to express therapeutic enzymes under the transcriptional control of remotely inducible promoters can mediate the de novo conversion of non-toxic prodrugs to their cytotoxic forms. In situ cellular expression of enzymes provides increased stability and control of enzyme activity as compared to isolated enzymes. We have engineered Escherichia coli (E. coli), designed to express cytosine deaminase at elevated temperatures, under the transcriptional control of thermo-regulatory λpL-cI857 promoter cassette which provides a thermal switch to trigger enzyme synthesis. Enhanced cytosine deaminase expression was observed in cultures incubated at 42°C as compared to 30°C, and enzyme expression was further substantiated by spectrophotometric assays indicating enhanced conversion of 5-fluorocytosine to 5-fluorouracil. The engineered cells were subsequently co-encapsulated with magnetic iron oxide nanoparticles in immunoprotective alginate microcapsules, and cytosine deaminase expression was triggered remotely by alternating magnetic field-induced hyperthermia. The combination of 5-fluorocytosine with AMF-activated microcapsules demonstrated tumor cell cytotoxicity comparable to direct treatment with 5-fluorouracil chemotherapy. Such enzyme-prodrug therapy, based on engineered and immunoisolated E. coli, may ultimately yield an improved therapeutic index relative to monotherapy, as AMF mediated hyperthermia might be expected to pre-sensitize tumors to chemotherapy under appropriate conditions.
Collapse
Affiliation(s)
| | | | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH, USA; Department of Biological Sciences, Dartmouth, Hanover, NH, USA; Program in Molecular and Cellular Biology, Dartmouth, Hanover, NH, USA
| | - Barjor Gimi
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth, Hanover, NH, USA; Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
39
|
Alekseenko IV, Snezhkov EV, Chernov IP, Pleshkan VV, Potapov VK, Sass AV, Monastyrskaya GS, Kopantzev EP, Vinogradova TV, Khramtsov YV, Ulasov AV, Rosenkranz AA, Sobolev AS, Bezborodova OA, Plyutinskaya AD, Nemtsova ER, Yakubovskaya RI, Sverdlov ED. Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer. J Transl Med 2015; 13:78. [PMID: 25880666 PMCID: PMC4359447 DOI: 10.1186/s12967-015-0433-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/10/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Gene-directed enzyme prodrug therapy (GDEPT) represents a technology to improve drug selectivity for cancer cells. It consists of delivery into tumor cells of a suicide gene responsible for in situ conversion of a prodrug into cytotoxic metabolites. Major limitations of GDEPT that hinder its clinical application include inefficient delivery into cancer cells and poor prodrug activation by suicide enzymes. We tried to overcome these constraints through a combination of suicide gene therapy with immunomodulating therapy. Viral vectors dominate in present-day GDEPT clinical trials due to efficient transfection and production of therapeutic genes. However, safety concerns associated with severe immune and inflammatory responses as well as high cost of the production of therapeutic viruses can limit therapeutic use of virus-based therapeutics. We tried to overcome this problem by using a simple nonviral delivery system. METHODS We studied the antitumor efficacy of a PEI (polyethylenimine)-PEG (polyethylene glycol) copolymer carrying the HSVtk gene combined in one vector with granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA. The system HSVtk-GM-CSF/PEI-PEG was tested in vitro in various mouse and human cell lines, ex vivo and in vivo using mouse models. RESULTS We showed that the HSVtk-GM-CSF/PEI-PEG system effectively inhibited the growth of transplanted human and mouse tumors, suppressed metastasis and increased animal lifespan. CONCLUSIONS We demonstrated that appreciable tumor shrinkage and metastasis inhibition could be achieved with a simple and low toxic chemical carrier - a PEI-PEG copolymer. Our data indicate that combined suicide and cytokine gene therapy may provide a powerful approach for the treatment of solid tumors and their metastases.
Collapse
Affiliation(s)
- Irina V Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, 123182, Russia.
| | - Eugene V Snezhkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Igor P Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Victor V Pleshkan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, 123182, Russia.
| | - Victor K Potapov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Alexander V Sass
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Galina S Monastyrskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Eugene P Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Tatyana V Vinogradova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
| | - Yuri V Khramtsov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova, 34/5, Moscow, 119334, Russia.
| | - Alexey V Ulasov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova, 34/5, Moscow, 119334, Russia.
| | - Andrey A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova, 34/5, Moscow, 119334, Russia.
- Moscow State University, Biological Faculty, ul. Leninskiye Gory, 1-12, Moscow, 119234, Russia.
| | - Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova, 34/5, Moscow, 119334, Russia.
- Moscow State University, Biological Faculty, ul. Leninskiye Gory, 1-12, Moscow, 119234, Russia.
| | - Olga A Bezborodova
- Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, 2nd Botkinskiy proezd 3, Moscow, 125284, Russia.
| | - Anna D Plyutinskaya
- Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, 2nd Botkinskiy proezd 3, Moscow, 125284, Russia.
| | - Elena R Nemtsova
- Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, 2nd Botkinskiy proezd 3, Moscow, 125284, Russia.
| | - Raisa I Yakubovskaya
- Moscow Hertsen Research Institute of Oncology, Russian Ministry of Health Care, 2nd Botkinskiy proezd 3, Moscow, 125284, Russia.
| | - Eugene D Sverdlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia.
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, 123182, Russia.
| |
Collapse
|
40
|
Oh B, Han J, Choi E, Tan X, Lee M. Peptide micelle-mediated delivery of tissue-specific suicide gene and combined therapy with avastin in a glioblastoma model. J Pharm Sci 2015; 104:1461-9. [PMID: 25631673 DOI: 10.1002/jps.24363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/15/2014] [Accepted: 01/05/2015] [Indexed: 11/05/2022]
Abstract
Bevacizumab (Avastin) is an angiogenesis inhibitor used as a treatment for various cancers. In this study, the combination therapy of Avastin and glioblastoma-specific thymidine kinase gene [pEpo-NI2-SV-herpes simplex virus thymidine kinase(HSVtk)] was evaluated in a glioblastoma animal model. The R7L10 peptide was used as a gene carrier of pEpo-NI2-SV-HSVtk. Gel retardation assays confirmed that R7L10 formed stable complexes with pEpo-NI2-SV-HSVtk. R7L10 protected DNA from nuclease digestion. R7L10 had lower transfection efficiency than polyethylenimine (PEI; 25 kDa). However, the in vitro and in vivo toxicity assays showed that R7L10 had lower cytotoxicity than PEI, suggesting that R7L10 is safer than PEI. For the combination therapy, Avastin was injected intravenously and the pEpo-NI2-SV-HSVtk/R7L10 complexes were injected intratumorally in the glioblastoma animal model. Tumor growth was most effectively inhibited by the combination therapy of Avastin and the gene. The immunostaining results confirmed that the HSVtk genes were expressed in the groups with the pEpo-NI2-SV-HSVtk/R7L10 complex. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed a higher level of apoptotic cells in the combination group than the pEpo-NI2-SV-HSVtk/R7L10 complex or Avastin group. In conclusion, the combination of Avastin and the glioblastoma-specific HSVtk gene has a higher antitumor effect than single therapy of Avastin or HSVtk after intratumoral administration in glioblastoma animal model.
Collapse
Affiliation(s)
- Binna Oh
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | | | | | | | | |
Collapse
|
41
|
Abstract
Stem cell-based therapeutic strategies have emerged as very attractive treatment options over the past decade. Stem cells are now being utilized as delivery vehicles especially in cancer therapy to deliver a number of targeted proteins and viruses. This chapter aims to shed light on numerous studies that have successfully employed these strategies to target various cancer types with a special emphasis on numerous aspects that are critical to the success of future stem cell-based therapies for cancer.
Collapse
|
42
|
KC RB, Kucharski C, Uludağ H. Additive nanocomplexes of cationic lipopolymers for improved non-viral gene delivery to mesenchymal stem cells. J Mater Chem B 2015; 3:3972-3982. [DOI: 10.1039/c4tb02101k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Additive polyplexes composed of cationic lipopolymers and hyaluronic acid–pDNA combination for implementing gene delivery to mesenchymal stem cells.
Collapse
Affiliation(s)
- Remant Bahadur KC
- Department of Chemical & Material Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Cezary Kucharski
- Department of Chemical & Material Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| | - Hasan Uludağ
- Department of Chemical & Material Engineering
- Faculty of Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
43
|
Doloff JC, Waxman DJ. Adenoviral vectors for prodrug activation-based gene therapy for cancer. Anticancer Agents Med Chem 2014; 14:115-26. [PMID: 23869779 DOI: 10.2174/18715206113139990309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/09/2013] [Accepted: 04/10/2013] [Indexed: 11/22/2022]
Abstract
Cancer cell heterogeneity is a common feature - both between patients diagnosed with the same cancer and within an individual patient's tumor - and leads to widely different response rates to cancer therapies and the potential for the emergence of drug resistance. Diverse therapeutic approaches have been developed to combat the complexity of cancer, including individual treatment modalities designed to target tumor heterogeneity. This review discusses adenoviral vectors and how they can be modified to replicate in a cancer-specific manner and deliver therapeutic genes under multi-tiered regulation to target tumor heterogeneity, including heterogeneity associated with cancer stem cell-like subpopulations. Strategies that allow for combination of prodrug-activation gene therapy with a novel replication-conditional, heterogeneous tumor-targeting adenovirus are discussed, as are the benefits of using adenoviral vectors as tumor-targeting oncolytic vectors. While the anticancer activity of many adenoviral vectors has been well established in preclinical studies, only limited successes have been achieved in the clinic, indicating a need for further improvements in activity, specificity, tumor cell delivery and avoidance of immunogenicity.
Collapse
Affiliation(s)
| | - David J Waxman
- Department of Cell and Molecular, Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
44
|
Kim JH, Lee HJ, Song YS. Stem cell based gene therapy in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:549136. [PMID: 25121103 PMCID: PMC4120795 DOI: 10.1155/2014/549136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/02/2014] [Indexed: 02/08/2023]
Abstract
Current prostate cancer treatment, especially hormone refractory cancer, may create profound iatrogenic outcomes because of the adverse effects of cytotoxic agents. Suicide gene therapy has been investigated for the substitute modality for current chemotherapy because it enables the treatment targeting the cancer cells. However the classic suicide gene therapy has several profound side effects, including immune-compromised due to viral vector. Recently, stem cells have been regarded as a new upgraded cellular vehicle or vector because of its homing effects. Suicide gene therapy using genetically engineered mesenchymal stem cells or neural stem cells has the advantage of being safe, because prodrug administration not only eliminates tumor cells but consequently kills the more resistant therapeutic stem cells as well. The attractiveness of prodrug cancer gene therapy by stem cells targeted to tumors lies in activating the prodrug directly within the tumor mass, thus avoiding systemic toxicity. Therapeutic achievements using stem cells in prostate cancer include the cytosine deaminase/5-fluorocytosine prodrug system, herpes simplex virus thymidine kinase/ganciclovir, carboxyl esterase/CPT11, and interferon-beta. The aim of this study is to review the stem cell therapy in prostate cancer including its proven mechanisms and also limitations.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University, College of Medicine, Soonchunyang University Hospital, Seoul 140-743, Republic of Korea
| | - Hong Jun Lee
- Medical Research Institute, Chung-Ang School of Medicine, Seoul 156-756, Republic of Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University, College of Medicine, Soonchunyang University Hospital, Seoul 140-743, Republic of Korea
| |
Collapse
|
45
|
Okura H, Smith CA, Rutka JT. Gene therapy for malignant glioma. MOLECULAR AND CELLULAR THERAPIES 2014; 2:21. [PMID: 26056588 PMCID: PMC4451964 DOI: 10.1186/2052-8426-2-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most frequent and devastating primary brain tumor in adults. Despite current treatment modalities, such as surgical resection followed by chemotherapy and radiotherapy, only modest improvements in median survival have been achieved. Frequent recurrence and invasiveness of GBM are likely due to the resistance of glioma stem cells to conventional treatments; therefore, novel alternative treatment strategies are desperately needed. Recent advancements in molecular biology and gene technology have provided attractive novel treatment possibilities for patients with GBM. Gene therapy is defined as a technology that aims to modify the genetic complement of cells to obtain therapeutic benefit. To date, gene therapy for the treatment of GBM has demonstrated anti-tumor efficacy in pre-clinical studies and promising safety profiles in clinical studies. However, while this approach is obviously promising, concerns still exist regarding issues associated with transduction efficiency, viral delivery, the pathologic response of the brain, and treatment efficacy. Tumor development and progression involve alterations in a wide spectrum of genes, therefore a variety of gene therapy approaches for GBM have been proposed. Improved viral vectors are being evaluated, and the potential use of gene therapy alone or in synergy with other treatments against GBM are being studied. In this review, we will discuss the most commonly studied gene therapy approaches for the treatment of GBM in preclinical and clinical studies including: prodrug/suicide gene therapy; oncolytic gene therapy; cytokine mediated gene therapy; and tumor suppressor gene therapy. In addition, we review the principles and mechanisms of current gene therapy strategies as well as advantages and disadvantages of each.
Collapse
Affiliation(s)
- Hidehiro Okura
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, 17th Floor, Toronto, ON M5G 0A4 Canada ; Department of Neurosurgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Christian A Smith
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, 17th Floor, Toronto, ON M5G 0A4 Canada
| | - James T Rutka
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, 17th Floor, Toronto, ON M5G 0A4 Canada ; Department of Surgery, University of Toronto, 149 College Street, 5th Floor, Toronto, Ontario M5T 1P5 Canada ; Division of Neurosurgery, The Hospital for Sick Children, Suite 1503, 555 University Avenue, Toronto, Ontario M5G 1X8 Canada
| |
Collapse
|
46
|
Abstract
Cell-based therapeutics have advanced significantly over the past decade and are poised to become a major pillar of modern medicine. Three cell types in particular have been studied in detail for their ability to home to tumors and to deliver a variety of different payloads. Neural stem cells, mesenchymal stem cells and monocytes have each been shown to have great potential as future delivery systems for cancer therapy. A variety of other cell types have also been studied. These results demonstrate that the field of cell-based therapeutics will only continue to grow.
Collapse
|
47
|
Polvani S, Tarocchi M, Tempesti S, Mello T, Ceni E, Buccoliero F, D'Amico M, Boddi V, Farsi M, Nesi S, Nesi G, Milani S, Galli A. COUP-TFII in pancreatic adenocarcinoma: clinical implication for patient survival and tumor progression. Int J Cancer 2014; 134:1648-58. [PMID: 24122412 DOI: 10.1002/ijc.28502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 08/10/2013] [Accepted: 09/06/2013] [Indexed: 12/16/2023]
Abstract
Despite the accumulating knowledge of alterations in pancreatic cancer molecular pathways, no substantial improvements in the clinical prognosis have been made and this malignancy continues to be a leading cause of cancer death in the Western World. The orphan nuclear receptor COUP-TFII is a regulator of a wide range of biological processes and it may exert a pro-oncogenic role in cancer cells; interestingly, indirect evidences suggest that the receptor could be involved in pancreatic cancer. The aim of this study was to evaluate the expression of COUP-TFII in human pancreatic tumors and to unveil its role in the regulation of pancreatic tumor growth. We evaluated COUP-TFII expression by immunohistochemistry on primary samples. We analyzed the effect of the nuclear receptor silencing in human pancreatic cancer cells by means of shRNA expressing cell lines. We finally confirmed the in vitro results by in vivo experiments on nude mice. COUP-TFII is expressed in 69% of tested primary samples and correlates with the N1 and M1 status and clinical stage; Kaplan-Meier and Cox regression analysis show that it may be an independent prognostic factor of worst outcome. In vitro silencing of COUP-TFII reduces the cell growth and invasiveness and it strongly inhibits angiogenesis, an effect mediated by the regulation of VEGF-C. In nude mice, COUP-TFII silencing reduces tumor growth by 40%. Our results suggest that COUP-TFII might be an important regulator of the behavior of pancreatic adenocarcinoma, thus representing a possible new target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Alaee F, Sugiyama O, Virk MS, Tang H, Drissi H, Lichtler AC, Lieberman JR. Suicide gene approach using a dual-expression lentiviral vector to enhance the safety of ex vivo gene therapy for bone repair. Gene Ther 2013; 21:139-47. [PMID: 24285218 DOI: 10.1038/gt.2013.66] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/14/2013] [Accepted: 10/11/2013] [Indexed: 11/09/2022]
Abstract
'Ex vivo' gene therapy using viral vectors to overexpress BMP-2 is shown to heal critical-sized bone defects in experimental animals. To increase its safety, we constructed a dual-expression lentiviral vector to overexpress BMP-2 or luciferase and an HSV1-tk analog, Δtk (LV-Δtk-T2A-BMP-2/Luc). We hypothesized that administering ganciclovir (GCV) will eliminate the transduced cells at the site of implantation. The vector-induced expression of BMP-2 and luciferase in a mouse stromal cell line (W-20-17 cells) and mouse bone marrow cells (MBMCs) was reduced by 50% compared with the single-gene vector. W-20-17 cells were more sensitive to GCV compared with MBMCs (90-95% cell death at 12 days with GCV at 1 μg ml(-1) in MBMCs vs 90-95% cell death at 5 days by 0.1 μg ml(-1) of GCV in W-20-17 cells). Implantation of LV-Δtk-T2A-BMP-2 transduced MBMCs healed a 2 mm femoral defect at 4 weeks. Early GCV treatment (days 0-14) postoperatively blocked bone formation confirming a biologic response. Delayed GCV treatment starting at day 14 for 2 or 4 weeks reduced the luciferase signal from LV-Δtk-T2A-Luc-transduced MBMCs, but the signal was not completely eliminated. These data suggest that this suicide gene strategy has potential for clinical use in the future, but will need to be optimized for increased efficiency.
Collapse
Affiliation(s)
- F Alaee
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - O Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - M S Virk
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - H Tang
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| | - H Drissi
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, CT, USA
| | - A C Lichtler
- Department of Genetics and Developmental Biology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - J R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine at USC, Los Angeles, CA, USA
| |
Collapse
|
50
|
Zawilska JB, Wojcieszak J, Olejniczak AB. Prodrugs: a challenge for the drug development. Pharmacol Rep 2013; 65:1-14. [PMID: 23563019 DOI: 10.1016/s1734-1140(13)70959-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/14/2012] [Indexed: 12/31/2022]
Abstract
It is estimated that about 10% of the drugs approved worldwide can be classified as prodrugs. Prodrugs, which have no or poor biological activity, are chemically modified versions of a pharmacologically active agent, which must undergo transformation in vivo to release the active drug. They are designed in order to improve the physicochemical, biopharmaceutical and/or pharmacokinetic properties of pharmacologically potent compounds. This article describes the basic functional groups that are amenable to prodrug design, and highlights the major applications of the prodrug strategy, including the ability to improve oral absorption and aqueous solubility, increase lipophilicity, enhance active transport, as well as achieve site-selective delivery. Special emphasis is given to the role of the prodrug concept in the design of new anticancer therapies, including antibody-directed enzyme prodrug therapy (ADEPT) and gene-directed enzyme prodrug therapy (GDEPT).
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, PL 93-232 Łódź, Poland.
| | | | | |
Collapse
|