1
|
Ghasemi N, Azizi H. Exploring Myc puzzle: Insights into cancer, stem cell biology, and PPI networks. Gene 2024; 916:148447. [PMID: 38583818 DOI: 10.1016/j.gene.2024.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
"The grand orchestrator," "Universal Amplifier," "double-edged sword," and "Undruggable" are just some of the Myc oncogene so-called names. It has been around 40 years since the discovery of the Myc, and it remains in the mainstream of cancer treatment drugs. Myc is part of basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily proteins, and its dysregulation can be seen in many malignant human tumors. It dysregulates critical pathways in cells that are connected to each other, such as proliferation, growth, cell cycle, and cell adhesion, impacts miRNAs action, intercellular metabolism, DNA replication, differentiation, microenvironment regulation, angiogenesis, and metastasis. Myc, surprisingly, is used in stem cell research too. Its family includes three members, MYC, MYCN, and MYCL, and each dysfunction was observed in different cancer types. This review aims to introduce Myc and its function in the body. Besides, Myc deregulatory mechanisms in cancer cells, their intricate aspects will be discussed. We will look at promising drugs and Myc-based therapies. Finally, Myc and its role in stemness, Myc pathways based on PPI network analysis, and future insights will be explained.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
2
|
Mukerjee N, Nag S, Bhattacharya B, Alexiou A, Mirgh D, Mukherjee D, Adhikari MD, Anand K, Muthusamy R, Gorai S, Thorat N. Clinical impact of epithelial–mesenchymal transition for cancer therapy. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe epithelial–mesenchymal transition (EMT) represents a pivotal frontier in oncology, playing a central role in the metastatic cascade of cancer—a leading global health challenge. This comprehensive review delves into the complexities of EMT, a process where cancer cells gain exceptional mobility, facilitating their invasion into distant organs and the establishment of secondary malignancies. We thoroughly examine the myriad of factors influencing EMT, encompassing transcription factors, signalling pathways, metabolic alterations, microRNAs, long non‐coding RNAs, epigenetic changes, exosomal interactions and the intricate dynamics of the tumour microenvironment. Particularly, the review emphasises the advanced stages of EMT, crucial for the development of highly aggressive cancer phenotypes. During this phase, cancer cells penetrate the vascular barrier and exploit the bloodstream to propagate life‐threatening metastases through the mesenchymal–epithelial transition. We also explore EMT's significant role in fostering tumour dormancy, senescence, the emergence of cancer stem cells and the formidable challenge of therapeutic resistance. Our review transcends a mere inventory of EMT‐inducing elements; it critically assesses the current state of EMT‐focused clinical trials, revealing both the hurdles and significant breakthroughs. Highlighting the potential of EMT research, we project its transformative impact on the future of cancer therapy. This exploration is aimed at paving the way towards an era of effectively managing this relentless disease, positioning EMT at the forefront of innovative cancer research strategies.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology West Bengal State University, Barasat Kolkata India
| | - Sagnik Nag
- Department of Bio‐Sciences School of Biosciences & Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology School of Biosciences and Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Athanasios Alexiou
- Department of Science and Engineering Novel Global Community Educational Foundation Hebersham New South Wales Australia
| | - Divya Mirgh
- Vaccine and Immunotherapy Canter Massachusetts General Hospital Boston Massachusetts USA
| | | | - Manab Deb Adhikari
- Department of Biotechnology University of North Bengal Darjeeling West Bengal India
| | - Krishnan Anand
- Department of Chemical Pathology School of Pathology Faculty of Health Sciences University of the Free State Bloemfontein South Africa
| | - Raman Muthusamy
- Center for Global Health Research Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | | | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics Bernal Institute University of Limerick, Castletroy Limerick Ireland
| |
Collapse
|
3
|
Grafals-Ruiz N, Sánchez-Álvarez AO, Santana-Rivera Y, Lozada-Delgado EL, Rabelo-Fernandez RJ, Rios-Vicil CI, Valiyeva F, Vivas-Mejia PE. MicroRNA-92b targets tumor suppressor gene FBXW7 in glioblastoma. Front Oncol 2023; 13:1249649. [PMID: 37752997 PMCID: PMC10518455 DOI: 10.3389/fonc.2023.1249649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Introduction Glioblastoma (GBM) is a highly aggressive and lethal primary brain tumor. Despite limited treatment options, the overall survival of GBM patients has shown minimal improvement over the past two decades. Factors such as delayed cancer diagnosis, tumor heterogeneity, cancer stem cell survival, infiltrative nature of GBM cells, metabolic reprogramming, and development of therapy resistance contribute to treatment failure. To address these challenges, multitargeted therapies are urgently needed for improved GBM treatment outcomes. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression. Dysregulated miRNAs have been identified in GBM, playing roles in tumor initiation, progression, and maintenance. Among these miRNAs, miR-92b (miRNA-92b-3p) has been found to be overexpressed in various cancers, including GBM. However, the specific target genes of miR-92b and its therapeutic potential in GBM remain poorly explored. Methods Samples encompassed T98G, U87, and A172 human GBM cell lines, GBM tumors from Puerto Rican patients, and murine tumors. In-situ hybridization (ISH) assessed miR-92b expression in patient tumors. Transient and stable transfections modified miR-92b levels in GBM cell lines. Real-time PCR gauged gene expressions. Caspase 3 and Trypan Blue assays evaluated apoptosis and viability. Bioinformatics tools (TargetScanHuman 8.0, miRDB, Diana tools, miRWalk) predicted targets. Luciferase assays and Western Blots validated miRNA-target interactions. A subcutaneous GBM Xenograft mouse model received intraperitoneal NC-OMIs or miR92b-OMIs encapsulated in liposomes, three-times per week for two weeks. Analysis utilized GraphPad Prism 8; statistical significance was assessed using 2-tailed, unpaired Student's t-test and two-way ANOVA as required. Results This study investigated the expression of miR-92b in GBM tumors compared to normal brain tissue samples, revealing a significant upregulation. Inhibition of miR-92b using oligonucleotide microRNA inhibitors (OMIs) suppressed GBM cell growth, migration, and induced apoptosis, while ectopic expression of miR-92b yielded opposite effects. Systemic administration of liposomal-miR92b-OMIs in GBM xenograft mice resulted in reductions in tumor volume and weight. Subsequent experiments identified F-Box and WD Repeat Domain Containing 7 (FBXW7) as a direct target gene of miR-92b in GBM cells. Discussion FBXW7 acts as a tumor suppressor gene in various cancer types, and analysis of patient data demonstrated that GBM patients with higher FBXW7 mRNA levels had significantly better overall survival compared to those with lower levels. Taken together, our findings suggest that the dysregulated expression of miR-92b in GBM contributes to tumor progression by targeting FBXW7. These results highlight the potential of miR-92b as a therapeutic target for GBM. Further exploration and development of miR-92b-targeted therapies may offer a novel approach to improve treatment outcomes in GBM patients.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Yasmarie Santana-Rivera
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Dentistry School, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L. Lozada-Delgado
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Departments of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Robert J. Rabelo-Fernandez
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Departments of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Fatima Valiyeva
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Pablo E. Vivas-Mejia
- University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
4
|
Al-Khreisat MJ, Hussain FA, Abdelfattah AM, Almotiri A, Al-Sanabra OM, Johan MF. The Role of NOTCH1, GATA3, and c-MYC in T Cell Non-Hodgkin Lymphomas. Cancers (Basel) 2022; 14:cancers14112799. [PMID: 35681778 PMCID: PMC9179380 DOI: 10.3390/cancers14112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Lymphomas are heterogeneous malignant tumours of white blood cells characterised by the aberrant proliferation of mature lymphoid cells or their precursors. Lymphomas are classified into main types depending on the histopathologic evidence of biopsy taken from an enlarged lymph node, progress stages, treatment strategies, and outcomes: Hodgkin and non-Hodgkin lymphoma (NHL). Moreover, lymphomas can be further divided into subtypes depending on the cell origin, and immunophenotypic and genetic aberrations. Many factors play vital roles in the progression, pathogenicity, incidence, and mortality rate of lymphomas. Among NHLs, peripheral T cell lymphomas (PTCLs) are rare lymphoid malignancies, that have various cellular morphology and genetic mutations. The clinical presentations are usually observed at the advanced stage of the disease. Many recent studies have reported that the expressions of NOTCH1, GATA3, and c-MYC are associated with poorer prognosis in PTCL and are involved in downstream activities. However, questions have been raised about the pathological relationship between these factors in PTCLs. Therefore, in this review, we investigate the role and relationship of the NOTCH1 pathway, transcriptional factor GATA3 and proto-oncogene c-MYC in normal T cell development and malignant PTCL subtypes.
Collapse
Affiliation(s)
- Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Ali Mahmoud Abdelfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences—Dawadmi, Shaqra University, Dawadmi 17464, Saudi Arabia;
| | - Ola Mohammed Al-Sanabra
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan;
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-97-67-62-00
| |
Collapse
|
5
|
Liu Q, Han C, Wu X, Zhou J, Zang W. F‑box and WD repeat‑containing protein 7 ameliorates angiotensin II‑induced myocardial hypertrophic injury via the mTOR‑mediated autophagy pathway. Exp Ther Med 2022; 24:464. [PMID: 35747152 PMCID: PMC9204530 DOI: 10.3892/etm.2022.11391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 11/05/2022] Open
Abstract
Myocardial hypertrophy is a common heart disease that is closely associated with heart failure. The expression of F-box and WD repeat-containing protein 7 (FBW7) is significantly downregulated in angiotensin (Ang) II-induced cardiac fibroblasts, suggesting that it may possess an important function in cardiac development. The present study attempted to explore the role of FBW7 in Ang II-induced myocardial hypertrophic injury and its associated mechanism of action. Reverse transcription-quantitative PCR and western blotting were used to determine the expression levels of FBW7 in Ang II-induced H9C2 cells. The expression levels of autophagy-related and mTOR signaling pathway-related proteins were detected using western blotting. Cell viability was assessed using the Cell Counting Kit-8 assay. The apoptosis rate of H9C2 cells was detected using TUNEL assay and western blotting. Cellular hypertrophy and fibrosis were assessed using phalloidin staining and western blotting. Levels of inflammatory factors were examined using ELISA and western blotting, whereas levels of oxidative stress-related markers were detected by corresponding kits. The results indicated that FBW7 expression was downregulated in Ang II-induced H9C2 cells. FBW7 upregulation enhanced the expression levels of autophagy-related proteins and activated mTOR-mediated cellular autophagy. FBW7 overexpression promoted the cell viability, inhibited Ang II-induced apoptosis, cellular hypertrophy and fibrosis in H9C2 cells via the autophagic pathway, as well as inflammation and oxidative stress. Overall, the data indicated that FBW7 overexpression ameliorated Ang II-induced hypertrophic myocardial injury via the mTOR-mediated autophagic pathway.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, P.R. China
| | - Chenjun Han
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Xiaoyun Wu
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Jian Zhou
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | - Wangfu Zang
- Department of Cardio‑Thoracic Surgery, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
6
|
Shen JZ, Qiu Z, Wu Q, Zhang G, Harris R, Sun D, Rantala J, Barshop WD, Zhao L, Lv D, Won KA, Wohlschlegel J, Sangfelt O, Laman H, Rich JN, Spruck C. A FBXO7/EYA2-SCF FBXW7 axis promotes AXL-mediated maintenance of mesenchymal and immune evasion phenotypes of cancer cells. Mol Cell 2022; 82:1123-1139.e8. [PMID: 35182481 PMCID: PMC8934274 DOI: 10.1016/j.molcel.2022.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/β, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.
Collapse
Affiliation(s)
- Jia Z Shen
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Zhixin Qiu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| | - Rebecca Harris
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Dahui Sun
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linjie Zhao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Deguan Lv
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA; Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Charles Spruck
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Thirmanne HN, Wu F, Janssens DH, Swanger J, Diab A, Feldman H, Amezquita RA, Gottardo R, Paddison PJ, Henikoff S, Clurman BE. Global and context-specific transcriptional consequences of oncogenic Fbw7 mutations. eLife 2022; 11:74338. [PMID: 35225231 PMCID: PMC8926403 DOI: 10.7554/elife.74338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
The Fbw7 ubiquitin ligase targets many proteins for proteasomal degradation, which include oncogenic transcription factors (TFs) (e.g., c-Myc, c-Jun, and Notch). Fbw7 is a tumor suppressor and tumors often contain mutations in FBXW7, the gene that encodes Fbw7. The complexity of its substrate network has obscured the mechanisms of Fbw7-associated tumorigenesis, yet this understanding is needed for developing therapies. We used an integrated approach employing RNA-Seq and high-resolution mapping (cleavage under target and release using nuclease) of histone modifications and TF occupancy (c-Jun and c-Myc) to examine the combinatorial effects of misregulated Fbw7 substrates in colorectal cancer (CRC) cells with engineered tumor-associated FBXW7 null or missense mutations. Both Fbw7 mutations caused widespread transcriptional changes associated with active chromatin and altered TF occupancy: some were common to both Fbw7 mutant cell lines, whereas others were mutation specific. We identified loci where both Jun and Myc were coregulated by Fbw7, suggesting that substrates may have synergistic effects. One coregulated gene was CIITA, the master regulator of MHC Class II gene expression. Fbw7 loss increased MHC Class II expression and Fbw7 mutations were correlated with increased CIITA expression in TCGA colorectal tumors and cell lines, which may have immunotherapeutic implications for Fbw7-associated cancers. Analogous studies in neural stem cells in which FBXW7 had been acutely deleted closely mirrored the results in CRC cells. Gene set enrichment analyses revealed Fbw7-associated pathways that were conserved across both cell types that may reflect fundamental Fbw7 functions. These analyses provide a framework for understanding normal and neoplastic context-specific Fbw7 functions.
Collapse
Affiliation(s)
| | - Feinan Wu
- Genomics and Bioinformatics Resource, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Derek H Janssens
- Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jherek Swanger
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Ahmed Diab
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Heather Feldman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Robert A Amezquita
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, University of Washington, Seattle, United States
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Bruce E Clurman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
8
|
The promotional effect of microRNA-103a-3p in cervical cancer cells by regulating the ubiquitin ligase FBXW7 function. Hum Cell 2022; 35:472-485. [PMID: 35094292 PMCID: PMC8866291 DOI: 10.1007/s13577-021-00649-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) have been reported to be involved in the initiation and progression of human tumors including cervical cancer (CC). However, the mechanisms underlying of their actions in CC remain to be fully elucidated. Herein, the differentially expressed miRNAs that were screened based on GSE55940 microarray data retrieved from Gene Expression Omnibus (GEO), and miR-103a-3p was significantly upregulated in CC tissues which was selected as the target miRNA for further research. We also found that high expression of miR-103a-3p was closely associated with histological grades, FIGO stage and distant metastasis as well as reflected poor overall survival. Moreover, miR-103a-3p inhibition decreased the growth capacity of SiHa and HeLa cells by inducing cell apoptosis. And F-box and WD repeat-domain containing protein 7 (FBXW7), a well-known tumor suppressor in many cancer types, was identified as a direct target of miR-103a-3p. It was further found that FBXW7 was significantly downregulated in CC tissues, and it was inversely correlated with miR-103a-3p expression levels. Further investigation demonstrated that FBXW7 upregulation could simulate the roles of miR-103a-3p knockdown in cell viability and apoptosis. Moreover, FBXW7 knockdown efficiently abrogated the influences of CC cells proliferation caused by miR-103a-3p inhibition. Notably, miR-103a-3p could block FBXW7 mediated the downstream transcription factor pathways. Taken together, these findings suggest that miR-103a-3p functions as an oncogene in CC by targeting FBXW7.
Collapse
|
9
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|
10
|
Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition. Arch Biochem Biophys 2021; 710:108984. [PMID: 34252392 DOI: 10.1016/j.abb.2021.108984] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a biological process that plays an important role during embryonic development. During this process, the epithelial cells lose their polarity and acquire mesenchymal properties. In addition to embryonic development, EMT is also well-known to participate in tissue repair, inflammation, fibrosis, and tumor metastasis. In the present review, we address the basics of epithelial to mesenchymal transition during both development and disease conditions and emphasize the role of various transcription factors and miRNAs involved in the process.
Collapse
Affiliation(s)
| | - Harini Srinivasan
- ASK-II, 212, Vascular Research Lab, SASTRA Deemed University, Thanjavur, India
| | - Krishna Priya Mani
- ASK-II, 212, Vascular Research Lab, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
11
|
Shang W, Yan C, Liu R, Chen L, Cheng D, Hao L, Yuan W, Chen J, Yang H. Clinical significance of FBXW7 tumor suppressor gene mutations and expression in human colorectal cancer: a systemic review and meta-analysis. BMC Cancer 2021; 21:770. [PMID: 34217244 PMCID: PMC8254329 DOI: 10.1186/s12885-021-08535-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Various studies investigating the clinical significance of FBXW7 mutation and/or expression have yielded inconclusive results in colorectal cancer (CRC) patients. Therefore, the present meta-analysis summarizes previous evidence and evaluates the clinical significance, including the prognostic role, of FBXW7 status in CRCs. METHODS The meta-analysis was conducted by searching the databases of PubMed, China National Knowledge Infrastructure (CNKI), WANFANG data, Web of Science, Embase, and Web of Science. Pooled odds ratios (ORs) and hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) were calculated to assess the relationships between FBXW7 status and clinicopathological features and survival in CRC, respectively. RESULTS Ten studies involving 4199 patients met the inclusion criteria and included in our meta-analysis. FBXW7 mutation/low expression was obviously correlated with advanced T stage (OR = 0.44, 95% CI: 0.27-0.74, P < 0.01) and lymph node metastasis (OR = 1.88, 95% CI: 1.40-2.53, P < 0.01), but was not associated with other parameters. Further investigation found that FBXW7 mutation/low expression predicted poor OS (HR = 1.25, 95% CI: 1.06-1.47, P < 0.01), but not DFS in CRC (HR = 1.04, 95% CI: 0.60-1.82, P = 0.88). Subgroup analysis found that FBXW7 status was obviously correlated with OS in cohorts recruited after 2009 (HR = 1.32, 95% CI: 1.17-1.50, P < 0.01), from eastern Asia (HR = 1.27, 95% CI: 1.04-1.55, P = 0.02), detected by immunohistochemistry/qRT-PCR (HR = 1.39, 95% CI: 1.22-1.59, P < 0.01), and analysed with multivariate method (HR = 1.47, 95% CI: 1.25-1.74, P < 0.01). CONCLUSIONS This study indicates that FBXW7 status, expression level especially, is associated with OS but not DFS in CRC. FBXW7 expression level may function as a prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Wei Shang
- Department of General Surgery, Key Laboratory of Metabolism and Gastrointestinal Tumor, Key Laboratory of Laparoscopic Technology, Shandong Medicine and Health Key Laboratory of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Chuanwang Yan
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Weifang Medical College, Weifang, 261000, Shandong, China
| | - Ran Liu
- Department of General Surgery, Key Laboratory of Metabolism and Gastrointestinal Tumor, Key Laboratory of Laparoscopic Technology, Shandong Medicine and Health Key Laboratory of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Lili Chen
- Department of Pathology, Jinan Central Hospital, Jinan, 250000, Shandong, China
| | - Dongdong Cheng
- Department of General Surgery, Feicheng Hospital of Shandong Guoxin Yiyang Group, Tai'an, 271600, Shandong, China
| | - Liang Hao
- Department of Gastrointestinal Surgery, Zibo First People's Hospital, Zibo, 255000, Shandong, China
| | - Wenguang Yuan
- Department of General Surgery, Key Laboratory of Metabolism and Gastrointestinal Tumor, Key Laboratory of Laparoscopic Technology, Shandong Medicine and Health Key Laboratory of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250000, Shandong, China
| | - Jingbo Chen
- Department of General Surgery, Key Laboratory of Metabolism and Gastrointestinal Tumor, Key Laboratory of Laparoscopic Technology, Shandong Medicine and Health Key Laboratory of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250000, Shandong, China.
| | - Hui Yang
- Department of General Surgery, Key Laboratory of Metabolism and Gastrointestinal Tumor, Key Laboratory of Laparoscopic Technology, Shandong Medicine and Health Key Laboratory of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250000, Shandong, China.
| |
Collapse
|
12
|
Kim MJ, Chen G, Sica GL, Deng X. Epigenetic modulation of FBW7/Mcl-1 pathway for lung cancer therapy. Cancer Biol Ther 2021; 22:55-65. [PMID: 33336620 PMCID: PMC7833779 DOI: 10.1080/15384047.2020.1856756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 01/09/2023] Open
Abstract
Methylation induces epigenetic silencing of tumor suppressor genes in human lung cancer. Inhibition of DNA methyltransferases by decitabine (DAC) can demethylate and activate epigenetically silenced tumor suppressor genes. Epigenetic therapy using DAC should be an attractive strategy for lung cancer therapy. FBW7 is a tumor suppressor that functions as an Mcl-1 E3 ligase to degrade Mcl-1 by ubiquitination. Here we discovered that treatment of various human lung cancer cells with DAC resulted in activation of FBW7 expression, decreased levels of Mcl-1 protein, and growth inhibition. DAC-activated FBW7 expression promoted Mcl-1 ubiquitination and degradation leading to a significant reduction in the half-life of Mcl-1 protein. Mechanistically, treatment of lung cancer cells or lung cancer xenografts with DAC induced the conversion of the FBW7 gene from a methylated form to an unmethylated form, which was associated with the increased expression of FBW7 and decreased expression of Mcl-1 in vitro and in vivo. DAC suppressed lung cancer growth in a dose-dependent manner in vivo. Combined treatment with DAC and a Bcl2 inhibitor, venetoclax, exhibited strong synergistic potency against lung cancer without normal tissue toxicity. These findings uncover a novel mechanism by which DAC suppresses tumor growth by targeting the FBW7/Mcl-1 signaling pathway. Combination of DAC with Bcl2 inhibitor venetoclax provides more effective epigenetic therapy for lung cancer.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
- Department of Food and Nutrition, Changwon National University, Gyeongsangnam-do, Korea
| | - Guo Chen
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Gabriel L. Sica
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Sriratanasak N, Petsri K, Laobuthee A, Wattanathana W, Vinayanuwattikun C, Luanpitpong S, Chanvorachote P. Novel c-Myc-Targeting Compound N, N-Bis (5-Ethyl-2-Hydroxybenzyl) Methylamine for Mediated c-Myc Ubiquitin-Proteasomal Degradation in Lung Cancer Cells. Mol Pharmacol 2020; 98:130-142. [PMID: 32487733 DOI: 10.1124/mol.120.119719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023] Open
Abstract
Aberrant cellular Myc (c-Myc) is a common feature in the majority of human cancers and has been linked to oncogenic malignancies. Here, we developed a novel c-Myc-targeting compound, N, N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD), and present evidence demonstrating its effectiveness in targeting c-Myc for degradation in human lung carcinoma. EMD exhibited strong cytotoxicity toward various human lung cancer cell lines, as well as chemotherapeutic-resistant patient-derived lung cancer cells, through apoptosis induction in comparison with chemotherapeutic drugs. The IC50 of EMD against lung cancer cells was approximately 60 µM. Mechanistically, EMD eliminated c-Myc in the cells and initiated caspase-dependent apoptosis cascade. Cycloheximide chase assay revealed that EMD tended to shorten the half-life of c-Myc by approximately half. The cotreatment of EMD with the proteasome inhibitor MG132 reversed its c-Myc-targeting effect, suggesting the involvement of ubiquitin-mediated proteasomal degradation in the process. We further verified that EMD strongly induced the ubiquitination of c-Myc and promoted protein degradation. c-Myc inhibition and apoptosis induction were additionally shown in hematologic malignant K562 cells, indicating the generality of the observed EMD effects. Altogether, we identified EMD as a novel potent compound targeting oncogenic c-Myc that may offer new opportunities for lung cancer treatment. SIGNIFICANCE STATEMENT: The deregulation of c-Myc is frequently associated with cancer progression. This study examined the effect of a new compound, N, N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD), in targeting c-Myc in several lung cancer cell lines and drug-resistant primary lung cancer cells. EMD induced dramatic c-Myc degradation through a ubiquitin-proteasomal mechanism. The promising anticancer and c-Myc-targeted activities of EMD support its use in potential new approaches to treat c-Myc-driven cancer.
Collapse
Affiliation(s)
- Nicharat Sriratanasak
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Korrakod Petsri
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Apirat Laobuthee
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Worawat Wattanathana
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Chanida Vinayanuwattikun
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Sudjit Luanpitpong
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| |
Collapse
|
14
|
Jiang N, Dai Q, Su X, Fu J, Feng X, Peng J. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep 2020; 47:4587-4629. [PMID: 32333246 PMCID: PMC7295848 DOI: 10.1007/s11033-020-05435-1] [Citation(s) in RCA: 356] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Given that the PI3K/AKT pathway has manifested its compelling influence on multiple cellular process, we further review the roles of hyperactivation of PI3K/AKT pathway in various human cancers. We state the abnormalities of PI3K/AKT pathway in different cancers, which are closely related with tumorigenesis, proliferation, growth, apoptosis, invasion, metastasis, epithelial-mesenchymal transition, stem-like phenotype, immune microenvironment and drug resistance of cancer cells. In addition, we investigated the current clinical trials of inhibitors against PI3K/AKT pathway in cancers and found that the clinical efficacy of these inhibitors as monotherapy has so far been limited despite of the promising preclinical activity, which means combinations of targeted therapy may achieve better efficacies in cancers. In short, we hope to feature PI3K/AKT pathway in cancers to the clinic and bring the new promising to patients for targeted therapies.
Collapse
Affiliation(s)
- Ningni Jiang
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Qijie Dai
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xiaorui Su
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Jianjiang Fu
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Xuancheng Feng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Guangzhou, 510150 China
- The Third Clinical School of Guangzhou Medical University, Guangzhou, 510150 China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, 510150 China
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
15
|
Abstract
Multiple studies have confirmed that speckle-type pox virus and zinc finger (POZ) protein (SPOP) functions as a substrate adaptor of cullin 3-based E3 ligase and has a crucial role in various cellular processes via specific targeting of proteins for ubiquitination and subsequent proteasomal degradation. Dysregulation of SPOP-mediated proteolysis might be involved in the development and progression of human prostate and kidney cancers. In prostate cancer, SPOP seems to function as a tumour suppressor by targeting several proteins, including androgen receptor (AR), steroid receptor coactivator 3 (SRC3) and BRD4, for degradation, whereas it might function as an oncoprotein in kidney cancer, for example, by targeting phosphatase and tensin homologue (PTEN) for proteasomal degradation. In addition, nuclear SPOP targets AR for degradation and has a role as a tumour suppressor in prostate cancer; however, in kidney cancer, SPOP largely accumulates in the cytoplasm and fails to promote degradation of AR located in the nucleus, resulting in activation of AR-driven pathways and cancer progression. Owing to the context-dependent function of SPOP in human malignancies, further assessment of the molecular mechanisms involving SPOP in prostate and kidney cancers is needed to improve our understanding of its role in the development of these cancer types. Treatments that target SPOP might become therapeutic strategies in these malignancies in the future.
Collapse
|
16
|
Zhu Q, Hu L, Guo Y, Xiao Z, Xu Q, Tong X. FBW7 in hematological tumors. Oncol Lett 2020; 19:1657-1664. [PMID: 32194657 PMCID: PMC7039162 DOI: 10.3892/ol.2020.11264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
F-box and WD repeat domain-containing protein 7 (FBW7), also known as FBXW7, AGO or hCDC4, is an F-box protein with seven tandem WD40 repeats. FBW7 is a key substrate recognition subunit of the Skp1-Cul1-F-box-protein E3 ubiquitin ligase. FBW7 targets for ubiquitination and destruction of numerous crucial transcription factors and protooncogenes, including cyclin E, c-Myc, c-Jun, Notch and MCL-1. FBW7 is a well-characterized tumor suppressor, and its gene is frequently mutated or deleted in various types of human cancer, including colorectal cancer, gastric cancer, ovarian cancer and different types of leukemia. Accumulating evidence indicates that the aberrant expression of FBW7 is involved in the development of hematological tumors, including T cell acute lymphoblastic leukemia, adult T cell leukemia/lymphoma, chronic lymphocytic leukemia and multiple myeloma. The present review will describe the latest findings on the role of FBW7 in hematological tumors, in order to identify a novel target for future therapies.
Collapse
Affiliation(s)
- Qiaojuan Zhu
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Linjun Hu
- Medical Department, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yang Guo
- Graduate Department, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Zunqiang Xiao
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
17
|
Bivik Stadler C, Arefin B, Ekman H, Thor S. PIP degron-stabilized Dacapo/p21 Cip1 and mutations in ago act in an anti- versus pro-proliferative manner, yet both trigger an increase in Cyclin E levels. Development 2019; 146:146/13/dev175927. [PMID: 31289041 DOI: 10.1242/dev.175927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
Abstract
During cell cycle progression, the activity of the CycE-Cdk2 complex gates S-phase entry. CycE-Cdk2 is inhibited by CDK inhibitors (CKIs) of the Cip/Kip family, which include the human p21Cip1 and Drosophila Dacapo (Dap) proteins. Both the CycE and Cip/Kip family proteins are under elaborate control via protein degradation, mediated by the Cullin-RING ligase (CRL) family of ubiquitin ligase complexes. The CRL complex SCFFbxw7/Ago targets phosphorylated CycE, whereas p21Cip1 and Dap are targeted by the CRL4Cdt2 complex, binding to the PIP degron. The role of CRL-mediated degradation of CycE and Cip/Kip proteins during CNS development is not well understood. Here, we analyse the role of ago (Fbxw7)-mediated CycE degradation, and of Dap and p21Cip1 degradation during Drosophila CNS development. We find that ago mutants display over-proliferation, accompanied by elevated CycE expression levels. By contrast, expression of PIP degron mutant Dap and p21Cip1 transgenes inhibit proliferation. However, surprisingly, this is also accompanied by elevated CycE levels. Hence, ago mutation and PIP degron Cip/Kip transgenic expression trigger opposite effects on proliferation, but similar effects on CycE levels.
Collapse
Affiliation(s)
- Caroline Bivik Stadler
- Department of Clinical and Experimental Medicine, Linkoping University, SE-58185 Linkoping, Sweden
| | - Badrul Arefin
- Department of Clinical and Experimental Medicine, Linkoping University, SE-58185 Linkoping, Sweden
| | - Helen Ekman
- Department of Clinical and Experimental Medicine, Linkoping University, SE-58185 Linkoping, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, SE-58185 Linkoping, Sweden .,School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
18
|
Liu F, Zou Y, Wang F, Yang B, Zhang Z, Luo Y, Liang M, Zhou J, Huang O. FBXW7 Mutations Promote Cell Proliferation, Migration, and Invasion in Cervical Cancer. Genet Test Mol Biomarkers 2019; 23:409-417. [PMID: 31161818 DOI: 10.1089/gtmb.2018.0278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: Cervical cancer is the most common gynecological cancer. Recent studies have revealed that the F-box and WD repeat domain containing 7 (FBXW7) gene, which encodes a subunit of Skp1-Cul1-F-box protein (SCF) ubiquitin ligase, is frequently mutated in cervical squamous cell carcinomas. In this study, we investigated whether Chinese cervical cancer cells also harbor these mutations. Methods: Using PCR and sequencing assays, a total of 190 specimens from Han Chinese patients with cervical cancer were analyzed for FBXW7 mutations. Results: Two FBXW7 mutations (p.R479P and p.L443H), were identified from a study of 145 (1.4%) cervical squamous cell carcinomas. The p.L443H somatic mutation has not been previously reported. Functional assays showed that both of these FBXW7 mutations could promote cell proliferation, migration, and invasion. Conclusion: A low frequency (1.4%) of cervical squamous cell carcinomas were identified with FBXW7 mutations. We did, however, identify a novel FBXW7 mutation. Our results also demonstrated that the identified FBXW7 mutations could promote cell proliferation, migration, and invasion in cervical cancer cells.
Collapse
Affiliation(s)
- Faying Liu
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,2 Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yang Zou
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,2 Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Feng Wang
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,2 Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Bicheng Yang
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ziyu Zhang
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,2 Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yong Luo
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,2 Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Meirong Liang
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,3 Department of Oncology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Jiangyan Zhou
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,4 Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ouping Huang
- 1 Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,4 Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| |
Collapse
|
19
|
Label propagation defines signaling networks associated with recurrently mutated cancer genes. Sci Rep 2019; 9:9401. [PMID: 31253832 PMCID: PMC6599034 DOI: 10.1038/s41598-019-45603-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/11/2019] [Indexed: 11/09/2022] Open
Abstract
Human tumors have distinct profiles of genomic alterations, and each of these alterations has the potential to cause unique changes to cellular homeostasis. Detailed analyses of these changes could reveal downstream effects of genomic alterations, contributing to our understanding of their roles in tumor development and progression. Across a range of tumor types, including bladder, lung, and endometrial carcinoma, we determined genes that are frequently altered in The Cancer Genome Atlas patient populations, then examined the effects of these alterations on signaling and regulatory pathways. To achieve this, we used a label propagation-based methodology to generate networks from gene expression signatures associated with defined mutations. Individual networks offered a large-scale view of signaling changes represented by gene signatures, which in turn reflected the scope of molecular events that are perturbed in the presence of a given genomic alteration. Comparing different networks to one another revealed common biological pathways impacted by distinct genomic alterations, highlighting the concept that tumors can dysregulate key pathways through multiple, seemingly unrelated mechanisms. Finally, altered genes inducing common changes to the signaling network were used to search for genomic markers of drug response, connecting shared perturbations to differential drug sensitivity.
Collapse
|
20
|
Jiang G, Shi W, Fang H, Zhang X. miR‑27a promotes human breast cancer cell migration by inducing EMT in a FBXW7‑dependent manner. Mol Med Rep 2018; 18:5417-5426. [PMID: 30365154 PMCID: PMC6236270 DOI: 10.3892/mmr.2018.9587] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Increasingly, evidence has revealed that aberrant microRNA (miRNA) expression is involved in breast cancer carcinogenesis and further progression, including metastasis. miRNA (miR)‑27a was previously identified to be abnormally expressed and to serve pro‑oncogenic functions in multiple human cancer types, including breast cancer. However, its functions and underlying mechanisms in breast cancer remain poorly understood. In the present study, it was demonstrated that miR‑27a was significantly upregulated in breast cancer tissues and cell lines compared with their normal counterparts. Overexpression of miR‑27a resulted in enhanced cell migration by inducing epithelial‑to‑mesenchymal transition, while its knockdown effectively reversed these cellular events. The present study additionally confirmed for the first time, to the best of our knowledge, that F‑box and WD repeat domain containing 7 (FBXW7) is a downstream target gene of miR‑27a in human breast cancer cells. FBXW7 is underexpressed in breast cancer tissues and cell lines, and is an independent positive factor for the overall survival rate of patients with breast cancer. Notably, the ectopic expression of FBXW7 may effectively suppress the epithelial‑to‑mesenchymal transition and migratory activity of breast cancer cells, in addition to reversing the cell migration mediated by miR‑27a. Altogether, the results of the present study indicated the important function of miR‑27a in regulating the metastasis of breast cancer in a FBXW7‑dependent manner, and provide evidence for the potential application of miR‑27a in breast cancer therapy.
Collapse
Affiliation(s)
- Guobin Jiang
- Department of Thyroid and Breast Surgery, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang 318000, P.R. China
| | - Weiwu Shi
- Central Laboratory, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang 318000, P.R. China
| | - Hongyan Fang
- Department of Thyroid and Breast Surgery, Enze Hospital of Zhejiang Province, Taizhou, Zhejiang 317050, P.R. China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
21
|
Abstract
SIGNIFICANCE Platelets are anucleate blood cells that are involved in hemostasis and thrombosis. Although no longer able to generate ribonucleic acid (RNA) de novo, platelets contain messenger RNA (mRNA), YRNA fragments, and premature microRNAs (miRNAs) that they inherit from megakaryocytes. Recent Advances: Novel sequencing techniques have helped identify the unexpectedly large number of RNA species present in platelets. Throughout their life time, platelets can process the pre-existing pool of premature miRNA to give the fully functional miRNA that can regulate platelet protein expression and function. CRITICAL ISSUES Platelets make a major contribution to the circulating miRNA pool but platelet activation can have major consequences on Dicer levels and thus miRNA maturation, which has implications for studies that are focused on screening-stored platelets. FUTURE DIRECTIONS It will be important to determine the importance of platelets as donors for miRNA-containing microvesicles that can be taken up and processed by other (particularly vascular) cells, thus contributing to homeostasis as well as disease progression. Antioxid. Redox Signal. 29, 902-921.
Collapse
Affiliation(s)
- Amro Elgheznawy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University , Frankfurt am Main, Germany .,2 German Center for Cardiovascular Research (DZHK) , Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Platelet communication with the vascular wall: role of platelet-derived microparticles and non-coding RNAs. Clin Sci (Lond) 2018; 132:1875-1888. [PMID: 30185611 DOI: 10.1042/cs20180580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022]
Abstract
Platelets play an important role in vascular homeostasis through their interaction with circulating blood cells as well as the vascular wall. Platelet-mediated communication with other cells can take the form of direct cell-cell interactions via membrane receptors or indirectly through the release of different soluble factors stored in their granules as well as through the release of microparticles. The latter carry different proteins and RNAs which are transferred to the target cells. The aim of this review is to discuss the role of platelet-derived factors, adhesion molecules as well as RNAs as mediators of the cross-talk between platelets and the vessel wall.
Collapse
|
23
|
Gombodorj N, Yokobori T, Tanaka N, Suzuki S, Kuriyama K, Kumakura Y, Yoshida T, Sakai M, Sohda M, Baatar S, Miyazaki T, Nishiyama M, Shirabe K, Kuwano H. Correlation between high FBXW7 expression in pretreatment biopsy specimens and good response to chemoradiation therapy in patients with locally advanced esophageal cancer: A retrospective study. J Surg Oncol 2018; 118:101-108. [DOI: 10.1002/jso.25127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/10/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Navchaa Gombodorj
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
- Department of Radiation Oncology; National Cancer Center; Ulaanbaatar Mongolia
| | - Takehiko Yokobori
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Naritaka Tanaka
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Shigemasa Suzuki
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Kengo Kuriyama
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Yuji Kumakura
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Tomonori Yoshida
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Makoto Sakai
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Makoto Sohda
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Seded Baatar
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Tatsuya Miyazaki
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Masahiko Nishiyama
- Department of Molecular Oncology and Pharmacology; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
- Research Program for Omics-based Medical Science, Division of Integrated Oncology Research; Gunma University Initiative for Advanced Research (GIAR); Japan
| | - Ken Shirabe
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
- Department of Hepatobiliary and Pancreatic Surgery; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| | - Hiroyuki Kuwano
- Departments of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Gunma Japan
| |
Collapse
|
24
|
Liu R, Gao J, Yang Y, Qiu R, Zheng Y, Huang W, Zeng Y, Hou Y, Wang S, Leng S, Feng D, Yu W, Sun G, Shi H, Teng X, Wang Y. PHD finger protein 1 (PHF1) is a novel reader for histone H4R3 symmetric dimethylation and coordinates with PRMT5-WDR77/CRL4B complex to promote tumorigenesis. Nucleic Acids Res 2018; 46:6608-6626. [PMID: 29846670 PMCID: PMC6061854 DOI: 10.1093/nar/gky461] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 05/02/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Histone post-translational modifications regulate chromatin structure and function largely through interactions with effector proteins that often contain multiple histone-binding domains. PHF1 [plant homeodomain (PHD) finger protein 1], which contains two kinds of histone reader modules, a Tudor domain and two PHD fingers, is an essential factor for epigenetic regulation and genome maintenance. While significant progress has been made in characterizing the function of the Tudor domain, the roles of the two PHD fingers are poorly defined. Here, we demonstrated that the N-terminal PHD finger of PHF1 recognizes symmetric dimethylation of H4R3 (H4R3me2s) catalyzed by PRMT5-WDR77. However, the C-terminal PHD finger of PHF1, instead of binding to modified histones, directly interacts with DDB1, the main component of the CUL4B-Ring E3 ligase complex (CRL4B), which is responsible for H2AK119 mono-ubiquitination (H2AK119ub1). We showed that PHF1, PRMT5-WDR77, and CRL4B reciprocally interact with one another and collaborate as a functional unit. Genome-wide analysis of PHF1/PRMT5/CUL4B targets identified a cohort of genes including E-cadherin and FBXW7, which are critically involved in cell growth and migration. We demonstrated that PHF1 promotes cell proliferation, invasion, and tumorigenesis in vivo and in vitro and found that its expression is markedly upregulated in a variety of human cancers. Our data identified a new reader for H4R3me2s and provided a molecular basis for the functional interplay between histone arginine methylation and ubiquitination. The results also indicated that PHF1 is a key factor in cancer progression, supporting the pursuit of PHF1 as a target for cancer therapy.
Collapse
Affiliation(s)
- Ruiqiong Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yang Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rongfang Qiu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yu Zheng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Huang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yi Zeng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yongqiang Hou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shuang Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Leng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dandan Feng
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wenqian Yu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Gancheng Sun
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hang Shi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xu Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
25
|
Jiang Y, Qi X, Liu X, Zhang J, Ji J, Zhu Z, Ren J, Yu Y. Fbxw7 haploinsufficiency loses its protection against DNA damage and accelerates MNU-induced gastric carcinogenesis. Oncotarget 2018; 8:33444-33456. [PMID: 28422719 PMCID: PMC5464881 DOI: 10.18632/oncotarget.16800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
Fbxw7, a subunit of the SCF E3 ubiquitin ligase, recognizes oncoprotein substrates and leads to their proteasomal degradation. Fbxw7 acts as a tumor suppressor via inducing apoptosis and growth arrest in various kinds of tumors. To clarify the initiating role in gastric carcinogenesis as well as the histologic characterization of tumor in Fbxw7 allele haploinsufficient mice, we generated Fbxw7 heterozygous knockout mice (Fbxw7+/−) and treated them with chemical carcinogen N-methyl-N-nitrosourea (MNU) at 5–6 weeks of age. We also treated mouse embryo fibroblasts (MEFs) from Fbxw7+/− and Fbxw7+/+ mice with MNU and examined cell DNA damage via comet assay. The protein expression of Fbxw7 and its substrate c-Myc from mouse tumors, as well as human tumors sampled from six patients, were detected by Western blot. As results, the tumor incidence was obviously higher in Fbxw7+/− mice (13/20) than in Fbxw7+/+ mice (6/20) after 35-week observation. Intestinal metaplasia (P = 0.013) and dysplasia (P = 0.036) were more severe in Fbxw7+/− mice than in Fbxw7+/+ mice. The repair potential of DNA damage was suppressed in MEFs from Fbxw7+/− mice after MNU exposure. Increased c-Myc expression was accompanied by decreased Fbxw7 protein expression in tumor tissues from mouse and patients. In conclusion, Fbxw7 haploinsufficiency increased the risk of gastric carcinogenesis induced by MNU, which is associated with the accumulation of DNA damage as well as c-Myc oncoprotein.
Collapse
Affiliation(s)
- Yannan Jiang
- Department of Surgery of Shanghai Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xinyu Liu
- Department of Surgery of Shanghai Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of Surgery of Shanghai Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Department of Surgery of Shanghai Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhenggang Zhu
- Department of Surgery of Shanghai Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yingyan Yu
- Department of Surgery of Shanghai Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
26
|
Ishii N, Araki K, Yokobori T, Gantumur D, Yamanaka T, Altan B, Tsukagoshi M, Igarashi T, Watanabe A, Kubo N, Hosouchi Y, Kuwano H, Shirabe K. Reduced FBXW7 expression in pancreatic cancer correlates with poor prognosis and chemotherapeutic resistance via accumulation of MCL1. Oncotarget 2017; 8:112636-112646. [PMID: 29348852 PMCID: PMC5762537 DOI: 10.18632/oncotarget.22634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumor type with poor outcomes, and elucidation of the mechanisms involved in cancer progression and therapeutic resistance is critical. FBXW7 is a key regulator of tumor malignant potential, and its substrate MCL1 regulates therapeutic resistance in human malignancies. Therefore, determination of the relevance of FBXW7 expression is critical for improving patient outcomes. In this study, we investigated the function and clinical significance of FBXW7 in pancreatic cancer. FBXW7 expression was evaluated by immunohistochemistry in 122 pancreatic cancer tissues. Reduced FBXW7 expression was significantly associated with advanced venous invasion, high MCL1 expression, enhanced Ki-67 expression, and poor prognosis and was an independent poor prognostic factor. Among patients who underwent gemcitabine treatment after surgery, reduced FBXW7 expression was also significantly associated with poor prognosis. Knockdown of FBXW7 in vitro enhanced cell proliferation, and migration, and invasion abilities and promoted gemcitabine and nab-paclitaxel chemoresistance in pancreatic cancer cells. Moreover, FBXW7-knockdown cells showed accumulation of MCL1, and the enhanced chemoresistance observed in FBXW7-knockdown cells was eliminated by MCL1 suppression. These results suggested that FBXW7 was associated with cancer progression and mediated sensitivity to gemcitabine and nab-paclitaxel via MCL1 accumulation in pancreatic cancer. Thus, the FBXW7/MCL1 axis may be a promising therapeutic tool to overcome refractory pancreatic cancer.
Collapse
Affiliation(s)
- Norihiro Ishii
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan.,Department of General Surgical Science, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan
| | - Kenichiro Araki
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan.,Department of General Surgical Science, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan
| | - Takehiko Yokobori
- Research Program for Omics-Based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Dorgormaa Gantumur
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan
| | - Takahiro Yamanaka
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan.,Department of General Surgical Science, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan
| | - Bolag Altan
- Department of Oncology Clinical Development, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Mariko Tsukagoshi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan.,Department of General Surgical Science, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan
| | - Takamichi Igarashi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan.,Department of General Surgical Science, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan
| | - Akira Watanabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan.,Department of General Surgical Science, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan
| | - Norio Kubo
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan.,Department of General Surgical Science, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan
| | - Yasuo Hosouchi
- Department of Surgery and Laparoscopic Surgery, Gunma Prefecture Saiseikai-Maebashi Hospital, Maebashi, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Graduate School of Medicine, Showamachi, Maebashi, Japan
| |
Collapse
|
27
|
Arita H, Nagata M, Yoshida R, Matsuoka Y, Hirosue A, Kawahara K, Sakata J, Nakashima H, Kojima T, Toya R, Murakami R, Hiraki A, Shinohara M, Nakayama H. FBXW7 expression affects the response to chemoradiotherapy and overall survival among patients with oral squamous cell carcinoma: A single-center retrospective study. Tumour Biol 2017; 39:1010428317731771. [PMID: 29072128 DOI: 10.1177/1010428317731771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
FBXW7 (F-box and WD repeat domain containing-7) is a tumor suppressor protein that regulates the degradation of various oncoproteins in several malignancies. However, limited information is available regarding FBXW7 expression in oral squamous cell carcinoma. Therefore, this study aimed to determine the clinical significance of FBXW7 expression in oral squamous cell carcinoma. The FBXW7 expression patterns in oral squamous cell carcinoma and adjacent normal tissues from 15 patients who underwent radical resection were evaluated using quantitative real-time polymerase chain reaction and immunohistochemical staining. In addition, immunohistochemistry was performed using paraffin-embedded sections from biopsy specimens obtained from 110 patients with oral squamous cell carcinoma who underwent surgery after 5 fluorouracil-based chemoradiotherapy. The associations of FBXW7 expression with various clinicopathological features and prognosis were evaluated in these patients. As a results, in the 15 matched samples, the FBXW7 expression was significantly decreased in the oral squamous cell carcinoma tissues compared to that in the adjacent normal tissues. In the clinicopathological analysis, compared to high protein expression, low FBXW7 expression was found to significantly associate with a poor histological response to preoperative chemoradiotherapy. Kaplan-Meier curve analysis revealed that low FBXW7 expression was significantly associated with a poor prognosis, and FBXW7 expression was found to be an independent predictor of overall survival in the multivariate analysis. Our results suggest that FBXW7 may function as a tumor suppressor protein in oral squamous cell carcinoma. In addition, FBXW7 could be a potential biomarker for predicting not only the clinical response to chemoradiotherapy but also overall survival in patients with oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Hidetaka Arita
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Nagata
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Matsuoka
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junki Sakata
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Nakashima
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taku Kojima
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryo Toya
- 2 Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Murakami
- 3 Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akimitsu Hiraki
- 4 Section of Oral Oncology, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka, Japan
| | | | - Hideki Nakayama
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
28
|
Brzozowa-Zasada M, Piecuch A, Michalski M, Segiet O, Kurek J, Harabin-Słowińska M, Wojnicz R. Notch and its oncogenic activity in human malignancies. Eur Surg 2017; 49:199-209. [PMID: 29104587 PMCID: PMC5653712 DOI: 10.1007/s10353-017-0491-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Increasing evidence has demonstrated that Notch signaling is deregulated in human hematological malignancies and solid tumors. This signaling has a protumorigenic effect but may also act as a tumor suppressor. How induction of a single pathway gives rise to the opposite effects in different cell types is still unknown. METHODS This review article includes available data from peer-reviewed publications associated with the role of Notch signaling during cancer pathogenesis. RESULTS Numerous reports have indicated that alterations in Notch signaling and its oncogenic activity were originally associated with the pathogenesis of T‑cell acute lymphoblastic leukemia/lymphoma (T-ALL), an aggressive hematologic tumor affecting children and adolescents. The possibility that Notch could play a significant role in human breast cancer development comes from studies on mouse mammary tumor virus-induced cancer. Numerous findings over the past several years have indicated that alterations in Notch signaling are also responsible for ovarian cancer development. Mention should also be made of the connection between expression of Notch 3 and increased resistance to chemotherapy, which remains a major obstacle to successful treatment. Notch as an oncogenic factor is also involved in the development of colon cancer, lung carcinoma and Kaposi's sarcoma. CONCLUSION Notch is a binary cell fate determinant and its overexpression has been described as oncogenic in a wide array of human malignancies. This finding led to interest in therapeutically targeting this pathway, especially by the use of gamma-secretase inhibitors (GSIs) blocking the cleavage of Notch receptors at the cell membrane by the inhibition of Notch intracellular domain (NICD) releasing. Preclinical cancer models have revealed that GSIs suppress the growth of cancers such as pancreatic, breast and lung cancer.
Collapse
Affiliation(s)
- Marlena Brzozowa-Zasada
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Adam Piecuch
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Marek Michalski
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Oliwia Segiet
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | | | - Marzena Harabin-Słowińska
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| | - Romuald Wojnicz
- Department of Histology and Embryology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Zabrze, Poland
| |
Collapse
|
29
|
Ishii N, Araki K, Yokobori T, Watanabe A, Tsukagoshi M, Kubo N, Suzuki H, Saito F, Altan B, Hosouchi Y, Shirabe K, Kuwano H. Poor prognosis in cholangiocarcinoma patients with low FBXW7 expression is improved by chemotherapy. Oncol Lett 2017; 13:3653-3661. [PMID: 28521468 PMCID: PMC5431321 DOI: 10.3892/ol.2017.5946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 02/01/2017] [Indexed: 11/29/2022] Open
Abstract
The tumor suppressor FBXW7 has been demonstrated to degrade several oncoproteins, including c-Myc. Although low FBXW7 expression levels are suggested to be a poor prognostic factor in a number of types of solid tumor, the role of FBXW7 in chemosensitivity is controversial. The purpose of the present study was to determine whether FBXW7 expression may be used as a marker for poor prognosis and chemosensitivity in patients with cholangiocarcinoma (CC). FBXW7 expression was investigated by immunohistochemistry in 100 surgically resected CC samples, and the association between FBXW7 expression, clinicopathological factors and prognosis was evaluated. Nuclear FBXW7 expression tended to be lower compared with normal tissues. A total of 54 patients exhibited high expression levels of FBXW7, and 46 patients exhibited low expression levels. Patients with low FBXW7 expression possessed significantly larger tumors (P=0.049), enhanced expression of c-Myc and Ki-67 and significantly poorer prognoses compared with those with high FBXW7 expression (P=0.016). Multivariate analysis revealed that low FBXW7 expression was an independent negative prognostic factor in CC (P=0.043). In patients with high FBXW7 expression levels, the cancer-specific survival times were not significantly different between patients with or without chemotherapy. However, in patients with low FBXW7 expression levels, the cancer-specific survival times were significantly longer in subjects who underwent chemotherapy compared with those who did not (P=0.001). These data suggest that FBXW7 status in CC is a useful predictor of poor prognosis and cancer progression. Additionally, FBXW7 may be a surrogate marker to predict the efficacy of chemotherapy in CC.
Collapse
|
30
|
Borg NA, Dixit VM. Ubiquitin in Cell-Cycle Regulation and Dysregulation in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-040716-075607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uncontrolled cell proliferation and genomic instability are common features of cancer and can arise from, respectively, the loss of cell-cycle control and defective checkpoints. Ubiquitin-mediated proteolysis, ultimately executed by ubiquitin-ligating enzymes (E3s), plays a key part in cell-cycle regulation and is dominated by two multisubunit E3s, the anaphase-promoting complex (or cyclosome) (APC/C) and SKP1–cullin-1–F-box (SCF) complex. We highlight the role of APC/C and the SCF bound to F-box proteins, FBXW7, SKP2, and β-TrCP, in regulating the abundance of select fundamental proteins, primarily during the cell cycle, that are associated with human cancer. The clinical success of the first proteasome inhibitor, bortezomib, in treating multiple myeloma and mantle-cell lymphoma set the precedent for viewing the ubiquitin–proteasome system as a druggable target for cancer. Given that there are more E3s than kinases, selective, small-molecule E3 inhibitors have the potential of opening up another dimension in the therapeutic armamentarium for the treatment of cancer.
Collapse
Affiliation(s)
- Natalie A. Borg
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080
| |
Collapse
|
31
|
Xia W, Zhou J, Luo H, Liu Y, Peng C, Zheng W, Ma W. MicroRNA-32 promotes cell proliferation, migration and suppresses apoptosis in breast cancer cells by targeting FBXW7. Cancer Cell Int 2017; 17:14. [PMID: 28149200 PMCID: PMC5267379 DOI: 10.1186/s12935-017-0383-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/11/2017] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs are a class of small non-coding RNAs that are involved in many important physiological and pathological processes by regulating gene expression negatively. The purpose of this study was to investigate the effect of miR-32 on cell proliferation, migration and apoptosis and to determine the functional connection between miR-32 and FBXW7 in breast cancer. Methods In this study, quantitative RT-PCR was used to evaluate the expression levels of miR-32 in 27 breast cancer tissues, adjacent normal breast tissues and human breast cancer cell lines. The biological functions of miR-32 in MCF-7 breast cancer cells were determined by cell proliferation, apoptosis assays and wound-healing assays. In addition, the regulation of FBXW7 by miR-32 was assessed by qRT-PCR, Western blot and luciferase reporter assays. Results MiR-32 was frequently overexpressed in breast cancer tissue samples and cell lines as was demonstrated by qRT-PCR. Moreover, the up-regulation of miR-32 suppressed apoptosis and promoted proliferation and migration, whereas down-regulation of miR-32 showed an opposite effect. Dual-luciferase reporter assays showed that miR-32 binds to the 3′-untranslated region of FBXW7, suggesting that FBXW7 is a direct target of miR-32. Western blot analysis showed that over-expression of miR-32 reduced FBXW7 protein level. Furthermore, an inverse correlation was found between the expressions of miR-32 and FBXW7 mRNA levels in breast cancer tissues. Knockdown of FBXW7 promoted proliferation and motility and suppressed apoptosis in MCF-7 cells. Conclusions Taken together, the present study suggests that miR-32 promotes proliferation and motility and suppresses apoptosis of breast cancer cells through targeting FBXW7.
Collapse
Affiliation(s)
- Wei Xia
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China.,Department of Clinical Laboratory, No.421 Hospital of PLA, Guangzhou, People's Republic of China
| | - JueYu Zhou
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - HaiBo Luo
- Department of Clinical Laboratory, No.421 Hospital of PLA, Guangzhou, People's Republic of China
| | - YunZhou Liu
- Department of Clinical Laboratory, No.421 Hospital of PLA, Guangzhou, People's Republic of China
| | - CanCan Peng
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - WenLing Zheng
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - WenLi Ma
- Institute of Genetic Engineering, Southern Medical University, Guangzhou, 510515 People's Republic of China
| |
Collapse
|
32
|
Mathot L, Kundu S, Ljungström V, Svedlund J, Moens L, Adlerteg T, Falk-Sörqvist E, Rendo V, Bellomo C, Mayrhofer M, Cortina C, Sundström M, Micke P, Botling J, Isaksson A, Moustakas A, Batlle E, Birgisson H, Glimelius B, Nilsson M, Sjöblom T. Somatic Ephrin Receptor Mutations Are Associated with Metastasis in Primary Colorectal Cancer. Cancer Res 2017; 77:1730-1740. [PMID: 28108514 DOI: 10.1158/0008-5472.can-16-1921] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/12/2016] [Accepted: 12/29/2016] [Indexed: 11/16/2022]
Abstract
The contribution of somatic mutations to metastasis of colorectal cancers is currently unknown. To find mutations involved in the colorectal cancer metastatic process, we performed deep mutational analysis of 676 genes in 107 stages II to IV primary colorectal cancer, of which half had metastasized. The mutation prevalence in the ephrin (EPH) family of tyrosine kinase receptors was 10-fold higher in primary tumors of metastatic colorectal than in nonmetastatic cases and preferentially occurred in stage III and IV tumors. Mutational analyses in situ confirmed expression of mutant EPH receptors. To enable functional studies of EPHB1 mutations, we demonstrated that DLD-1 colorectal cancer cells expressing EPHB1 form aggregates upon coculture with ephrin B1 expressing cells. When mutations in the fibronectin type III and kinase domains of EPHB1 were compared with wild-type EPHB1 in DLD-1 colorectal cancer cells, they decreased ephrin B1-induced compartmentalization. These observations provide a mechanistic link between EPHB receptor mutations and metastasis in colorectal cancer. Cancer Res; 77(7); 1730-40. ©2017 AACR.
Collapse
Affiliation(s)
- Lucy Mathot
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Snehangshu Kundu
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Viktor Ljungström
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Jessica Svedlund
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Lotte Moens
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Tom Adlerteg
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Elin Falk-Sörqvist
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Verónica Rendo
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Claudia Bellomo
- Department of Medical Biochemistry and Microbiology, Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Sweden
| | - Markus Mayrhofer
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden
| | - Carme Cortina
- Oncology Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Magnus Sundström
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Patrick Micke
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Johan Botling
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Anders Isaksson
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Sweden
| | - Eduard Batlle
- Oncology Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Helgi Birgisson
- Department of Surgical Sciences, Colorectal Surgery, Uppsala University, Sweden
| | - Bengt Glimelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Mats Nilsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Tobias Sjöblom
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.
| |
Collapse
|
33
|
Jiang X, Li X, Wu F, Gao H, Wang G, Zheng H, Wang H, Li J, Chen C. Overexpression of miR-92a promotes the tumor growth of osteosarcoma by suppressing F-box and WD repeat-containing protein 7. Gene 2017; 606:10-16. [PMID: 28069547 DOI: 10.1016/j.gene.2017.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) have been reported to be critical players in osteosarcoma (OS). Among numerous cancer-related miRNAs, the expression level of miR-92a and its potential role in OS has not been investigated. Here, We showed that overexpression of miR-92a was identified in OS specimens and cells compared to normal bone tissues. The high level of miR-92a was correlated with high T classification and advanced clinical stages of OS patients. Notably, miR-92a highly expressing OS patients showed a notably reduced survival rate. In vitro experiments showed that loss of miR-92a inhibited U2OS cell proliferation and cell-cycle progression while induced apoptosis. In turn, its restoration facilitated MG-63 cell growth and suppressed apoptosis. Experimental nude mice showed that miR-92a silencing prohibited the in vivo growth of OS cells. Furthermore, bioinformatics software predicted that F-box and WD repeat-containing protein 7 (FBXW7) was a direct target of miR-92a. We then observed the negative regulation of miR-92a on FBXW7 expression and the direct binding between them was further verified by dual-luciferase assays in OS cells. Forced expression of FBXW7 resulted in reduced proliferation, cell cycle arrest at G1 phase and increased apoptosis in miR-92a overexpressing MG-63 cells. In summary, this study demonstrates miR-92a probably functions as a driver of tumor progression by targeting FBXW7, and highlights the potential effects of miR-92a on prognosis and treatment of OS.
Collapse
Affiliation(s)
- Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Xiongfeng Li
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Fengfeng Wu
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Hongliang Gao
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Guorong Wang
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Hua Zheng
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China
| | - Huajun Wang
- Department of Orthopedics, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Huzhou, Zhejiang 313003, China.
| | - Chao Chen
- Department of Orthopedics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
34
|
Xu J, Wu W, Wang J, Huang C, Wen W, Zhao F, Xu X, Pan X, Wang W, Zhu Q, Chen L. miR-367 promotes the proliferation and invasion of non-small cell lung cancer via targeting FBXW7. Oncol Rep 2016; 37:1052-1058. [PMID: 28000899 DOI: 10.3892/or.2016.5314] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/06/2016] [Indexed: 11/05/2022] Open
Abstract
The involvement of miR-367 in lung cancer development remains unclear. In the present study, we analyzed the expression of miR-367 in tumor and adjacent tissue samples from 113 patients with non-small cell lung cancer (NSCLC) utilizing real-time PCR. miR-367 expression was significantly upregulated in the cancer tissues compared with non-cancer controls. Based on the median value of the miR-367 expression level, we divided the NSCLC patients into miR-367 high-expression and miR-367 low-expression groups. Overexpression of miR-367 was correlated with a poorer prognosis of NSCLC patients Chi-square (χ2) test showed a significant statistical correlation between tumor size, tumor stage, metastasis and miR-367 expression. Additionally, miR-367 expression was found to be negatively correlated with FBXW7 expression. Based on the above correlations, we performed a series of functional experiments to further confirm the effect of miR-367 on NSCLC. Our results indicated that miR-367 may be involved in the development and progression of NSCLC by promoting proliferation and invasion and impeding apoptosis in NSCLC cells. Furthermore, FBXW7 was identified as a potential target of miR-367, and FBXW7 silencing partially compromised the invasive, proliferative and migratory capacities in the cells with low miR-367 expression. Thus, the miR-367/FBXW7 axis may be involved in the development and progression of NSCLC and may be valuable as a therapeutic target for the treatment of human NSCLC, especially cancers with high invasive potential.
Collapse
Affiliation(s)
- Jing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weibing Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenjun Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xinfeng Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xianglong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Quan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
35
|
Suryo Rahmanto A, Savov V, Brunner A, Bolin S, Weishaupt H, Malyukova A, Rosén G, Čančer M, Hutter S, Sundström A, Kawauchi D, Jones DT, Spruck C, Taylor MD, Cho YJ, Pfister SM, Kool M, Korshunov A, Swartling FJ, Sangfelt O. FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma. EMBO J 2016; 35:2192-2212. [PMID: 27625374 PMCID: PMC5069553 DOI: 10.15252/embj.201693889] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/18/2016] [Indexed: 12/02/2022] Open
Abstract
SOX9 is a master transcription factor that regulates development and stem cell programs. However, its potential oncogenic activity and regulatory mechanisms that control SOX9 protein stability are poorly understood. Here, we show that SOX9 is a substrate of FBW7, a tumor suppressor, and a SCF (SKP1/CUL1/F‐box)‐type ubiquitin ligase. FBW7 recognizes a conserved degron surrounding threonine 236 (T236) in SOX9 that is phosphorylated by GSK3 kinase and consequently degraded by SCFFBW7α. Failure to degrade SOX9 promotes migration, metastasis, and treatment resistance in medulloblastoma, one of the most common childhood brain tumors. FBW7 is either mutated or downregulated in medulloblastoma, and in cases where FBW7 mRNA levels are low, SOX9 protein is significantly elevated and this phenotype is associated with metastasis at diagnosis and poor patient outcome. Transcriptional profiling of medulloblastoma cells expressing a degradation‐resistant SOX9 mutant reveals activation of pro‐metastatic genes and genes linked to cisplatin resistance. Finally, we show that pharmacological inhibition of PI3K/AKT/mTOR pathway activity destabilizes SOX9 in a GSK3/FBW7‐dependent manner, rendering medulloblastoma cells sensitive to cytostatic treatment.
Collapse
Affiliation(s)
| | - Vasil Savov
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrä Brunner
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Bolin
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Matko Čančer
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sonja Hutter
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Daisuke Kawauchi
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Tw Jones
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charles Spruck
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yoon-Jae Cho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Stefan M Pfister
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, University Hospital, Heidelberg, Germany
| | - Marcel Kool
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrey Korshunov
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, University Hospital, Heidelberg, Germany
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Gasca J, Flores ML, Giráldez S, Ruiz-Borrego M, Tortolero M, Romero F, Japón MA, Sáez C. Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer. Oncotarget 2016; 7:52751-52765. [PMID: 27409838 PMCID: PMC5288146 DOI: 10.18632/oncotarget.10481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023] Open
Abstract
FBXW7 is a component of SCF (complex of SKP1, CUL1 and F-box-protein)-type ubiquitin ligases that targets several oncoproteins for ubiquitination and degradation by the proteasome. FBXW7 regulates cellular apoptosis by targeting MCL1 for ubiquitination. Recently, we identified PLK1 as a new substrate of FBXW7 modulating the intra-S-phase DNA-damage checkpoint. Taxanes are frequently used in breast cancer treatments, but the acquisition of resistance makes these treatments ineffective. We investigated the role of FBXW7 and their substrates MCL1 and PLK1 in regulating the apoptotic response to paclitaxel treatment in breast cancer cells and their expression in breast cancer tissues. Paclitaxel-sensitive MDA-MB-468 and a paclitaxel-resistant MDA-MB-468R subclone were used to study the role of FBXW7 and substrates in paclitaxel-induced apoptosis. Forced expression of FBXW7 or downregulation of MCL1 or PLK1 restored sensitivity to paclitaxel in MDA-MB-468R cells. By contrary, FBXW7-silenced MDA-MB-468 cells became resistant to paclitaxel. The expression of FBXW7 and substrates were studied in 296 invasive carcinomas by immunohistochemistry and disease-free survival was analyzed in a subset of patients treated with paclitaxel. In breast cancer tissues, loss of FBXW7 correlated with adverse prognosis markers and loss of FBXW7 and MCL1 or PLK1 accumulation were associated with diminished disease-free survival in paclitaxel-treated patients. We conclude that FBXW7 regulates the response to paclitaxel by targeting MCL1 and PLK1 in breast cancer cells and thus targeting these substrates may be a valuable adjunct for paclitaxel treatment. Also, FBXW7, MCL1 and PLK1 may be relevant predictive markers of tumor progression and response to paclitaxel treatment.
Collapse
Affiliation(s)
- Jessica Gasca
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Maria Luz Flores
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Servando Giráldez
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Seville, Spain
| | | | - María Tortolero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Seville, Spain
| | - Francisco Romero
- Department of Microbiology, Faculty of Biology, Universidad de Sevilla, Seville, Spain
| | - Miguel A. Japón
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Pathology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Pathology, Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
37
|
Lorenzi F, Babaei-Jadidi R, Sheard J, Spencer-Dene B, Nateri AS. Fbxw7-associated drug resistance is reversed by induction of terminal differentiation in murine intestinal organoid culture. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16024. [PMID: 27110583 PMCID: PMC4830362 DOI: 10.1038/mtm.2016.24] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/29/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the top three cancer-related causes of death worldwide. FBXW7 is a known tumor-suppressor gene, commonly mutated in CRC and in a variety of other epithelial tumors. Low expression of FBXW7 is also associated with poor prognosis. Loss of FBXW7 sensitizes cancer cells to certain drugs, while making them more resistant to other types of chemotherapies. However, is not fully understood how epithelial cells within normal gut and primary tumors respond to potential cancer therapeutics. We have studied genetically engineered mice in which the fbxw7 gene is conditionally knocked-out in the intestine (fbxw7∆G). To further investigate the mechanism of Fbxw7-action, we grew intestinal crypts from floxed-fbxw7 (fbxw7fl/fl) and fbxw7ΔG mice, in a Matrigel-based organoid (mini-gut) culture. The fbxw7ΔG organoids exhibited rapid budding events in the crypt region. Furthermore, to test organoids for drug response, we exposed day 3 intestinal organoids from fbxw7fl/fl and fbxw7∆G mice, to various concentrations of 5-fluorouracil (5-FU) for 72 hours. 5-FU triggers phenotypic differences in organoids including changing shape, survival, resistance, and death. 5-FU however, rescues the drug-resistance phenotype of fbxw7ΔG through the induction of terminal differentiation. Our results support the hypothesis that a differentiating therapy successfully targets FBXW7-mutated CRC cells.
Collapse
Affiliation(s)
- Federica Lorenzi
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham , Nottingham, UK
| | - Roya Babaei-Jadidi
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham , Nottingham, UK
| | - Jonathan Sheard
- CM Technologies Oy I, Institute for Biomedical Technology, University of Tampere , Tampere, Finland
| | - Bradley Spencer-Dene
- Experimental Pathology Laboratory, Cancer Research UK London Research Institute, The Francis Crick Institute, Lincoln's Inn Fields Laboratory , London, UK
| | - Abdolrahman S Nateri
- Cancer Genetics and Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham , Nottingham, UK
| |
Collapse
|
38
|
Li N, Lorenzi F, Kalakouti E, Normatova M, Babaei-Jadidi R, Tomlinson I, Nateri AS. FBXW7-mutated colorectal cancer cells exhibit aberrant expression of phosphorylated-p53 at Serine-15. Oncotarget 2016; 6:9240-56. [PMID: 25860929 PMCID: PMC4496214 DOI: 10.18632/oncotarget.3284] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 12/22/2022] Open
Abstract
FBXW7 mutations occur in a variety of human cancers including colorectal cancer (CRC). Elucidating its mechanism of action has become crucial for cancer therapy; however, it is also complicated by the fact that FBXW7 can influence many pathways due to its role as an E3-ubiquitin ligase in proteasome degradation. FBXW7 and TP53 are tumour suppressors intensively implicated in colorectal carcinogenesis. Deletion mutations in these two genes in animal models mark the progression from adenoma to carcinoma. Although still largely unknown, the last defense mechanism against CRC at the molecular level could be through a synergistic effect of the two genes. The underlying mechanism requires further investigation. In our laboratory, we have used a phospho-kinase profiler array to illustrate a potential molecular link between FBXW7 and p53 in CRC cells. In vitro and in vivo assessments demonstrated aberrant induction of phosphorylated p53 at Serine 15 [phospho-p53(Ser15)] in human FBXW7-deficient CRC cells as compared to their FBXW7-wild-type counterparts. FBXW7 loss in HCT116 cells promoted resistance to oxaliplatin. Immunoblotting data further confirmed that reduction of phospho-p53(Ser15) may contribute to the decreased efficacy of therapy in FBXW7-mutated CRC cells. The findings may suggest the applicability of phospho-p53(Ser15) as an indicative marker of FBXW7-mutations. Phospho-p53(Ser15) regulation by FBXW7 E3-ligase activity could provide important clues for understanding FBXW7 behavior in tumour progression and grounds for its clinical applicability thereafter.
Collapse
Affiliation(s)
- Ningning Li
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Federica Lorenzi
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Eliana Kalakouti
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.,Hillingdon Hospital, Uxbridge UB8 3NN, UK
| | - Makhliyo Normatova
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, the Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
39
|
Jackstadt R, Sansom OJ. Mouse models of intestinal cancer. J Pathol 2016; 238:141-51. [PMID: 26414675 PMCID: PMC4832380 DOI: 10.1002/path.4645] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Murine models of intestinal cancer are powerful tools to recapitulate human intestinal cancer, understand its biology and test therapies. With recent developments identifying the importance of the tumour microenvironment and the potential for immunotherapy, autochthonous genetically engineered mouse models (GEMMs) will remain an important part of preclinical studies for the foreseeable future. This review will provide an overview of the current mouse models of intestinal cancer, from the Apc(Min/+) mouse, which has been used for over 25 years, to the latest 'state-of-the-art' organoid models. We discuss here how these models have been used to define fundamental processes involved in tumour initiation and the attempts to generate metastatic models, which is the ultimate cause of cancer mortality. Together these models will provide key insights to understand this complex disease and hopefully will lead to the discovery of new therapeutic strategies.
Collapse
|
40
|
Zhou Z, He C, Wang J. Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep 2015; 34:2215-24. [PMID: 26324296 DOI: 10.3892/or.2015.4227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/29/2015] [Indexed: 11/05/2022] Open
Abstract
F-box and WD repeat domain-containing 7 (Fbxw7), the substrate-recognition component of SCFFbxw7 complex, is thought to be a tumor suppressor involved in cell growth, proliferation, differentiation and survival. Although an increasing number of ubiquitin substrates of Fbxw7 have been identified, the best characterized substrates are cyclin E and c-Myc. Fbxw7/cyclin E and Fbxw7/c-Myc pathways are tightly regulated by multiple regulators. Fbxw7 has been identified as a tumor suppressor in hepatocellular carcinoma. This review focused on the regulation of Fbxw7/cyclin E and Fbxw7/c-Myc pathways and discussed findings to gain a better understanding of the role of Fbxw7 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
41
|
The Human IL-22 Receptor Is Regulated through the Action of the Novel E3 Ligase Subunit FBXW12, Which Functions as an Epithelial Growth Suppressor. J Immunol Res 2015; 2015:912713. [PMID: 26171402 PMCID: PMC4480942 DOI: 10.1155/2015/912713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Interleukin- (IL-) 22 signaling is protective in animal models of pneumonia and bacteremia by Klebsiella pneumoniae and mediates tissue recovery from influenza and Staph aureus infection. We recently described processing of mouse lung epithelial IL-22 receptor (IL-22R) by ubiquitination on the intracellular C-terminal. To identify cellular factors that regulate human IL-22R, we screened receptor abundance while overexpressing constituents of the ubiquitin system and identify that IL-22R can be shuttled for degradation by multiple previously uncharacterized F-box protein E3 ligase subunits. We observe that in human cells IL-22R is destabilized by FBXW12. FBXW12 causes depletion of endogenous and plasmid-derived IL-22R in lung epithelia, binds the E3 ligase constituent Skp-1, and facilitates ubiquitination of IL-22R in vitro. FBXW12 knockdown with shRNA increases IL-22R abundance and STAT3 phosphorylation in response to IL-22 cytokine treatment. FBXW12 shRNA increases human epithelial cell growth and cell cycle progression with enhanced constitutive activity of map kinases JNK and ERK. These findings indicate that the heretofore-undescribed protein FBXW12 functions as an E3 ligase constituent to ubiquitinate and degrade IL-22R and that therapeutic FBXW12 inhibition may enhance IL-22 signaling and bolster mucosal host defense and infection containment.
Collapse
|
42
|
Bielskienė K, Bagdonienė L, Mozūraitienė J, Kazbarienė B, Janulionis E. E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. MEDICINA-LITHUANIA 2015; 51:1-9. [PMID: 25744769 DOI: 10.1016/j.medici.2015.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 01/18/2015] [Indexed: 12/30/2022]
Abstract
Melanomas are highly proliferative and invasive, and are most frequently metastatic. Despite many advances in cancer treatment over the last several decades, the prognosis for patients with advanced melanoma remains poor. New treatment methods and strategies are necessary. The main hallmark of cancer is uncontrolled cellular proliferation with alterations in the expression of proteins. Ubiquitin and ubiquitin-related proteins posttranslationally modify proteins and thereby alter their functions. The ubiquitination process is involved in various physiological responses, including cell growth, cell death, and DNA damage repair. E3 ligases, the most specific enzymes of ubiquitination system, participate in the turnover of many key regulatory proteins and in the development of cancer. E3 ligases are of interest as drug targets for their ability to regulate proteins stability and functions. Compared to the general proteasome inhibitor bortezomib, which blocks the entire protein degradation, drugs that target a particular E3 ligase are expected to have better selectivity with less associated toxicity. Components of different E3 ligases complexes (FBW7, MDM2, RBX1/ROC1, RBX2/ROC2, cullins and many others) are known as oncogenes or tumor suppressors in melanomagenesis. These proteins participate in regulation of different cellular pathways and such important proteins in cancer development as p53 and Notch. In this review we summarized published data on the role of known E3 ligases in the development of melanoma and discuss the inhibitors of E3 ligases as a novel approach for the treatment of malignant melanomas.
Collapse
Affiliation(s)
| | - Lida Bagdonienė
- Department of Biochemistry and Molecular Biology, Vilnius University, Vilnius, Lithuania.
| | | | | | | |
Collapse
|
43
|
Imura S, Tovuu LO, Utsunomiya T, Morine Y, Ikemoto T, Arakawa Y, Kanamoto M, Iwahashi S, Saito Y, Takasu C, Yamada S, Ishikawa D, Bando Y, Shimada M. Role of Fbxw7 expression in hepatocellular carcinoma and adjacent non-tumor liver tissue. J Gastroenterol Hepatol 2014; 29:1822-9. [PMID: 24731221 DOI: 10.1111/jgh.12623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Fbxw7 is a tumor suppressor gene through ubiquitination and degradation of multiple oncoproteins. Loss of Fbxw7 expression is frequently observed in various human cancers. In the present study, we examined the role of Fbxw7 expression in both non-tumor liver tissues and tumor tissues on clinicopathological significance. METHODS Sixty-six patients with hepatocellular carcinoma (HCC), who underwent hepatectomy, were divided into two groups: high and low gene-expression group, based on the Fbxw7 expression level. We compared the clinicopathological factors between the high expression and low expression groups in both tumor and non-tumor tissues. RESULTS Fbxw7 messenger RNA expression level in the non-tumor tissues was significantly higher than that in the tumor tissues. In the analysis of Fbxw7 expression in tumor and non-tumor tissues, disease-free survival rate in the Fbxw7 high expression group was significantly higher than that in the low expression group. In multivariable analysis, Fbxw7 low expression in both tumor and non-tumor tissue was detected as the strongest independent risk factor for HCC recurrence. CONCLUSIONS Low Fbxw7 expression in both tumor and non-tumor tissue may be an independent prognostic factor for tumor recurrence after hepatectomy in patients with HCC.
Collapse
Affiliation(s)
- Satoru Imura
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima, Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hede SM, Savov V, Weishaupt H, Sangfelt O, Swartling FJ. Oncoprotein stabilization in brain tumors. Oncogene 2014; 33:4709-21. [PMID: 24166497 DOI: 10.1038/onc.2013.445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 12/12/2022]
Abstract
Proteins involved in promoting cell proliferation and viability need to be timely expressed and carefully controlled for the proper development of the brain but also efficiently degraded in order to prevent cells from becoming brain cancer cells. A major pathway for targeted protein degradation in cells is the ubiquitin-proteasome system (UPS). Oncoproteins that drive tumor development and tumor maintenance are often deregulated and stabilized in malignant cells. This can occur when oncoproteins escape degradation by the UPS because of mutations in either the oncoprotein itself or in the UPS components responsible for recognition and ubiquitylation of the oncoprotein. As the pathogenic accumulation of an oncoprotein can lead to effectively sustained cell growth, viability and tumor progression, it is an indisputable target for cancer treatment. The most common types of malignant brain tumors in children and adults are medulloblastoma and glioma, respectively. Here, we review different ways of how deregulated proteolysis of oncoproteins involved in major signaling cancer pathways contributes to medulloblastoma and glioma development. We also describe means of targeting relevant oncoproteins in brain tumors with treatments affecting their stability or therapeutic strategies directed against the UPS itself.
Collapse
Affiliation(s)
- S-M Hede
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - V Savov
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - H Weishaupt
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - O Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - F J Swartling
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Tabatabaeifar S, Kruse TA, Thomassen M, Larsen MJ, Sørensen JA. Use of next generation sequencing in head and neck squamous cell carcinomas: a review. Oral Oncol 2014; 50:1035-40. [PMID: 25223596 DOI: 10.1016/j.oraloncology.2014.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 01/24/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) can primarily be attributed to alcohol consumption, tobacco use and infection with human papilloma virus. The heterogeneous nature of HNSCC has exposed a lack of tools for clinicians to provide more accurate prognosis. There is a need for biomarkers that can characterise the diversity of the cancer, and perhaps in the future, some of these biomarkers can point to targets for use in targeted and personalised medicine. The introduction of next generation sequencing (NGS) has allowed researches to sequence thousands of genes at a time through fast and relatively inexpensive whole exome and genome sequencing. The challenge with these enormous amounts of data is to extract relevant clinical information. In this review, we systematically evaluate all the published literature on the use of NGS of genomic DNA in HNSCC.
Collapse
Affiliation(s)
- Siavosh Tabatabaeifar
- Department of Plastic Surgery, Odense University Hospital, Odense, Denmark; Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; University of Southern Denmark, Institute of Clinical Research, Odense, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; University of Southern Denmark, Institute of Clinical Research, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; University of Southern Denmark, Institute of Clinical Research, Odense, Denmark
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; University of Southern Denmark, Institute of Clinical Research, Odense, Denmark
| | - Jens A Sørensen
- Department of Plastic Surgery, Odense University Hospital, Odense, Denmark; University of Southern Denmark, Institute of Clinical Research, Odense, Denmark.
| |
Collapse
|
46
|
Kim TM, Jung SH, Kim MS, Baek IP, Park SW, Lee SH, Lee HH, Kim SS, Chung YJ, Lee SH. The mutational burdens and evolutionary ages of early gastric cancers are comparable to those of advanced gastric cancers. J Pathol 2014; 234:365-74. [PMID: 25042771 DOI: 10.1002/path.4401] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 12/15/2022]
Abstract
Early gastric cancers (EGCs) precede advanced gastric cancers (AGCs), with a favourable prognosis compared to AGC. To understand the progression mechanism of EGC to AGC, it is required to disclose EGC and AGC genomes in mutational and evolutionary perspectives. We performed whole-exome sequencing and copy number profiling of nine microsatellite (MS)-unstable (MSI-H) (five EGCs and four AGCs) and eight MS-stable (MSS) gastric cancers (four EGCs and four AGCs). In the cancers, we observed well-known driver mutations (TP53, APC, PIK3CA, ARID1A, and KRAS) that were enriched in cancer-related pathways, including chromatin remodelling and tyrosine kinase activity. The MSI-H genomes harboured ten times more mutations, but were largely depleted of copy number alterations (CNAs) compared to the MSS cancers. Interestingly, EGC genomes showed a comparable level of mutations to AGC in terms of the number, sequence composition, and functional consequences (potential driver mutations and affected pathways) of mutations. Furthermore, the CNAs between EGC and AGC genomes were not significantly different in either MSI-H and MSS. Evolutionary analyses using somatic mutations and MSI as molecular clocks further identified that EGC genomes were as old as AGC genomes in both MSS and MSI-H cancers. Our results suggest that the genetic makeup for gastric cancer may already be achieved in EGC genomes and that the time required for transition to AGC may be relatively short. Also, the data suggest a possibility that the mutational profiles obtained from early biopsies may be useful in the clinical settings for the molecular diagnosis and therapeutics of gastric cancer patients.
Collapse
Affiliation(s)
- Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, 137-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Davis H, Lewis A, Behrens A, Tomlinson I. Investigation of the atypical FBXW7 mutation spectrum in human tumours by conditional expression of a heterozygous propellor tip missense allele in the mouse intestines. Gut 2014; 63:792-9. [PMID: 23676439 PMCID: PMC3995284 DOI: 10.1136/gutjnl-2013-304719] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/05/2013] [Accepted: 04/20/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE FBXW7 encodes the substrate recognition component of a ubiquitin ligase that degrades targets such as Notch1, c-Jun, c-Myc and cyclin E. FBXW7 mutations occur in several tumour types, including colorectal cancers. The FBXW7 mutation spectrum in cancers is unusual. Some tumours have biallelic loss of function mutations but most have monoallelic missense mutations involving specific arginine residues at β-propellor tips involved in substrate recognition. DESIGN FBXW7 functional studies have generally used null systems. In order to analyse the most common mutations in human tumours, we created a Fbxw7(fl(R482Q))(/+) mouse and conditionally expressed this mutation in the intestines using Vill-Cre. We compared these mice with heterozygous null (Fbxw7(+/-)) mutants. RESULTS A few sizeable intestinal adenomas occurred in approximately 30% of R482Q/+ and Fbxw7(+/-) mice at age >300 days. Breeding the R482Q allele onto Apc mutant backgrounds led to accelerated morbidity and increased polyp numbers and size. Within the small bowel, polyp distribution was shifted proximally. Elevated levels of two particular Fbxw7 substrates, Klf5 and Tgif1, were found in normal intestine and adenomas of R482Q/+, R482Q/R482Q and Fbxw7(-/-) mice, but not Fbxw7(+/-) animals. On the Apc mutant background, Fbxw7(+/-) mutants had a phenotype intermediate between Fbxw7 wild-type and R482Q/+ mice. CONCLUSIONS Heterozygous Fbxw7 propellor tip (R482Q) mutations promote intestinal tumorigenesis on an Apc mutant background. Klf5 and Tgif1 are strong candidates for mediating this effect. Although heterozygous null Fbxw7 mutations also promote tumour growth, these have a weaker effect than R482Q. These findings explain the FBXW7 mutation spectrum found in human cancers, and emphasise the need for animal models faithfully to reflect human disease.
Collapse
Affiliation(s)
- Hayley Davis
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, Oxford University, , Oxford, UK
| | | | | | | |
Collapse
|
48
|
Abstract
The MYC oncoprotein is an essential transcription factor that regulates the expression of many genes involved in cell growth, proliferation, and metabolic pathways. Thus, it is important to keep MYC activity in check in normal cells in order to avoid unwanted oncogenic changes. Normal cells have adapted several ways to control MYC levels, and these mechanisms can be disrupted in cancer cells. One of the major ways in which MYC levels are controlled in cells is through targeted degradation by the ubiquitin-proteasome system (UPS). Here, we discuss the role of the UPS in the regulation of MYC protein levels and review some of the many proteins that have been shown to regulate MYC protein stability. In addition, we discuss how this relates to MYC transcriptional activity, human cancers, and therapeutic targeting.
Collapse
Affiliation(s)
- Amy S Farrell
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | | |
Collapse
|
49
|
Tan Y, Sun D, Jiang W, Klotz-Noack K, Vashisht AA, Wohlschlegel J, Widschwendter M, Spruck C. PP2A-B55β antagonizes cyclin E1 proteolysis and promotes its dysregulation in cancer. Cancer Res 2014; 74:2006-14. [PMID: 24509904 DOI: 10.1158/0008-5472.can-13-1263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclin E1 regulates the initiation of S-phase in cellular division. However, in many cancers, cyclin E1 is aberrantly overexpressed and this molecular phenotype correlates with increased tumor aggressiveness and poor patient survival. The molecular cause(s) of cyclin E1 abnormalities in cancers is poorly understood. Here, we show that cyclin E1 overexpression in cancer is promoted by dysregulation of the protein phosphatase PP2A-B55β. PP2A-B55β targets the N- and C-terminal phosphodegrons of cyclin E1 for dephosphorylation, thus protecting it from degradation mediated by the SCF(Fbxw7) ubiquitin ligase. Augmented B55β expression stabilizes cyclin E1 and promotes its overexpression in cancer-derived cell lines and breast tumors. Conversely, B55β ablation enforces the degradation of cyclin E1 and inhibits cancer cell proliferation in vitro and tumor formation in vivo. Therefore, PP2A-B55β promotes cyclin E1 overexpression by antagonizing its degradation and its inhibition could represent a therapeutic mechanism for abrogating cyclin E1 function in cancers.
Collapse
Affiliation(s)
- Yingmeei Tan
- Authors' Affiliations: Tumor Initiation and Maintenance Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California; and Department of Gynaecological Oncology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hu J, Popp R, Frömel T, Ehling M, Awwad K, Adams RH, Hammes HP, Fleming I. Müller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid. ACTA ACUST UNITED AC 2014; 211:281-95. [PMID: 24446488 PMCID: PMC3920554 DOI: 10.1084/jem.20131494] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases generate bioactive lipid epoxides which can be further metabolized to supposedly less active diols by the soluble epoxide hydrolase (sEH). As the role of epoxides and diols in angiogenesis is unclear, we compared retinal vasculature development in wild-type and sEH(-/-) mice. Deletion of the sEH significantly delayed angiogenesis, tip cell, and filopodia formation, a phenomenon associated with activation of the Notch signaling pathway. In the retina, sEH was localized in Müller glia cells, and Müller cell-specific sEH deletion reproduced the sEH(-/-) retinal phenotype. Lipid profiling revealed that sEH deletion decreased retinal and Müller cell levels of 19,20-dihydroxydocosapentaenoic acid (DHDP), a diol of docosahexenoic acid (DHA). 19,20-DHDP suppressed endothelial Notch signaling in vitro via inhibition of the γ-secretase and the redistribution of presenilin 1 from lipid rafts. Moreover, 19,20-DHDP, but not the parent epoxide, was able to rescue the defective angiogenesis in sEH(-/-) mice as well as in animals lacking the Fbxw7 ubiquitin ligase, which demonstrate strong basal activity of the Notch signaling cascade. These studies demonstrate that retinal angiogenesis is regulated by a novel form of neuroretina-vascular interaction involving the sEH-dependent generation of a diol of DHA in Müller cells.
Collapse
Affiliation(s)
- Jiong Hu
- Institute for Vascular Signaling, Centre for Molecular Medicine, Johann Wolfgang Goethe University and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|