1
|
Su L, Wang X, Wang J, Luh F, Yen Y. Impact of N221S missense mutation in human ribonucleotide reductase small subunit b on mitochondrial DNA depletion syndrome. Sci Rep 2023; 13:19899. [PMID: 37964013 PMCID: PMC10645729 DOI: 10.1038/s41598-023-47284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/11/2023] [Indexed: 11/16/2023] Open
Abstract
The impact of N221S mutation in hRRM2B gene, which encodes the small subunit of human ribonucleotide reductase (RNR), on RNR activity and the pathogenesis of mitochondrial DNA depletion syndrome (MDDS) was investigated. Our results demonstrate that N221 mutations significantly reduce RNR activity, suggesting its role in the development of MDDS. We proposed an allosteric regulation pathway involving a chain of three phenylalanine residues on the αE helix of RNR small subunit β. This pathway connects the C-terminal loop of β2, transfers the activation signal from the large catalytic subunit α to β active site, and controls access of oxygen for radical generation. N221 is near this pathway and likely plays a role in regulating RNR activity. Mutagenesis studies on residues involved in the phenylalanine chain and the regulation pathway were conducted to confirm our proposed mechanism. We also performed molecular dynamic simulation and protein contact network analysis to support our findings. This study sheds new light on RNR small subunit regulation and provides insight on the pathogenesis of MDDS.
Collapse
Affiliation(s)
- Leila Su
- Sino-American Cancer Foundation, Covina, CA, 91722, USA
| | - Xin Wang
- Sino-American Cancer Foundation, Covina, CA, 91722, USA
| | - Jianghai Wang
- Sino-American Cancer Foundation, Covina, CA, 91722, USA
| | - Frank Luh
- Sino-American Cancer Foundation, Covina, CA, 91722, USA
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110301, Taiwan.
- Center for Cancer Translational Research, Tzu Chi University, Hualien, 970374, Taiwan.
| |
Collapse
|
2
|
Brown A, Pan Q, Fan L, Indersie E, Tian C, Timchenko N, Li L, Hansen BS, Tan H, Lu M, Peng J, Pruett-Miller SM, Yu J, Cairo S, Zhu L. Ribonucleotide reductase subunit switching in hepatoblastoma drug response and relapse. Commun Biol 2023; 6:249. [PMID: 36882565 PMCID: PMC9992519 DOI: 10.1038/s42003-023-04630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 (RRM2) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B. Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.
Collapse
Affiliation(s)
- Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Fan
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikolai Timchenko
- Department of Surgery, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Liyuan Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meifen Lu
- Center for Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Brown A, Pan Q, Fan L, Indersie E, Tian C, Timchenko N, Li L, Hansen BS, Tan H, Lu M, Peng J, Pruett-Miller SM, Yu J, Cairo S, Zhu L. Ribonucleotide Reductase Subunit Switching in Hepatoblastoma Drug Response and Relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36747774 PMCID: PMC9900781 DOI: 10.1101/2023.01.24.525404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 ( RRM2 ) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B . Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.
Collapse
|
4
|
Yang L, Tan P, Sun H, Zeng Z, Pan Y. Integrative Dissection of Novel Lactate Metabolism-Related Signature in the Tumor Immune Microenvironment and Prognostic Prediction in Breast Cancer. Front Oncol 2022; 12:874731. [PMID: 35574387 PMCID: PMC9094627 DOI: 10.3389/fonc.2022.874731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/24/2022] [Indexed: 01/05/2023] Open
Abstract
The outcomes of some breast cancer patients remain poor due to being susceptible to recurrence, metastasis and drug resistance, and lactate metabolism has been described as a hallmark of cancer and a contributor to cancer progression and immune escape. Hence, it is worthy of seeking potentially novel biomarkers from lactate metabolism relevant perspectives for this particular cohort of patients. In this context, 205 available lactate metabolism-related genes (LMGs) were obtained by a search of multiple genesets, and the landscape of somatic mutation, copy number variation, and mRNA expression levels was investigated among these genes. Crucially, 9 overall survival-related LMGs were identified through univariate Cox regression analysis in The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases. Subsequently, a prognostic signature, defined as Lactate Metabolism Index (LMI), was established with 5 OS-related LMGs using Least Absolute Shrinkage and Selection Operator (LASSO) Cox hazard regression analysis in TCGA training set, and then validated in two external cohorts (METABRIC and GSE96058). From the comprehensive results, breast cancer patients with high LMI had considerably poorer survival probability across all cohorts, and the degree of clinical features tended to be more severe as the LMI value increased. Furthermore, a prognostic nomogram incorporating LMI, age, and AJCC stage was constructed and demonstrated great prediction performance for OS of breast cancer patients, which was evaluated by the calibration plot and the decision curve analysis. Moreover, the potential effect of different LMI values on levels of immune checkpoints, tumor-infiltrating immune cells, and cytokines were explored ultimately, and patients with higher LMI values might gain an immunosuppressive tumor microenvironment that contributed to immune escape of breast cancer and inferior prognosis. Collectively, all findings in the study indicated the potential prognostic value of LMI in breast cancer, providing further implications for the role of lactate metabolism in breast cancer prognosis, tumor immune microenvironment, and immunotherapy.
Collapse
Affiliation(s)
- Lu Yang
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peixin Tan
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hengwen Sun
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zijun Zeng
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi Pan
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
5
|
Molecular Determinants of Cancer Therapy Resistance to HDAC Inhibitor-Induced Autophagy. Cancers (Basel) 2019; 12:cancers12010109. [PMID: 31906235 PMCID: PMC7016854 DOI: 10.3390/cancers12010109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylation inhibitors (HDACi) offer high potential for future cancer therapy as they can re-establish the expression of epigenetically silenced cell death programs. HDACi-induced autophagy offers the possibility to counteract the frequently present apoptosis-resistance as well as stress conditions of cancer cells. Opposed to the function of apoptosis and necrosis however, autophagy activated in cancer cells can engage in a tumor-suppressive or tumor-promoting manner depending on mostly unclarified factors. As a physiological adaption to apoptosis resistance in early phases of tumorigenesis, autophagy seems to resume a tumorsuppressive role that confines tumor necrosis and inflammation or even induces cell death in malignant cells. During later stages of tumor development, chemotherapeutic drug-induced autophagy seems to be reprogrammed by the cancer cell to prevent its elimination and support tumor progression. Consistently, HDACi-mediated activation of autophagy seems to exert a protective function that prevents the induction of apoptotic or necrotic cell death in cancer cells. Thus, resistance to HDACi-induced cell death is often encountered in various types of cancer as well. The current review highlights the different mechanisms of HDACi-elicited autophagy and corresponding possible molecular determinants of therapeutic resistance in cancer.
Collapse
|
6
|
Ma J, Zhang F, Sun P. miR-140-3p impedes the proliferation of human cervical cancer cells by targeting RRM2 to induce cell-cycle arrest and early apoptosis. Bioorg Med Chem 2019; 28:115283. [PMID: 31902649 DOI: 10.1016/j.bmc.2019.115283] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
Cervical cancer is a critically malignant tumor with the second mortality of females worldwide. MicroRNAs (miRNAs) are short but regulatory non-coding RNAs playing a pivotal role in many biological processes including tumorigenesis. However, the exact role of miR-140-3p in cervical cancer remains to be elucidated. Here we identified that miR-140-3p was significantly reduced in cervical cancer tissues by comprehensive analysis of TCGA data, hinting that higher expression level of miR-140-3p predicted a good clinical prognosis. Quantitative real-time PCR (RT-qPCR) assay was performed to confirm the negative correlation between miR-140-3p expression level and human cervical cancer tissues as well as various cervical cancer cell lines. To clarify the certain role of miR-140-3p, forced expression by microRNA mimics was applied in Caski and C33A cells, showing that miR-140-3p overexpression significantly impeded the proliferation of cervical cancer cells by cell count kit (CCK-8) assay. Western blot analysis of cell cycle-related proteins Cyclin A, Cyclin B1 and Cyclin D1 have further confirmed the cell cycle arrest was induced by the ectopic expression of miR-140-3p. Annexin-V based FACS analysis also found the simultaneous appearance of early apoptotic cell population in miR-140-3p overexpression cells. The protein level of BCL-2 was attenuated in accompany with elevated Bax and Cleaved caspase-3 protein, indicating miR-140-3p overexpression induced early apoptosis. Mechanistically, we demonstrated that miR-140-3p could target the 3'UTR of RRM2 which has been proved to be highly involved in the onset of cancer. Furthermore, upregulation of miR-140-3p and RRM2 failed to inhibit the proliferation of human cervical cancer cells, revealing that RRM2 served as the target downstream gene of miR-140-3p abolishing its ability as a tumor suppressor. Overall, we figured out the new role of miR-140-3p in cervical cancer and concluded that miR-140-3p was a candidate of cancer control in preclinical.
Collapse
Affiliation(s)
- Jiajia Ma
- Department of Obstetrics and Gynaecology, XiJing Hospital, Air Force Military Medical University, China
| | - Fan Zhang
- Department of Gynaecology and Obstetrics, Beijing Chuiyangliu Hospital, ChuiYangLiu Hospital Affiliated to Tsinghua University, China
| | - Ping Sun
- Department of Gynaecology, Shaanxi Provincial Tumor Hospital, China.
| |
Collapse
|
7
|
DGCR8/ZFAT-AS1 Promotes CDX2 Transcription in a PRC2 Complex-Dependent Manner to Facilitate the Malignant Biological Behavior of Glioma Cells. Mol Ther 2019; 28:613-630. [PMID: 31813799 DOI: 10.1016/j.ymthe.2019.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/24/2022] Open
Abstract
Studies have found that RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are dysregulated and play an important regulatory role in the development of tumors. Based on The Cancer Genome Atlas (TCGA) database, our findings from experiments, and the evidence of previous studies, we screened DiGeorge syndrome critical region gene 8 (DGCR8), ZFAT antisense RNA 1 (ZFAT-AS1), and caudal type homeobox 2 (CDX2) as research candidates. In the present study, DGCR8 and CDX2 were highly expressed and ZFAT-AS1 was markedly downregulated in glioma tissues and cells. DGCR8 or CDX2 knockdown or ZFAT-AS1 overexpression suppressed glioma cell proliferation, migration, and invasion and facilitated apoptosis. DGCR8 might decrease ZFAT-AS1 expression by attenuating its stability in a manner of inducing its cleavage. Importantly, ZFAT-AS1 could inhibit CDX2 transcription by mediating the methylation of histone H3 on lysine 27 (H3K27me3) modification induced by PRC2 in the CDX2 promoter region. In addition, CDX2 transcriptionally activated DGCR8 expression by binding to its promoter regions, forming a positive feedback loop of DGCR8/ZFAT-AS1/CDX2. In conclusion, DGCR8/ZFAT-AS1 promotes CDX2 transcription in a PRC2 complex-dependent manner to facilitate the malignant biological behavior of glioma cells.
Collapse
|
8
|
Zhang Q, Zhu B, Qian J, Wang K, Zhou J. miR-942 promotes proliferation and metastasis of hepatocellular carcinoma cells by inhibiting RRM2B. Onco Targets Ther 2019; 12:8367-8378. [PMID: 31632084 PMCID: PMC6795128 DOI: 10.2147/ott.s207549] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death. MicroRNA-942 (miR-942) plays a critical role in promoting proliferation and metastasis of cancer cells and is associated with poor prognosis in some types of cancers. However, the prognostic value of miR-942 and its functional role in HCC remain unclear. Materials and methods Real-time PCR (RT-PCR) was used to detect the expression of miR-942 in HCC tissues and adjacent normal liver tissues. Next, the correlations between miR-942 expression and clinicopathological parameters including the survival rate were analyzed. Interaction between miR-942 and ribonucleotide reductase regulatory TP53 inducible subunit M2B (RRM2B) was determined by RT-PCR, Western blot and luciferase assay. The biological influence of miR-942 on HCC cell lines was studied using CCK-8 assay, colony formation assay and transwell assay in vitro. Western blot and RT-PCR were used to analyze the change of downstream genes after miR-942 mimics transfection. Results miR-942 was significantly up-regulated in HCC. Its high expression was associated with serum alanine transaminase level (P=0.0350), tumor size (P=0.0195), T stage (P=0.0045) and lymphatic metastasis (P=0.0013). High expression of miR-942 was associated with shorter overall survival and disease-free survival time of HCC patients. RRM2B was validated as a target gene of miR-942. miR-942 mimics markedly promoted the malignant phenotypes of Huh7 and MHCC97H cell lines, while its inhibitor had the opposite effect. miR-942 can regulate the downstream genes of RRM2B including Egr-1 and PTEN, markers of epithelial-mesenchymal transition and matrix metalloproteinases. Conclusion miR-942 may serve as a potential biomarker for HCC and its inhibitor may be a therapeutic agent for the treatment of this deadly disease.
Collapse
Affiliation(s)
- Qifan Zhang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Bili Zhu
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jianping Qian
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Kai Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| |
Collapse
|
9
|
Zhang X, Wang J, Li J, Chen W, Liu C. CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features. BMC Med Genomics 2018; 11:120. [PMID: 30598114 PMCID: PMC6311943 DOI: 10.1186/s12920-018-0436-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are widely involved in the initiation and development of cancer. Although some computational methods have been proposed to identify cancer-related lncRNAs, there is still a demanding to improve the prediction accuracy and efficiency. In addition, the quick-update data of cancer, as well as the discovery of new mechanism, also underlay the possibility of improvement of cancer-related lncRNA prediction algorithm. In this study, we introduced CRlncRC, a novel Cancer-Related lncRNA Classifier by integrating manifold features with five machine-learning techniques. RESULTS CRlncRC was built on the integration of genomic, expression, epigenetic and network, totally in four categories of features. Five learning techniques were exploited to develop the effective classification model including Random Forest (RF), Naïve bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR) and K-Nearest Neighbors (KNN). Using ten-fold cross-validation, we showed that RF is the best model for classifying cancer-related lncRNAs (AUC = 0.82). The feature importance analysis indicated that epigenetic and network features play key roles in the classification. In addition, compared with other existing classifiers, CRlncRC exhibited a better performance both in sensitivity and specificity. We further applied CRlncRC to lncRNAs from the TANRIC (The Atlas of non-coding RNA in Cancer) dataset, and identified 121 cancer-related lncRNA candidates. These potential cancer-related lncRNAs showed a certain kind of cancer-related indications, and many of them could find convincing literature supports. CONCLUSIONS Our results indicate that CRlncRC is a powerful method for identifying cancer-related lncRNAs. Machine-learning-based integration of multiple features, especially epigenetic and network features, had a great contribution to the cancer-related lncRNA prediction. RF outperforms other learning techniques on measurement of model sensitivity and specificity. In addition, using CRlncRC method, we predicted a set of cancer-related lncRNAs, all of which displayed a strong relevance to cancer as a valuable conception for the further cancer-related lncRNA function studies.
Collapse
Affiliation(s)
- Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, People's Republic of China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, People's Republic of China
| | - Wen Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, People's Republic of China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, Yunnan, People's Republic of China.
| |
Collapse
|
10
|
Huang J, Long Z, Lin W, Liao X, Xie Y, Liu L, Ma W. Integrative omics analysis of p53-dependent regulation of metabolism. FEBS Lett 2018; 592:380-393. [PMID: 29323703 DOI: 10.1002/1873-3468.12968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/08/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022]
Abstract
Accumulated evidence in the last decade implies that regulation of metabolism by p53 represents a reviving mechanism vital to prevent tumorigenesis. To gain a more in-depth understanding of metabolic regulation by baseline levels of p53, we employed both metabolomics and transcriptomics analysis with human colon cancer cell-line HCT116 depleted of p53. Metabolomics analyses with UPLC/quadrupole time-of-flight mass spectrometry identified 283 significantly changed metabolites including 138 important metabolites. Transcriptomics analysis with microarray revealed 1317 differentially expressed genes. By integrated analysis of both omics data, we found nucleotides metabolism and sulfur-related metabolism are of great importance. Our study provided a pilot comprehensive view of the metabolism regulated by p53 and suggests several potential p53 targets in metabolism for further study.
Collapse
Affiliation(s)
- Jiajun Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, MUST, China
| | - Ze Long
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, MUST, China
| | - Wanjun Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, MUST, China
| | - Xiaolin Liao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, MUST, China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, MUST, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, MUST, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, MUST, China
| |
Collapse
|
11
|
Chen Z, Zheng Y, Shi Y, Cui Z. Overcoming tumor cell chemoresistance using nanoparticles: lysosomes are beneficial for (stearoyl) gemcitabine-incorporated solid lipid nanoparticles. Int J Nanomedicine 2018; 13:319-336. [PMID: 29391792 PMCID: PMC5768424 DOI: 10.2147/ijn.s149196] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite recent advances in targeted therapies and immunotherapies, chemotherapy using cytotoxic agents remains an indispensable modality in cancer treatment. Recently, there has been a growing emphasis in using nanomedicine in cancer chemotherapy, and several nanomedicines have already been used clinically to treat cancers. There is evidence that formulating small molecular cancer chemotherapeutic agents into nanomedicines significantly modifies their pharmacokinetics and often improves their efficacy. Importantly, cancer cells often develop resistance to chemotherapy, and formulating anticancer drugs into nanomedicines also helps overcome chemoresistance. In this review, we briefly describe the different classes of cancer chemotherapeutic agents, their mechanisms of action and resistance, and evidence of overcoming the resistance using nanomedicines. We then emphasize on gemcitabine and our experience in discovering the unique (stearoyl) gemcitabine solid lipid nanoparticles that are effective against tumor cells resistant to gemcitabine and elucidate the underlying mechanisms. It seems that lysosomes, which are an obstacle in the delivery of many drugs, are actually beneficial for our (stearoyl) gemcitabine solid lipid nanoparticles to overcome tumor cell resistance to gemcitabine.
Collapse
Affiliation(s)
- Zhe Chen
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yuanqiang Zheng
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanchun Shi
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhengrong Cui
- Inner Mongolia Key Lab of Molecular Biology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.,Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Chen J, Xiao Y, Cai X, Liu J, Chen K, Zhang X. Overexpression of p53R2 is associated with poor prognosis in lung sarcomatoid carcinoma. BMC Cancer 2017; 17:855. [PMID: 29246119 PMCID: PMC5731091 DOI: 10.1186/s12885-017-3811-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/21/2017] [Indexed: 02/01/2023] Open
Abstract
Background This study aimmed to evaluate the expression of p53-inducible RR small subunit 2 homologue (p53R2) in Lung sarcomatoid carcinoma (LSC) and its association with clinicopathological parameters and prognosis. Methods In this study, clinicopathological factors and prognostic significance of the expression of p53R2 was investigated by immunohistochemistry (IHC) in 100 cases of LSC. Results The results showed that the expression of p53R2 was significantly correlated with clinical stage (P<0.05). But there was no statistically correlation with gender, age, smoking, tumor size, pT stage, pN stage, pM stage, therapy and relapse. Kaplan-Meier analysis revealed that the expression of p53R2, clinical stage, pT stage, pN stage, pM stage and tumor size were closely related to patients’ survival, and the analysis also revealed that patients with low expression of p53R2 had a longer overall survival than that with high expression (Mean overall survival: 84.8 months vs. 34.7 months, P<0.05). Further multivariate analysis indicated that the expression of p53R2 was identified as an independent prognostic factor in the prediction of the overall survival for patients with LSC (HR = 3.217, P<0.05). Conclusions The expression of p53R2 was inversely associated with the proliferation and progression of LSC, and the results indicated that the high expression of p53R2 was an independent factor for unfavorable prognosis of patients with LSC.
Collapse
Affiliation(s)
- Jiewei Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongbo Xiao
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiaoyan Cai
- Department of Pathology, Taishan People's Hospital, Taishan, Guangdong, 529200, China
| | - Jun Liu
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Keming Chen
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xinke Zhang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China. .,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Chen J, Li S, Xiao Y, Zou X, Zhang X, Zhu M, Cai M, Xie D. p53R2 as a novel prognostic biomarker in nasopharyngeal carcinoma. BMC Cancer 2017; 17:846. [PMID: 29237424 PMCID: PMC5729457 DOI: 10.1186/s12885-017-3858-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND p53R2 is a target of p53 gene, which is essential for DNA repair, mitochondrial DNA synthesis, protection against oxidative stress, chromosomal instability, chronic inflammation and tumorigenesis. This study is aimed to investigate the expression of ribonucleotide reductase (RR) subunit p53R2 in nasopharyngeal carcinoma and its significance in the prognosis. METHODS The expression levels of p53R2 in 201 patients with NPC were examined by immunohistochemical assay. The correlations of p53R2 expression and clinicopathological features of nasopharyngeal carcinoma patient were analysed by chi-square test. The Kaplan-Meier survival analysis and Cox multivariate regression model were used to analyze the prognostic significance of the patients with NPC. RESULTS Immunohistochemical results showed that p53R2 was positively expressed in 92.5% (186/201) of nasopharyngeal carcinoma and the high expression rate was 38.3% (77/201). Further analysis observed that the negative correlation between expression of p53R2 and pT status had statistical significance (P < 0.05). Kaplan-Meier survival analysis found that the mean survival time of patients with high expression of p53R2 was 143.32 months, while the patients with low expression level of p53R2 was 121.63 months (P < 0.05). Cox regression analysis suggested that p53R2 protein expression could be used as an independent prognostic factor for nasopharyngeal carcinoma (P < 0.05). CONCLUSIONS This study drew a conclusion that p53R2 could be used as a prognostic biomarker indicative of the favorable outcome for patients with nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jiewei Chen
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| | - Shuman Li
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yongbo Xiao
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| | - Xuan Zou
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655 China
| | - Xinke Zhang
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| | - Mingshu Zhu
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| | - Muyan Cai
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| | - Dan Xie
- Sun Yat-sen University Cancer Center ; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Guangzhou, 510060 China
| |
Collapse
|
14
|
Jiang C, Xu R, Li XX, Wang YY, Liang WQ, Zeng JD, Zhang SS, Xu XY, Yang Y, Zhang MY, Wang HY, Zheng XFS. p53R2 overexpression in cervical cancer promotes AKT signaling and EMT, and is correlated with tumor progression, metastasis and poor prognosis. Cell Cycle 2017; 16:1673-1682. [PMID: 28841361 DOI: 10.1080/15384101.2017.1320629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
p53R2 is a p53-inducible ribonucleotide reductase subunit involved in deoxyribonucleotide biosynthesis and DNA repair. Although p53R2 has been linked to human cancer, its role in cervical cancer remains unknown. In this study, we investigated the expression and clinical significance of p53R2 in early-stage cervical cancer. p53R2 expression is significantly upregulated at both mRNA and protein levels in cervical cancer cells and tissues, compared with that in matched normal cervical cells and tissues, respectively. p53R2 overexpression is associated with increased risk of pelvic lymph node metastasis (PLNM, p = 0.001) and cancer relapse (p = 0.009). Patients with high p53R2 expression have a shorter overall survival (OS) and disease-free survival (DFS). p53R2 is an independent factor for predicting OS and DFS of cervical cancer patients. We further show that p53R2 is important for oncogenic growth, migration and invasion in cervical cancer cells. Mechanistically, p53R2 promotes Akt signaling and epithelial-mesenchymal transition (EMT). In conclusion, our study demonstrates for the first time that p53R2 protein is overexpressed in early-stage cervical cancer and unravels some unconventional oncogenic functions of p53R2. p53R2 may be a useful prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Chao Jiang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Rui Xu
- b Department of Internal Medicine , Cancer Center of Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Xiao-Xing Li
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Yan-Yan Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Wen-Qian Liang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Ju-Deng Zeng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Shan-Shan Zhang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Xiao-Yi Xu
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Yang Yang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Mei-Yin Zhang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China
| | - Hui-Yun Wang
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China.,c Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers , The State University of New Jersey , New Brunswick , NJ , USA
| | - X F Steven Zheng
- a State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-Sen University Cancer Center , Guangzhou , Guangdong , China.,c Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers , The State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|
15
|
Foskolou IP, Jorgensen C, Leszczynska KB, Olcina MM, Tarhonskaya H, Haisma B, D'Angiolella V, Myers WK, Domene C, Flashman E, Hammond EM. Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication. Mol Cell 2017; 66:206-220.e9. [PMID: 28416140 PMCID: PMC5405111 DOI: 10.1016/j.molcel.2017.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Cells exposed to hypoxia experience replication stress but do not accumulate DNA damage, suggesting sustained DNA replication. Ribonucleotide reductase (RNR) is the only enzyme capable of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs). However, oxygen is an essential cofactor for mammalian RNR (RRM1/RRM2 and RRM1/RRM2B), leading us to question the source of dNTPs in hypoxia. Here, we show that the RRM1/RRM2B enzyme is capable of retaining activity in hypoxia and therefore is favored over RRM1/RRM2 in order to preserve ongoing replication and avoid the accumulation of DNA damage. We found two distinct mechanisms by which RRM2B maintains hypoxic activity and identified responsible residues in RRM2B. The importance of RRM2B in the response to tumor hypoxia is further illustrated by correlation of its expression with a hypoxic signature in patient samples and its roles in tumor growth and radioresistance. Our data provide mechanistic insight into RNR biology, highlighting RRM2B as a hypoxic-specific, anti-cancer therapeutic target. RRM2B is induced in response to hypoxia in both cell models and patient datasets RRM2B retains activity in hypoxic conditions and is the favored RNR subunit in hypoxia Loss of RRM2B has detrimental consequences for cell fate, specifically in hypoxia RRM2B depletion enhanced hypoxic-specific apoptosis and increased radiosensitivity
Collapse
Affiliation(s)
- Iosifina P Foskolou
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Christian Jorgensen
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Katarzyna B Leszczynska
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Monica M Olcina
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Hanna Tarhonskaya
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Bauke Haisma
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - William K Myers
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK
| | - Carmen Domene
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK; Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Emily Flashman
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Ester M Hammond
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
16
|
p53R2 regulates thioredoxin reductase activity through interaction with TrxR2. Biochem Biophys Res Commun 2016; 482:706-712. [PMID: 27866984 DOI: 10.1016/j.bbrc.2016.11.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/17/2016] [Indexed: 01/20/2023]
Abstract
Ribonucleotide reductase small subunit p53R2 is a member of the ribonucleotide reductase family that supplies dNTPs for nuclear and mitochondrial DNA replication and repair. Here, we have identified a mitochondrial thioredoxin reductase 2 (TrxR2) as a novel p53R2-binding protein. We demonstrated a direct interaction between the two, and observed that p53R2 stimulated the enzymatic activity of TrxR in vitro. Moreover, TrxR2 activity was significantly lower in p53R2 knockdown cells, and increased when p53R2 was overexpressed, effects that were independent of p53. Furthermore, p53R2 knockdown suppressed UV-induced TrxR activity. These findings suggest that p53R2 acts as a positive regulator of TrxR2 activity in mitochondria both under normal physiological conditions and during the cellular response to DNA damage.
Collapse
|
17
|
Cho E, Yen Y. Novel regulators and molecular mechanisms of p53R2 and its disease relevance. Biochimie 2016; 123:81-4. [DOI: 10.1016/j.biochi.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
|
18
|
Leung AWY, Hung SS, Backstrom I, Ricaurte D, Kwok B, Poon S, McKinney S, Segovia R, Rawji J, Qadir MA, Aparicio S, Stirling PC, Steidl C, Bally MB. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro. PLoS One 2016; 11:e0150675. [PMID: 26938915 PMCID: PMC4777418 DOI: 10.1371/journal.pone.0150675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/16/2016] [Indexed: 01/22/2023] Open
Abstract
Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both datasets, warranting further research into combinations of cisplatin and therapeutics targeting these pathways.
Collapse
Affiliation(s)
- Ada W. Y. Leung
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| | - Stacy S. Hung
- Centre for Lymphoid Cancers, BC Cancer Agency, Vancouver, BC, Canada
| | - Ian Backstrom
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Daniel Ricaurte
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Brian Kwok
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Steven Poon
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Steven McKinney
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Romulo Segovia
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Jenna Rawji
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Mohammed A. Qadir
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Christian Steidl
- Centre for Lymphoid Cancers, BC Cancer Agency, Vancouver, BC, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Centre for Drug Research and Development, Vancouver, BC, Canada
| |
Collapse
|
19
|
Rahmati-Yamchi M, Zarghami N, Nozad Charoudeh H, Ahmadi Y, Baradaran B, Khalaj-Kondori M, Milani M, Akbarzadeh A, Shaker M, Pourhassan-Moghaddam M. Clofarabine Has Apoptotic Effect on T47D Breast Cancer Cell Line via P53R2 Gene Expression. Adv Pharm Bull 2015; 5:471-6. [PMID: 26819918 DOI: 10.15171/apb.2015.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Clofarabine, a purine nucleoside analogue and inhibitor of Ribonucleotide Reductase (RR), is used for treatment of leukemia. Clofarabine-induced defect in DNA replication, induces p53 and subsequently P53R2 genes as subunit of RR. clofarabine deregulated P53R2 gene expression leading to the elevated levels of P53R2 which impose resistance to DNA damaging drugs. In this study the apoptotic and cytotoxic effects of clofarabine has been investigated on breast cancer cell line. METHODS Cofarabine cytotoxicity on T47D cells has been studied by MTT assay. T47D cells were exposed to the different concentrations of clofarabine for 24, 48 and 72 hours intervals. Relative expression of P53R2 gene has been studied using real-time PCR. Moreover, after treating with clofarabine the apoptotic and necrotic cells were detected using Annexin V and propodium iodide (PI) reagents by flowcytometry technique. RESULTS MTT assay results showed that the clofarabine IC50 on T47D cell line were 3 and 2.5µM after 48 and 72 h exposure, respectively. Clofarabine did not show any significant cytotoxic effect after 24 h exposure. The analysis of qRT-PCR showed a significant increase in P53R2 gene expression in treated cells with both 2.5 and 3 μM doses and also, the results of flowcytometry revealed 26.91 and 74.46 percent apoptosis induction in 48 and 72h treatments respectively in comparison to the control groups. CONCLUSION Our results showed that apoptotic and cytotoxic effects of clofarabine on T47D cell line were in time and dose dependent manner; therefore it could be considered a new candidate in breast cancer therapy.
Collapse
Affiliation(s)
- Mohammad Rahmati-Yamchi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yasin Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Milani
- Liver and Gastrointestinal disease research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Liver and Gastrointestinal disease research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsud Shaker
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
20
|
RRM2B-Mediated Regulation of Mitochondrial Activity and Inflammation under Oxidative Stress. Mediators Inflamm 2015; 2015:287345. [PMID: 26089597 PMCID: PMC4451759 DOI: 10.1155/2015/287345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022] Open
Abstract
RRM2B is a critical ribonucleotide reductase (RR) subunit that exists as p53-inducible and p53-dependent molecule. The p53-independent regulation of RRM2B has been recently studied, and FOXO3 was identified as a novel regulator of RRM2B. However, the p53-independent regulation of RRM2B, particularly under oxidative stress, remains largely unknown. In this study, we investigated the role of RRM2B underoxidative stress-induced DNA damage and further examined the regulation of mitochondrial and inflammatory genes by RRM2B. Our study is the first to report the critical role of RRM2B in mitochondrial homeostasis and the inflammation signaling pathway in a p53-independent manner. Furthermore, our study provides novel insights into the role of the RR in inflammatory diseases.
Collapse
|
21
|
Holmgren G, Synnergren J, Bogestål Y, Améen C, Åkesson K, Holmgren S, Lindahl A, Sartipy P. Identification of novel biomarkers for doxorubicin-induced toxicity in human cardiomyocytes derived from pluripotent stem cells. Toxicology 2014; 328:102-11. [PMID: 25529476 PMCID: PMC4326176 DOI: 10.1016/j.tox.2014.12.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 01/17/2023]
Abstract
Doxorubicin is a chemotherapeutic agent indicated for the treatment of a variety of cancer types, including leukaemia, lymphomas, and many solid tumours. The use of doxorubicin is, however, associated with severe cardiotoxicity, often resulting in early discontinuation of the treatment. Importantly, the toxic symptoms can occur several years after the termination of the doxorubicin administration. In this study, the toxic effects of doxorubicin exposure have been investigated in cardiomyocytes derived from human embryonic stem cells (hESC). The cells were exposed to different concentrations of doxorubicin for up to 2 days, followed by a 12 day recovery period. Notably, the cell morphology was altered during drug treatment and the cells showed a reduced contractile ability, most prominent at the highest concentration of doxorubicin at the later time points. A general cytotoxic response measured as Lactate dehydrogenase leakage was observed after 2 days’ exposure compared to the vehicle control, but this response was absent during the recovery period. A similar dose-dependant pattern was observed for the release of cardiac specific troponin T (cTnT) after 1 day and 2 days of treatment with doxorubicin. Global transcriptional profiles in the cells revealed clusters of genes that were differentially expressed during doxorubicin exposure, a pattern that in some cases was sustained even throughout the recovery period, suggesting that these genes could be used as sensitive biomarkers for doxorubicin-induced toxicity in human cardiomyocytes. The results from this study show that cTnT release can be used as a measurement of acute cardiotoxicity due to doxorubicin. However, for the late onset of doxorubicin-induced cardiomyopathy, cTnT release might not be the most optimal biomarker. As an alternative, some of the genes that we identified as differentially expressed after doxorubicin exposure could serve as more relevant biomarkers, and may also help to explain the cellular mechanisms behind the late onset apoptosis associated with doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Gustav Holmgren
- Systems Biology Research Center, School of Bioscience, University of Skövde, Box 408, Kanikegränd 3A, SE-541 28 Skövde, Sweden; Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden.
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, Box 408, Kanikegränd 3A, SE-541 28 Skövde, Sweden.
| | - Yalda Bogestål
- Systems Biology Research Center, School of Bioscience, University of Skövde, Box 408, Kanikegränd 3A, SE-541 28 Skövde, Sweden
| | - Caroline Améen
- Takara Bio Europe AB (former Cellectis AB), Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden.
| | - Karolina Åkesson
- Takara Bio Europe AB (former Cellectis AB), Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden.
| | - Sandra Holmgren
- Takara Bio Europe AB (former Cellectis AB), Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden.
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden.
| | - Peter Sartipy
- Systems Biology Research Center, School of Bioscience, University of Skövde, Box 408, Kanikegränd 3A, SE-541 28 Skövde, Sweden; Takara Bio Europe AB (former Cellectis AB), Arvid Wallgrens Backe 20, SE-413 46 Gothenburg, Sweden.
| |
Collapse
|
22
|
Qi JJ, Liu L, Cao JX, An GS, Li SY, Li G, Jia HT, Ni JH. E2F1 regulates p53R2 gene expression in p53-deficient cells. Mol Cell Biochem 2014; 399:179-88. [DOI: 10.1007/s11010-014-2244-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/09/2014] [Indexed: 01/05/2023]
|
23
|
Akt and p53R2, partners that dictate the progression and invasiveness of cancer. DNA Repair (Amst) 2014; 22:24-9. [PMID: 25086499 DOI: 10.1016/j.dnarep.2014.07.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/01/2014] [Indexed: 01/25/2023]
Abstract
The serine/threonine kinase or the so-called "Akt" is a key regulatory molecule of signaling pathway that regulates various cellular processes. Many intracellular proteins are involved in the activation or inhibition of Akt signaling and the hyperactivation of Akt signaling pathway is found to be frequently involved in various types of human cancers. Furthermore, while p53R2, a p53-inducible peptide involved in the synthesis of dNTPs normally works toward suppression of cancer through elimination of reactive oxygen species (ROS), inhibition of MAPK/ERK pathway and providing dNTPs for DNA repair, the overexpression of p53R2 is reported to be associated with cancer progression and resistance to therapy. In this review article, we will discuss the situation in which cancer cells with hyperactive PI3K/Akt signaling can recruit p53R2 in favor of cancer progression and resistance to therapy. In the hyperactive state of PI3K/Akt signaling (which happens in the absence of deactivation or excess of activation), p53R2 can be used by cancer cells to promote proliferation. Therefore, the hyperactivity of PI3K/Akt pathway and elevated levels of p53R2 can give rise to highly invasive cancers.
Collapse
|
24
|
Yousefi B, Rahmati M, Ahmadi Y. The roles of p53R2 in cancer progression based on the new function of mutant p53 and cytoplasmic p21. Life Sci 2014; 99:14-7. [DOI: 10.1016/j.lfs.2014.01.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/08/2014] [Accepted: 01/15/2014] [Indexed: 11/12/2022]
|
25
|
Small Interfering RNA (siRNA)-Mediated Silencing of the M2 Subunit of Ribonucleotide Reductase. Int J Gynecol Cancer 2013; 23:659-66. [DOI: 10.1097/igc.0b013e318287e2b3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
26
|
Shams I, Malik A, Manov I, Joel A, Band M, Avivi A. Transcription pattern of p53-targeted DNA repair genes in the hypoxia-tolerant subterranean mole rat Spalax. J Mol Biol 2013; 425:1111-8. [PMID: 23318952 DOI: 10.1016/j.jmb.2013.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/31/2012] [Accepted: 01/08/2013] [Indexed: 10/27/2022]
Abstract
The tumor suppressor gene p53 induces growth arrest and/or apoptosis in response to DNA damage/hypoxia. Inactivation of p53 confers a selective advantage to tumor cells under a hypoxic microenvironment during tumor progression. The subterranean blind mole rat, Spalax, spends its life underground at low-oxygen tensions, hence developing a wide range of respiratory/molecular adaptations to hypoxic stress, including critical changes in p53 structure and signaling pathway. The highly conserved p53 Arg(R)-172 is substituted by lysine (K) in Spalax, identical with a tumor-associated mutation. Functionality assays revealed that Spalax p53 is unable to activate apoptotic target genes but is still capable of activating cell cycle arrest genes. Furthermore, we have shown that the transcription patterns of representative p53-induced genes (Apaf1 and Mdm2) in Spalax are influenced by hypoxia. Cell cycle arrest allows the cells to repair DNA damage via different DNA repair genes. We tested the transcription pattern of three p53-related DNA repair genes (p53R2, Mlh1, and Msh2) under normoxia and short-acute hypoxia in Spalax, C57BL/6 wild-type mice, and two strains of mutant C57BL/6 mice, each carrying a different mutation at the R172 position. Our results show that while wild-type/mutant mice exhibit strong hypoxia-induced reductions of repair gene transcript levels, no such inhibition is found in Spalax under hypoxia. Moreover, unlike mouse p53R2, Spalax p53R2 transcript levels are strongly elevated under hypoxia. These results suggest that critical repair functions, which are known to be inhibited under hypoxia in mice, remain active in Spalax, as part of its unique hypoxia tolerance mechanisms.
Collapse
Affiliation(s)
- Imad Shams
- Institute of Evolution, University of Haifa, Haifa 31905, Israel.
| | | | | | | | | | | |
Collapse
|
27
|
Shang H, Li Q, Feng G, Cui Z. Identification and characterization of alternative promoters, transcripts and protein isoforms of zebrafish R2 gene. PLoS One 2011; 6:e24089. [PMID: 21887375 PMCID: PMC3161108 DOI: 10.1371/journal.pone.0024089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/04/2011] [Indexed: 12/17/2022] Open
Abstract
Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates. Expression of RNR subunits is closely associated with DNA replication and repair. Mammalian RNR M2 subunit (R2) functions exclusively in DNA replication of normal cells due to its S phase-specific expression and late mitotic degradation. Herein, we demonstrate the control of R2 expression through alternative promoters, splicing and polyadenylation sites in zebrafish. Three functional R2 promoters were identified to generate six transcript variants with distinct 5′ termini. The proximal promoter contains a conserved E2F binding site and two CCAAT boxes, which are crucial for the transcription of R2 gene during cell cycle. Activity of the distal promoter can be induced by DNA damage to generate four transcript variants through alternative splicing. In addition, two novel splice variants were found to encode distinct N-truncated R2 isoforms containing residues for enzymatic activity but no KEN box essential for its proteolysis. These two N-truncated R2 isoforms remained in the cytoplasm and were able to interact with RNR M1 subunit (R1). Thus, our results suggest that multilayered mechanisms control the differential expression and function of zebrafish R2 gene during cell cycle and under genotoxic stress.
Collapse
Affiliation(s)
- Hanqiao Shang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | | | | | | |
Collapse
|
28
|
Abstract
Background: We previously hypothesized a role for mitochondria damage checkpoint (mito-checkpoint) in maintaining the mitochondrial integrity of cells. Consistent with this hypothesis, defects in mitochondria have been demonstrated to cause genetic and epigenetic changes in the nuclear DNA, resistance to cell-death and tumorigenesis. In this paper, we describe that defects in mitochondria arising from the inhibition of mitochondrial oxidative phosphorylation (mtOXPHOS) induce cell cycle arrest, a response similar to the DNA damage checkpoint response. Materials and Methods: Primary mouse embryonic fibroblasts obtained from p53 wild-type and p53-deficient mouse embryos (p53 -/-) were treated with inhibitors of electron transport chain and cell cycle analysis, ROS production, mitochondrial content analysis and immunoblotting was performed. The expression of p53R2 was also measured by real time quantitative PCR. Results: We determined that, while p53 +/+ cells arrest in the cell cycle, p53 -/- cells continued to divide after exposure to mitochondrial inhibitors, showing that p53 plays an important role in the S-phase delay in the cell cycle. p53 is translocated to mitochondria after mtOXPHOS inhibition. Our study also revealed that p53-dependent induction of reactive oxygen species acts as a major signal triggering a mito-checkpoint response. Furthermore our study revealed that loss of p53 results in down regulation of p53R2 that contributes to depletion of mtDNA in primary MEF cells. Conclusions: Our study suggests that p53 1) functions as mito-checkpoint protein and 2) regulates mtDNA copy number and mitochondrial biogenesis. We describe a conceptual organization of the mito-checkpoint pathway in which identified roles of p53 in mitochondria are incorporated.
Collapse
Affiliation(s)
- Mariola Kulawiec
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | | | | |
Collapse
|
29
|
Hsieh TC, Wong C, John Bennett D, Wu JM. Regulation of p53 and cell proliferation by resveratrol and its derivatives in breast cancer cells: an in silico and biochemical approach targeting integrin αvβ3. Int J Cancer 2011; 129:2732-43. [PMID: 21225623 DOI: 10.1002/ijc.25930] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/30/2010] [Indexed: 01/11/2023]
Abstract
Resveratrol is a grape polyphenol with cancer preventative activities in tissue culture and animal model studies. Potential of resveratrol as a broad-based chemopreventive agent have been questioned by its limited bioavailability. The bioefficacy of resveratrol was compared with its derivatives, triacetyl-resveratrol (trans-3,5,4'-triacetylstilbene) and trimethoxy-resveratrol (trans-3,5,4'-trimethoxystilbene) in both estrogen receptor-α (ERα)-positive MCF-7 and ERα-negative MDA-MB-231 breast cancer cells. Binding to integrin αvβ3 and control of cell proliferation and p53 were chosen as targets for comparative analysis using an in silico and biochemical approach. Resveratrol and triacetyl-resveratrol interacted avidly and specifically with integrin αvβ3 through binding at the site targeted by the high affinity cyclic Arg-Gly-Asp (RGD) peptide. In contrast, binding of trimethoxy-resveratrol to this site was substantially less robust. Moreover, the different stilbenes also elicited diverse cellular and signaling responses in MCF-7 and MDA-MB-231 cells, as evidenced by analysis of colony formation, cell proliferation, cell cycle phase transition, the extent of phosphorylation of p53 at Ser15 and p53-inducible proteins, p21 and p53R2, respectively. Further, stilbene-elicited signaling cascade leading to p53 activation was examined in MCF-7 cells and results showed that resveratrol and triacetyl-resveratrol induced both ERK and p38 phosphorylation, whereas only marginal changes in state of phosphorylation in these two kinases were observed in trimethoxy-resveratrol-treated cells. Taken together, these results support that resveratrol and triacetyl-resveratrol regulate proliferation and gene expression in breast cancer cells by utilizing largely similar signaling molecules and pathways and cellular events, which appear quite distinct from those targeted by trimethoxy-resveratrol.
Collapse
Affiliation(s)
- Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
30
|
Shang H, Li Q, Feng G, Cui Z. Molecular analysis and functions of p53R2 in zebrafish. Gene 2010; 475:30-8. [PMID: 21194559 DOI: 10.1016/j.gene.2010.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 02/07/2023]
Abstract
p53R2 is a newly identified small subunit of ribonucleotide reductase and plays a pivotal role in the supply of dNTPs for genomic DNA repair and mitochondrial DNA synthesis, but little is known about its functions in zebrafish. Herein, we obtained the cDNA of zebrafish p53R2 that shares 72.8% and 72.5% amino acid identities with human p53R2 and zebrafish R2, respectively. Residues crucial for enzymatic activity are highly conserved among p53R2 proteins from different species. p53R2 in zebrafish was maternally expressed, its transcripts were detected in developing embryos and all adult tissues examined. A 250-bp minimal promoter upstream of the translational initiation site was identified to drive basal expression of p53R2 in a p53-independent manner. Expression of p53R2 was induced by DNA-damaging reagents CPT or MMS, but suppressed by p53-knockdown in zebrafish embryos. Moreover, p53R2 was mainly distributed in the cytoplasm of cells under normal condition and upon DNA damage. Furthermore, overexpression of p53R2 attenuated apoptosis of embryonic cells caused by CPT or MMS treatment and protected developing embryos from death. Therefore, functions of p53R2 in zebrafish are closely associated with its activity in DNA repair and synthesis.
Collapse
Affiliation(s)
- Hanqiao Shang
- Key Laboratory of Biodiversity and Conservation of Aquatic Organism; Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu Rd., Wuhan, Hubei, PR China
| | | | | | | |
Collapse
|
31
|
Fyrberg A, Lotfi K. Optimization and evaluation of electroporation delivery of siRNA in the human leukemic CEM cell line. Cytotechnology 2010; 62:497-507. [PMID: 20957432 DOI: 10.1007/s10616-010-9309-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/10/2010] [Indexed: 01/08/2023] Open
Abstract
In order to study nucleoside analog activation in the CEM cell line, a transfection protocol had to be optimized in order to silence an enzyme involved in nucleoside analog activation. Hematopoetic cell lines can be difficult to transfect with traditional lipid-based transfection, so the electroporation technique was used. Field strength, pulse length, temperature, electroporation media, siRNA concentration, among other conditions were tested in order to obtain approximately 70-80% mRNA and enzyme activity downregulation of the cytosolic enzyme deoxycytidine kinase (dCK), necessary for nucleoside analog activation. Downregulation was assessed at mRNA and enzyme activity levels. After optimizing the protocol, a microarray analysis was performed in order to investigate whether the downregulation was specific. Additionally two genes were differentially expressed besides the downregulation of dCK. These were however of unknown function. The leakage of intracellular nucleotides was also addressed in the electroporated cells since it can affect the DNA repair mechansism and the efficiency of nucleoside analogs. Three of these pools were increased compared to untreated, unelectroporated cells. The siRNA transfected cells with reduced dCK expression and activity showed reduced sensitivity to several nucleoside analogs as expected. The multidrug resistance to other drugs, as seen in nucleoside analog-induced resistant cells, was not seen with this model.
Collapse
Affiliation(s)
- Anna Fyrberg
- Division of Drug Research/Clinical Pharmacology, Department of Medicine and Health, Faculty of Health Sciences, 581 85, Linköping, Sweden,
| | | |
Collapse
|
32
|
Gammon DB, Gowrishankar B, Duraffour S, Andrei G, Upton C, Evans DH. Vaccinia virus-encoded ribonucleotide reductase subunits are differentially required for replication and pathogenesis. PLoS Pathog 2010; 6:e1000984. [PMID: 20628573 PMCID: PMC2900304 DOI: 10.1371/journal.ppat.1000984] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/03/2010] [Indexed: 11/19/2022] Open
Abstract
Ribonucleotide reductases (RRs) are evolutionarily-conserved enzymes that catalyze the rate-limiting step during dNTP synthesis in mammals. RR consists of both large (R1) and small (R2) subunits, which are both required for catalysis by the R12R22 heterotetrameric complex. Poxviruses also encode RR proteins, but while the Orthopoxviruses infecting humans [e.g. vaccinia (VACV), variola, cowpox, and monkeypox viruses] encode both R1 and R2 subunits, the vast majority of Chordopoxviruses encode only R2 subunits. Using plaque morphology, growth curve, and mouse model studies, we investigated the requirement of VACV R1 (I4) and R2 (F4) subunits for replication and pathogenesis using a panel of mutant viruses in which one or more viral RR genes had been inactivated. Surprisingly, VACV F4, but not I4, was required for efficient replication in culture and virulence in mice. The growth defects of VACV strains lacking F4 could be complemented by genes encoding other Chordopoxvirus R2 subunits, suggesting conservation of function between poxvirus R2 proteins. Expression of F4 proteins encoding a point mutation predicted to inactivate RR activity but still allow for interaction with R1 subunits, caused a dominant negative phenotype in growth experiments in the presence or absence of I4. Co-immunoprecipitation studies showed that F4 (as well as other Chordopoxvirus R2 subunits) form hybrid complexes with cellular R1 subunits. Mutant F4 proteins that are unable to interact with host R1 subunits failed to rescue the replication defect of strains lacking F4, suggesting that F4-host R1 complex formation is critical for VACV replication. Our results suggest that poxvirus R2 subunits form functional complexes with host R1 subunits to provide sufficient dNTPs for viral replication. Our results also suggest that R2-deficient poxviruses may be selective oncolytic agents and our bioinformatic analyses provide insights into how poxvirus nucleotide metabolism proteins may have influenced the base composition of these pathogens. Efficient genome replication is central to the virulence of all DNA viruses, including poxviruses. To ensure replication efficiency, many of the more virulent poxviruses encode their own nucleotide metabolism machinery, including ribonucleotide reductase (RR) enzymes, which act to provide ample DNA precursors for replication. RR enzymes require both large (R1) and small (R2) subunit proteins for activity. Curiously, some poxviruses only encode R2 subunits. Other poxviruses, such as the smallpox vaccine strain, vaccinia virus (VACV), encode both R1 and R2 subunits. We report here that the R2, but not the R1, subunit of VACV RR is required for efficient replication and virulence. We also provide evidence that several poxvirus R2 proteins form novel complexes with host R1 subunits and this interaction is required for efficient VACV replication in primate cells. Our study explains why some poxviruses only encode R2 subunits and identifies a role for these proteins in poxvirus pathogenesis. Furthermore, we provide evidence that mutant poxviruses unable to generate R2 proteins may become entirely dependent upon host RR activity. This may restrict their replication to cells that over-express RR proteins such as cancer cells, making them potential therapeutics for human malignancies.
Collapse
Affiliation(s)
- Don B. Gammon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Branawan Gowrishankar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Duraffour
- Laboratory of Virology and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Graciela Andrei
- Laboratory of Virology and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - David H. Evans
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
33
|
Zhou B, Su L, Yuan YC, Un F, Wang N, Patel M, Xi B, Hu S, Yen Y. Structural basis on the dityrosyl-diiron radical cluster and the functional differences of human ribonucleotide reductase small subunits hp53R2 and hRRM2. Mol Cancer Ther 2010; 9:1669-79. [PMID: 20484015 DOI: 10.1158/1535-7163.mct-10-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ribonucleotide reductase (RNR) is an enzyme for the de novo conversion of ribonucleotides to deoxyribonucleotides. The two human RNR small subunits hRRM2 and hp53R2 share 83% sequence homology but show distinct expression patterns and function. Structural analyses of the oxidized form of hRRM2 and hp53R2 indicate that both proteins contain a conserved Gln127-hp53R2/Gln165-hRRM2 close to the dinuclear iron center and the essential tyrosine residue Tyr124-hp53R2/Tyr162-hRRM2 forms hydrogen bonds with the tyrosine and iron ligands, implying a critical role for the glutamine residue in assembling the dityrosyl-diiron radical cofactor. The present work also showed that Tyr221 in hRRM2, which is replaced by Phe183 in hp53R2, forms a hydrogen bond with Tyr162 to extend the hydrogen bond network from Gln165-hRRM2. Mutagenesis and spectroscopic experiments suggested that the tyrosine-to-phenylalanine switch at Phe183-hp53R2/Tyr221-hRRM2 could lead to differences in radical generation or enzymatic activity for hp53R2 and hRRM2. This study correlates the distinct catalytic mechanisms of the small subunits hp53R2 and hRRM2 with a hydrogen-bonding network and provides novel directions for designing and developing subunit-specific therapeutic agents for human RNR enzymes.
Collapse
Affiliation(s)
- Bingsen Zhou
- Department of Molecular Pharmacology, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Furuta E, Okuda H, Kobayashi A, Watabe K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta Rev Cancer 2010; 1805:141-52. [PMID: 20122995 DOI: 10.1016/j.bbcan.2010.01.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 01/11/2010] [Accepted: 01/24/2010] [Indexed: 12/12/2022]
Abstract
Re-programming of metabolic pathways is a hallmark of physiological changes in cancer cells. The expression of certain genes that directly control the rate of key metabolic pathways including glycolysis, lipogenesis and nucleotide synthesis are drastically altered at different stages of tumor progression. These alterations are generally considered as an adaptation of tumor cells; however, they also contribute to the progression of tumor cells to become more aggressive phenotypes. This review summarizes the recent information about the mechanistic link of these genes to oncogenesis and their potential utility as diagnostic markers as well as for therapeutic targets. We particularly focus on three groups of genes; GLUT1, G6PD, TKTL1 and PGI/AMF in glycolytic pathway, ACLY, ACC1 and FAS in lipogenesis and RRM2, p53R2 and TYMS for nucleotide synthesis. All these genes are highly up-regulated in a variety of tumor cells in cancer patients, and they play active roles in tumor progression rather than expressing merely as a consequence of phenotypic change of the cancer cells. Molecular dissection of their orchestrated networks and understanding the exact mechanism of their expression will provide a window of opportunity to target these genes for specific cancer therapy. We also reviewed existing database of gene microarray to validate the utility of these genes for cancer diagnosis.
Collapse
Affiliation(s)
- Eiji Furuta
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | | | | | | |
Collapse
|
35
|
Wang J, Lohman GJS, Stubbe J. Mechanism of inactivation of human ribonucleotide reductase with p53R2 by gemcitabine 5'-diphosphate. Biochemistry 2009; 48:11612-21. [PMID: 19899807 PMCID: PMC2917093 DOI: 10.1021/bi901588z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleoside 5'-diphosphates to the corresponding deoxynucleotides supplying the dNTPs required for DNA replication and DNA repair. Class I RNRs require two subunits, alpha and beta, for activity. Humans possess two beta subunits: one involved in S phase DNA replication (beta) and a second in mitochondrial DNA replication (beta' or p53R2) and potentially DNA repair. Gemcitabine (F(2)C) is used clinically as an anticancer agent, and its phosphorylated metabolites target many enzymes involved in nucleotide metabolism, including RNR. The present investigation with alpha (specific activity of 400 nmol min(-1) mg(-1)) and beta' (0.6 Y./beta'2 and a specific activity of 420 nmol min(-1) mg(-1)) establishes that F(2)CDP is a substoichiometric inactivator of RNR. Incubation of this alpha/beta' with [1'-(3)H]-F(2)CDP or [5-(3)H]-F(2)CDP and reisolation of the protein by Sephadex G-50 chromatography resulted in recovery 0.5 equiv of covalently bound sugar and 0.03 equiv of tightly associated cytosine to alpha2. SDS-PAGE analysis (loaded without boiling) of the inactivated RNR showed that 60% of alpha migrates as a 90 kDa protein and 40% as a 120 kDa protein. Incubation of [1'-(3)H]-F(2)CDP with active site mutants C444S/A, C218S/A, and E431Q/D-alpha and the C-terminal tail C787S/A and C790S/A mutants reveals that no sugar label is bound to the active site mutants of alpha and that, in the case of C218S-alpha, alpha migrates as a 90 kDa protein. Analysis of the inactivated wt-alpha/beta' RNR by size exclusion chromatography indicates a quaternary structure of alpha6beta'6. A mechanism of inactivation common with halpha/beta is presented.
Collapse
Affiliation(s)
- Jun Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gregory J. S. Lohman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
36
|
Traynor AM, Thomas JP, Ramanathan RK, Mody TD, Alberti D, Wilding G, Bailey HH. Phase I trial of motexafin gadolinium and doxorubicin in the treatment of advanced malignancies. Invest New Drugs 2009; 29:316-22. [PMID: 19997959 DOI: 10.1007/s10637-009-9364-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/23/2009] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess the safety, maximum-tolerated dose (MTD), and dose-limiting toxicities (DLT), of motexafin gadolinium (MGd), given in combination with doxorubicin, in patients with advanced solid tumors. STUDY DESIGN The combination of MGd and doxorubicin was administered every 28 days (cycle 1) and then every 21 days (subsequent cycles). The dose of MGd, given daily for 3 days, was escalated from 1.0 mg/kg/d to 3.3 mg/kg/d, while the dose of doxorubicin was held at 30 mg/m². RESULTS Fifteen patients received 37 cycles of treatment, for a median of 2 cycles per patient (range 0-6 cycles). Three patients (20%) completed 6 cycles of therapy. The MTD was identified as MGd, 2 mg/kg/day and doxorubicin, 30 mg/m². Dose limiting toxicities included grade 3 hypertension, pneumonia, bacteremia, and elevated GGT. Serious adverse events also included pulmonary embolism and urinary tract infection requiring hospitalization. There was no exacerbation of cardiac toxicity. No patients attained a response to treatment. Six patients (54%) had stable disease. The median time to disease progression, or to last assessment, was 49 days (range 8-195 days). CONCLUSIONS The combination of MGd and doxorubicin was fairly well tolerated. However, due to emerging preclinical data suggesting that MGd inhibits ribonucleotide reductase, further development of the combination of MGd plus doxorubicin is not recommended.
Collapse
Affiliation(s)
- Anne M Traynor
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center, Madison, WI 53792, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
38
|
Chimploy K, Díaz GD, Li Q, Carter O, Dashwood WM, Mathews CK, Williams DE, Bailey GS, Dashwood RH. E2F4 and ribonucleotide reductase mediate S-phase arrest in colon cancer cells treated with chlorophyllin. Int J Cancer 2009; 125:2086-94. [PMID: 19585502 DOI: 10.1002/ijc.24559] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chlorophyllin (CHL) is a water-soluble derivative of chlorophyll that exhibits cancer chemopreventive properties, but which also has been studied for its possible cancer therapeutic effects. We report here that human colon cancer cells treated with CHL accumulate in S-phase of the cell cycle, and this is associated with reduced expression levels of p53, p21, and other G(1)/S checkpoint controls. At the same time, E2F1 and E2F4 transcription factors become elevated and exhibit increased DNA binding activity. In CHL-treated colon cancer cells, bromodeoxyuridine pulse-chase experiments provided evidence for the inhibition of DNA synthesis. Ribonucleotide reductase (RR), a pivotal enzyme for DNA synthesis and repair, was reduced at the mRNA and protein level after CHL treatment, and the enzymatic activity was inhibited in a concentration-dependent manner both in vitro and in vivo. Immunoblotting revealed that expression levels of RR subunits R1, R2, and p53R2 were reduced by CHL treatment in HCT116 (p53(+/+)) and HCT116 (p53(-/-)) cells, supporting a p53-independent mechanism. Prior studies have shown that reduced levels of RR small subunits can increase the sensitivity of colon cancer cells to clinically used DNA-damaging agents and RR inhibitors. We conclude that by inhibiting R1, R2, and p53R2, CHL has the potential to be effective in the clinical setting, when used alone or in combination with currently available cancer therapeutic agents.
Collapse
Affiliation(s)
- Korakod Chimploy
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331-6512, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Inhibitory mechanisms of heterocyclic carboxaldehyde thiosemicabazones for two forms of human ribonucleotide reductase. Biochem Pharmacol 2009; 78:1178-85. [PMID: 19576866 DOI: 10.1016/j.bcp.2009.06.103] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 11/20/2022]
Abstract
Two forms of ribonucleotide reductase (RR), consisting of M1 with M2 subunits and M1 with p53R2 subunits, are involved in DNA replication and damage repair, respectively. 3-Aminopyridine-2-carboxaldehyde thiosemicarbazone (3AP), one of the heterocyclic carboxaldehyde thiosemicabazones (HCTs), is a potent RR inhibitor in clinical trial for cancer treatment. In this study, 3AP and its 7 derivatives showed 100-1000-fold higher inhibitory potency on KB nasopharyngeal carcinoma cells than hydroxyurea and were fully active against hydroxyurea- and gemcitabine-resistant KB cells. In vitro RR assays using two recombinant RRs showed that all 8 HCTs decreased the activity of both RRs in a dose-dependent manner and the efficiency was compatible with that on cell proliferation inhibition. Iron has different impact on the behavior of the compounds toward RRs. In the absence of iron, the HCTs showed more selective inhibition for p53R2-M1 than M2-M1, while addition of iron increased their activity but reduced their selectivity for two RRs. Radioligand binding assays showed that [(3)H]3AP directly bounded to the small subunits. Electron paramagnetic resonance measurements demonstrated that these HCTs generated reactive oxygen species with ferrous iron, which quenched the diiron-tyrosyl radical co-factor of the small subunits and hence the enzyme activity. While the ROS may be a common mediator responsible for the potent activity of the HCTs, the different characteristics of the small subunit proteins are probably associated with the subunit-selectivity of inhibition. Better understanding of the mechanism of action of RR inhibition may improve design of new potent and subunit-selective RR inhibitors for cancer therapy.
Collapse
|