1
|
Adams KM, Wendt JR, Wood J, Olson S, Moreno R, Jin Z, Gopalan S, Lang JD. Cell-intrinsic platinum response and associated genetic and gene expression signatures in ovarian cancer cell lines and isogenic models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605381. [PMID: 39131380 PMCID: PMC11312449 DOI: 10.1101/2024.07.26.605381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ovarian cancers are still largely treated with platinum-based chemotherapy as the standard of care, yet few biomarkers of clinical response have had an impact on clinical decision making as of yet. Two particular challenges faced in mechanistically deciphering platinum responsiveness in ovarian cancer have been the suitability of cell line models for ovarian cancer subtypes and the availability of information on comparatively how sensitive ovarian cancer cell lines are to platinum. We performed one of the most comprehensive profiles to date on 36 ovarian cancer cell lines across over seven subtypes and integrated drug response and multiomic data to improve on our understanding of the best cell line models for platinum responsiveness in ovarian cancer. RNA-seq analysis of the 36 cell lines in a single batch experiment largely conforms with the currently accepted subtyping of ovarian cancers, further supporting other studies that have reclassified cell lines and demonstrate that commonly used cell lines are poor models of high-grade serous ovarian carcinoma. We performed drug dose response assays in the 32 of these cell lines for cisplatin and carboplatin, providing a quantitative database of IC50s for these drugs. Our results demonstrate that cell lines largely fall either well above or below the equivalent dose of the clinical maximally achievable dose (Cmax) of each compound, allowing designation of cell lines as sensitive or resistant. We performed differential expression analysis for high-grade serous ovarian carcinoma cell lines to identify gene expression correlating with platinum-response. Further, we generated two platinum-resistant derivatives each for OVCAR3 and OVCAR4, as well as leveraged clinically-resistant PEO1/PEO4/PEO6 and PEA1/PEA2 isogenic models to perform differential expression analysis for seven total isogenic pairs of platinum resistant cell lines. While gene expression changes overall were heterogeneous and vast, common themes were innate immunity/STAT activation, epithelial to mesenchymal transition and stemness, and platinum influx/efflux regulators. In addition to gene expression analyses, we performed copy number signature analysis and orthogonal measures of homologous recombination deficiency (HRD) scar scores and copy number burden, which is the first report to our knowledge applying field-standard copy number signatures to ovarian cancer cell lines. We also examined markers and functional readouts of stemness that revealed that cell lines are poor models for examination of stemness contributions to platinum resistance, likely pointing to the fact that this is a transient state. Overall this study serves as a resource to determine the best cell lines to utilize for ovarian cancer research on certain subtypes and platinum response studies, as well as sparks new hypotheses for future study in ovarian cancer.
Collapse
Affiliation(s)
- Kristin M. Adams
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jae-Rim Wendt
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Josie Wood
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney Olson
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Moreno
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Computer Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmou Jin
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Srihari Gopalan
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica D. Lang
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Zigová M, Michalková R, Mojžiš J. Anticancer Potential of Indole Phytoalexins and Their Analogues. Molecules 2024; 29:2388. [PMID: 38792249 PMCID: PMC11124384 DOI: 10.3390/molecules29102388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Indole phytoalexins, found in economically significant Cruciferae family plants, are synthesized in response to pathogen attacks or stress, serving as crucial components of plant defense mechanisms against bacterial and fungal infections. Furthermore, recent research indicates that these compounds hold promise for improving human health, particularly in terms of potential anticancer effects that have been observed in various studies. Since our last comprehensive overview in 2016 focusing on the antiproliferative effects of these substances, brassinin and camalexin have been the most extensively studied. This review analyses the multifaceted pharmacological effects of brassinin and camalexin, highlighting their anticancer potential. In this article, we also provide an overview of the antiproliferative activity of new synthetic analogs of indole phytoalexins, which were synthesized and tested at our university with the aim of enhancing efficacy compared to the parent compound.
Collapse
Affiliation(s)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| |
Collapse
|
3
|
Hypoxia, but Not Normoxia, Reduces Effects of Resveratrol on Cisplatin Treatment in A2780 Ovarian Cancer Cells: A Challenge for Resveratrol Use in Anticancer Adjuvant Cisplatin Therapy. Int J Mol Sci 2023; 24:ijms24065715. [PMID: 36982788 PMCID: PMC10051682 DOI: 10.3390/ijms24065715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Natural compounds, such as resveratrol (Res), are currently used as adjuvants for anticancer therapies. To evaluate the effectiveness of Res for the treatment of ovarian cancer (OC), we screened the response of various OC cell lines to the combined treatment with cisplatin (CisPt) and Res. We identified A2780 cells as the most synergistically responding, thus optimal for further analysis. Because hypoxia is the hallmark of the solid tumor microenvironment, we compared the effects of Res alone and in combination with CisPt in hypoxia (pO2 = 1%) vs. normoxia (pO2 = 19%). Hypoxia caused an increase (43.2 vs. 5.0%) in apoptosis and necrosis (14.2 vs. 2.5%), reactive oxygen species production, pro-angiogenic HIF-1α (hypoxia-inducible factor-1α) and VEGF (vascular endothelial growth factor), cell migration, and downregulated the expression of ZO1 (zonula occludens-1) protein in comparison to normoxia. Res was not cytotoxic under hypoxia in contrast to normoxia. In normoxia, Res alone or CisPt+Res caused apoptosis via caspase-3 cleavage and BAX, while in hypoxia, it reduced the accumulation of A2780 cells in the G2/M phase. CisPt+Res increased levels of vimentin under normoxia and upregulated SNAI1 expression under hypoxia. Thus, various effects of Res or CisPt+Res on A2780 cells observed in normoxia are eliminated or diminished in hypoxia. These findings indicate the limitations in using Res as an adjuvant with CisPt therapy in OC.
Collapse
|
4
|
Clancy J, Hoffmann CS, Pickett BE. Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes. Comput Struct Biotechnol J 2023; 21:1403-1413. [PMID: 36785619 PMCID: PMC9908618 DOI: 10.1016/j.csbj.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
SARS-CoV-2 is the causative agent of COVID-19, which has greatly affected human health since it first emerged. Defining the human factors and biomarkers that differentiate severe SARS-CoV-2 infection from mild infection has become of increasing interest to clinicians. To help address this need, we retrieved 269 public RNA-seq human transcriptome samples from GEO that had qualitative disease severity metadata. We then subjected these samples to a robust RNA-seq data processing workflow to calculate gene expression in PBMCs, whole blood, and leukocytes, as well as to predict transcriptional biomarkers in PBMCs and leukocytes. This process involved using Salmon for read mapping, edgeR to calculate significant differential expression levels, and gene ontology enrichment using Camera. We then performed a random forest machine learning analysis on the read counts data to identify genes that best classified samples based on the COVID-19 severity phenotype. This approach produced a ranked list of leukocyte genes based on their Gini values that includes TGFBI, TTYH2, and CD4, which are associated with both the immune response and inflammation. Our results show that these three genes can potentially classify samples with severe COVID-19 with accuracy of ∼88% and an area under the receiver operating characteristic curve of 92.6--indicating acceptable specificity and sensitivity. We expect that our findings can help contribute to the development of improved diagnostics that may aid in identifying severe COVID-19 cases, guide clinical treatment, and improve mortality rates.
Collapse
|
5
|
Zhang X, He Y, Ren P, Chen L, Han Z, Qi L, Chen L, Luo Y, Zhang N, Lu W, Guo H. Low expression and Hypermethylation of ATP2B1 in Intrahepatic Cholangiocarcinoma Correlated With Cold Tumor Microenvironment. Front Oncol 2022; 12:927298. [PMID: 35875160 PMCID: PMC9302110 DOI: 10.3389/fonc.2022.927298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background The efficacy of current therapeutic schedule is limited owing to fibroproliferative tumor microenvironment (TME) of cholangiocarcinoma, compelling a search for new therapeutic targets. Methods Gene expression profiles and methylation profiles were obtained from UCSC Xena. Consensus clustering was performed on the transcriptome data of cholangiocarcinoma to determine the different immune subtypes. The differentially expressed genes (DEGs) between hot tumor and cold tumors were identified. ESTIMATE was used to assess immune score, and the cases were separated into relatively superior and inferior immune score groups. Single-sample gene set enrichment analysis was applied to assess 28 immune cells in the cholangiocarcinoma microenvironment. Unsupervised consensus was applied for methylation profiling to distribute the high and low methylation groups. The correlation between DNA methylation and mRNA expression was investigated, and the relationship between the ATP2B1 gene and the immune microenvironment was explored. Finally, 77 cases of intrahepatic cholangiocarcinoma (ICC) were collected for verification. Results Seven subtypes were related to patient outcomes (P=0.005). The proportions of CD8+ T cells in the “hot” immune type was significantly greater than that in the “cold” immune type (P<0.05). Next, DEGs and DNA methylation-governed genes were intersected, and ATP2B1 was identified as a prognosis factor in ICC (P=0.035). ATP2B1 expression was positively correlated with immune scores (P=0.005, r=0.458), the levels of infiltrating CD8+ T cells (P=0.004, r=0.47), and CD4+ T cells (P=0.027, r=0.37). Immunohistochemistry confirmed that the amounts of CD8+ and CD4+ T cells were significantly higher in ICC tissue samples than in tissues with ATP2B1 overexpression (P<0.05). Conclusions ATP2B1 overexpression can activate immune signals and prompt cold tumor response.
Collapse
Affiliation(s)
- Xiehua Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Hepatobiliary Oncology, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Infectious Diseases, The First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Peiqi Ren
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lu Chen
- Department of Hepatobiliary Oncology, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiqiang Han
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ning Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Hua Guo, ; Wei Lu,
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Hua Guo, ; Wei Lu,
| |
Collapse
|
6
|
Ma Q, Yang F, Mackintosh C, Jayani RS, Oh S, Jin C, Nair SJ, Merkurjev D, Ma W, Allen S, Wang D, Almenar-Queralt A, Garcia-Bassets I. Super-Enhancer Redistribution as a Mechanism of Broad Gene Dysregulation in Repeatedly Drug-Treated Cancer Cells. Cell Rep 2021; 31:107532. [PMID: 32320655 DOI: 10.1016/j.celrep.2020.107532] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is an antineoplastic drug administered at suboptimal and intermittent doses to avoid life-threatening effects. Although this regimen shortly improves symptoms in the short term, it also leads to more malignant disease in the long term. We describe a multilayered analysis ranging from chromatin to translation-integrating chromatin immunoprecipitation sequencing (ChIP-seq), global run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and ribosome profiling-to understand how cisplatin confers (pre)malignant features by using a well-established ovarian cancer model of cisplatin exposure. This approach allows us to segregate the human transcriptome into gene modules representing distinct regulatory principles and to characterize that the most cisplatin-disrupted modules are associated with underlying events of super-enhancer plasticity. These events arise when cancer cells initiate without ultimately ending the program of drug-stimulated death. Using a PageRank-based algorithm, we predict super-enhancer regulator ISL1 as a driver of this plasticity and validate this prediction by using CRISPR/dCas9-KRAB inhibition (CRISPRi) and CRISPR/dCas9-VP64 activation (CRISPRa) tools. Together, we propose that cisplatin reprograms cancer cells when inducing them to undergo near-to-death experiences.
Collapse
Affiliation(s)
- Qi Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Feng Yang
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carlos Mackintosh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ranveer Singh Jayani
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Soohwan Oh
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chunyu Jin
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sreejith Janardhanan Nair
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daria Merkurjev
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wubin Ma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephanie Allen
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ivan Garcia-Bassets
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Olgierd B, Kamila Ż, Anna B, Emilia M. The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules 2021; 26:molecules26051335. [PMID: 33801469 PMCID: PMC7958844 DOI: 10.3390/molecules26051335] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) is a strong antioxidant extracted from honey bee-hive propolis. The mentioned compound, a well-known NF-κB inhibitor, has been used in traditional medicine as a potent anti-inflammatory agent. CAPE has a broad spectrum of biological properties including anti-viral, anti-bacterial, anti-cancer, immunomodulatory, and wound-healing activities. This review characterizes published data about CAPE biological properties and potential therapeutic applications, that can be used in various diseases.
Collapse
Affiliation(s)
- Batoryna Olgierd
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
- Correspondence: or ; Tel.: +48-602-689-347
| | - Żyła Kamila
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Banyś Anna
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Morawiec Emilia
- Department of Microbiology, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland;
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
- Department of Histology, Cytophysiology and Embryology in Zabrze, Faculty of Medicine in Zabrze, University of Technology in Katowice, 40-555 Katowice, Poland
| |
Collapse
|
8
|
Liu M, Cui L, Li X, Xia C, Li Y, Wang R, Ren F, Liu H, Chen J. PD-0332991 combined with cisplatin inhibits nonsmall cell lung cancer and reversal of cisplatin resistance. Thorac Cancer 2021; 12:924-931. [PMID: 33534964 PMCID: PMC7952807 DOI: 10.1111/1759-7714.13866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Acquired resistance of chemotherapy, especially cisplatin, is a major challenge in lung cancer treatment. We conducted this study to examine whether a cyclin D kinase 4/6 (CDK4/6) inhibitor, PD 0332991, could reverse cisplatin resistance in human lung cancer cells. In addition, we explored the underlying mechanisms. Method: We used CCK‐8 assay to got the IC50 of PD‐0332991 and cisplatin in A549 and A549/CDDP respectively. CCK‐8 assay, CalcuSyn 2.0 software, cell cycle distribution and apoptosis used to identify PD‐0332991 could reverse the acquired resistance of cisplatin. At last, western‐blot used to show the mechanism of PD‐0332991 enhances the effects of cisplatin. Results: We found that PD‐0332991 potentiated cisplatin‐induced growth inhibition in both cisplatin‐sensitive (A549) and cisplatin‐resistant (A549/CDDP) cells via downregulation of the proliferation, induction of apoptosis (A549 increased to 7.06%; A549/CDDP increased to 7.03%), and G0/G1 cell cycle arrest (A549 increased to 9.15%; A549/CDDP increased to 49.92%). Western blot analysis revealed that PD‐0332991 enhance the effect of cisplatin through inhibit Rb‐E2Fs pathway. Conclusions: These findings suggest that PD‐0332991 could reverse the acquired resistance of cisplatin in lung cancer cells and provide a novel treatment strategy for lung cancer patients with cisplatin resistance.
Collapse
Affiliation(s)
- Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Liyuan Cui
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunqiu Xia
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Wang
- Emergency Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Fan Ren
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
9
|
Luo T, Liu Q, Tan A, Duan L, Jia Y, Nong L, Tang J, Zhou W, Xie W, Lu Y, Yu Q, Liu Y. Mesenchymal Stem Cell-Secreted Exosome Promotes Chemoresistance in Breast Cancer via Enhancing miR-21-5p-Mediated S100A6 Expression. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:283-293. [PMID: 33294586 PMCID: PMC7689030 DOI: 10.1016/j.omto.2020.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022]
Abstract
Emerging evidence has shown the role of mesenchymal stem cell-derived exosome (MSC-exo) in inducing resistance of cancer cells to chemotherapy. However, it remains unclear whether the change of MSC-exo in response to chemotherapy also contributes to chemoresistance. In this study, we investigated the effect of a standard-of-care chemotherapeutic agent, doxorubicin (Dox), on MSC-exo and its contribution to the development of Dox resistance in breast cancer cells (BCs). We found that the exosome secreted by Dox-treated MSCs (Dt-MSC-exo) induced a higher degree of Dox resistance in BCs when compared with non-treated MSC-exo. By analysis of the MSC-exo-induced transcriptome change in BCs, we identified S100A6, a chemoresistant gene, as a top-ranked gene induced by MSC-exo in BCs, which was further enhanced by Dt-MSC-exo. Furthermore, we found that Dox induced the expression of miR-21-5p in MSCs and MSC-exo, which was required for the expression of S100A6 in BCs. Importantly, silencing of miR-21-5p expression in MSCs and MSC-exo abolished the resistance of BCs to Dox, indicating an exosomal miR-21-5p-regulated S100A6 in chemoresistance. Our study thus uncovered a novel mechanistic insight into the role of MSC-secreted exosome in the development of chemoresistance in the tumor microenvironment.
Collapse
Affiliation(s)
- Tao Luo
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Qiaoyuan Liu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Aihua Tan
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Lixia Duan
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yuxian Jia
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Li Nong
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Jing Tang
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Wenxian Zhou
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Weimin Xie
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Yongkui Lu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| | - Qiang Yu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Yan Liu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, P.R. China
| |
Collapse
|
10
|
Altered Organelle Calcium Transport in Ovarian Physiology and Cancer. Cancers (Basel) 2020; 12:cancers12082232. [PMID: 32785177 PMCID: PMC7464720 DOI: 10.3390/cancers12082232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Calcium levels have a huge impact on the physiology of the female reproductive system, in particular, of the ovaries. Cytosolic calcium levels are influenced by regulatory proteins (i.e., ion channels and pumps) localized in the plasmalemma and/or in the endomembranes of membrane-bound organelles. Imbalances between plasma membrane and organelle-based mechanisms for calcium regulation in different ovarian cell subtypes are contributing to ovarian pathologies, including ovarian cancer. In this review, we focused our attention on altered calcium transport and its role as a contributor to tumor progression in ovarian cancer. The most important proteins described as contributing to ovarian cancer progression are inositol trisphosphate receptors, ryanodine receptors, transient receptor potential channels, calcium ATPases, hormone receptors, G-protein-coupled receptors, and/or mitochondrial calcium uniporters. The involvement of mitochondrial and/or endoplasmic reticulum calcium imbalance in the development of resistance to chemotherapeutic drugs in ovarian cancer is also discussed, since Ca2+ channels and/or pumps are nowadays regarded as potential therapeutic targets and are even correlated with prognosis.
Collapse
|
11
|
Identification of Human Ovarian Adenocarcinoma Cells with Cisplatin-resistance by Feature Extraction of Gray Level Co-occurrence Matrix Using Optical Images. Diagnostics (Basel) 2020; 10:diagnostics10060389. [PMID: 32527052 PMCID: PMC7345158 DOI: 10.3390/diagnostics10060389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most malignant of all gynecological cancers. A challenge that deteriorates with ovarian adenocarcinoma in neoplastic disease patients has been associated with the chemoresistance of cancer cells. Cisplatin (CP) belongs to the first-line chemotherapeutic agents and it would be beneficial to identify chemoresistance for ovarian adenocarcinoma cells, especially CP-resistance. Gray level co-occurrence matrix (GLCM) was characterized imaging from a numeric matrix and find its texture features. Serous type (OVCAR-4 and A2780), and clear cell type (IGROV1) ovarian carcinoma cell lines with CP-resistance were used to demonstrate GLCM texture feature extraction of images. Cells were cultured with cell density of 6 × 105 in a glass-bottom dish to form a uniform coverage of the glass slide to get the optical images by microscope and DVC camera. CP-resistant cells included OVCAR-4, A2780 and IGROV and had the higher contrast and entropy, lower energy, and homogeneity. Signal to noise ratio was used to evaluate the degree for chemoresistance of cell images based on GLCM texture feature extraction. The difference between wile type and CP-resistant cells was statistically significant in every case (p < 0.001). It is a promising model to achieve a rapid method with a more reliable diagnostic performance for identification of ovarian adenocarcinoma cells with CP-resistance by feature extraction of GLCM in vitro or ex vivo.
Collapse
|
12
|
Transcriptomic analysis of expression of genes regulating cell cycle progression in porcine ovarian granulosa cells during short-term in vitro primary culture. Histochem Cell Biol 2020; 153:397-412. [PMID: 32157392 PMCID: PMC7299926 DOI: 10.1007/s00418-020-01860-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
The primary function of ovarian granulosa cells (GCs) is the support of oocytes during maturation and development. Molecular analyses of granulosa cell-associated processes, leading to improvement of understanding of the cell cycle events during the formation of ovarian follicles (folliculogenesis), may be key to improve the in vitro fertilization procedures. Primary in vitro culture of porcine GCs was employed to examine the changes in the transcriptomic profile of genes belonging to “cell cycle”, “cell division”, “cell cycle process”, “cell cycle phase transition”, “cell cycle G1/S phase transition”, “cell cycle G2/M phase transition” and “cell cycle checkpoint” ontology groups. During the analysis, microarrays were employed to study the transcriptome of GCs, analyzing the total RNA of cells from specific periods of in vitro cultures. This research was based on material obtained from 40 landrace gilts of similar weight, age and the same living conditions. RNA was isolated at specific timeframes: before the culture was established (0 h) and after 48 h, 96 h and 144 h in vitro. Out of 133 differentially expressed genes, we chose the 10 most up-regulated (SFRP2, PDPN, PDE3A, FGFR2, PLK2, THBS1, ETS1, LIF, ANXA1, TGFB1) and the 10 most downregulated (IGF1, NCAPD2, CABLES1, H1FOO, NEK2, PPAT, TXNIP, NUP210, RGS2 and CCNE2). Some of these genes known to play key roles in the regulation of correct cell cycle passage (up-regulated SFRP2, PDE3A, PLK2, LIF and down-regulated CCNE2, TXNIP, NEK2). The data obtained provide a potential reference for studies on the process of mammalian folliculogenesis, as well as suggests possible new genetic markers for cell cycle progress in in vitro cultured porcine granulosa cells.
Collapse
|
13
|
Wang Q, López-Ozuna VM, Baloch T, Bithras J, Amin O, Kessous R, Kogan L, Laskov I, Yasmeen A. Biguanides in combination with olaparib limits tumorigenesis of drug-resistant ovarian cancer cells through inhibition of Snail. Cancer Med 2019; 9:1307-1320. [PMID: 31863638 PMCID: PMC7013055 DOI: 10.1002/cam4.2738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/04/2019] [Accepted: 11/03/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Currently, new chemotherapeutic strategies are required to improve patient outcome and survival. Biguanides, classic anti‐diabetic drugs, have gained importance for theiri antitumor potency demonstrated by various studies. Olaparib is a PARP inhibitor approved for maintenance therapy following platinum‐based chemotherapy. Furthermore, Snai1, a transcription factor that works as a master regulator of the epithelial/mesenchymal transition process (EMT) is involved in ovarian cancer resistance and progression. Here we aimed to demonstrate the possible cross talk between biguanides and Snail in response to olaparib combination therapy. In this study, we have shown that while in A2780CR cells biguanides reduced cell survival (single treatments ~20%; combined treatment ~44%) and cell migration (single treatments ~45%; biguanide‐olaparib ~80%) significantly, A2780PAR exhibited superior efficacy with single (~60%) and combined treatments (~80%). Moreover, our results indicate that knock‐down of Snail further enhances the attenuation of migration, inhibits EMT related‐proteins (~90%) and induces a synergistic effect in biguanide‐olaparib treatment. Altogether, this work suggests a novel treatment strategy against drug‐resistant or recurrent ovarian cancer.
Collapse
Affiliation(s)
- Qiong Wang
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec, Canada.,Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Vanessa M López-Ozuna
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec, Canada.,Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Tahira Baloch
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec, Canada.,Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada
| | - Joanne Bithras
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec, Canada
| | - Oreekha Amin
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec, Canada.,Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Roy Kessous
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec, Canada.,Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Liron Kogan
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec, Canada.,Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Ido Laskov
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec, Canada.,Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Amber Yasmeen
- Segal Cancer Center, Lady Davis Institute of Medical Research, McGill University, Montreal, Quebec, Canada.,Division of Gynecologic Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Mir H, Kaur G, Kapur N, Bae S, Lillard JW, Singh S. Higher CXCL16 exodomain is associated with aggressive ovarian cancer and promotes the disease by CXCR6 activation and MMP modulation. Sci Rep 2019; 9:2527. [PMID: 30792527 PMCID: PMC6385302 DOI: 10.1038/s41598-019-38766-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OvCa) is the leading cause of death from gynecological malignancies. Five-year survival rate of OvCa ranges from 30–92%, depending on the spread of disease at diagnosis. Role of chemokines is well appreciated in cancer, including OvCa. However, their precise role is understudied. Here, we show clinical and biological significance of CXCR6-CXCL16 and ADAM10 in OvCa. Expression of CXCR6 and N-terminal CXCL16 was significantly higher in serous carcinoma tissues compared to endometrioid. OvCa cells (SKOV-3 and OVCAR-3) also showed higher expression of CXCR6 than normal ovarian epithelial cells (IOSE-7576) while CXCL16 was higher in SKOV-3 than IOSE-7576. Furthermore, N-terminal CXCL16 was higher in conditioned media of OvCa cells than IOSE-7576. Compared to OVCAR-3, SKOV-3 cells, which had higher CXCL16, expressed significantly higher transcripts of ADAM10, a protease that cleaves CXCL16. OVCAR-3 cells showed higher CXCR6 specific migration whereas SKOV-3 cells showed more invasion. Difference in invasive potential of these cells was due to modulation of different MMPs after CXCL16 stimulation. Higher CXCR6 expression in serous papillary carcinoma tissues suggests its association with aggressive OvCa. Increased migration-invasion towards CXCL16 implies its role in metastatic spread. Therefore, CXCR6-CXCL16 axis could be used to differentiate between aggressive versus non-aggressive disease and as a target for better prognosis.
Collapse
Affiliation(s)
- Hina Mir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Gurpreet Kaur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Neeraj Kapur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Sejong Bae
- Division of Preventive Medicine, UAB school of Medicine, Birmingham, AL, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Hou G, Xu B, Bi Y, Wu C, Ru B, Sun B, Bai X. Recent advances in research on aspartate β-hydroxylase (ASPH) in pancreatic cancer: A brief update. Bosn J Basic Med Sci 2018; 18:297-304. [PMID: 30179586 DOI: 10.17305/bjbms.2018.3539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly aggressive tumor, often difficult to diagnose and treat. Aspartate β-hydroxylase (ASPH) is a type II transmembrane protein and the member of α-ketoglutarate-dependent dioxygenase family, found to be overexpressed in different cancer types, including PC. ASPH appears to be involved in the regulation of proliferation, invasion and metastasis of PC cells through multiple signaling pathways, suggesting its role as a tumor biomarker and therapeutic target. In this review, we briefly summarize the possible mechanisms of action of ASPH in PC and recent progress in the therapeutic approaches targeting ASPH.
Collapse
Affiliation(s)
- Guofang Hou
- Department of Pancreatic and Biliary Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Mahalaxmi I, Santhy K. Role and hallmarks of Sp1 in promoting ovarian cancer. JOURNAL OF ONCOLOGICAL SCIENCES 2018. [DOI: 10.1016/j.jons.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
17
|
Mariya T, Hirohashi Y, Torigoe T, Tabuchi Y, Asano T, Saijo H, Kuroda T, Yasuda K, Mizuuchi M, Saito T, Sato N. Matrix metalloproteinase-10 regulates stemness of ovarian cancer stem-like cells by activation of canonical Wnt signaling and can be a target of chemotherapy-resistant ovarian cancer. Oncotarget 2018; 7:26806-22. [PMID: 27072580 PMCID: PMC5042016 DOI: 10.18632/oncotarget.8645] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/02/2016] [Indexed: 01/06/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal cancers in females. Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) have been reported to be origin of primary and recurrent cancers and to be resistant to several treatments. In this study, we identified matrix metalloproteinase-10 (MMP10) is expressed in CSCs/CICs of EOC. An immunohistochemical study revealed that a high expression level of MMP10 is a marker for poor prognosis and platinum resistance in multivariate analysis. MMP10 gene overexpression experiments and MMP10 gene knockdown experiments using siRNAs revealed that MMP10 has a role in the maintenance of CSCs/CICs in EOC and resistance to platinum reagent. Furthermore, MMP10 activate canonical Wnt signaling by inhibiting noncanonical Wnt signaling ligand Wnt5a. Therefore, MMP10 is a novel marker for CSCs/CICs in EOC and that targeting MMP10 is a novel promising approach for chemotherapy-resistant CSCs/CICs in EOC.
Collapse
Affiliation(s)
- Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuta Tabuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takuya Asano
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Saijo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kuroda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahito Mizuuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
18
|
Tiberio P, Lozneanu L, Angeloni V, Cavadini E, Pinciroli P, Callari M, Carcangiu ML, Lorusso D, Raspagliesi F, Pala V, Daidone MG, Appierto V. Involvement of AF1q/MLLT11 in the progression of ovarian cancer. Oncotarget 2017; 8:23246-23264. [PMID: 28423573 PMCID: PMC5410301 DOI: 10.18632/oncotarget.15574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/12/2017] [Indexed: 12/15/2022] Open
Abstract
The functional role of AF1q/MLLT11, an oncogenic factor involved in a translocation t(1;11)(q21;q23) responsible for acute myeloid leukaemia, has been investigated in hematological and solid malignancies and its expression was found to be linked to tumor progression and poor clinical outcome. In addition to its oncogenic function, AF1q has been shown to play a role in the onset of basal and drug-induced apoptosis in cancer cells of different histotypes, including ovarian cancer. Through in vitro, ex vivo, and in silico approaches, we demonstrated here that AF1q is also endowed with protumorigenic potential in ovarian cancer. In ovarian cancer cell lines, stable AF1q overexpression caused activation of epithelial-to-mesenchymal transition and increased motility/migratory/invasive abilities accompanied by gene expression changes mainly related to Wnt signaling and to signaling pathways involving in ERK/p38 activation. The potential role of AF1q in ovarian cancer progression was confirmed by immunohistochemical and in silico analyses performed in ovarian tumor specimens which revealed that the protein was absent in normal ovarian epithelium and became detectable when atypical proliferation was present. Moreover, AF1q was significantly lower in borderline ovarian tumors (i.e., tumors of low malignant potential without stromal invasion) than in invasive tumors, thus corroborating the association between high AF1q expression and increased migratory/invasive cell behavior and confirming its potential role in ovarian cancer progression. Our findings demonstrated, for the first time, that AF1q is endowed with protumorigenic activity in ovarian cancer, thus highlighting a dual behavior (i.e., protumorigenic and proapoptotic functions) of the protein in the malignancy.
Collapse
Affiliation(s)
- Paola Tiberio
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ludmila Lozneanu
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Morphofunctional Sciences-Histology, Patology, "Grigore T. Popa" University of Medicine and Pharmacy, Iassy, Romania
| | - Valentina Angeloni
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Cavadini
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pinciroli
- Department of Experimental Oncology and Molecular Medicine, Functional Genomics Facility, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio Callari
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Present address: Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maria Luisa Carcangiu
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Domenica Lorusso
- Department of Surgery, Gynecologic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesco Raspagliesi
- Department of Surgery, Gynecologic Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Pala
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Grazia Daidone
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Appierto
- Department of Experimental Oncology and Molecular Medicine, Biomarkers Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
19
|
Polymorphisms in matrix metalloproteinases 2, 3, and 8 increase recurrence and mortality risk by regulating enzyme activity in gastric adenocarcinoma. Oncotarget 2017; 8:105971-105983. [PMID: 29285307 PMCID: PMC5739694 DOI: 10.18632/oncotarget.22516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/29/2017] [Indexed: 12/19/2022] Open
Abstract
The association of polymorphisms in matrix metalloproteinases (MMPs) with clinical outcomes of gastric adenocarcinoma has not been examined. Ten polymorphisms in MMP1, 2, 3, 7, 8, 9, 12, and 13 were genotyped and investigated, and patients were followed for an average of 58 months. The activities of MMP2, 3, and 8 were measured. Recurrence risk increased in patients with the MMP2 rs2285053 CC genotype (hazard ratio [HR], 1.85), MMP3 rs679620 AA genotype (HR, 2.15), and MMP8 rs1940475 TT genotype (HR, 2.22) on recurrence free survival (RFS). Co-presence of the unfavorable MMP2 rs2285053 CC and MMP8 rs1940475 TT genotypes resulted in an additional increased risk of recurrence (RFS: HR, 4.42; 95% confidence interval [CI], 2.15-9.09; p<0.0001) and risk of death (overall survival ( OS) : HR, 6.59; 95% CI, 3.15-13.19; p<0.0001). Theoretical survival tree analysis revealed that recurrence-free survival significantly varied from 15.5 to 87 months among patients with different polymorphisms in MMP2, 3, and 8. The enzymatic activities of MMP2 and MMP3 increased (MMP2 rs2285053 CC: 888.60 vs. CT: 392.00, p <0.0001; MMP3 rs679620 AA: 131.10 vs. GG: 107.74, p=0.015), whereas those of MMP8 decreased (MMP8 rs1940475 TT: 133.78 vs. CC: 147.54, p=0.011) in gastric cancer tissues. These results suggest that polymorphisms in MMP2, 3, and 8 may increase cancer recurrence and patient death by increasing or decreasing enzyme activity in patients with gastric adenocarcinoma.
Collapse
|
20
|
Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ. The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease. Physiol Rev 2017; 97:1089-1125. [PMID: 28566538 DOI: 10.1152/physrev.00028.2016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.
Collapse
Affiliation(s)
- Nicholas Stafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Zou W, Ma X, Yang H, Hua W, Chen B, Cai G. Hepatitis B X-interacting protein promotes cisplatin resistance and regulates CD147 via Sp1 in ovarian cancer. Exp Biol Med (Maywood) 2017; 242:497-504. [PMID: 28056551 DOI: 10.1177/1535370216685007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure in malignant tumors. Hepatitis B X-interacting protein acts as an oncoprotein, regulates cell proliferation, and migration in breast cancer. We aimed to investigate the effects and mechanisms of hepatitis B X-interacting protein on resistance to cisplatin in human ovarian cancer cell lines. The mRNA and protein levels of hepatitis B X-interacting protein were detected using RT-PCR and Western blotting in cisplatin-resistant and cisplatin-sensitive tissues, cisplatin-resistant cell lines A2780/CP and SKOV3/CP, and cisplatin-sensitive cell lines A2780 and SKOV3. Cell viability and apoptosis were measured to evaluate cellular sensitivity to cisplatin in A2780/CP cells. Luciferase reporter gene assay was used to determine the relationship between hepatitis B X-interacting protein and CD147. The in vivo function of hepatitis B X-interacting protein on tumor burden was assessed in cisplatin-resistant xenograft models. The results showed that hepatitis B X-interacting protein was highly expressed in ovarian cancer of cisplatin-resistant tissues and cells. Notably, knockdown of hepatitis B X-interacting protein significantly reduced cell viability in A2780/CP compared with cisplatin treatment alone. Hepatitis B X-interacting protein and cisplatin cooperated to induce apoptosis and increase the expression of c-caspase 3 as well as the Bax/Bcl-2 ratio. We confirmed that hepatitis B X-interacting protein up-regulated CD147 at the protein expression and transcriptional levels. Moreover, we found that hepatitis B X-interacting protein was able to activate the CD147 promoter through Sp1. In vivo, depletion of hepatitis B X-interacting protein decreased the tumor volume and weight induced by cisplatin. Taken together, these results indicate that hepatitis B X-interacting protein promotes cisplatin resistance and regulated CD147 via Sp1 in ovarian cancer cell lines. Impact statement We found that hepatitis B X-interacting protein (HBXIP) was able to activate the CD147 promoter through Sp1. In vivo, depletion of HBXIP decreased the tumor volume and weight induced by CP. Taken together, these results indicate that HBXIP promotes cisplatin resistance and regulated CD147 via Sp1 in ovarian cancer cell lines.
Collapse
Affiliation(s)
- Wei Zou
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Xiangdong Ma
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Hong Yang
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Wei Hua
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Biliang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Guoqing Cai
- Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, P.R. China
| |
Collapse
|
22
|
Solárová Z, Kello M, Varinská L, Budovská M, Solár P. Inhibition of heat shock protein (Hsp) 90 potentiates the antiproliferative and pro-apoptotic effects of 2-(4′fluoro-phenylamino)-4H-1,3-thiazine[6,5-b]indole in A2780cis cells. Biomed Pharmacother 2017; 85:463-471. [DOI: 10.1016/j.biopha.2016.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/26/2022] Open
|
23
|
Caffeic acid phenethyl ester activates pro-apoptotic and epithelial-mesenchymal transition-related genes in ovarian cancer cells A2780 and A2780cis. Mol Cell Biochem 2016; 413:189-98. [PMID: 26838168 DOI: 10.1007/s11010-015-2652-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
Abstract
Ovarian cancer is a highly aggressive pathology, displaying a poor prognosis and chemoresistance to classical therapy. The present study was conducted to evaluate the effect of caffeic acid phenethyl ester (CAPE) on survival of ovarian cancer cell lines, A2780 (sensitive to cisplatin) and A2780cis (resistant to cisplatin). MTT assay was used to evaluate cell viability, while the apoptotic processes were examined by flow cytometry and qRT-PCR. A reduction of cell proliferation and activation of the apoptosis was observed in both cell lines. qRT-PCR evaluation demonstrated the activation of the pro-apoptotic genes (BAD, CASP8, FAS, FADD, p53) in both cell lines. The limited therapeutic effect in A2780 cells is explained by the activation of epithelial-mesenchymal transition-related genes (ZEB1, ZEB2, or TGFBB1) as displayed by Ingenuity Network analysis. Overall data suggest that CAPE can be used as an alternative in sensitizing cells to chemotherapy.
Collapse
|
24
|
Al-Alem L, Curry TE. Ovarian cancer: involvement of the matrix metalloproteinases. Reproduction 2015; 150:R55-64. [PMID: 25918438 DOI: 10.1530/rep-14-0546] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancies. One of the reasons for the high mortality rate associated with ovarian cancer is its late diagnosis, which often occurs after the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members of the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. The present review sheds light on the different MMPs in the various types of ovarian cancer and on their impact on the progression of this gynecologic malignancy.
Collapse
Affiliation(s)
- Linah Al-Alem
- Department of Obstetrics and GynecologyUniversity of Kentucky Medical Center, 800 Rose Street, Room C355, Lexington, Kentucky 40536-0293, USA
| | - Thomas E Curry
- Department of Obstetrics and GynecologyUniversity of Kentucky Medical Center, 800 Rose Street, Room C355, Lexington, Kentucky 40536-0293, USA
| |
Collapse
|
25
|
Genome-wide modulation of gene transcription in ovarian carcinoma cells by a new mithramycin analogue. PLoS One 2014; 9:e104687. [PMID: 25110883 PMCID: PMC4128730 DOI: 10.1371/journal.pone.0104687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer has a poor prognosis due to intrinsic or acquired resistance to some cytotoxic drugs, raising the interest in new DNA-binding agents such as mithramycin analogues as potential chemotherapeutic agents in gynecological cancer. Using a genome-wide approach, we have analyzed gene expression in A2780 human ovarian carcinoma cells treated with the novel mithramycin analogue DIG-MSK (demycarosyl-3D-β-D-digitoxosyl-mithramycin SK) that binds to C+G-rich DNA sequences. Nanomolar concentrations of DIG-MSK abrogated the expression of genes involved in a variety of cell processes including transcription regulation and tumor development, which resulted in cell death. Some of those genes have been associated with cell proliferation and poor prognosis in ovarian cancer. Sp1 transcription factor regulated most of the genes that were down-regulated by the drug, as well as the up-regulation of other genes mainly involved in response to cell stress. The effect of DIG-MSK in the control of gene expression by other transcription factors was also explored. Some of them, such as CREB, E2F and EGR1, also recognize C/G-rich regions in gene promoters, which encompass potential DIG-MSK binding sites. DIG-MSK affected several biological processes and molecular functions related to transcription and its cellular regulation in A2780 cells, including transcription factor activity. This new compound might be a promising drug for the treatment of ovarian cancer.
Collapse
|
26
|
Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line. BIOMED RESEARCH INTERNATIONAL 2014; 2014:365867. [PMID: 24804215 PMCID: PMC3996316 DOI: 10.1155/2014/365867] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/24/2014] [Indexed: 02/03/2023]
Abstract
Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly—over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.
Collapse
|
27
|
Ran GTPase in nuclear envelope formation and cancer metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:323-51. [PMID: 24563355 DOI: 10.1007/978-1-4899-8032-8_15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107-Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities.
Collapse
|
28
|
Identification of candidate circulating cisplatin-resistant biomarkers from epithelial ovarian carcinoma cell secretomes. Br J Cancer 2013; 110:123-32. [PMID: 24178762 PMCID: PMC3887292 DOI: 10.1038/bjc.2013.687] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022] Open
Abstract
Background: The majority of patients diagnosed with advanced epithelial ovarian carcinoma (EOC) relapse with resistant disease, and there are no biomarkers that possess clinical utility to identify or monitor these patients. This study aimed to identify secreted proteins (‘secretome') collected from human EOC cell lines that differ in their inherent platinum sensitivity. Methods: Secreted proteins collected from conditioned medium from ovarian cancer cell lines that vary in their sensitivity to cisplatin were digested with trypsin and analysed by liquid chromatography-tandem mass spectrometry for peptide identification. Results: Of the 1688 proteins identified, 16 possessed significant differential abundances (P<0.05) between the platinum-resistant and -sensitive cell lines. A number of these were verified by immunoblot, including COL11A1, which was also found to be associated with worse progression-free survival (PFS; N=723) and overall survival (OS; N=1183) as assessed from publicly available transcript expression data from ovarian cancer tumour specimens. Conclusion: Secretome proteomics of EOC cells resulted in the identification of a novel candidate biomarker, COL11A1. The expression level of COL11A1 correlates to worse PFS and OS, and is predicted to reside in peripheral circulation making this an attractive candidate for validation in sera as a biomarker of cisplatin resistance and poor outcome.
Collapse
|
29
|
Al-Alem LF, McCord LA, Southard RC, Kilgore MW, Curry TE. Activation of the PKC pathway stimulates ovarian cancer cell proliferation, migration, and expression of MMP7 and MMP10. Biol Reprod 2013; 89:73. [PMID: 23843242 DOI: 10.1095/biolreprod.112.102327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Postmenopausal women are at a higher risk of ovarian cancer due, in part, to increased levels of gonadotropins such as luteinizing hormone (LH). Gonadotropins and other stimuli are capable of activating two pathways, PKA and PKC, that are altered in ovarian cancer. To determine the role of LH on ovarian cancer, we explored the effects of human chorionic gonadotropin (hCG), an LH mimic, and an activator of the PKC pathway, phorbol-12-myristate 13-acetate (PMA), on ovarian cancer cell-cycle kinetics and apoptosis in Ovcar3 cells. PMA treatment increased cells in the S phase of the cell cycle and initially increased apoptosis after 4 h before diminishing apoptosis after 8 h. Treatment of ovarian cancer cells with hCG had no effect on these parameters. The PKC pathway is known to differentially regulate matrix metalloproteinase (MMP) expression. Results showed that ovarian cancer cells treated with PMA increased MMP7 and MMP10 mRNA levels after 8 h of treatment, and expression remained high after 12 h before decreasing at 24 h. The mRNA expression of extracellular matrix metalloproteinase inducer (BSG), an activator of MMPs, was unaffected by PMA. Due to the role that MMPs play in migration, we investigated the effect of PMA activation of MMPs on ovarian cancer cell migration. The use of the MMP inhibitor GM6001 blocked the increased migratory effects of PMA on ovarian cancer cells. Together, these studies show that activating the PKC pathway causes significant changes in cell cycle kinetics and selective expression of MMPs that are involved in enhancing ovarian cancer cell proliferation and migration.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky
| | | | | | | | | |
Collapse
|
30
|
Liu S, Fang Y, Shen H, Xu W, Li H. Berberine sensitizes ovarian cancer cells to cisplatin through miR-21/PDCD4 axis. Acta Biochim Biophys Sin (Shanghai) 2013; 45:756-62. [PMID: 23824073 DOI: 10.1093/abbs/gmt075] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent studies have shown that microRNA-21 (miR-21) contributes to tumor resistance to chemotherapy. Interestingly, we have found that berberine could inhibit miR-21 expression in several cancer cell lines. In this study, we investigated whether berberine could modulate the sensitivity of ovarian cancer cells to cisplatin and explored the mechanism. The cisplatin-resistant SKOV3 cells that were incubated with berberine combined with cisplatin had a significantly lower survival than the cisplatin alone group and enhanced cisplatin-induced apoptosis. Berberine could inhibit miR-21 expression and function in ovarian cancer, as shown by an enhancement of its target PDCD4, an important tumor suppressor in ovarian cancer. The results suggested that berberine could modulate the sensitivity of cisplatin via regulating miR-21/PDCD4 axis in the ovarian cancer cells.
Collapse
Affiliation(s)
- Shiguo Liu
- Department of Clinical Laboratory, Hubei Zhongshan Hospital, Wuhan, China
| | | | | | | | | |
Collapse
|
31
|
Koch M, Krieger ML, Stölting D, Brenner N, Beier M, Jaehde U, Wiese M, Royer HD, Bendas G. Overcoming chemotherapy resistance of ovarian cancer cells by liposomal cisplatin: molecular mechanisms unveiled by gene expression profiling. Biochem Pharmacol 2013; 85:1077-90. [PMID: 23396090 DOI: 10.1016/j.bcp.2013.01.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 12/12/2022]
Abstract
Previously we reported that liposomal cisplatin (CDDP) overcomes CDDP resistance of ovarian A2780cis cancer cells (Krieger et al., Int. J. Pharm. 389, 2010, 10-17). Here we find that the cytotoxic activity of liposomal CDDP is not associated with detectable DNA platination in resistant ovarian cancer cells. This suggests that the mode of action of liposomal CDDP is different from the free drug. To gain insight into mechanisms of liposomal CDDP activity, we performed a transcriptome analysis of untreated A2780cis cells, and A2780cis cells in response to exposure with IC50 values of free or liposomal CDDP. A process network analysis of upregulated genes showed that liposomal CDDP induced a highly different gene expression profile in comparison to the free drug. p53 was identified as a key player directing transcriptional responses to free or liposomal CDDP. The free drug induced expression of essential genes of the intrinsic (mitochondrial) apoptosis pathway (BAX, BID, CASP9) most likely through p38MAPK activation. In contrast, liposomal CDDP induced expression of genes from DNA damage pathways and several genes of the extrinsic pathway of apoptosis (TNFRSF10B-DR5, CD70-TNFSF7). It thus appears that liposomal CDDP overcomes CDDP resistance by inducing DNA damage and in consequence programmed cell death by the extrinsic pathway. Predictions from gene expression data with respect to apoptosis activation were confirmed at the protein level by an apoptosis antibody array. This sheds new light on liposomal drug carrier approaches in cancer and suggests liposomal CDDP as promising strategy for the treatment of CDDP resistant ovarian carcinomas.
Collapse
Affiliation(s)
- Martin Koch
- Pharmaceutical Institute, Rheinische Friedrich Wilhelms University Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tian Y, Zhang J, Yan S, Qiu L, Li Z. FATS expression is associated with cisplatin sensitivity in non small cell lung cancer. Lung Cancer 2012; 76:416-22. [DOI: 10.1016/j.lungcan.2011.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/26/2011] [Accepted: 11/07/2011] [Indexed: 01/21/2023]
|
33
|
Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential. PLoS One 2012; 7:e35040. [PMID: 22545096 PMCID: PMC3335833 DOI: 10.1371/journal.pone.0035040] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/08/2012] [Indexed: 01/16/2023] Open
Abstract
Matrix metalloproteinases (Mmps) stimulate tumor invasion and metastasis by degrading the extracellular matrix. Here we reveal an unexpected role for Mmp10 (stromelysin 2) in the maintenance and tumorigenicity of mouse lung cancer stem-like cells (CSC). Mmp10 is highly expressed in oncosphere cultures enriched in CSCs and RNAi-mediated knockdown of Mmp10 leads to a loss of stem cell marker gene expression and inhibition of oncosphere growth, clonal expansion, and transformed growth in vitro. Interestingly, clonal expansion of Mmp10 deficient oncospheres can be restored by addition of exogenous Mmp10 protein to the culture medium, demonstrating a direct role for Mmp10 in the proliferation of these cells. Oncospheres exhibit enhanced tumor-initiating and metastatic activity when injected orthotopically into syngeneic mice, whereas Mmp10-deficient cultures show a severe defect in tumor initiation. Conversely, oncospheres implanted into syngeneic non-transgenic or Mmp10−/− mice show no significant difference in tumor initiation, growth or metastasis, demonstrating the importance of Mmp10 produced by cancer cells rather than the tumor microenvironment in lung tumor initiation and maintenance. Analysis of gene expression data from human cancers reveals a strong positive correlation between tumor Mmp10 expression and metastatic behavior in many human tumor types. Thus, Mmp10 is required for maintenance of a highly tumorigenic, cancer-initiating, metastatic stem-like cell population in lung cancer. Our data demonstrate for the first time that Mmp10 is a critical lung cancer stem cell gene and novel therapeutic target for lung cancer stem cells.
Collapse
|
34
|
EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 2012; 12:91. [PMID: 22429801 PMCID: PMC3342883 DOI: 10.1186/1471-2407-12-91] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/19/2012] [Indexed: 01/14/2023] Open
Abstract
Background The epithelial to mesenchymal transition (EMT) is a molecular process through which an epithelial cell undergoes transdifferentiation into a mesenchymal phenotype. The role of EMT in embryogenesis is well-characterized and increasing evidence suggests that elements of the transition may be important in other processes, including metastasis and drug resistance in various different cancers. Methods Agilent 4 × 44 K whole human genome arrays and selected reaction monitoring mass spectrometry were used to investigate mRNA and protein expression in A2780 cisplatin sensitive and resistant cell lines. Invasion and migration were assessed using Boyden chamber assays. Gene knockdown of snail and slug was done using targeted siRNA. Clinical relevance of the EMT pathway was assessed in a cohort of primary ovarian tumours using data from Affymetrix GeneChip Human Genome U133 plus 2.0 arrays. Results Morphological and phenotypic hallmarks of EMT were identified in the chemoresistant cells. Subsequent gene expression profiling revealed upregulation of EMT-related transcription factors including snail, slug, twist2 and zeb2. Proteomic analysis demonstrated up regulation of Snail and Slug as well as the mesenchymal marker Vimentin, and down regulation of E-cadherin, an epithelial marker. By reducing expression of snail and slug, the mesenchymal phenotype was largely reversed and cells were resensitized to cisplatin. Finally, gene expression data from primary tumours mirrored the finding that an EMT-like pathway is activated in resistant tumours relative to sensitive tumours, suggesting that the involvement of this transition may not be limited to in vitro drug effects. Conclusions This work strongly suggests that genes associated with EMT may play a significant role in cisplatin resistance in ovarian cancer, therefore potentially leading to the development of predictive biomarkers of drug response or novel therapeutic strategies for overcoming drug resistance.
Collapse
|
35
|
Solár P, Chytilová M, Solárová Z, Mojžiš J, Ferenc P, Fedoročko P. Photodynamic Therapy with Hypericin Improved by Targeting HSP90 Associated Proteins. Pharmaceuticals (Basel) 2011; 4:1488-1502. [PMID: 27721334 PMCID: PMC4060136 DOI: 10.3390/ph4111488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 11/25/2022] Open
Abstract
In this study we have focused on the response of SKBR-3 cells to both single 17-DMAG treatment as well as its combination with photodynamic therapy with hypericin. Low concentrations of 17-DMAG without any effect on survival of SKBR-3 cells significantly reduced metabolic activity, viability and cell number when combined with photodynamic therapy with hypericin. Moreover, IC10 concentation of 17-DMAG resulted in significant increase of SKBR-3 cells in G1 phase of the cell cycle, followed by an increase of cells in G2 phase when combined with photodynamic therapy. Furthermore, 17-DMAG already decreased HER2, Akt, P-Erk1/2 and survivin protein levels in SKBR-3 cells a short time after its application. In this regard, 17-DMAG protected also SKBR-3 cells against both P-Erk1/2 as well as survivin upregulations induced by photodynamic therapy with hypericin. Interestingly, IC10 concentration of 17-DMAG led to total depletion of Akt, P-Erk1/2 proteins and to decrease of survivin level at 48 h. On the other hand, 17-DMAG did not change HER2 relative expression in SKBR-3 cells, but caused a significant decrease of HER2 mRNA in MCF-7 cells characterized by low HER2 expression. These results show that targeting HSP90 client proteins increases the efficiency of antineoplastic effect of photodynamic therapy in vitro.
Collapse
Affiliation(s)
- Peter Solár
- Laboratory of Cell Biology, Institute of Biology and Ecology, Faculty of Sciences, P.J. Šafárik University, 040 01 Košice, Slovak Republic.
| | - Mária Chytilová
- Laboratory of Cell Biology, Institute of Biology and Ecology, Faculty of Sciences, P.J. Šafárik University, 040 01 Košice, Slovak Republic.
| | - Zuzana Solárová
- Geriatric Nursing Clinic, Faculty of Medicine, P.J. Šafárik University, 040 01 Košice, Slovak Republic.
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University,040 01 Košice, Slovak Republic.
| | - Peter Ferenc
- Laboratory of Cell Biology, Institute of Biology and Ecology, Faculty of Sciences, P.J. Šafárik University, 040 01 Košice, Slovak Republic.
| | - Peter Fedoročko
- Laboratory of Cell Biology, Institute of Biology and Ecology, Faculty of Sciences, P.J. Šafárik University, 040 01 Košice, Slovak Republic.
| |
Collapse
|
36
|
Sterrenberg JN, Blatch GL, Edkins AL. Human DNAJ in cancer and stem cells. Cancer Lett 2011; 312:129-42. [PMID: 21925790 DOI: 10.1016/j.canlet.2011.08.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/15/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
The heat shock protein 40kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.
Collapse
Affiliation(s)
- Jason N Sterrenberg
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown South Africa
| | | | | |
Collapse
|