1
|
Wu Z, Zhang W, Chen L, Wang T, Wang X, Shi H, Zhang L, Zhong M, Shi X, Mao X, Chen H, Li Q. CDK12 inhibition upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-PD-1 efficacy in colorectal cancer. Pharmacol Res 2024; 201:107097. [PMID: 38354870 DOI: 10.1016/j.phrs.2024.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
As the world's fourth most deadly cancer, colorectal cancer (CRC) still needed the novel therapeutic drugs and target urgently. Although cyclin-dependent kinase 12 (CDK12) has been shown to be implicated in the malignancy of several types of cancer, its functional role and mechanism in CRC remain largely unknown. Here, we found that suppression of CDK12 inhibited tumor growth in CRC by inducing apoptosis. And CDK12 inhibition triggered autophagy by upregulating autophagy related gene 7 (ATG7) expression. Inhibition of autophagy by ATG7 knockdown and chloroquine (CQ) further decreased cell viability induced by CDK12 inhibition. Further mechanism exploration showed that CDK12 interacted with protein kinase B (AKT) regulated autophagy via AKT/forkhead box O3 (AKT/FOXO3) pathway. FOXO3 transcriptionally upregulated ATG7 expression and autophagy when CDK12 inhibition in CRC. Level of CDK12 and p-FOXO3/FOXO3 ratio were correlated with survival in CRC patients. Moreover, CDK12 inhibition improved the efficacy of anti-programmed cell death 1(PD-1) therapy in CRC murine models by enhancing CD8 + T cells infiltration. Thus, our study founded that CDK12 inhibition upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-PD-1 efficacy in CRC. We revealed the roles of CDK12/FOXO3/ATG7 in regulating CRC progression, suggesting potential biomarkers and therapeutic target for CRC.
Collapse
Affiliation(s)
- Zimei Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Huanying Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Liudi Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Mao
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Hatami H, Sajedi A, Mir SM, Memar MY. Importance of lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) in cancer cells. Health Sci Rep 2023; 6:e996. [PMID: 36570342 PMCID: PMC9768844 DOI: 10.1002/hsr2.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background In most regions, cancer ranks the second most frequent cause of death following cardiovascular disorders. Aim In this article, we review the various aspects of glycolysis with a focus on types of MCTs and the importance of lactate in cancer cells. Results and Discussion Metabolic changes are one of the first and most important alterations in cancer cells. Cancer cells use different pathways to survive, energy generation, growth, and proliferation compared to normal cells. The increase in glycolysis, which produces substances such as lactate and pyruvate, has an important role in metastases and invasion of cancer cells. Two important cellular proteins that play a role in the production and transport of lactate include lactate dehydrogenase and monocarboxylate transporters (MCTs). These molecules by their various isoforms and different tissue distribution help to escape the immune system and expansion of cancer cells under different conditions.
Collapse
Affiliation(s)
- Hamed Hatami
- Department of Immunology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Atefe Sajedi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Clinical Biochemistry, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
3
|
Yang C, Cui XW, Ding ZW, Jiang TY, Feng XF, Pan YF, Lin YK, Shang TY, Wang Q, Pan J, Wang J, Wang HY, Dong LW. Gankyrin and TIGAR cooperatively accelerate glucose metabolism toward the PPP and TCA cycle in hepatocellular carcinoma. Cancer Sci 2022; 113:4151-4164. [PMID: 36114745 DOI: 10.1111/cas.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022] Open
Abstract
Oncogene-derived metabolic reprogramming is important for anabolic growth of cancer cells, which is now considered to be not simply rely on glycolysis. Pentose phosphate pathway and tricarboxylic acid cycle also play pivotal roles in helping cancer cells to meet their anabolic and energy demands. The present work focused on gankyrin, a relatively specific oncogene in hepatocellular carcinoma (HCC), and its impact on glycolysis and mitochondrial homeostasis. Metabolomics, RNA-seq analysis, and subsequent conjoint analysis illustrated that gankyrin regulated the pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and mitochondrial function and homeostasis, which play pivotal roles in tumor development. Mechanistically, gankyrin was found to modulate HCC metabolic reprogramming via TIGAR. Gankyrin positively regulated the transcription of TIGAR through Nrf2, which bound to the antioxidant response elements (AREs) in the promoter of TIGAR. Interestingly, TIGAR feedback regulated the transcription of Nrf2 and subsequently gankyrin by promoting nuclear importation of PGC1α. The loop between gankyrin, Nrf2, and TIGAR accelerated glucose metabolism toward the PPP and TCA cycle, which provided vital building blocks, such as NADPH, ATP, and ribose of tumor and further facilitated the progression of HCC.
Collapse
Affiliation(s)
- Chun Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Xiao-Wen Cui
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Zhi-Wen Ding
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tian-Yi Jiang
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Xiao-Fan Feng
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Yu-Fei Pan
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Yun-Kai Lin
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Tai-Yu Shang
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Qing Wang
- National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,National Center for Liver Cancer, The Naval Medical University, Shanghai, China.,Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Naval Medical University & Ministry of Education, Shanghai, China
| | - Li-Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China.,National Center for Liver Cancer, The Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Targeting hypoxia-related metabolism molecules: How to improve tumour immune and clinical treatment? Biomed Pharmacother 2022; 156:113917. [DOI: 10.1016/j.biopha.2022.113917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/20/2022] Open
|
5
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|
6
|
Shi X, Yang J, Deng S, Xu H, Wu D, Zeng Q, Wang S, Hu T, Wu F, Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J Hematol Oncol 2022; 15:135. [PMID: 36115986 PMCID: PMC9482317 DOI: 10.1186/s13045-022-01349-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 12/30/2022] Open
Abstract
AbstractTransforming growth factor-β (TGF-β) signaling has a paradoxical role in cancer progression, and it acts as a tumor suppressor in the early stages but a tumor promoter in the late stages of cancer. Once cancer cells are generated, TGF-β signaling is responsible for the orchestration of the immunosuppressive tumor microenvironment (TME) and supports cancer growth, invasion, metastasis, recurrence, and therapy resistance. These progressive behaviors are driven by an “engine” of the metabolic reprogramming in cancer. Recent studies have revealed that TGF-β signaling regulates cancer metabolic reprogramming and is a metabolic driver in the tumor metabolic microenvironment (TMME). Intriguingly, TGF-β ligands act as an “endocrine” cytokine and influence host metabolism. Therefore, having insight into the role of TGF-β signaling in the TMME is instrumental for acknowledging its wide range of effects and designing new cancer treatment strategies. Herein, we try to illustrate the concise definition of TMME based on the published literature. Then, we review the metabolic reprogramming in the TMME and elaborate on the contribution of TGF-β to metabolic rewiring at the cellular (intracellular), tissular (intercellular), and organismal (cancer-host) levels. Furthermore, we propose three potential applications of targeting TGF-β-dependent mechanism reprogramming, paving the way for TGF-β-related antitumor therapy from the perspective of metabolism.
Collapse
|
7
|
Smith ALM, Whitehall JC, Greaves LC. Mitochondrial
DNA
mutations in aging and cancer. Mol Oncol 2022; 16:3276-3294. [PMID: 35842901 PMCID: PMC9490137 DOI: 10.1002/1878-0261.13291] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/18/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Advancing age is a major risk factor for malignant transformation and the development of cancer. As such, over 50% of neoplasms occur in individuals over the age of 70. The pathologies of both ageing and cancer have been characterized by respective groups of molecular hallmarks, and while some features are divergent between the two pathologies, several are shared. Perturbed mitochondrial function is one such common hallmark, and this observation therefore suggests that mitochondrial alterations may be of significance in age‐related cancer development. There is now considerable evidence documenting the accumulation of somatic mitochondrial DNA (mtDNA) mutations in ageing human postmitotic and replicative tissues. Similarly, mutations of the mitochondrial genome have been reported in human cancers for decades. The plethora of functions in which mitochondria partake, such as oxidative phosphorylation, redox balance, apoptosis and numerous biosynthetic pathways, manifests a variety of ways in which alterations in mtDNA may contribute to tumour growth. However, the specific mechanisms by which mtDNA mutations contribute to tumour progression remain elusive and often contradictory. This review aims to consolidate current knowledge and describe future direction within the field.
Collapse
Affiliation(s)
- Anna LM Smith
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Biosciences Institute Newcastle University Newcastle Upon Tyne NE2 4HH UK
| |
Collapse
|
8
|
Meskers CJW, Franczak M, Smolenski RT, Giovannetti E, Peters GJ. Are we still on the right path(way)?: the altered expression of the pentose phosphate pathway in solid tumors and the potential of its inhibition in combination therapy. Expert Opin Drug Metab Toxicol 2022; 18:61-83. [PMID: 35238253 DOI: 10.1080/17425255.2022.2049234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The pentose phosphate pathway (PPP) branches from glycolysis and is crucial for cell growth, since it provides necessary compounds for anabolic reactions, nucleotide synthesis, and detoxification of reactive-oxygen-species (ROS). Overexpression of PPP enzymes has been reported in multiple cancer types and linked to therapy resistance, making their inhibition interesting targets for anti-cancer therapies. AREAS COVERED This review summarizes the extent of PPP upregulation across different cancer types, and the non-metabolic functions that PPP-enzymes might contribute to cancer initiation and maintenance. The effects of PPP-inhibition and their combinations with chemotherapeutics are summarized. We searched the databases provided by the University of Amsterdam to characterize the altered expression of the PPP across different cancer types, and to identify the effects of PPP-inhibition. EXPERT OPINION It can be concluded that there are synergistic and additive effects of PPP-inhibition and various classes of chemotherapeutics. These effects may be attributed to the increased susceptibility to ROS. However, the toxicity, low efficacy, and off-target effects of PPP-inhibitors make application in clinical practice challenging. Novel inhibitors are currently being developed, which could make PPP-inhibition a potential therapeutic strategy in the future, especially in combination with conventional chemotherapeutics and the inhibition of other metabolic pathways.
Collapse
Affiliation(s)
- Caroline J W Meskers
- Amsterdam University College, Amsterdam, The Netherlands.,Laboratory Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam location VUMC, Cancer Center Amsterdam, The Netherlands
| | - Marika Franczak
- Department of Biochemistry, Medical University of Gdansk, Poland
| | | | - Elisa Giovannetti
- Laboratory Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam location VUMC, Cancer Center Amsterdam, The Netherlands.,Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam location VUMC, Cancer Center Amsterdam, The Netherlands.,Department of Biochemistry, Medical University of Gdansk, Poland
| |
Collapse
|
9
|
Ghanem N, El-Baba C, Araji K, El-Khoury R, Usta J, Darwiche N. The Pentose Phosphate Pathway in Cancer: Regulation and Therapeutic Opportunities. Chemotherapy 2021; 66:179-191. [PMID: 34775382 DOI: 10.1159/000519784] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Tumorigenesis is associated with deregulation of nutritional requirements, intermediary metabolites production, and microenvironment interactions. Unlike their normal cell counterparts, tumor cells rely on aerobic glycolysis, through the Warburg effect. SUMMARY The pentose phosphate pathway (PPP) is a major glucose metabolic shunt that is upregulated in cancer cells. The PPP comprises an oxidative and a nonoxidative phase and is essential for nucleotide synthesis of rapidly dividing cells. The PPP also generates nicotinamide adenine dinucleotide phosphate, which is required for reductive metabolism and to counteract oxidative stress in tumor cells. This article reviews the regulation of the PPP and discusses inhibitors that target its main pathways. Key Message: Exploiting the metabolic vulnerability of the PPP offers potential novel therapeutic opportunities and improves patients' response to cancer therapy.
Collapse
Affiliation(s)
- Noorhan Ghanem
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Khaled Araji
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Riyad El-Khoury
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Julnar Usta
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
10
|
Schiliro C, Firestein BL. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021; 10:cells10051056. [PMID: 33946927 PMCID: PMC8146072 DOI: 10.3390/cells10051056] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells alter metabolic processes to sustain their characteristic uncontrolled growth and proliferation. These metabolic alterations include (1) a shift from oxidative phosphorylation to aerobic glycolysis to support the increased need for ATP, (2) increased glutaminolysis for NADPH regeneration, (3) altered flux through the pentose phosphate pathway and the tricarboxylic acid cycle for macromolecule generation, (4) increased lipid uptake, lipogenesis, and cholesterol synthesis, (5) upregulation of one-carbon metabolism for the production of ATP, NADH/NADPH, nucleotides, and glutathione, (6) altered amino acid metabolism, (7) metabolism-based regulation of apoptosis, and (8) the utilization of alternative substrates, such as lactate and acetate. Altered metabolic flux in cancer is controlled by tumor-host cell interactions, key oncogenes, tumor suppressors, and other regulatory molecules, including non-coding RNAs. Changes to metabolic pathways in cancer are dynamic, exhibit plasticity, and are often dependent on the type of tumor and the tumor microenvironment, leading in a shift of thought from the Warburg Effect and the “reverse Warburg Effect” to metabolic plasticity. Understanding the complex nature of altered flux through these multiple pathways in cancer cells can support the development of new therapies.
Collapse
Affiliation(s)
- Chelsea Schiliro
- Cell and Developmental Biology Graduate Program and Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA;
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-8045
| |
Collapse
|
11
|
Wu YR, Lee YC, Li WM, Hsu WC, Lin HH, Chang LL, Huang AM, Jhan JH, Wu WJ, Li CC, Lee HY, Yeh HC, Ke HL. High Transaldolase 1 expression predicts poor survival of patients with upper tract urothelial carcinoma. Pathol Int 2021; 71:463-470. [PMID: 33848380 DOI: 10.1111/pin.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Upper tract urothelial carcinoma (UTUC) is a rare tumor with an incidence that varies greatly between Eastern and Western countries. Transaldolase 1 (TALDO1) is a rate-limiting enzyme of the pentose phosphate pathway. In humans, aberrant TALDO1 activity has been implicated in various autoimmune diseases and malignancies; however, the function of TALDO1 in UTUC has not been previously investigated. Here we evaluated the clinical significance of TALDO1 expression in 115 paraffin-embedded tumor samples from patients with UTUC using immunohistochemistry. Our results demonstrated that there was an association between high TALDO1 expression and advanced stage (P = 0.011), tumor size (P = 0.005), tumor location (P = 0.047), distant metastases (P = 0.023), local recurrence (P = 0.002), and cancer death (P = 0.003). Using univariate and multivariate analyses, we found that chemotherapy was an independent factor for bladder recurrence-free survival. Late stage (III/IV) and high TALDO1 expression were independent prognostic factors for progression-free and cancer-specific survival. In summary, increased TALDO1 expression in UTUC was significantly correlated with late stage, tumor size, tumor location, distant metastases, local recurrence, and cancer death. Therefore, high TALDO1 expression could be a predictor of poor survival in patients with UTUC. Further studies are necessary to investigate the role of TALDO1 in UTUC development.
Collapse
Affiliation(s)
- Yi-Ru Wu
- General Division, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Wei-Chi Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Hui Lin
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - A-Mei Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jhen-Hao Jhan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Ying Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Vaghari-Tabari M, Ferns GA, Qujeq D, Andevari AN, Sabahi Z, Moein S. Signaling, metabolism, and cancer: An important relationship for therapeutic intervention. J Cell Physiol 2021; 236:5512-5532. [PMID: 33580511 DOI: 10.1002/jcp.30276] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/05/2022]
Abstract
In cancerous cells, significant changes occur in the activity of signaling pathways affecting a wide range of cellular activities ranging from growth and proliferation to apoptosis, invasiveness, and metastasis. Extensive changes also happen with respect to the metabolism of a cancerous cell encompassing a wide range of functions that include: nutrient acquisition, biosynthesis of macromolecules, and energy generation. These changes are important and some therapeutic approaches for treating cancers have focused on targeting the metabolism of cancerous cells. Oncogenes and tumor suppressor genes have a significant effect on the metabolism of cells. There appears to be a close interaction between metabolism and the signaling pathways in a cancerous cell, in which the interaction provides the metabolic needs of a cancerous cell for uncontrolled proliferation, resistance to apoptosis, and metastasis. In this review, we have reviewed the latest findings in this regard and briefly review the most recent research findings regarding targeting the metabolism of cancer cells as a therapeutic approach for treatment of cancer.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gordon A Ferns
- Department of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, UK
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Ali Nosrati Andevari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Sabahi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Breast Cancer-Derived Microvesicles Are the Source of Functional Metabolic Enzymes as Potential Targets for Cancer Therapy. Biomedicines 2021; 9:biomedicines9020107. [PMID: 33499132 PMCID: PMC7910888 DOI: 10.3390/biomedicines9020107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Membrane-derived extracellular vesicles, referred to as microvesicles (MVs), have been proposed to participate in several cancer diseases. In this study, MV fractions were isolated by differential ultracentrifugation from a metastatic breast cancer (BC) cell line MDA-MB-231 and a non-cancerous breast cell line MCF10A, then analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. A total of 1519 MV proteins were identified from both cell lines. The data obtained were compared to previously analyzed proteins from small extracellular vesicles (sEVs), revealing 1272 proteins present in both MVs and sEVs derived from the MDA-MB-231 cell line. Among the 89 proteins unique to MDA-MB-231 MVs, three enzymes: ornithine aminotransferase (OAT), transaldolase (TALDO1) and bleomycin hydrolase (BLMH) were previously proposed as cancer therapy targets. These proteins were enzymatically validated in cells, sEVs, and MVs derived from both cell lines. The specific activity of OAT and TALDO1 was significantly higher in MDA-MB-231-derived MVs than in MCF10A MVs. BLMH was highly expressed in MDA-MB-231-derived MVs, compared to MCF10A MVs. This study shows that MVs carry functional metabolic enzymes and provides a framework for future studies of their biological role in BC and potential in therapeutic applications.
Collapse
|
14
|
Dynamic Changes of Urine Proteome in Rat Models Inoculated with Two Different Hepatoma Cell Lines. JOURNAL OF ONCOLOGY 2021; 2021:8895330. [PMID: 33505467 PMCID: PMC7810548 DOI: 10.1155/2021/8895330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Urine can accumulate systemic changes with no mechanism to be stable, which may reflect early changes associated with physiological or pathophysiological processes. To explore the potential value of the urine proteome, two rat models were established by intrahepatic injection of two different hepatoma cell lines, CBRH-7919 and RH-35. Urine samples were collected and analyzed. Compared with controls, the two models exhibited different numbers and types of differentially expressed urinary proteins despite having similar histological results. The results were compared with the urine proteome of a Walker 256 (W-256) liver tumor model. The differentially expressed urinary protein patterns in the three models were different. These findings demonstrate that changes in the urine proteomes of the two models can be detected at early stages and that the patterns of differentially expressed urinary proteins can differ even when the histological results are similar. Urinary proteins have potential utility for distinguishing among different tumor cells grown in the same organ.
Collapse
|
15
|
Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. The Role of the Pentose Phosphate Pathway in Diabetes and Cancer. Front Endocrinol (Lausanne) 2020; 11:365. [PMID: 32582032 PMCID: PMC7296058 DOI: 10.3389/fendo.2020.00365] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
The pentose phosphate pathway (PPP) branches from glucose 6-phosphate (G6P), produces NADPH and ribose 5-phosphate (R5P), and shunts carbons back to the glycolytic or gluconeogenic pathway. The PPP has been demonstrated to be a major regulator for cellular reduction-oxidation (redox) homeostasis and biosynthesis. Enzymes in the PPP are reported to play important roles in many human diseases. In this review, we will discuss the role of the PPP in type 2 diabetes and cancer.
Collapse
|
16
|
Frost FG, Cherukuri PF, Milanovich S, Boerkoel CF. Pan-cancer RNA-seq data stratifies tumours by some hallmarks of cancer. J Cell Mol Med 2019; 24:418-430. [PMID: 31730267 PMCID: PMC6933344 DOI: 10.1111/jcmm.14746] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 09/01/2019] [Indexed: 12/17/2022] Open
Abstract
Numerous genetic and epigenetic alterations cause functional changes in cell biology underlying cancer. These hallmark functional changes constitute potentially tissue-independent anticancer therapeutic targets. We hypothesized that RNA-Seq identifies gene expression changes that underly those hallmarks, and thereby defines relevant therapeutic targets. To test this hypothesis, we analysed the publicly available TCGA-TARGET-GTEx gene expression data set from the University of California Santa CruzToil recompute project using WGCNA to delineate co-correlated 'modules' from tumour gene expression profiles and functional enrichment of these modules to hierarchically cluster tumours. This stratified tumours according to T cell activation, NK-cell activation, complement cascade, ATM, Rb, angiogenic, MAPK, ECM receptor and histone modification signalling. These correspond to the cancer hallmarks of avoiding immune destruction, tumour-promoting inflammation, evading growth suppressors, inducing angiogenesis, sustained proliferative signalling, activating invasion and metastasis, and genome instability and mutation. This approach did not detect pathways corresponding to the cancer enabling replicative immortality, resisting cell death or deregulating cellular energetics hallmarks. We conclude that RNA-Seq stratifies tumours along some, but not all, hallmarks of cancer and, therefore, could be used in conjunction with other analyses collectively to inform precision therapy.
Collapse
Affiliation(s)
| | - Praveen F Cherukuri
- Sanford Imagenetics, Sioux Falls, SD, USA.,Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.,Sanford Research Center, Sioux Falls, SD, USA
| | - Samuel Milanovich
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.,Sanford Research Center, Sioux Falls, SD, USA.,Pediatric Hematology and Oncology, Sanford Children's Hospital, Sioux Falls, SD, USA
| | | |
Collapse
|
17
|
Jin L, Zhou Y. Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett 2019; 17:4213-4221. [PMID: 30944616 DOI: 10.3892/ol.2019.10112] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Interest in cancer metabolism has increased in recent years. The pentose phosphate pathway (PPP) is a major glucose catabolism pathway that directs glucose flux to its oxidative branch and leads to the production of a reduced form of nicotinamide adenine dinucleotide phosphate and nucleic acid. The PPP serves a vital role in regulating cancer cell growth and involves many enzymes. The aim of the present review was to describe the recent discoveries associated with the deregulatory mechanisms of the PPP and glycolysis in malignant tumors, particularly in hepatocellular carcinoma, breast and lung cancer.
Collapse
Affiliation(s)
- Lin Jin
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
18
|
Moulder R, Bhosale SD, Goodlett DR, Lahesmaa R. Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling. MASS SPECTROMETRY REVIEWS 2018; 37:583-606. [PMID: 29120501 DOI: 10.1002/mas.21550] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 05/23/2023]
Abstract
Over the past decade, chemical labeling with isobaric tandem mass tags, such as isobaric tags for relative and absolute quantification reagents (iTRAQ) and tandem mass tag (TMT) reagents, has been employed in a wide range of different clinically orientated serum and plasma proteomics studies. In this review the scope of these works is presented with attention to the areas of research, methods employed and performance limitations. These applications have covered a wide range of diseases, disorders and infections, and have implemented a variety of different preparative and mass spectrometric approaches. In contrast to earlier works, which struggled to quantify more than a few hundred proteins, increasingly these studies have provided deeper insight into the plasma proteome extending the numbers of quantified proteins to over a thousand.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Santosh D Bhosale
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
19
|
Ngo HKC, Kim DH, Cha YN, Na HK, Surh YJ. Nrf2 Mutagenic Activation Drives Hepatocarcinogenesis. Cancer Res 2017; 77:4797-4808. [PMID: 28655791 DOI: 10.1158/0008-5472.can-16-3538] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/06/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
Abstract
Nrf2, a master regulator of oxidative stress, is considered a prominent target for prevention of hepatocellular carcinoma (HCC), one of the leading causes of cancer-related deaths worldwide. Here we report that Nrf2-deficient mice resisted diethylnitrosamine (DEN)-induced hepatocarcinogenesis without affecting P450-mediated metabolic activation of DEN. Nrf2 expression, nuclear translocation, and transcriptional activity were enhanced in liver tumors. Overactivated Nrf2 was required for hepatoma growth in DEN-induced HCC. Following DEN treatment, Nrf2 genetic disruption reduced expression of pentose phosphate pathway-related enzymes, the depletion of which has been associated with an amelioration of HCC incidence. Conversely, enhanced Nrf2 activity was attributable to alterations in the ability to bind its endogenous inhibitor Keap1. Our findings provide a mechanistic rationale for Nrf2 blockade to prevent and possibly treat liver cancer. Cancer Res; 77(18); 4797-808. ©2017 AACR.
Collapse
Affiliation(s)
- Hoang Kieu Chi Ngo
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Nam Cha
- Department of Pharmacology, College of Medicine, Inha University, Incheon, South Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
Benfeitas R, Uhlen M, Nielsen J, Mardinoglu A. New Challenges to Study Heterogeneity in Cancer Redox Metabolism. Front Cell Dev Biol 2017; 5:65. [PMID: 28744456 PMCID: PMC5504267 DOI: 10.3389/fcell.2017.00065] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are important pathophysiological molecules involved in vital cellular processes. They are extremely harmful at high concentrations because they promote the generation of radicals and the oxidation of lipids, proteins, and nucleic acids, which can result in apoptosis. An imbalance of ROS and a disturbance of redox homeostasis are now recognized as a hallmark of complex diseases. Considering that ROS levels are significantly increased in cancer cells due to mitochondrial dysfunction, ROS metabolism has been targeted for the development of efficient treatment strategies, and antioxidants are used as potential chemotherapeutic drugs. However, initial ROS-focused clinical trials in which antioxidants were supplemented to patients provided inconsistent results, i.e., improved treatment or increased malignancy. These different outcomes may result from the highly heterogeneous redox responses of tumors in different patients. Hence, population-based treatment strategies are unsuitable and patient-tailored therapeutic approaches are required for the effective treatment of patients. Moreover, due to the crosstalk between ROS, reducing equivalents [e.g., NAD(P)H] and central metabolism, which is heterogeneous in cancer, finding the best therapeutic target requires the consideration of system-wide approaches that are capable of capturing the complex alterations observed in all of the associated pathways. Systems biology and engineering approaches may be employed to overcome these challenges, together with tools developed in personalized medicine. However, ROS- and redox-based therapies have yet to be addressed by these methodologies in the context of disease treatment. Here, we review the role of ROS and their coupled redox partners in tumorigenesis. Specifically, we highlight some of the challenges in understanding the role of hydrogen peroxide (H2O2), one of the most important ROS in pathophysiology in the progression of cancer. We also discuss its interplay with antioxidant defenses, such as the coupled peroxiredoxin/thioredoxin and glutathione/glutathione peroxidase systems, and its reducing equivalent metabolism. Finally, we highlight the need for system-level and patient-tailored approaches to clarify the roles of these systems and identify therapeutic targets through the use of the tools developed in personalized medicine.
Collapse
Affiliation(s)
- Rui Benfeitas
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Jens Nielsen
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of TechnologyStockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden
| |
Collapse
|
21
|
Andrejeva G, Rathmell JC. Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metab 2017; 26:49-70. [PMID: 28683294 PMCID: PMC5555084 DOI: 10.1016/j.cmet.2017.06.004] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022]
Abstract
It has been appreciated for nearly 100 years that cancer cells are metabolically distinct from resting tissues. More recently understood is that this metabolic phenotype is not unique to cancer cells but instead reflects characteristics of proliferating cells. Similar metabolic transitions also occur in the immune system as cells transition from resting state to stimulated effectors. A key finding in immune metabolism is that the metabolic programs of different cell subsets are distinctly associated with immunological function. Further, interruption of those metabolic pathways can shift immune cell fate to modulate immunity. These studies have identified numerous metabolic similarities between cancer and immune cells but also critical differences that may be exploited and that affect treatment of cancer and immunological diseases.
Collapse
Affiliation(s)
- Gabriela Andrejeva
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center and Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center and Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Quantitative proteomics by SWATH-MS reveals sophisticated metabolic reprogramming in hepatocellular carcinoma tissues. Sci Rep 2017; 7:45913. [PMID: 28378759 PMCID: PMC5381110 DOI: 10.1038/srep45913] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and understanding its molecular pathogenesis is pivotal to managing this disease. Sequential window acquisition of all theoretical mass spectra (SWATH-MS) is an optimal proteomic strategy to seek crucial proteins involved in HCC development and progression. In this study, a quantitative proteomic study of tumour and adjacent non-tumour liver tissues was performed using a SWATH-MS strategy. In total, 4,216 proteins were reliably quantified, and 338 were differentially expressed, with 191 proteins up-regulated and 147 down-regulated in HCC tissues compared with adjacent non-tumourous tissues. Functional analysis revealed distinct pathway enrichment of up- and down-regulated proteins. The most significantly down-regulated proteins were involved in metabolic pathways. Notably, our study revealed sophisticated metabolic reprogramming in HCC, including alteration of the pentose phosphate pathway; serine, glycine and sarcosine biosynthesis/metabolism; glycolysis; gluconeogenesis; fatty acid biosynthesis; and fatty acid β-oxidation. Twenty-seven metabolic enzymes, including PCK2, PDH and G6PD, were significantly changed in this study. To our knowledge, this study presents the most complete view of tissue-specific metabolic reprogramming in HCC, identifying hundreds of differentially expressed proteins, which together form a rich resource for novel drug targets or diagnostic biomarker discovery.
Collapse
|
23
|
Diener C, Muñoz-Gonzalez F, Encarnación S, Resendis-Antonio O. The space of enzyme regulation in HeLa cells can be inferred from its intracellular metabolome. Sci Rep 2016; 6:28415. [PMID: 27335086 PMCID: PMC4917846 DOI: 10.1038/srep28415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
Abstract
During the transition from a healthy state to a cancerous one, cells alter their metabolism to increase proliferation. The underlying metabolic alterations may be caused by a variety of different regulatory events on the transcriptional or post-transcriptional level whose identification contributes to the rational design of therapeutic targets. We present a mechanistic strategy capable of inferring enzymatic regulation from intracellular metabolome measurements that is independent of the actual mechanism of regulation. Here, enzyme activities are expressed by the space of all feasible kinetic constants (k-cone) such that the alteration between two phenotypes is given by their corresponding kinetic spaces. Deriving an expression for the transformation of the healthy to the cancer k-cone we identified putative regulated enzymes between the HeLa and HaCaT cell lines. We show that only a few enzymatic activities change between those two cell lines and that this regulation does not depend on gene transcription but is instead post-transcriptional. Here, we identify phosphofructokinase as the major driver of proliferation in HeLa cells and suggest an optional regulatory program, associated with oxidative stress, that affects the activity of the pentose phosphate pathway.
Collapse
Affiliation(s)
- Christian Diener
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | | | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Osbaldo Resendis-Antonio
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico.,Coordinación de la Investigación Científica - Red de Apoyo a la Investigación UNAM, Mexico
| |
Collapse
|
24
|
Abstract
Tumorigenesis is dependent on the reprogramming of cellular metabolism as both direct and indirect consequence of oncogenic mutations. A common feature of cancer cell metabolism is the ability to acquire necessary nutrients from a frequently nutrient-poor environment and utilize these nutrients to both maintain viability and build new biomass. The alterations in intracellular and extracellular metabolites that can accompany cancer-associated metabolic reprogramming have profound effects on gene expression, cellular differentiation, and the tumor microenvironment. In this Perspective, we have organized known cancer-associated metabolic changes into six hallmarks: (1) deregulated uptake of glucose and amino acids, (2) use of opportunistic modes of nutrient acquisition, (3) use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, (4) increased demand for nitrogen, (5) alterations in metabolite-driven gene regulation, and (6) metabolic interactions with the microenvironment. While few tumors display all six hallmarks, most display several. The specific hallmarks exhibited by an individual tumor may ultimately contribute to better tumor classification and aid in directing treatment.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
25
|
Xing X, Huang Y, Wang S, Chi M, Zeng Y, Chen L, Li L, Zeng J, Lin M, Han X, Liu X, Liu J. Comparative analysis of primary hepatocellular carcinoma with single and multiple lesions by iTRAQ-based quantitative proteomics. J Proteomics 2015; 128:262-71. [PMID: 26300425 DOI: 10.1016/j.jprot.2015.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/16/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023]
|
26
|
Zhang Y, Wang L, Xie J, Zheng H. Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft. PLANTA 2015; 241:475-88. [PMID: 25374148 DOI: 10.1007/s00425-014-2196-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/19/2014] [Indexed: 05/21/2023]
Abstract
Exposure of Arabidopsis callus to microgravity has a significant impact on the expression of proteins involved in stress responses, carbohydrate metabolism, protein synthesis, intracellular trafficking, signaling, and cell wall biosynthesis. Microgravity is among the main environmental stress factors that affect plant growth and development in space. Understanding how plants acclimate to space microgravity is important to develop bioregenerative life-support systems for long-term space missions. To evaluate the spaceflight-associated stress and identify molecular events important for acquired microgravity tolerance, we compared proteomic profiles of Arabidopsis thaliana callus grown under microgravity on board the Chinese spacecraft SZ-8 with callus grown under 1g centrifugation (1g control) in space. Alterations in the proteome induced by microgravity were analyzed by high performance liquid chromatography-electrospray ionization-tandem mass spectrometry with isobaric tags for relative and absolute quantitation labeling. Forty-five proteins showed significant (p < 0.05) and reproducible quantitative differences in expression between the microgravity and 1g control conditions. Of these proteins, the expression level of 24 proteins was significantly up-regulated and that of 21 proteins was significantly down-regulated. The functions of these proteins were involved in a wide range of cellular processes, including general stress responses, carbohydrate metabolism, protein synthesis/degradation, intracellular trafficking/transportation, signaling, and cell wall biosynthesis. Several proteins not previously known to be involved in the response to microgravity or gravitational stimuli, such as pathogenesis-related thaumatin-like protein, leucine-rich repeat extension-like protein, and temperature-induce lipocalin, were significantly up- or down-regulated by microgravity. The results imply that either the normal gravity-response signaling is affected by microgravity exposure or that microgravity might inappropriately induce altered responses to other environmental stresses.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | | | |
Collapse
|
27
|
Ciou SC, Chou YT, Liu YL, Nieh YC, Lu JW, Huang SF, Chou YT, Cheng LH, Lo JF, Chen MJ, Yang MC, Yuh CH, Wang HD. Ribose-5-phosphate isomerase A regulates hepatocarcinogenesis via PP2A and ERK signaling. Int J Cancer 2014; 137:104-15. [PMID: 25429733 DOI: 10.1002/ijc.29361] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/28/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
The deregulated nonoxidative pentose phosphate pathway (PPP) is known to promote oncogenesis, but the molecular mechanism remains unknown. Here, we report that human ribose-5-phosphate isomerase A (RPIA) plays a role in human hepatocellular carcinoma (HCC). A significant increase in RPIA expression was detected both in tumor biopsies of HCC patients and in a liver cancer tissue array. Importantly, the clinicopathological analysis indicated that RPIA mRNA levels were highly correlated with clinical stage, grade, tumor size, types, invasion and alpha-fetoprotein levels in the HCC patients. In addition, we demonstrated that the ability of RPIA to regulate cell proliferation and colony formation in different liver cancer cell lines required ERK signaling as well as the negative modulation of PP2A activity and that the effects of RPIA could be modulated by the addition of either a PP2A inhibitor or activator. Furthermore, the xenograft studies in nude mice revealed that the modulation of RPIA in liver cancer cells regulated tumor growth and that NIH3T3 cells overexpressing RPIA exhibited increased proliferation, enhanced colony formation, elevated levels of p-ERK1/2 and accelerated tumor growth. This study provides new insight into the molecular mechanisms by which RPIA overexpression can induce oncogenesis in HCC. Furthermore, it suggests that RPIA can be a good prognosis biomarker and a potential target for HCC therapy.
Collapse
Affiliation(s)
- Shih-Ci Ciou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
ECM1 promotes the Warburg effect through EGF-mediated activation of PKM2. Cell Signal 2014; 27:228-35. [PMID: 25446258 DOI: 10.1016/j.cellsig.2014.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/24/2014] [Accepted: 11/06/2014] [Indexed: 11/21/2022]
Abstract
The Warburg effect is an oncogenic metabolic switch that allows cancer cells to take up more glucose than normal cells and favors anaerobic glycolysis. Extracellular matrix protein 1 (ECM1) is a secreted glycoprotein that is overexpressed in various types of carcinoma. Using two-dimensional digest-liquid chromatography-mass spectrometry (LC-MS)/MS, we showed that the expression of proteins associated with the Warburg effect was upregulated in trastuzumab-resistant BT-474 cells that overexpressed ECM1 compared to control cells. We further demonstrated that ECM1 induced the expression of genes that promote the Warburg effect, such as glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and hypoxia-inducible factor 1 α (HIF-1α). The phosphorylation status of pyruvate kinase M2 (PKM-2) at Ser37, which is responsible for the expression of genes that promote the Warburg effect, was affected by the modulation of ECM1 expression. Moreover, EGF-dependent ERK activation that was regulated by ECM1 induced not only PKM2 phosphorylation but also gene expression of GLUT1 and LDHA. These findings provide evidence that ECM1 plays an important role in promoting the Warburg effect mediated by PKM2.
Collapse
|
29
|
Liu T, Zhang S, Chen J, Jiang K, Zhang Q, Guo K, Liu Y. The transcriptional profiling of glycogenes associated with hepatocellular carcinoma metastasis. PLoS One 2014; 9:e107941. [PMID: 25232831 PMCID: PMC4169445 DOI: 10.1371/journal.pone.0107941] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/16/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Metastasis is one of the important reasons for the poor prognosis of hepatocellular carcinoma (HCC), abnormal glycosylation plays a pivotal role in HCC metastasis. The goal of this study was to screen and validate the transcriptional profiling of glycogenes associated with HCC metastasis. METHODOLOGY The differentially transcribed glycogenes were screened out by the Human Glycosylation RT2 Profiler PCR Array, and were identified by qRT-PCR in human HCC cell lines and their orthotopic xenograft tumors. Further analyses were performed with K-mean clustering, Gene Ontology (GO) and ingenuity pathways analysis (IPA). Four differentially transcribed glycogenes were validated in clinical cancer specimens by qRT-PCR. RESULTS A total of thirty-three differentially transcribed glycogenes were obtained by comparison the transcription in the metastatic human HCC cell lines (MHCC97L, MHCC97H and HCCLM3) with the transcription in the non-metastatic HCC cell line Hep3B. Seven differentially transcribed glycogenes were selected to further identification in human HCC cell lines and their orthotopic xenograft tumors. According to their trends by K-mean clustering, all of the differentially transcribed glycogenes were classified in six clusters. GO analysis of the differentially transcribed glycogenes described them in biological process, subcellular location and molecular function. Furthermore, the partial regulatory network of the differentially transcribed glycogenes was acquired through the IPA. The transcription levels of galnt3, gcnt3, man1a1, mgat5b in non-metastatic and metastatic HCC clinical cancer specimens showed the same changing trends with the results in human HCC cell lines and their orthotopic xenograft tumors, and the divergent transcription levels of gcnt3 and mgat5b were statistically significant. CONCLUSIONS The transcriptional profiling of glycogenes associated with HCC metastasis was obtained and validated in this study and it might provide novel drug targets and potential biological markers for HCC metastasis.
Collapse
Affiliation(s)
- Tianhua Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Kai Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China
| | - Qinle Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
30
|
Identification of chemoresistant factors by protein expression analysis with iTRAQ for head and neck carcinoma. Br J Cancer 2014; 111:799-806. [PMID: 25032734 PMCID: PMC4134508 DOI: 10.1038/bjc.2014.395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 11/28/2022] Open
Abstract
Background: Cisplatin and other anticancer drugs are important in the treatment of head and neck squamous cell carcinoma; however, some tumours develop drug resistance. If chemoresistance could be determined before treatment, unnecessary drug administration would be avoided. Here, we investigated chemoresistance factors by comprehensive analyses at the protein level. Methods: Four human carcinoma cell lines were used: cisplatin-sensitive UM-SCC-23, UM-SCC-23-CDDPR with acquired cisplatin resistance, naturally cisplatin-resistant UM-SCC-81B, and UM-SCC-23/WR with acquired 5-fluorouracil resistance. Extracted proteins were labelled with iTRAQ and analysed by tandem mass spectrometry to identify resistance. Protein expression was confirmed by western blotting and functional analysis was carried out using siRNA. Results: Thirteen multiple-drug resistance proteins were identified, as well as seven proteins with specific resistance to cisplatin, including α-enolase. Differential expression of these proteins in cisplatin-resistant and -sensitive cell lines was confirmed by western blotting. Functional analysis for α-enolase by siRNA showed that cisplatin sensitivity significantly was increased in UM-SCC-81B and slightly in UM-SCC-23-CDDPR but not in UM-SCC-23/WR cells. Conclusions: We identified proteins thought to mediate anticancer drug resistance using recent proteome technology and identified α-enolase as a true cisplatin chemoresistance factor. Such proteins could be used as biomarkers for anticancer agent resistance and as targets of cancer therapy.
Collapse
|
31
|
Min H, Han D, Kim Y, Cho JY, Jin J, Kim Y. Label-free quantitative proteomics and N-terminal analysis of human metastatic lung cancer cells. Mol Cells 2014; 37:457-66. [PMID: 24805778 PMCID: PMC4086339 DOI: 10.14348/molcells.2014.0035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/08/2023] Open
Abstract
Proteomic analysis is helpful in identifying cancer-associated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine meta-static process in lung cancer, we performed a proteomics study by label-free quantitative analysis and N-terminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials-NCI--H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.
Collapse
Affiliation(s)
- Hophil Min
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Dohyun Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Yikwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Jee Yeon Cho
- Division of Life Sciences and Biotechnology, Korea University, Seoul 136-701,
Korea
| | - Jonghwa Jin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|
32
|
Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, Sharpe MA, Xin L, Frigo DE. Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis 2014; 3:e103. [PMID: 24861463 PMCID: PMC4035695 DOI: 10.1038/oncsis.2014.18] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022] Open
Abstract
Cancer cells display an increased demand for glucose. Therefore, identifying the specific aspects of glucose metabolism that are involved in the pathogenesis of cancer may uncover novel therapeutic nodes. Recently, there has been a renewed interest in the role of the pentose phosphate pathway in cancer. This metabolic pathway is advantageous for rapidly growing cells because it provides nucleotide precursors and helps regenerate the reducing agent NADPH, which can contribute to reactive oxygen species (ROS) scavenging. Correspondingly, clinical data suggest glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, is upregulated in prostate cancer. We hypothesized that androgen receptor (AR) signaling, which plays an essential role in the disease, mediated prostate cancer cell growth in part by increasing flux through the pentose phosphate pathway. Here, we determined that G6PD, NADPH and ribose synthesis were all increased by AR signaling. Further, this process was necessary to modulate ROS levels. Pharmacological or molecular inhibition of G6PD abolished these effects and blocked androgen-mediated cell growth. Mechanistically, regulation of G6PD via AR in both hormone-sensitive and castration-resistant models of prostate cancer was abolished following rapamycin treatment, indicating that AR increased flux through the pentose phosphate pathway by the mammalian target of rapamycin (mTOR)-mediated upregulation of G6PD. Accordingly, in two separate mouse models of Pten deletion/elevated mTOR signaling, Pb-Cre;Pten(f/f) and K8-CreER(T2);Pten(f/f), G6PD levels correlated with prostate cancer progression in vivo. Importantly, G6PD levels remained high during progression to castration-resistant prostate cancer. Taken together, our data suggest that AR signaling can promote prostate cancer through the upregulation of G6PD and therefore, the flux of sugars through the pentose phosphate pathway. Hence, these findings support a vital role for other metabolic pathways (that is, not glycolysis) in prostate cancer cell growth and maintenance.
Collapse
Affiliation(s)
- E Tsouko
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - A S Khan
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - M A White
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - J J Han
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Y Shi
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - F A Merchant
- Department of Engineering Technology, University of Houston, Houston, TX, USA
| | - M A Sharpe
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - L Xin
- 1] Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA [2] Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA [3] Dan L. Duncan Cancer Center, Houston, TX, USA
| | - D E Frigo
- 1] Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA [2] Center for Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
33
|
Huang X, Zeng Y, Xing X, Zeng J, Gao Y, Cai Z, Xu B, Liu X, Huang A, Liu J. Quantitative proteomics analysis of early recurrence/metastasis of huge hepatocellular carcinoma following radical resection. Proteome Sci 2014; 12:22. [PMID: 24839399 PMCID: PMC4023177 DOI: 10.1186/1477-5956-12-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 04/17/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatic resection is the preferred treatment for huge hepatocellular carcinoma (>10 cm in diameter; H-HCC). However, the patients with H-HCC suffer from poor prognosis due to the early recurrence/metastasis. The underlying mechanism of H-HCC's early recurrence/metastasis is currently not well understood. RESULTS Here, we describe an Isobaric Tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics approach to analyze the early recurrence/metastasis related proteins of H-HCC after radical resection through multidimensional chromatography coupled with tandem mass spectrometry (2DLC-MS/MS). The different protein expression profiles between the early recurrence/metastasis within 6 months(R/M≤6months) and late recurrence/metastasis within 6-12 months after surgery (R/M6-12months) were confirmed and might reveal different underlying molecular mechanisms. We identified 44 and 49 significantly differentially expressed proteins in the R/M≤6months group and the R/M6-12months group compared to the group who had no recurrence within 2 years post surgery (the NR/M group), respectively. Moreover, among those proteins, S100A12 and AMACR were down regulated in the R/M≤6months group but up-regulated in the R/M6-12months group; and this regulation was further confirmed in mRNA and protein level by Q-PCR, Western-Blot and Immunohistochemistry (IHC). CONCLUSIONS This current study presents the first proteomic profile of the early recurrence/metastasis of H-HCC. The results suggest that S100A12 and AMACR might be potential prognostic markers for predicting the early recurrence/metastasis of H-HCC after hepatectomy.
Collapse
Affiliation(s)
- Xinhui Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People's Republic of China
| | - Yongyi Zeng
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, People's Republic of China
| | - Xiaohua Xing
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People's Republic of China
| | - Jinhua Zeng
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, People's Republic of China
| | - Yunzhen Gao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People's Republic of China
| | - Zhixiong Cai
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People's Republic of China
| | - Bo Xu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, People's Republic of China
| | - Xiaolong Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People's Republic of China
| | - Aimin Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People's Republic of China.,Department of Pathology, School of Basic Medical Science, Fujian Medical University, 350004 Fuzhou, People's Republic of China
| | - Jingfeng Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People's Republic of China.,The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People's Republic of China.,Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, People's Republic of China
| |
Collapse
|
34
|
Li S, Mo C, Huang S, Yang S, Lu Y, Peng Q, Wang J, Deng Y, Qin X, Liu Y. Over-expressed Testis-specific Protein Y-encoded 1 as a novel biomarker for male hepatocellular carcinoma. PLoS One 2014; 9:e89219. [PMID: 24586606 PMCID: PMC3930679 DOI: 10.1371/journal.pone.0089219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/16/2014] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a male-predominant cancer. Previous studies have focused on the sex-related disparity in HCC, but the underlying mechanism remains unclear. Here, we aimed to discover characteristic biomarkers for male HCC. Clinical samples were subjected to iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. Seventy-three differential proteins containing 16 up-regulated and 57 down-regulated proteins were screened out in the male HCC group compared to that in female HCC group. Testis-specific Protein Y-encoded 1(TSPY1) is characteristically present in male HCC and was chosen for further investigation. The data from the functional effects of TSPY1 indicated that over-expression of TSPY1 could potentiate HCC cell proliferation, increase soft agar colonization, induce higher cell invasive ability and correlate with the metastatic potential of the HCC cell lines. In addition, TSPY1 and androgen receptor (AR) were co-expressed simultaneously in HCC cell lines as well as in HCC tissue. TSPY1 up- or down-regulation could lead to a high or low level expression of AR. These results implied that TSPY1 may be included in the regulation of AR expression involved in male HCC and it may act as a novel biomarker for male HCC.
Collapse
MESH Headings
- Adult
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/secondary
- Case-Control Studies
- Cell Adhesion
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Movement
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Prognosis
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Electrospray Ionization
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Cuiju Mo
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shan Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shi Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Lu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiliu Peng
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Deng
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (XQ); (YL)
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, China
- * E-mail: (XQ); (YL)
| |
Collapse
|
35
|
Qin X, Chen Q, Sun C, Wang C, Peng Q, Xie L, Liu Y, Li S. High-throughput screening of tumor metastatic-related differential glycoprotein in hepatocellular carcinoma by iTRAQ combines lectin-related techniques. Med Oncol 2013; 30:420. [PMID: 23292873 DOI: 10.1007/s12032-012-0420-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/05/2012] [Indexed: 02/06/2023]
Abstract
Glycoproteomics is an important aspect in the research of cancer biomarker discovery. The objective of our study is to screen the profile of serum glycoproteins in hepatocellular carcinoma (HCC) patients and to discover differentially expressed glycoproteins in HCC with or without metastasis. We collected serum from HCC patients and divided them into two groups (non-metastatic HCC group and metastatic HCC group) according to 2002 UICC TNM staging system. Wheat germ agglutinin (WGA) lectin was used to enrich the serum glycoproteins by lectin affinity chromatography. The enriched glycoproteins were labeled with mass-balanced isobaric tags (iTRAQ) and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Two differential glycoproteins were validated by Western blot and biochemical methods, respectively. Fifteen differential serum glycoproteins with WGA affinity were identified (p < 0.05). Among them, nine proteins were up-regulated (>1.5-folds) and six were down-regulated (<0.5-folds) in HCC patients with metastasis. Expression of alpha-1-antitrypsin (SERPINA1) and apolipoprotein A-I (APOA1) was validated by Western blot and biochemical methods, respectively (p < 0.05). Our study has obtained a set of HCC metastasis-associated glycoproteins which may serve as novel prognostic candidates and potential therapeutic targets for HCC metastasis. SERPINA1 might act as a potential glycoprotein biomarker of HCC metastasis.
Collapse
Affiliation(s)
- Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, NO. 22, Shuangyong Road, Nanning 530021, Guangxi, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang C, Jiang K, Kang X, Gao D, Sun C, Li Y, Sun L, Zhang S, Liu X, Wu W, Yang P, Guo K, Liu Y. Tumor-derived secretory clusterin induces epithelial-mesenchymal transition and facilitates hepatocellular carcinoma metastasis. Int J Biochem Cell Biol 2012; 44:2308-20. [PMID: 23010347 DOI: 10.1016/j.biocel.2012.09.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 01/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer mortality. Metastasis is the major concern that causes death in HCC. The goal of this study was to identify tumor-derived proteins in serum during HCC metastasis using an orthotopic xenograft tumor model and explore the role of key protein in HCC metastasis. Serum samples collected from HCCLM3-R metastatic HCC tumor model at specific stages of metastasis (1 wk, 3 wks and 6 wks) were subjected to iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. Twenty tumor-derived proteins were identified through human specific peptides. Secretory clusterin (sCLU), which was significantly upregulated during cancer progression and metastasis, was chosen for further study. The expression of sCLU was significantly higher in metastatic HCC cell lines and samples from metastatic HCC patients. ShRNA-mediated down-regulation of sCLU resulted in a reduced migratory capacity in HCC cell lines, as well as a reduction in pulmonary metastasis in vivo. Overexpression of sCLU in HepG2 cell line showed increased cell migratory ability. Further study found that sCLU contributed to HCC migration and epithelial-mesenchymal transition (EMT) in vitro, and metastasis in vivo. In addition, sCLU also plays an important role in the regulation of TGF-β1-smad3 signaling. These findings suggest that sCLU may promote HCC metastasis via the induction of EMT process and may be a candidate target for HCC therapy.
Collapse
Affiliation(s)
- Cun Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang C, Gao D, Guo K, Kang X, Jiang K, Sun C, Li Y, Sun L, Shu H, Jin G, Sun H, Wu W, Liu Y. Novel synergistic antitumor effects of rapamycin with bortezomib on hepatocellular carcinoma cells and orthotopic tumor model. BMC Cancer 2012; 12:166. [PMID: 22559167 PMCID: PMC3469344 DOI: 10.1186/1471-2407-12-166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/04/2012] [Indexed: 12/31/2022] Open
Abstract
Background Despite recent advances in the treatment of hepatocellular carcinoma (HCC), the chemotherapy efficacy against HCC is still unsatisfactory. The mammalian target of rapamycin (mTOR) has been emerged as an important cancer therapeutic target. However, HCC cells often resistant to rapamycin because of the paradoxical activation of Akt by rapamycin. In this study, we investigated whether bortezomib could enhance the antitumor effects of rapamycin. Methods The effects of rapamycin and bortezomib on HCC proliferation, apoptosis, migration, and invasiveness in vitro were assessed by CCK-8 analysis, flow cytometry, Hoechst 33342 staining and transwell assays, respectively. Total and phosphorylated protein levels of Akt were detected by Western blotting. The effects of rapamycin and/or bortezomib on the mRNA expression levels of p53, p27, p21 and Bcl-2 family in HCCLM3 cells were evaluated by RT-PCR. The roles of rapamycin and bortezomib on HCC growth and metastasis in xenograft models were evaluated by tumor volumes and fluorescent signals. The effects of rapamycin and bortezomib on cell proliferation and apoptosis in vivo were test by PCNA and TUNEL staining. Results Bortezomib synergized with rapamycin to reduce cell growth, induce apoptosis, and inhibit cell mobility in vitro. Further mechanistic studies showed that bortezomib inhibited rapamycin-induced phosphorylated Akt, which in turn enhanced apoptosis of HCC cell lines. The alteration of the mRNA expression of cell cycle inhibitors p53, p27, p21 and apoptosis associated genes Bcl-2, Bax were also involved in the synergistic antitumor effects of rapamycin and bortezomib. P53 inhibitor PFT-α significantly attenuate the effect of rapamycin and bortezomib on cell apoptosis, which indicated that the pro-apoptotic effect of rapamycin and bortezomib may be p53-dependent. Treatment of HCCLM3-R bearing nude mice with rapamycin and bortezomib significantly enhanced tumor growth inhibition (72.4%), comparing with either rapamycin- (54.7%) or bortezomib-treated mice (22.4%). In addition, the lung metastasis was significantly suppressed in mice received the combination treatment (16.6%). The combination treatment of rapamycin and bortezomib significantly inhibited tumor cell proliferation and tumor angiogenesis in vivo. Conclusion The combination of rapamycin with bortezomib could be a novel and promising therapeutic approach to the treatment of HCC.
Collapse
Affiliation(s)
- Cun Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|