1
|
Faiena I, Adhikary S, Schweitzer C, Astrow SH, Grogan T, Funt SA, Bot A, Dorff T, Rosenberg JE, Elashoff DA, Pantuck AJ, Drakaki A. Gene and Protein Expression of MAGE and Associated Immune Landscape Elements in Non-Small-Cell Lung Carcinoma and Urothelial Carcinomas. J Immunother 2024; 47:351-360. [PMID: 39169899 PMCID: PMC11446647 DOI: 10.1097/cji.0000000000000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 08/23/2024]
Abstract
Melanoma-associated antigen-A (MAGE-A) is expressed in multiple cancers with restricted expression in normal tissue. We sought to assess the MAGE-A3/A6 expression profile as well as immune landscape in urothelial (UC) and non-small cell lung carcinoma (NSCLC). We also assessed co-expression of immune-associated markers, including programmed cell death ligand 1 (PD-L1) in tumor and/or immune cells, and assessed the effect of checkpoint inhibitor treatment on these markers in the context of urothelial carcinoma. We used formalin-fixed paraffin-embedded (FFPE) tissue sections from a variety of tumor types were screened by IHC for MAGE-A and PD-L1 expression. Gene expression analyses by RNA sequencing were performed on RNA extracted from serial tissue sections. UC tumor samples from patients treated with checkpoint inhibitors were assessed by IHC and NanoString gene expression analysis for MAGE-A and immune marker expression before and after treatment. Overall, 84 samples (57%) had any detectable MAGE-A expression. Detectable MAGE-A expression was present at similar frequencies in both tumor tissue types, with 41 (50%) NSCLC and 43 (64%) UC. MAGE-A expression was not significantly changed before and after checkpoint inhibitor therapy by both IHC and NanoString mRNA sequencing. Other immune markers were similarly unchanged post immune checkpoint inhibitor therapy. Stable expression of MAGE-A3/A6 pre and post checkpoint inhibitor treatment indicates that archival specimens harvested after checkpoint therapy are applicable to screening potential candidates for MAGE therapies.
Collapse
Affiliation(s)
- Izak Faiena
- Columbia University Irving Medical Center, New York, NY
| | | | | | | | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Samuel A Funt
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Tanya Dorff
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | | | - David A Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Allan J Pantuck
- Institute of Urologic Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Alexandra Drakaki
- Institute of Urologic Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
2
|
Vainshelbaum NM, Giuliani A, Salmina K, Pjanova D, Erenpreisa J. The Transcriptome and Proteome Networks of Malignant Tumours Reveal Atavistic Attractors of Polyploidy-Related Asexual Reproduction. Int J Mol Sci 2022; 23:ijms232314930. [PMID: 36499258 PMCID: PMC9736112 DOI: 10.3390/ijms232314930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The expression of gametogenesis-related (GG) genes and proteins, as well as whole genome duplications (WGD), are the hallmarks of cancer related to poor prognosis. Currently, it is not clear if these hallmarks are random processes associated only with genome instability or are programmatically linked. Our goal was to elucidate this via a thorough bioinformatics analysis of 1474 GG genes in the context of WGD. We examined their association in protein-protein interaction and coexpression networks, and their phylostratigraphic profiles from publicly available patient tumour data. The results show that GG genes are upregulated in most WGD-enriched somatic cancers at the transcriptome level and reveal robust GG gene expression at the protein level, as well as the ability to associate into correlation networks and enrich the reproductive modules. GG gene phylostratigraphy displayed in WGD+ cancers an attractor of early eukaryotic origin for DNA recombination and meiosis, and one relative to oocyte maturation and embryogenesis from early multicellular organisms. The upregulation of cancer-testis genes emerging with mammalian placentation was also associated with WGD. In general, the results suggest the role of polyploidy for soma-germ transition accessing latent cancer attractors in the human genome network, which appear as pre-formed along the whole Evolution of Life.
Collapse
Affiliation(s)
- Ninel M. Vainshelbaum
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Faculty of Biology, The University of Latvia, LV-1586 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| | - Alessandro Giuliani
- Environmen and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Kristine Salmina
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| |
Collapse
|
3
|
Pascucci FA, Escalada MC, Suberbordes M, Vidal C, Ladelfa MF, Monte M. MAGE-I proteins and cancer-pathways: A bidirectional relationship. Biochimie 2022; 208:31-37. [PMID: 36403755 DOI: 10.1016/j.biochi.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Data emerged from the last 20 years of basic research on tumor antigens positioned the type I MAGE (Melanoma Antigen GEnes - I or MAGE-I) family as cancer driver factors. MAGE-I gene expression is mainly restricted to normal reproductive tissues. However, abnormal re-expression in cancer unbalances the cell status towards enhanced oncogenic activity or reduced tumor suppression. Anomalous MAGE-I gene re-expression in cancer is attributed to altered epigenetic-mediated chromatin silencing. Still, emerging data indicate that MAGE-I can be regulated at protein level. Results from different laboratories suggest that after its anomalous re-expression, specific MAGE-I proteins can be regulated by well-known signaling pathways or key cellular processes that finally potentiate the cancer cell phenotype. Thus, MAGE-I proteins both regulate and are regulated by cancer-related pathways. Here, we present an updated review highlighting the recent findings on the regulation of MAGE-I by oncogenic pathways and the potential consequences in the tumor cell behavior.
Collapse
Affiliation(s)
- Franco Andrés Pascucci
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carolina Escalada
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Suberbordes
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Candela Vidal
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fátima Ladelfa
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Martín Monte
- Laboratorio de Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Almutairi MH, Alotaibi MM, Alonaizan R, Almutairi BO. Expression Profile of MAGE-B1 Gene and Its Hypomethylation Activation in Colon Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6066567. [PMID: 35937396 PMCID: PMC9348940 DOI: 10.1155/2022/6066567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022]
Abstract
Cancer-testis (CT) genes are typically expressed in the testes; however, they have been linked to aberrant expression in a variety of malignancies. MAGE-B family genes are an example of CT genes. Therefore, the overarching objective of this study was to examine the expressions of MAGE-B family genes in several patients with colon cancer (CC) to see if they might be employed as cancer biomarkers in the early phases of cancer detection and to improve treatment. In this investigation, RT-PCR was used to analyze MAGE-B family genes in neighboring normal colon (NC) tissue from 10 CC patients. In addition, the effect of DNA demethylation on the expression status of the MAGE-B1 gene was evaluated by RT-PCR in HCT116 and Caco-2 cells and by qRT-PCR for HCT116 only after treating both CC cell lines with varying concentrations of 5-aza-2'-deoxycytidine (1.0, 5.0, and 10.0 μM) for 48 or 72 hours. All MAGE-B family genes except for MAGE-B1 showed weak bands in several samples of NC tissues: MAGE-B2, MAGE-B3, MAGE-B4, MAGE-B5, and MAGE-B6 genes were observed in 40%, 50%, 40%, 30%, and 60% of the NC samples, respectively. Nonetheless, they had strong bands in multiple samples of CC tissues, with 70%, 90%, 60%, 50%, and 90% of the CC samples, respectively. Interestingly, MAGE-B1 was detected in 60% of CC tissues but not in NC tissues, suggesting that it is a potential biomarker for early CC detection. MAGE-B1 expression was not observed in either untreated or DMSO-treated HCT116 cells after 48 or 72 hours of treatment. However, according to the RT-PCR and qRT-PCR results, the MAGE-B1 gene was overexpressed in the HCT116 cells treated with three different concentrations of 5-aza-2'-deoxycytidine. This shows that demethylation plays a crucial role in MAGE-B1 expression activation.
Collapse
Affiliation(s)
- Mikhlid H. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Mona M. Alotaibi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Rasha Alonaizan
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Bader O. Almutairi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Cui Y, Jiang N. Identification of a seven-gene signature predicting clinical outcome of liver cancer based on tumor mutational burden. Hum Cell 2022; 35:1192-1206. [PMID: 35622212 DOI: 10.1007/s13577-022-00708-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022]
Abstract
The total number of somatic mutations may affect the prognosis of cancer, so we applied bioinformatics methods to investigate the association between the TMB (tumor mutational burden)-related differentially expressed genes (DEGs) and the prognosis of hepatocellular carcinoma (HCC). We calculated the TMB value of the patients with HCC in TCGA database and identified the differentially expressed genes between the high-TMB and low-TMB patients. We performed functional enrichment analysis and LASSO Cox regression analysis of the DEGs, and seven genes were screened to establish a risk score model. A nomogram based on the risk scores was drawn to assess the predictive outcomes compared to the actual outcomes. The expression level of the seven genes was verified in cancer cell lines. Moreover, we explored the difference in immune cells infiltration and immune checkpoints between the high-risk and low-risk groups. The results showed that the DEGs between the high-TMB and low-TMB patients were enriched in extracellular matrix organization. A seven-gene risk score model (PAGE1, CHGA, OGN, MMP7, TRIM55, MAGEA6, and MAGEA12) was established for predicting HCC prognosis. Patients with lower risk scores had longer survival time and lower mortality rate. The nomogram based on risk scores and TNM staging showed good performance and reliability in predicting the clinical outcomes. Significant differences in cell infiltration and checkpoints were found between the high-risk and low-risk groups. Our study demonstrated a seven-gene signature and a nomogram based on the risk score model to predict the prognosis of HCC. Some of the newly identified DEGs may be potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yunlong Cui
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, People's Republic of China
| | - Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, 301617, Tianjin, People's Republic of China.
| |
Collapse
|
6
|
Li S, Shi X, Li J, Zhou X. Pathogenicity of the MAGE family. Oncol Lett 2021; 22:844. [PMID: 34733362 PMCID: PMC8561213 DOI: 10.3892/ol.2021.13105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The melanoma antigen gene (MAGE) protein family is a group of highly conserved proteins that share a common homology domain. Under normal circumstances, numerous MAGE proteins are only expressed in reproduction-related tissues; however, abnormal expression levels are observed in a variety of tumor tissues. The MAGE family consists of type I and II proteins, several of which are cancer-testis antigens that are highly expressed in cancer and serve a critical role in tumorigenesis. Therefore, this review will use the relationship between MAGEs and tumors as a starting point, focusing on the latest developments regarding the function of MAGEs as oncogenes, and preliminarily reveal their possible mechanisms.
Collapse
Affiliation(s)
- Sanyan Li
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingping Li
- Department of Respiratory Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xianrong Zhou
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
7
|
Ladelfa MF, Peche LY, Amato GE, Escalada MC, Zampieri S, Pascucci FA, Benevento AF, Do Porto DF, Dardis A, Schneider C, Monte M. Expression of the tumor-expressed protein MageB2 enhances rRNA transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119015. [PMID: 33741433 DOI: 10.1016/j.bbamcr.2021.119015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022]
Abstract
An essential requirement for cells to sustain a high proliferating rate is to be paired with enhanced protein synthesis through the production of ribosomes. For this reason, part of the growth-factor signaling pathways, are devoted to activate ribosome biogenesis. Enhanced production of ribosomes is a hallmark in cancer cells, which is boosted by different mechanisms. Here we report that the nucleolar tumor-protein MageB2, whose expression is associated with cell proliferation, also participates in ribosome biogenesis. Studies carried out in both siRNA-mediated MageB2 silenced cells and CRISPR/CAS9-mediated MageB2 knockout (KO) cells showed that its expression is linked to rRNA transcription increase independently of the cell proliferation status. Mechanistically, MageB2 interacts with phospho-UBF, a protein which causes the recruitment of RNA Pol I pre-initiation complex required for rRNA transcription. In addition, cells expressing MageB2 displays enhanced phospho-UBF occupancy at the rDNA gene promoter. Proteomic studies performed in MageB2 KO cells revealed impairment in ribosomal protein (RPs) content. Functionally, enhancement in rRNA production in MageB2 expressing cells, was directly associated with an increased dynamic in protein synthesis. Altogether our results unveil a novel function for a tumor-expressed protein from the MAGE-I family. Findings reported here suggest that nucleolar MageB2 might play a role in enhancing ribosome biogenesis as part of its repertoire to support cancer cell proliferation.
Collapse
Affiliation(s)
- María Fátima Ladelfa
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leticia Yamila Peche
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Trieste, Italy
| | - Gastón Ezequiel Amato
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Carolina Escalada
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Stefania Zampieri
- Centro di Coordinamento Regionale per le Malattie Rare, Ospedale Universitario Santa Maria Della Misericordia, Udine, Italy
| | - Franco Andrés Pascucci
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andres Fernandez Benevento
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Pabellón 2, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Dario Fernandez Do Porto
- Plataforma de Bioinformática Argentina, Instituto de Cálculo, Pabellón 2, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Andrea Dardis
- Centro di Coordinamento Regionale per le Malattie Rare, Ospedale Universitario Santa Maria Della Misericordia, Udine, Italy
| | - Claudio Schneider
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Trieste, Italy; Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, p.le Kolbe 4, Udine, Italy
| | - Martin Monte
- Lab. Oncología Molecular, Departamento de Química Biológica, IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Pascucci FA, Ladelfa MF, Toledo MF, Escalada M, Suberbordes M, Monte M. MageC2 protein is upregulated by oncogenic activation of MAPK pathway and causes impairment of the p53 transactivation function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118918. [PMID: 33279609 DOI: 10.1016/j.bbamcr.2020.118918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 10/22/2022]
Abstract
Normal-to-tumor cell transition is accompanied by changes in gene expression and signal transduction that turns the balance toward cancer-cell phenotype, eluding by different mechanisms, the response of tumor-suppressor genes. Here, we observed that MageC2, a MAGE-I protein able to regulate the p53 tumor-suppressor, is accumulated upon MEK/ERK MAPK activation. Overexpression of H-RasV12 oncogene causes an increase in MageC2 protein that is prevented by pharmacologic inhibition of MEK. Similarly, decrease in MageC2 protein levels is shown in A375 melanoma cells (which harbor B-RafV600E oncogenic mutation) treated with MEK inhibitors. MageC2 protein levels decrease when p14ARF is expressed, causing an Mdm2-independent upregulation of p53 transactivation. However, MageC2 is refractory to p14ARF-driven downregulation when H-RasV12 is co-expressed. Using MageC2 knockout A375 cells generated by CRISPR/CAS9 technology, we demonstrated the relevance of MageC2 protein in reducing p53 transcriptional activity in cells containing hyperactive MEK/ERK signaling. Furthermore, gene expression analysis performed in cancer-genomic databases, supports the correlation of reduced p53 transcriptional activity and high MageC2 expression, in melanoma cells containing Ras or B-Raf driver mutations. Data presented here suggest that MageC2 can be a functional target of the oncogenic MEK/ERK pathway to regulate p53.
Collapse
Affiliation(s)
- Franco Andrés Pascucci
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fátima Ladelfa
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Fernanda Toledo
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Micaela Escalada
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Suberbordes
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Monte
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Chen A, Santana AL, Doudican N, Roudiani N, Laursen K, Therrien JP, Lee J, Felsen D, Carucci JA. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS One 2020; 15:e0241551. [PMID: 33227008 PMCID: PMC7682861 DOI: 10.1371/journal.pone.0241551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Perineural invasion is a pathologic process of neoplastic dissemination along and invading into the nerves. Perineural invasion is associated with aggressive disease and a greater likelihood of poor outcomes. In this study, 3 of 9 patients with cutaneous squamous cell carcinoma and perineural invasion exhibited poor clinical outcomes. Tumors from these patients expressed high levels of MAGE-A3, a cancer testis antigen that may contribute to key processes of tumor development. In addition to perineural invasion, the tumors exhibited poor differentiation and deep invasion and were subsequently classified as Brigham and Women's Hospital tumor stage 3. Cyclin E, A and B mRNA levels were increased in these tumors compared with normal skin tissues (102.93±15.03 vs. 27.15±4.59, 36.83±19.41 vs. 11.59±5.83, 343.77±86.49 vs. 95.65±29.25, respectively; p<0.05). A431 cutaneous squamous cell carcinoma cells pretreated with MAGE-A3 antibody exhibited a decreased percentage S-phase cells (14.13±2.8% vs. 33.97±1.1%; p<0.05) and reduced closure in scratch assays (43.88±5.49% vs. 61.17±3.97%; p = 0.0058). In a syngeneic animal model of squamous cell carcinoma, immunoblots revealed overexpression of MAGE-A3 and cyclin E, A, and B protein in tumors at 6 weeks. However, knockout of MAGE-A3 expression caused a reduction in tumor growth (mean tumor volume 155.3 mm3 vs. 3.2 mm3) compared with parental cells. These results suggest that MAGE-A3 is a key mediator in cancer progression. Moreover, elevated collagen XI and matrix metalloproteases 3, 10, 11, and 13 mRNA levels were observed in poorly differentiated cutaneous squamous cell carcinoma with perineural invasion compared with normal skin tissue (1132.56±882.7 vs. 107.62±183.62, 1118.15±1109.49 vs. 9.5±5, 2603.87±2385.26 vs. 5.29±3, 957.95±627.14 vs. 400.42±967.66, 1149.13±832.18 vs. 19.41±35.62, respectively; p<0.05). In summary, this study highlights the potential prognostic value of MAGE-A3 in clinical outcomes of cutaneous squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Aaron Chen
- Ronald O. Perlman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States of America
| | - Alexis L. Santana
- Ronald O. Perlman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States of America
| | - Nicole Doudican
- Ronald O. Perlman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States of America
| | - Nazanin Roudiani
- Ronald O. Perlman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States of America
| | - Kristian Laursen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States of America
| | | | - James Lee
- GlaxoSmithKline, Research Triangle, NC, United States of America
| | - Diane Felsen
- Pediatric Urology, Weill Cornell Medicine College, New York, NY, United States of America
| | - John A. Carucci
- Ronald O. Perlman Department of Dermatology, New York University Langone Medical Center, New York, NY, United States of America
| |
Collapse
|
10
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
11
|
Mao Y, Fan W, Hu H, Zhang L, Michel J, Wu Y, Wang J, Jia L, Tang X, Xu L, Chen Y, Zhu J, Feng Z, Xu L, Yin R, Tang Q. MAGE-A1 in lung adenocarcinoma as a promising target of chimeric antigen receptor T cells. J Hematol Oncol 2019; 12:106. [PMID: 31640756 PMCID: PMC6805483 DOI: 10.1186/s13045-019-0793-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cancer/testis antigens (CTAs) are a special type of tumor antigen and are believed to act as potential targets for cancer immunotherapy. Methods In this study, we first screened a rational CTA MAGE-A1 for lung adenocarcinoma (LUAD) and explored the detailed characteristics of MAGE-A1 in LUAD development through a series of phenotypic experiments. Then, we developed a novel MAGE-A1-CAR-T cell (mCART) using lentiviral vector based on our previous MAGE-A1-scFv. The anti-tumor effects of this mCART were finally investigated in vitro and in vivo. Results The results showed striking malignant behaviors of MAGE-A1 in LUAD development, which further validated the rationality of MAGE-A1 as an appropriate target for LUAD treatment. Then, the innovative mCART was successfully constructed, and mCART displayed encouraging tumor-inhibitory efficacy in LUAD cells and xenografts. Conclusions Taken together, our data suggest that MAGE-A1 is a promising candidate marker for LUAD therapy and the MAGE-A1-specific CAR-T cell immunotherapy may be an effective strategy for the treatment of MAGE-A1-positive LUAD.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.,NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Hao Hu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Louqian Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jerod Michel
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yaqin Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Lizhou Jia
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaojun Tang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Zhenqing Feng
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Qi Tang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Das B, Senapati S. Functional and mechanistic studies reveal MAGEA3 as a pro-survival factor in pancreatic cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:294. [PMID: 31287009 PMCID: PMC6615156 DOI: 10.1186/s13046-019-1272-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Background In the era of personalized therapy, functional annotation of less frequent genetic aberrations will be instrumental in adapting effective therapeutic in clinic. Overexpression of Melanoma associated antigen A3 (MAGEA3) is reported in certain pancreatic cancer (PCA) patients. The major objective of the current study was to investigate the functional role of MAGEA3 in pancreatic cancer cells (PCCs) growth and survival. Methods Using overexpression (tet-on regulated system and constitutive expression system) and knockdown (by siRNA and shRNA) approach, we dissected the mechanistic role of MAGEA3 in pancreatic cancer pathogenesis. We generated MAGEA3 expressing stable PCA cell lines and mouse primary pancreatic epithelial cells. MAGEA3 was also depleted in certain MAGEA3 positive PCCs by siRNA or shRNA. The stable cells were subjected to in vitro assays like proliferation and survival assays under growth factor deprivation or in the presence of cytotoxic drugs. The MAGEA3 overexpressing or depleted stable PCCs were evaluated in vivo using xenograft model to check the role of MAGEA3 in tumor progression. We also dissected the mechanism behind the MAGEA3 role in tumor progression using western blot analysis and CCL2 neutralization. Results MAGEA3 overexpression in PCA cells did not alter the cell proliferation but protected the cells during growth factor deprivation and also in the presence of cytotoxic drugs. However, depletion of MAGEA3 in MAGEA3 positive cells resulted in reduced cell proliferation and increased apoptosis upon growth factor deprivation and also in response to cytotoxic drugs. The in vivo xenograft study revealed that overexpression of MAGEA3 promoted tumor growth however depleting the same hindered the tumor progression. Mechanistically, our in vitro and in vivo study revealed that MAGEA3 has tumor-promoting role by reducing macro-autophagy and overexpressing pro-survival molecules like CCL2 and survivin. Conclusion Our data proves tumor-promoting role of MAGEA3 and provides the rationale to target MAGEA3 and/or its functional mediators like CCL2 for PCA, which may have a better impact in PCA therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1272-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
13
|
Fon Tacer K, Montoya MC, Oatley MJ, Lord T, Oatley JM, Klein J, Ravichandran R, Tillman H, Kim M, Connelly JP, Pruett-Miller SM, Bookout AL, Binshtock E, Kamiński MM, Potts PR. MAGE cancer-testis antigens protect the mammalian germline under environmental stress. SCIENCE ADVANCES 2019; 5:eaav4832. [PMID: 31149633 PMCID: PMC6541465 DOI: 10.1126/sciadv.aav4832] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/17/2019] [Indexed: 05/17/2023]
Abstract
Ensuring robust gamete production even in the face of environmental stress is of utmost importance for species survival, especially in mammals that have low reproductive rates. Here, we describe a family of genes called melanoma antigens (MAGEs) that evolved in eutherian mammals and are normally restricted to expression in the testis (http://MAGE.stjude.org) but are often aberrantly activated in cancer. Depletion of Mage-a genes disrupts spermatogonial stem cell maintenance and impairs repopulation efficiency in vivo. Exposure of Mage-a knockout mice to genotoxic stress or long-term starvation that mimics famine in nature causes defects in spermatogenesis, decreased testis weights, diminished sperm production, and reduced fertility. Last, human MAGE-As are activated in many cancers where they promote fuel switching and growth of cells. These results suggest that mammalian-specific MAGE genes have evolved to protect the male germline against environmental stress, ensure reproductive success under non-optimal conditions, and are hijacked by cancer cells.
Collapse
Affiliation(s)
- Klementina Fon Tacer
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marhiah C. Montoya
- Clinical & Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Departments of Pediatrics, Microbiology and Immunology, Carver College of Medicine, University of Iowa, IA, USA
| | - Melissa J. Oatley
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Tessa Lord
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jon M. Oatley
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Jonathon Klein
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ramya Ravichandran
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather Tillman
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - MinSoo Kim
- Departments of Internal Medicine and Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jon P. Connelly
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Angie L. Bookout
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Emily Binshtock
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Marcin M. Kamiński
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Patrick Ryan Potts
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Corresponding author.
| |
Collapse
|
14
|
Õunap K, Kurg K, Võsa L, Maiväli Ü, Teras M, Planken A, Ustav M, Kurg R. Antibody response against cancer-testis antigens MAGEA4 and MAGEA10 in patients with melanoma. Oncol Lett 2018; 16:211-218. [PMID: 29928403 PMCID: PMC6006456 DOI: 10.3892/ol.2018.8684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
Melanoma-associated antigen A (MAGEA) represent a class of tumor antigens that are expressed in a variety of malignant tumors, however, their expression in healthy normal tissues is restricted to germ cells of testis, fetal ovary and placenta. The restricted expression and immunogenicity of these antigens make them ideal targets for immunotherapy in human cancer. In the present study the presence of naturally occurring antibodies against two MAGEA subfamily proteins, MAGEA4 and MAGEA10, was analyzed in patients with melanoma at different stages of disease. Results indicated that the anti-MAGEA4/MAGEA10 immune response in melanoma patients was heterogeneous, with only ~8% of patients having a strong response. Comparing the number of strongly responding patients between different stages of disease revealed that the highest number of strong responses was detected among stage II melanoma patients. These findings support the model that the immune system is involved in the control of melanoma in the early stages of disease.
Collapse
Affiliation(s)
- Kadri Õunap
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Kristiina Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Liisi Võsa
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Ülo Maiväli
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Marina Teras
- Melanoma Unit of The General Surgery and Oncology Surgery Centre, North Estonian Medical Centre, 13419 Tallinn, Estonia
| | - Anu Planken
- Melanoma Unit of The General Surgery and Oncology Surgery Centre, North Estonian Medical Centre, 13419 Tallinn, Estonia
| | - Mart Ustav
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Reet Kurg
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
15
|
Pfeifer GP. Defining Driver DNA Methylation Changes in Human Cancer. Int J Mol Sci 2018; 19:ijms19041166. [PMID: 29649096 PMCID: PMC5979276 DOI: 10.3390/ijms19041166] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Human malignant tumors are characterized by pervasive changes in the patterns of DNA methylation. These changes include a globally hypomethylated tumor cell genome and the focal hypermethylation of numerous 5′-cytosine-phosphate-guanine-3′ (CpG) islands, many of them associated with gene promoters. It has been challenging to link specific DNA methylation changes with tumorigenesis in a cause-and-effect relationship. Some evidence suggests that cancer-associated DNA hypomethylation may increase genomic instability. Promoter hypermethylation events can lead to silencing of genes functioning in pathways reflecting hallmarks of cancer, including DNA repair, cell cycle regulation, promotion of apoptosis or control of key tumor-relevant signaling networks. A convincing argument for a tumor-driving role of DNA methylation can be made when the same genes are also frequently mutated in cancer. Many of the most commonly hypermethylated genes encode developmental transcription factors, the methylation of which may lead to permanent gene silencing. Inactivation of such genes will deprive the cells in which the tumor may initiate from the option of undergoing or maintaining lineage differentiation and will lock them into a perpetuated stem cell-like state thus providing an additional window for cell transformation.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.
| |
Collapse
|
16
|
Park S, Sung Y, Jeong J, Choi M, Lee J, Kwon W, Jang S, Park SJ, Kim HS, Lee MH, Kim DJ, Liu K, Kim SH, Dong Z, Ryoo ZY, Kim MO. hMAGEA2 promotes progression of breast cancer by regulating Akt and Erk1/2 pathways. Oncotarget 2018; 8:37115-37127. [PMID: 28415749 PMCID: PMC5514895 DOI: 10.18632/oncotarget.16184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most abundant cancer worldwide and a severe problem for women. Notably, breast cancer has a high mortality rate, mainly because of tumor progression and metastasis. Triple-negative breast cancer (TNBC) is highly progressive and lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Therefore, there are no established therapeutic targets against TNBC. In this study, we investigated whether the expression of human melanoma-associated antigen A2 (MAGEA2) is associated with TNBC. We found that hMAGEA2 is significantly overexpressed in human TNBC tissues; we also observed oncogenic properties using TNBC cell lines (MDA-MB-231 and MDA-MB-468). The overexpression of hMAGEA2 in MDA-MB-231 cell line showed dramatically increased cellular proliferation, colony formation, invasion, and xenograft tumor formation and growth. Conversely, knockdown of hMAEGA2 in MDA-MB-468 cell line suppressed cellular proliferation, colony formation, and xenograft tumor formation. Additionally, we showed that hMAGEA2 regulated the activation of Akt and Erk1/2 signaling pathways. These data indicate that hMAGEA2 is important for progression of TNBC and may serve as a novel molecular therapeutic target.
Collapse
Affiliation(s)
- Song Park
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Yonghun Sung
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Jain Jeong
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Minjee Choi
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Jinhee Lee
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Wookbong Kwon
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Soyoung Jang
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Si Jun Park
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Hyeng-Soo Kim
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Mee-Hyun Lee
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Dong Joon Kim
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Kangdong Liu
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Sung-Hyun Kim
- Institute of Life Science and Biotechnology, Kyungpook National University, Buk-ku, Daegu 41566, Republic of Korea.,China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Zigang Dong
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Myoung Ok Kim
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do 37224, Republic of Korea
| |
Collapse
|
17
|
Zebularine Treatment Induces MAGE-A11 Expression and Improves CTL Cytotoxicity Using a Novel Identified HLA-A2-restricted MAGE-A11 Peptide. J Immunother 2017; 40:211-220. [DOI: 10.1097/cji.0000000000000170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Laiseca JE, Ladelfa MF, Cotignola J, Peche LY, Pascucci FA, Castaño BA, Galigniana MD, Schneider C, Monte M. Functional interaction between co-expressed MAGE-A proteins. PLoS One 2017; 12:e0178370. [PMID: 28542476 PMCID: PMC5443569 DOI: 10.1371/journal.pone.0178370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/11/2017] [Indexed: 12/19/2022] Open
Abstract
MAGE-A (Melanoma Antigen Genes-A) are tumor-associated proteins with expression in a broad spectrum of human tumors and normal germ cells. MAGE-A gene expression and function are being increasingly investigated to better understand the mechanisms by which MAGE proteins collaborate in tumorigenesis and whether their detection could be useful for disease prognosis purposes. Alterations in epigenetic mechanisms involved in MAGE gene silencing cause their frequent co-expression in tumor cells. Here, we have analyzed the effect of MAGE-A gene co-expression and our results suggest that MageA6 can potentiate the androgen receptor (AR) co-activation function of MageA11. Database search confirmed that MageA11 and MageA6 are co-expressed in human prostate cancer samples. We demonstrate that MageA6 and MageA11 form a protein complex resulting in the stabilization of MageA11 and consequently the enhancement of AR activity. The mechanism involves association of the Mage A6-MHD domain to MageA11, prevention of MageA11 ubiquitinylation on lysines 240 and 245 and decreased proteasome-dependent degradation. We experimentally demonstrate here for the first time that two MAGE-A proteins can act together in a non-redundant way to potentiate a specific oncogenic function. Overall, our results highlight the complexity of the MAGE gene networking in regulating cancer cell behavior.
Collapse
Affiliation(s)
- Julieta E. Laiseca
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María F. Ladelfa
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Cotignola
- Lab. Inflamación y Cáncer, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leticia Y. Peche
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Trieste , Italy
| | - Franco A. Pascucci
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bryan A. Castaño
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mario D. Galigniana
- Lab. Biología Molecular y Celular, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio Receptores Nucleares, IBYME-CONICET, Buenos Aires, Argentina
| | - Claudio Schneider
- Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Trieste , Italy
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, p.le Kolbe 4, Udine, Italy
| | - Martin Monte
- Lab. Oncología Molecular, Departamento de Química Biológica and IQUIBICEN-UBA/CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
19
|
Zhao J, Wang Y, Mu C, Xu Y, Sang J. MAGEA1 interacts with FBXW7 and regulates ubiquitin ligase-mediated turnover of NICD1 in breast and ovarian cancer cells. Oncogene 2017; 36:5023-5034. [DOI: 10.1038/onc.2017.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
|
20
|
Abikhair M, Roudiani N, Mitsui H, Krueger JG, Pavlick A, Lee J, Therrien JP, Meehan SA, Felsen D, Carucci JA. MAGEA3 Expression in Cutaneous Squamous Cell Carcinoma Is Associated with Advanced Tumor Stage and Poor Prognosis. J Invest Dermatol 2017; 137:775-778. [DOI: 10.1016/j.jid.2016.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 10/13/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023]
|
21
|
Mecklenburg I, Sienel W, Schmid S, Passlick B, Kufer P. A Threshold of Systemic MAGE-A Gene Expression Predicting Survival in Resected Non-Small Cell Lung Cancer. Clin Cancer Res 2016; 23:1213-1219. [PMID: 27542766 DOI: 10.1158/1078-0432.ccr-16-0557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Quantitative measurement of minimal residual disease predicting recurrence in individual cancer patients is available only in very few indications, such as acute lymphoblastic leukemia, but is still missing in most solid tumors, including non-small cell lung cancer (NSCLC).Experimental Design: MAGE-A expression levels in blood and bone marrow determined as calibrator-normalized relative ratios by quantitative multimarker real-time RT-PCR for transcript amplification of MAGE-A1, -A2, -A3/6, -A4, -A10, and -A12 in 94 patients with completely resected NSCLC were correlated with survival in a clinical study.Results: Patients with MAGE-A expression levels ≥0.2 in at least one sample of bone marrow or blood at tumor surgery had a significantly reduced overall (P = 0.007), cancer-free (P = 0.002), and distant metastasis-free survival (P < 0.001) versus patients below 0.2 in all samples without significant difference in locoregional recurrence-free survival. The corresponding HRs (≥0.2 vs. <0.2) for death, cancer-related death, and development of distant metastasis were 2.56 [95% confidence interval (CI), 1.42-4.63], 3.32 (95% CI, 1.66-6.61), and 4.03 (95% CI, 1.77-9.18), respectively. Five-year Kaplan-Meier estimates of distant metastasis-free survival were 43% (MAGE-A ≥ 0.2) versus 87% (MAGE-A < 0.2).Conclusions: MAGE-A expression in blood or bone marrow at tumor surgery is an independent predictor of survival in resected NSCLC. The reliable prediction of distant metastasis in individual patients with a statistically proven impact on overall survival may help to refine patient selection for adjuvant therapy urgently needed, especially in the clinical management of elderly patients. Clin Cancer Res; 23(5); 1213-9. ©2016 AACR.
Collapse
Affiliation(s)
- Ingo Mecklenburg
- Department of Internal Medicine, Klinikum Landsberg, Landsberg am Lech, Germany.
| | - Wulf Sienel
- Department of Thoracic Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Severin Schmid
- Department of Thoracic Surgery, University Hospital Freiburg, Freiburg, Germany
| | - Bernward Passlick
- Department of Thoracic Surgery, University Hospital Freiburg, Freiburg, Germany
| | | |
Collapse
|
22
|
Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. Tumour Biol 2016; 37:13101-13110. [PMID: 27449044 DOI: 10.1007/s13277-016-5240-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023] Open
Abstract
Recently, we demonstrated the association of sperm-associated antigen 9 (SPAG9) expression with breast cancer. Among breast cancer, 15 % of the cancers are diagnosed as triple-negative breast cancers (TNBC) based on hormone receptor status and represent an important clinical challenge because of lack of effective available targeted therapy. Therefore, in the present investigation, plasmid-based small hairpin (small hairpin RNA (shRNA)) approach was used to ablate SPAG9 in aggressive breast cancer cell line model (MDA-MB-231) in order to understand the role of SPAG9 at molecular level in apoptosis, cell cycle, and epithelial-to-mesenchymal transition (EMT) signaling. Our data in MDA-MB-231 cells showed that ablation of SPAG9 resulted in membrane blebbing, increased mitochondrial membrane potential, DNA fragmentation, phosphatidyl serine surface expression, and caspase activation. SPAG9 depletion also resulted in cell cycle arrest in G0-G1 phase and induced cellular senescence. In addition, in in vitro and in vivo xenograft studies, ablation of SPAG9 resulted in upregulation of p21 along with pro-apoptotic molecules such as BAK, BAX, BIM, BID, NOXA, AIF, Cyto-C, PARP1, APAF1, Caspase 3, and Caspase 9 and epithelial marker, E-cadherin. Also, SPAG9-depleted cells showed downregulation of cyclin B1, cyclin D1, cyclin E, CDK1, CDK4, CDK6, BCL2, Bcl-xL, XIAP, cIAP2, MCL1, GRP78, SLUG, SNAIL, TWIST, vimentin, N-cadherin, MMP2, MMP3, MMP9, SMA, and β-catenin. Collectively, our data suggests that SPAG9 promotes tumor growth by inhibiting apoptosis, altering cell cycle, and enhancing EMT signaling in in vitro cells and in vivo mouse model. Hence, SPAG9 may be a potential novel target for therapeutic use in TNBC treatment.
Collapse
|
23
|
Pirlot C, Thiry M, Trussart C, Di Valentin E, Piette J, Habraken Y. Melanoma antigen-D2: A nucleolar protein undergoing delocalization during cell cycle and after cellular stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:581-95. [DOI: 10.1016/j.bbamcr.2015.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/25/2022]
|
24
|
Prognostic value of MAGE-A9 expression in patients with colorectal cancer. Clin Res Hepatol Gastroenterol 2016; 40:239-45. [PMID: 26516058 DOI: 10.1016/j.clinre.2015.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/15/2015] [Accepted: 08/25/2015] [Indexed: 02/04/2023]
Abstract
MAGE-A9 is a novel member of the melanoma-associated antigen (MAGE) family and is expressed in testicular cancer. The present study investigated MAGE-A9 expression as a potential biomarker in colorectal cancer (CRC). Immunohistochemical analysis was used to determine the expression of MAGE-A9 in 201 cases CRC tissues. We used quantitative real-time polymerase chain reaction (RT-PCR) and western blot analysis to further verify the results. The correlation between MAGE-A9 expression, clinicopathological features and prognosis of CRC patients was analyzed. The results showed that MAGE-A9 was predominantly localized in the cytoplasm of cancer cells and stromal cells. Compared to normal adjacent tissues, the high expression rate of MAGE-A9 in CRC tissues was significantly increased (P<0.001). High MAGE-A9 expression was significantly associated with venous invasion (P=0.008) and lymph node metastasis (P<0.001). The survival rate of the CRC patients who were positive for MAGE-A9 expression was significantly lower than that of CRC patients with negative MAGE-A9 expression. Moreover, univariate and multivariate analyses showed that high MAGE-A9 expression was a poor prognostic factor for CRC patients. Hence, MAGE-A9 is expected to become a new target for CRC treatment.
Collapse
|
25
|
Suri A, Jagadish N, Saini S, Gupta N. Targeting cancer testis antigens for biomarkers and immunotherapy in colorectal cancer: Current status and challenges. World J Gastrointest Oncol 2015; 7:492-502. [PMID: 26691579 PMCID: PMC4678396 DOI: 10.4251/wjgo.v7.i12.492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer ranks third among the estimated cancer cases and cancer related mortalities in United States in 2014. Early detection and efficient therapy remains a significant clinical challenge for this disease. Therefore, there is a need to identify novel tumor associated molecules to target for biomarker development and immunotherapy. In this regard, cancer testis antigens have emerged as a potential targets for developing novel clinical biomarkers and immunotherapy for various malignancies. These germ cell specific proteins exhibit aberrant expression in cancer cells and contribute in tumorigenesis. Owing to their unique expression profile and immunogenicity in cancer patients, cancer testis antigens are clinically referred as the most promising tumor associated antigens. Several cancer testis antigens have been studied in colorectal cancer but none of them could be used in clinical practice. This review is an attempt to address the promising cancer testis antigens in colorectal cancer and their possible clinical implications as biomarkers and immunotherapeutic targets with particular focus on challenges and future interventions.
Collapse
|
26
|
Cannuyer J, Van Tongelen A, Loriot A, De Smet C. A gene expression signature identifying transient DNMT1 depletion as a causal factor of cancer-germline gene activation in melanoma. Clin Epigenetics 2015; 7:114. [PMID: 26504497 PMCID: PMC4620642 DOI: 10.1186/s13148-015-0147-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
Background Many human tumors show aberrant activation of a group of germline-specific genes, termed cancer-germline (CG) genes, several of which appear to exert oncogenic functions. Although activation of CG genes in tumors has been linked to promoter DNA demethylation, the mechanisms underlying this epigenetic alteration remain unclear. Two main processes have been proposed: awaking of a gametogenic program directing demethylation of target DNA sequences via specific regulators, or general deficiency of DNA methylation activities resulting from mis-targeting or down-regulation of the DNMT1 methyltransferase. Results By the analysis of transcriptomic data, we searched to identify gene expression changes associated with CG gene activation in melanoma cells. We found no evidence linking CG gene activation with differential expression of gametogenic regulators. Instead, CG gene activation correlated with decreased expression of a set of mitosis/division-related genes (ICCG genes). Interestingly, a similar gene expression signature was previously associated with depletion of DNMT1. Consistently, analysis of a large set of melanoma tissues revealed that DNMT1 expression levels were often lower in samples showing activation of multiple CG genes. Moreover, by using immortalized melanocytes and fibroblasts carrying an inducible anti-DNMT1 small hairpin RNA (shRNA), we demonstrate that transient depletion of DNMT1 can lead to long-term activation of CG genes and repression of ICCG genes at the same time. For one of the ICCG genes (CDCA7L), we found that its down-regulation in melanoma cells was associated with deposition of repressive chromatin marks, including H3K27me3. Conclusions Together, our observations point towards transient DNMT1 depletion as a causal factor of CG gene activation in vivo in melanoma. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0147-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julie Cannuyer
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Aurélie Van Tongelen
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Axelle Loriot
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Charles De Smet
- Group of Genetics and Epigenetics, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
27
|
Peche LY, Ladelfa MF, Toledo MF, Mano M, Laiseca JE, Schneider C, Monte M. Human MageB2 Protein Expression Enhances E2F Transcriptional Activity, Cell Proliferation, and Resistance to Ribotoxic Stress. J Biol Chem 2015; 290:29652-62. [PMID: 26468294 DOI: 10.1074/jbc.m115.671982] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 12/15/2022] Open
Abstract
MageB2 belongs to the melanoma antigen gene (MAGE-I) family of tumor-specific antigens. Expression of this gene has been detected in human tumors of different origins. However, little is known about the protein function and how its expression affects tumor cell phenotypes. In this work, we found that human MageB2 protein promotes tumor cell proliferation in a p53-independent fashion, as observed both in cultured cells and growing tumors in mice. Gene expression analysis showed that MageB2 enhances the activity of E2F transcription factors. Mechanistically, the activation of E2Fs is related to the ability of MageB2 to interact with the E2F inhibitor HDAC1. Cellular distribution of MageB2 protein includes the nucleoli. Nevertheless, ribotoxic drugs rapidly promote its nucleolar exit. We show that MageB2 counteracts E2F inhibition by ribosomal proteins independently of Mdm2 expression. Importantly, MageB2 plays a critical role in impairing cell cycle arrest in response to Actinomycin D. The data presented here support a relevant function for human MageB2 in cancer cells both under cycling and stressed conditions, presenting a distinct functional feature with respect to other characterized MAGE-I proteins.
Collapse
Affiliation(s)
- Leticia Y Peche
- From the Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - María F Ladelfa
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - María F Toledo
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Miguel Mano
- the International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34149 Trieste, Italy, and
| | - Julieta E Laiseca
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Claudio Schneider
- From the Laboratorio Nazionale del Consorzio Interuniversitario per le Biotecnologie, Area Science Park, Padriciano 99, 34149 Trieste, Italy, the Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, p.le Kolbe 4, 33100 Udine, Italy
| | - Martín Monte
- the Departamento de Química Biológica and Instituto de Química Biológica Ciencias Exactas y Naturales/Consejo de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina,
| |
Collapse
|
28
|
Esfandiary A, Ghafouri-Fard S. MAGE-A3: an immunogenic target used in clinical practice. Immunotherapy 2015; 7:683-704. [PMID: 26100270 DOI: 10.2217/imt.15.29] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melanoma antigen family A, 3 (MAGE-A3) is a cancer-testis antigen whose expression has been demonstrated in a wide array of malignancies including melanoma, brain, breast, lung and ovarian cancer. In addition, its ability to elicit spontaneous humoral and cellular immune responses has been shown in cancer patients. As antigen-specific immune responses can be stimulated by immunization with MAGE-A3, several clinical trials have used MAGE-A3 vaccines to observe clinical responses. The frequent expressions of this antigen in various tumors and its immunogenicity in cancer patients have led to application of this antigen in cancer immunotherapy. However, the results of recent clinical trials indicate that there is a need for research in the vaccine design, adjuvant selection as well as patient selection criteria.
Collapse
Affiliation(s)
- Ali Esfandiary
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| |
Collapse
|
29
|
Lu Z, Jiao D, Qiao J, Yang S, Yan M, Cui S, Liu Z. Restin suppressed epithelial-mesenchymal transition and tumor metastasis in breast cancer cells through upregulating mir-200a/b expression via association with p73. Mol Cancer 2015; 14:102. [PMID: 25972084 PMCID: PMC4429374 DOI: 10.1186/s12943-015-0370-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background Restin belongs to MAGE superfamily and is known as MAGE H1. Restin was firstly cloned from HL-60 cells treated with all-trans retinoic acid (ATRA). Previous studies showed a pro-apoptotic role of Restin in several cell lines. However, little information is available on its expression patterns and functions in vivo. Our study was performed to detect if Restin plays a role in breast cancer cells in vitro and in vivo. Methods and results Real-time PCR and western blot were conducted to detect Restin expression in multiple breast cancer cell lines and Restin level was negatively related with cell motility. Restin overexpression and knockdown stable cell lines were established by transducing lentivirus into MCF-7 and MDA-MB-231 cells. Cell morphology, wound closure assay, transwell migration and invasion assays were performed to detect if Restin inhibited EMT. Our data showed that Restin overexpressed cells exhibited classical epithelial cell morphology, and Restin overexpression resulted in activation of epithelial markers and suppression of mesenchymal markers, and inhibition of cell migration and invasion. Tumor xenograft model was used to characterize the biological functions of Restin in vivo. We found that Restin overexpression led to reduced lung metastasis. Real-time PCR, western blot, luciferase assay and ChIP assay were performed to identify the potential targets of Restin and the underlying molecular mechanisms. Among several master regulators of EMT, only ZEB1/2 levels were dramatically inhibited by Restin. Unexpectedly, Restin indirectly regulated ZEB1/2 expression at post-transcriptional level. We further identified mir-200a/b, well-characterized mediators controlling ZEB1/2 expression, were transcriptionally activated by Restin and the regulation was dependent on the p53 binding site in mir-200b/a/429 promoter. Further mechanical studies demonstrated Restin interacted with p73, one of p53 family members, which contributed to Restin-mediated activation of mir-200a/b and suppression of ZEB1/2. Conclusions Taken together, our results suggest that Restin inhibits EMT and tumor metastasis by controlling the expression of the tumor metastasis suppressor mir-200a/b via association with p73. Our findings not only establish a mechanistic link between Restin, EMT and tumor metastasis, but also provide strong evidence supporting the notion that MAGE Group II proteins may exert a tumor suppressive effect in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0370-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenduo Lu
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, #127 Dongming Road, Zhengzhou, Henan, 450008, People's Republic of China.
| | - Dechuang Jiao
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, #127 Dongming Road, Zhengzhou, Henan, 450008, People's Republic of China.
| | - Jianghua Qiao
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, #127 Dongming Road, Zhengzhou, Henan, 450008, People's Republic of China.
| | - Sen Yang
- Department of Pathogen Biology, Basic Medical College of Zhengzhou University, #100 Science Road, Zhengzhou, 450001, People's Republic of China.
| | - Min Yan
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, #127 Dongming Road, Zhengzhou, Henan, 450008, People's Republic of China.
| | - Shude Cui
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, #127 Dongming Road, Zhengzhou, Henan, 450008, People's Republic of China.
| | - Zhenzhen Liu
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, #127 Dongming Road, Zhengzhou, Henan, 450008, People's Republic of China.
| |
Collapse
|
30
|
Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma. Mod Pathol 2014; 27:1238-45. [PMID: 24457462 PMCID: PMC4287229 DOI: 10.1038/modpathol.2013.244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/08/2023]
Abstract
Myxoid and round-cell liposarcoma is a frequently encountered liposarcoma subtype. The mainstay of treatment remains surgical excision with or without chemoradiation. However, treatment options are limited in the setting of metastatic disease. Cancer-testis antigens are immunogenic antigens with the expression largely restricted to testicular germ cells and various malignancies, making them attractive targets for cancer immunotherapy. Gene expression studies have reported the expression of various cancer-testis antigens in liposarcoma, with mRNA expression of CTAG1B, CTAG2, MAGEA9, and PRAME described specifically in myxoid and round-cell liposarcoma. Herein, we further explore the expression of the cancer-testis antigens MAGEA1, ACRBP, PRAME, and SSX2 in myxoid and round-cell liposarcoma by immunohistochemistry in addition to determining mRNA levels of CTAG2 (LAGE-1), PRAME, and MAGEA3 by quantitative real-time PCR. Samples in formalin-fixed paraffin-embedded blocks (n=37) and frozen tissue (n=8) were obtained for immunohistochemistry and quantitative real-time PCR, respectively. Full sections were stained with antibodies to MAGEA1, ACRBP, PRAME, and SSX2 and staining was assessed for intensity (1-2+) and percent tumor positivity. The gene expression levels of CTAG2, PRAME, and MAGEA3 were measured by quantitative real-time PCR. In total, 37/37 (100%) of the samples showed predominantly strong, homogenous immunoreactivity for PRAME. There was a variable, focal expression of MAGEA1 (11%) and SSX2 (16%) and no expression of ACRBP. Quantitative real-time PCR demonstrated PRAME and CTAG2 transcripts in all eight samples: six tumors with high mRNA levels; two tumors with low mRNA levels. The gene expression of MAGEA3 was not detected in the majority of cases. In conclusion, myxoid and round-cell liposarcomas consistently express PRAME by immunohistochemistry as well as CTAG2 and PRAME by qualitative real-time PCR. This supports the use of cancer-testis antigen-targeted immunotherapy in the treatment of this malignancy.
Collapse
|
31
|
DU T, Niu H. Inhibitory effect of gene combination in a mouse model of colon cancer with liver metastasis. Exp Ther Med 2014; 8:913-918. [PMID: 25120623 PMCID: PMC4113646 DOI: 10.3892/etm.2014.1809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/05/2014] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to establish an animal liver metastasis model with human colon cancer and investigate the inhibitory effect of the wild type (WT) p53 gene combined with thymidine kinase/ganciclovir (TK/GCV) and cytosine deaminase/5-fluorocytosine (CD/5-FC) systems on liver metastasis of colon cancer. A nude mouse liver metastasis model with human colon cancer was established via a spleen cultivation method. A total of 32 nude mice were randomly divided into four groups, each group with eight mice. Group 1 mice received splenic injections of SW480 cells (control group), while group 2 mice were injected with SW480/p53 cells in the spleen. Group 3 mice were administered splenic injections of SW480/TK-CD cells, and GCV and 5-FC were injected into the abdominal cavity. Finally, group 4 mice received splenic injections of SW480/p53 cells mixed in equal proportion with SW480/TK-CD cells, as well as GCV and 5-FC injections in the abdominal cavity. These cells described were constructed in our laboratory and other laboratories. The number of liver metastatic tumors, the liver metastasis rate, conventional pathology, electron microscopy and other indicators in the nude mice of each group were compared and observed. The nude mouse liver metastasis model with human colon cancer was successfully established; the liver metastasis rate of the control group was 100%. The results demonstrated that the rate of liver metastasis in the nude mice in each treatment group decreased, as well as the average number of liver metastatic tumors. Furthermore, the effect of the treatment group with genetic combination (group 4) was the most effective, demonstrating that WTp53 had a synergistic effect with TK/GCV and CD/5-FC. Therefore, the present study successfully established a mouse model of liver metastasis with colon cancer by injecting human colon cancer cells in the spleen. Combined gene therapy was shown to have a synergistic effect, which effectively inhibited the formation of liver metastasis from colon cancer.
Collapse
Affiliation(s)
- Tong DU
- Department of Psychology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Hongxin Niu
- Department of Psychology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
32
|
Analysis of host gene expression changes reveals distinct roles for the cytoplasmic domain of the Epstein-Barr virus receptor/CD21 in B-cell maturation, activation, and initiation of virus infection. J Virol 2014; 88:5559-77. [PMID: 24600013 DOI: 10.1128/jvi.03099-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) attachment to human CD21 on the B-cell surface initiates infection. Whether CD21 is a simple tether or conveys vital information to the cell interior for production of host factors that promote infection of primary B cells is controversial, as the cytoplasmic fragment of CD21 is short, though highly conserved. The ubiquity of CD21 on normal B cells, the diversity of this population, and the well-known resistance of primary B cells to gene transfer technologies have all impeded resolution of this question. To uncover the role(s) of the CD21 cytoplasmic domain during infection initiation, the full-length receptor (CD21=CR), a mutant lacking the entire cytoplasmic tail (CT), and a control vector (NEO) were stably expressed in two pre-B-cell lines that lack endogenous receptor. Genome-wide transcriptional analysis demonstrated that stable CD21 surface expression alone (either CR or CT) produced multiple independent changes in gene expression, though both dramatically decreased class I melanoma-associated antigen (MAGE) family RNAs and upregulated genes associated with B-cell differentiation (e.g., C2TA, HLA-II, IL21R, MIC2, CD48, and PTPRCAP/CD45-associated protein). Temporal analysis spanning 72 h revealed that not only CR- but also CT-expressing lines initiated latency. In spite of this, the number and spectrum of transcripts altered in CR- compared with CT-bearing lines at 1 h after infection further diverged. Differential modulation of immediate early cellular transcripts (e.g., c-Jun and multiple histones), both novel and previously linked to CD21-initiated signaling, as well as distinct results from pathway analyses support a separate role for the cytoplasmic domain in initiation of intracellular signals. IMPORTANCE Membrane proteins that mediate virus attachment tether virus particles to the cell surface, initiating infection. In addition, upon virus interaction such proteins may transmit signals to the interior of the cell that support subsequent steps in the infection process. Here we show that expression of the Epstein-Barr virus B-cell attachment receptor, CD21, in B cells that lack this receptor results in significant changes in gene expression, both before and rapidly following EBV-CD21 interaction. These changes translate into major signaling pathway alterations that are predicted to support stable infection.
Collapse
|