1
|
Liu H, Peng J, Huang L, Ruan D, Li Y, Yuan F, Tu Z, Huang K, Zhu X. The role of lysosomal peptidases in glioma immune escape: underlying mechanisms and therapeutic strategies. Front Immunol 2023; 14:1154146. [PMID: 37398678 PMCID: PMC10311646 DOI: 10.3389/fimmu.2023.1154146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Glioblastoma is the most common primary malignant tumor of the central nervous system, which has the characteristics of strong invasion, frequent recurrence, and rapid progression. These characteristics are inseparable from the evasion of glioma cells from immune killing, which makes immune escape a great obstacle to the treatment of glioma, and studies have confirmed that glioma patients with immune escape tend to have poor prognosis. The lysosomal peptidase lysosome family plays an important role in the immune escape process of glioma, which mainly includes aspartic acid cathepsin, serine cathepsin, asparagine endopeptidases, and cysteine cathepsins. Among them, the cysteine cathepsin family plays a prominent role in the immune escape of glioma. Numerous studies have confirmed that glioma immune escape mediated by lysosomal peptidases has something to do with autophagy, cell signaling pathways, immune cells, cytokines, and other mechanisms, especially lysosome organization. The relationship between protease and autophagy is more complicated, and the current research is neither complete nor in-depth. Therefore, this article reviews how lysosomal peptidases mediate the immune escape of glioma through the above mechanisms and explores the possibility of lysosomal peptidases as a target of glioma immunotherapy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jie Peng
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Linzhen Huang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Dong Ruan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yuguang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Fan Yuan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
2
|
Tan A, Prasad R, Lee C, Jho EH. Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease. Cell Death Differ 2022; 29:1433-1449. [PMID: 35739255 PMCID: PMC9345944 DOI: 10.1038/s41418-022-01028-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/16/2022] Open
Abstract
Transcription factor EB (TFEB), a member of the MiT/TFE family of basic helix-loop-helix leucine zipper transcription factors, is an established central regulator of the autophagy/lysosomal-to-nucleus signaling pathway. Originally described as an oncogene, TFEB is now widely known as a regulator of various processes, such as energy homeostasis, stress response, metabolism, and autophagy-lysosomal biogenesis because of its extensive involvement in various signaling pathways, such as mTORC1, Wnt, calcium, and AKT signaling pathways. TFEB is also implicated in various human diseases, such as lysosomal storage disorders, neurodegenerative diseases, cancers, and metabolic disorders. In this review, we present an overview of the major advances in TFEB research over the past 30 years, since its description in 1990. This review also discusses the recently discovered regulatory mechanisms of TFEB and their implications for human diseases. We also summarize the moonlighting functions of TFEB and discuss future research directions and unanswered questions in the field. Overall, this review provides insight into our understanding of TFEB as a major molecular player in human health, which will take us one step closer to promoting TFEB from basic research into clinical and regenerative applications.
Collapse
Affiliation(s)
- Anderson Tan
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Renuka Prasad
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chaerin Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
3
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Liu X, Zheng X, Lu Y, Chen Q, Zheng J, Zhou H. TFEB Dependent Autophagy-Lysosomal Pathway: An Emerging Pharmacological Target in Sepsis. Front Pharmacol 2021; 12:794298. [PMID: 34899355 PMCID: PMC8664376 DOI: 10.3389/fphar.2021.794298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening syndrome induced by aberrant host response towards infection. The autophagy-lysosomal pathway (ALP) plays a fundamental role in maintaining cellular homeostasis and conferring organ protection. However, this pathway is often impaired in sepsis, resulting in dysregulated host response and organ dysfunction. Transcription factor EB (TFEB) is a master modulator of the ALP. TFEB promotes both autophagy and lysosomal biogenesis via transcriptional regulation of target genes bearing the coordinated lysosomal expression and regulation (CLEAR) motif. Recently, increasing evidences have linked TFEB and the TFEB dependent ALP with pathogenetic mechanisms and therapeutic implications in sepsis. Therefore, this review describes the existed knowledge about the mechanisms of TFEB activation in regulating the ALP and the evidences of their protection against sepsis, such as immune modulation and organ protection. In addition, TFEB activators with diversified pharmacological targets are summarized, along with recent advances of their potential therapeutic applications in treating sepsis.
Collapse
Affiliation(s)
- Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100033. [PMID: 34909664 PMCID: PMC8663935 DOI: 10.1016/j.crphar.2021.100033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
Collapse
Affiliation(s)
- Waleska Kerllen Martins
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Maryana do Nascimento da Silva
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Kiran Pandey
- Center for Neural Science, New York University, Meyer Building, Room 823, 4 Washington Place, New York, NY, 10003, USA
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa Machi, Maebashi, Gunma, 3718512, Japan
| | - Ercília Ramalho
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Vania Claudia Olivon
- Laboratory of Pharmacology and Physiology, UNIDERP, Av. Ceará, 333. Vila Miguel Couto, Campo Grande, MS, 79003-010, Brazil
| | - Susana Nogueira Diniz
- Laboratory of Molecular Biology and Functional Genomics, Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Daniel Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, CONICET, Junín 954 p4, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
6
|
Impacts of particle size on the cytotoxicity, cellular internalization, pharmacokinetics and biodistribution of betulinic acid nanosuspensions in combined chemotherapy. Int J Pharm 2020; 588:119799. [PMID: 32828973 DOI: 10.1016/j.ijpharm.2020.119799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
To evaluate the effect of particle size on the cellular internalization, tissue distribution, and bioavailability of betulinic acid nanosuspensions (BA/NSs) and further investigate the combined effect of BA/NSs and Taxol® on breast cancer, BA/NSs with different particle sizes (160 nm, 400 nm, and 700 nm) were prepared by an efficient universal green technology. The use of BA/NS (160 nm) was more likely to increase the BA release rate and enhance bioavailability compared with the use of larger size particles. BA/NSs were internalized by 4T1 cells in different ways, including clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis. For the 4T1 orthotopic tumor model, BA/NS (160 nm) showed a tendency to accumulate at a higher level in tumor tissue. Moreover, combination therapy with BA/NSs and Taxol® showed remarkable potential to enhance antitumor activity in vitro and in vivo. The cytotoxicity and apoptotic ability of the different preparations decreased in the following order: BA/NS (160 nm) + Taxol®, BA/NS (400 nm) + Taxol®, and BA/NS (700 nm) + Taxol®. The tumor inhibition rates of BA/NSs (160 nm, 400 nm, and 700 nm) combined with Taxol® were 2.35-, 1.74- and 1.12-fold higher than that of free BA, respectively. The combined chemotherapy showed good safety, indicating that it had the effect of enhancing treatment and reducing toxicity.
Collapse
|
7
|
Jacobs KA, Maghe C, Gavard J. Lysosomes in glioblastoma: pump up the volume. Cell Cycle 2020; 19:2094-2104. [PMID: 32723137 DOI: 10.1080/15384101.2020.1796016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Lysosomes are acidic, dynamic organelles that supervise catabolism, integrate signaling cascades, and tune cellular trafficking. Moreover, the loss of their integrity may jeopardize cell viability. In cancer cells, lysosomes are qualitatively and quantitatively modified for the tumor's own benefit. For all these reasons, these organelles emerge as appealing intracellular targets to manipulate non-oncogene addiction. This is of particular interest for brain diseases, including neurodegenerative disorders and cancer, in which stem cells are exhausted and transformed, respectively. Recent publications had demonstrated that stem cells displayed disarmed lysosomes in terms of number and functions during aging and oncogenic progression. Likewise, our laboratory identified that the arginine protease MALT1, normally dedicated to the assembly of proper NF-kB activation and processing a number of substrates, arbitrates lysosome biogenesis and mTOR signaling in glioblastoma stem-like cells. Indeed, blocking either the expression or the activity of this enzyme leads to an aberrant increase of lysosomes, alongside of the down-regulation of the mTOR signaling. This surge of lysosomes eradicates glioblastoma stem-like cells. Targeting lysosomes might thus inspire the design of new strategies to face this devastating human cancer. Here, we provide an overview of the functions of the lysosome as well as its role as a cell death initiator, to highlight the potential of lysosomal drugs for glioblastoma therapy.
Collapse
Affiliation(s)
- Kathryn A Jacobs
- Team SOAP, CRCINA, Inserm, CNRS, Université De Nantes, Université d'Angers , Nantes, France
| | - Clément Maghe
- Team SOAP, CRCINA, Inserm, CNRS, Université De Nantes, Université d'Angers , Nantes, France
| | - Julie Gavard
- Team SOAP, CRCINA, Inserm, CNRS, Université De Nantes, Université d'Angers , Nantes, France.,Integrated Center for Oncology, ICO , St. Herblain, France
| |
Collapse
|
8
|
Bahrami A, Bianconi V, Pirro M, Orafai HM, Sahebkar A. The role of TFEB in tumor cell autophagy: Diagnostic and therapeutic opportunities. Life Sci 2020; 244:117341. [PMID: 31972208 DOI: 10.1016/j.lfs.2020.117341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/29/2019] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved "self-eating" recycling process which removes aggregated or misfolded proteins, or defective organelles, to maintain cellular hemostasis. In the autophagy-lysosome pathway (ALP), clearance of unwanted debris and materials occurs through the generation of the autophagosome, a complex of double-membrane bounded vesicles that form around cytosolic cargos and catabolize their contents by fusion to lysosomes. In tumors, autophagy has dichotomous functions via preventing tumor initiation but promoting tumor progression. The basic helix-loop-helix leucine zipper transcription factor EB (TFEB) activates the promoters of genes encoding for proteins, which participate in this cellular degradative system by regulating lysosomal biogenesis, lysosomal acidification, lysosomal exocytosis and autophagy. In humans, disturbances of ALP are related to various pathological conditions. Recently, TFEB dysregulation was found to have a crucial pathogenic role in different tumors by modulating tumor cell autophagy. Notably, in renal cell carcinomas, different TFEB gene fusions were reported to promote oncogenic features. In this review, we discuss the role of TFEB in human cancers with a special focus on potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Hossein M Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq; Department of Pharmaceutics, Faculty of Pharmacy, Al-Zahraa University, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Sheng J, Shen L, Sun L, Zhang X, Cui R, Wang L. Inhibition of PI3K/mTOR increased the sensitivity of hepatocellular carcinoma cells to cisplatin via interference with mitochondrial-lysosomal crosstalk. Cell Prolif 2019; 52:e12609. [PMID: 31033054 PMCID: PMC6536453 DOI: 10.1111/cpr.12609] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES The genotoxicity of cisplatin towards nuclear DNA is not sufficient to explain the cisplatin resistance of hepatocellular carcinoma (HCC) cells; cisplatin interacts with many organelles, which can influence the sensitivity. Here, we explored the role of mitochondrial-lysosomal crosstalk in the cisplatin resistance of HCC cells. MATERIALS AND METHODS Huh7 and HepG2 cells were subjected to different treatments. Flow cytometry was conducted to detect mitochondrial reactive oxygen species, mitochondrial mass, lysosomal function, mitochondrial membrane potential and apoptosis. Western blotting was performed to evaluate protein levels. The oxygen consumption rate was measured to evaluate mitochondrial function. RESULTS Cisplatin activated mitophagy and lysosomal biogenesis, resulting in crosstalk between mitochondria and lysosomes and cisplatin resistance in HCC cells. Furthermore, a combination of cisplatin with the phosphatidylinositol-3-kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitor PKI-402 induced lysosomal membrane permeabilization. This effect changed the role of the lysosome from a protective one to that of a cell death promoter, completely destroying the mitochondrial-lysosomal crosstalk and significantly enhancing the sensitivity of HCC cells to cisplatin. CONCLUSIONS This is the first evidence of the importance of mitochondrial-lysosomal crosstalk in the cisplatin resistance of HCC cells and of the destruction of this crosstalk by a PI3K/mTOR inhibitor to increase the sensitivity of HCC cells to cisplatin. This mechanism could be developed as a novel target for treatment of HCC in the future.
Collapse
Affiliation(s)
- Jiyao Sheng
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Hospital of Jilin UniversityChangchunJilinChina
| | - Luyan Shen
- Department of Pathophysiology, College of Basic Medical SciencesJilin UniversityChangchunJilinChina
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical SciencesJilin UniversityChangchunJilinChina
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Hospital of Jilin UniversityChangchunJilinChina
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical GeneticThe Second Hospital of Jilin UniversityChangchunJilinChina
| | - Lizhong Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical GeneticThe Second Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
10
|
Fernandes GFDS, Fernandes BC, Valente V, Dos Santos JL. Recent advances in the discovery of small molecules targeting glioblastoma. Eur J Med Chem 2018; 164:8-26. [PMID: 30583248 DOI: 10.1016/j.ejmech.2018.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is one of the most common central nervous system cancers. It is characterized as a fast-growing tumor that arises from multiple cell types with neural stem-cell-like properties. Additionally, GBM tumors are highly invasive, which is attributed to the presence of glioblastoma stem cells that makes surgery ineffective in most cases. Currently, temozolomide is the unique chemotherapy option approved by the U.S. Food and Drug Administration for GBM treatment. This review analyzes the emergence and development of new synthetic small molecules discovered as promising anti-glioblastoma agents. A number of compounds were described herein and grouped according to the main chemical class used in the drug discovery process. Importantly, we focused only on synthetic compounds published in the last 10 years, thus excluding natural products. Furthermore, we included in this review only those most biologically active compounds with proven in vitro and/or in vivo efficacy.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, 14800-060, Brazil
| | - Barbara Colatto Fernandes
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Valeria Valente
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, 14800-903, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Araraquara, 14800-060, Brazil.
| |
Collapse
|
11
|
Ridinger J, Koeneke E, Kolbinger FR, Koerholz K, Mahboobi S, Hellweg L, Gunkel N, Miller AK, Peterziel H, Schmezer P, Hamacher-Brady A, Witt O, Oehme I. Dual role of HDAC10 in lysosomal exocytosis and DNA repair promotes neuroblastoma chemoresistance. Sci Rep 2018; 8:10039. [PMID: 29968769 PMCID: PMC6030077 DOI: 10.1038/s41598-018-28265-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Drug resistance is a leading cause for treatment failure in many cancers, including neuroblastoma, the most common solid extracranial childhood malignancy. Previous studies from our lab indicate that histone deacetylase 10 (HDAC10) is important for the homeostasis of lysosomes, i.e. acidic vesicular organelles involved in the degradation of various biomolecules. Here, we show that depleting or inhibiting HDAC10 results in accumulation of lysosomes in chemotherapy-resistant neuroblastoma cell lines, as well as in the intracellular accumulation of the weakly basic chemotherapeutic doxorubicin within lysosomes. Interference with HDAC10 does not block doxorubicin efflux from cells via P-glycoprotein inhibition, but rather via inhibition of lysosomal exocytosis. In particular, intracellular doxorubicin does not remain trapped in lysosomes but also accumulates in the nucleus, where it promotes neuroblastoma cell death. Our data suggest that lysosomal exocytosis under doxorubicin treatment is important for cell survival and that inhibition of HDAC10 further induces DNA double-strand breaks (DSBs), providing additional mechanisms that sensitize neuroblastoma cells to doxorubicin. Taken together, we demonstrate that HDAC10 inhibition in combination with doxorubicin kills neuroblastoma, but not non-malignant cells, both by impeding drug efflux and enhancing DNA damage, providing a novel opportunity to target chemotherapy resistance.
Collapse
Affiliation(s)
- Johannes Ridinger
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Emily Koeneke
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,University of Heidelberg, Heidelberg, Germany
| | - Fiona R Kolbinger
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Katharina Koerholz
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Lars Hellweg
- Research Group Cancer Drug Development, German Cancer Research Center, Heidelberg, Germany
| | - Nikolas Gunkel
- Research Group Cancer Drug Development, German Cancer Research Center, Heidelberg, Germany
| | - Aubry K Miller
- Research Group Cancer Drug Development, German Cancer Research Center, Heidelberg, Germany
| | - Heike Peterziel
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Peter Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany
| | - Anne Hamacher-Brady
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, United States
| | - Olaf Witt
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ina Oehme
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany. .,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Moruno-Manchon JF, Uzor NE, Kesler SR, Wefel JS, Townley DM, Nagaraja AS, Pradeep S, Mangala LS, Sood AK, Tsvetkov AS. TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin. Aging (Albany NY) 2017; 8:3507-3519. [PMID: 27992857 PMCID: PMC5270683 DOI: 10.18632/aging.101144] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022]
Abstract
Doxorubicin, a commonly used chemotherapy agent, induces severe cardio- and neurotoxicity. Molecular mechanisms of cardiotoxicity have been extensively studied, but mechanisms by which doxorubicin exhibits its neurotoxic properties remain unclear. Here, we show that doxorubicin impairs neuronal autophagy, leading to the accumulation of an autophagy substrate p62. Neurons treated with doxorubicin contained autophagosomes, damaged mitochondria, and lipid droplets. The brains from mice treated with pegylated liposomal doxorubicin exhibited autophagosomes, often with mitochondria, lipofuscin, and lipid droplets. Interestingly, lysosomes were less acidic in doxorubicin-treated neurons. Overexpression of the transcription factor EB (TFEB), which controls the autophagy-lysosome axis, increased survival of doxorubicin-treated neurons. 2-Hydroxypropyl-β-cyclodextrin (HPβCD), an activator of TFEB, also promoted neuronal survival, decreased the levels of p62, and lowered the pH in lysosomes. Taken together, substantial changes induced by doxorubicin contribute to neurotoxicity, cognitive disturbances in cancer patients and survivors, and accelerated brain aging. The TFEB pathway might be a new approach for mitigating damage of neuronal autophagy caused by doxorubicin.
Collapse
Affiliation(s)
- Jose Felix Moruno-Manchon
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA
| | - Ndidi-Ese Uzor
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Shelli R Kesler
- Department of Neuro-Oncology, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Debra M Townley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Archana Sidalaghatta Nagaraja
- Department of Gynecologic Oncology and Reproductive Medicine, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNA Interference and Non-Coding RNA, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Cancer Biology, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNA Interference and Non-Coding RNA, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Cancer Biology, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNA Interference and Non-Coding RNA, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Cancer Biology, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for RNA Interference and Non-Coding RNA, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Cancer Biology, the University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrey S Tsvetkov
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
13
|
Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To SST, Li WP. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer 2017; 16:100. [PMID: 28592260 PMCID: PMC5463420 DOI: 10.1186/s12943-017-0670-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary tumor in the central nervous system. One of the most widely used chemotherapeutic drugs for GBM is temozolomide, which is a DNA-alkylating agent and its efficacy is dependent on MGMT methylation status. Little progress in improving the prognosis of GBM patients has been made in the past ten years, urging the development of more effective molecular targeted therapies. Hyper-activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is frequently found in a variety of cancers including GBM, and it plays a central role in the regulation of tumor cell survival, growth, motility, angiogenesis and metabolism. Numerous PI3K inhibitors including pan-PI3K, isoform-selective and dual PI3K/mammalian target of rapamycin (mTOR) inhibitors have exhibited favorable preclinical results and entered clinical trials in a range of hematologic malignancies and solid tumors. Furthermore, combination of inhibitors targeting PI3K and other related pathways may exert synergism on suppressing tumor growth and improving patients' prognosis. Currently, only a handful of PI3K inhibitors are in phase I/II clinical trials for GBM treatment. In this review, we focus on the importance of PI3K/Akt pathway in GBM, and summarize the current development of PI3K inhibitors alone or in combination with other inhibitors for GBM treatment from preclinical to clinical studies.
Collapse
Affiliation(s)
- Hua-fu Zhao
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Jing Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Wei Shao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chang-peng Wu
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
- College of Clinical Medicine, Anhui Medical University, Hefei, 230032 China
| | - Zhong-ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Shing-shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei-ping Li
- Department of Neurosurgery & Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035 China
| |
Collapse
|
14
|
Transcription Factor EB Expression in Early Breast Cancer Relates to Lysosomal/Autophagosomal Markers and Prognosis. Clin Breast Cancer 2016; 17:e119-e125. [PMID: 28017540 DOI: 10.1016/j.clbc.2016.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/17/2016] [Accepted: 11/13/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Disrupting the autophagic balance to trigger autophagic death may open new strategies for cancer therapy. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and may play a role in cancer biology and clinical behavior. METHODS The expression of TFEB and the lysosomal cancer cell content (expression of lysosomal associated membrane protein 2a [LAMP2a] and cathepsin D) was studied in a series of 100 T1-stage breast carcinomas. Expression patterns were correlated with autophagy/hypoxia-related proteins, angiogenesis, and clinical outcome. The effect of hypoxic/acidic conditions on TFEB kinetics was studied in the MCF-7 cancer cell line. RESULTS Overexpression of TFEB in cancer cell cytoplasm and the perinuclear/nuclear area was noted in 23 (23%) of 100 cases. High LAMP2a and cathepsin D expression was noted in 30 (30%) of 100 and 28 (28%) of 100 cases, respectively. TFEB expression was directly linked with LAMP2a (P < .0001, r = 0.53), cathepsin D (P = .0002, r = 0.36), light chain 3A (LC3A) (P = .02, r = 0.22), and hypoxia-inducible factor 2-alpha (HIF-2α) (P = .01, r = 0.25) expression and inversely with progesterone receptor (P = .01, r = 0.22). High vascular density was directly linked with LAMP2a (P = .05, r = 0.18) and cathepsin D (P = .005, r = 0.28). In Kaplan-Meier survival analysis, TFEB and cathepsin D expression were related to an ominous prognosis (P = .001 and P = .03, respectively). In multivariate analysis, TFEB expression sustained its independent prognostic significance (P = .05, hazard ratio 2.1). In in vitro experiments, acidity triggered overexpression of TFEB and nuclear translocation. CONCLUSION Intense TFEB expression and lysosomal biogenesis, evident in one fourth of early breast carcinomas, define poor prognosis. Tumor acidity is among the microenvironmental conditions that trigger TFEB overactivity. TFEB is a sound target for the development of lysosomal targeting therapies.
Collapse
|
15
|
Sardiello M. Transcription factor EB: from master coordinator of lysosomal pathways to candidate therapeutic target in degenerative storage diseases. Ann N Y Acad Sci 2016; 1371:3-14. [PMID: 27299292 PMCID: PMC5032832 DOI: 10.1111/nyas.13131] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Abstract
The lysosome is the main catabolic hub of the cell. Owing to its role in fundamental processes such as autophagy, plasma membrane repair, mTOR signaling, and maintenance of cellular homeostasis, the lysosome has a profound influence on cellular metabolism and human health. Indeed, inefficient or impaired lysosomal function has been implicated in the pathogenesis of a number of degenerative diseases affecting various organs and tissues, most notably the brain, liver, and muscle. The discovery of the coordinated lysosomal expression and regulation (CLEAR) genetic program and its master controller, transcription factor EB (TFEB), has provided an unprecedented tool to study and manipulate lysosomal function. Most lysosome-based processes-including macromolecule degradation, autophagy, lysosomal exocytosis, and proteostasis-are under the transcriptional control of TFEB. Interestingly, impaired TFEB signaling has been suggested to be a contributing factor in the pathogenesis of several degenerative storage diseases. Preclinical studies based on TFEB exogenous expression to reinstate TFEB activity or promote CLEAR network-based lysosomal enhancement have highlighted TFEB as a candidate therapeutic target for the treatment of various degenerative storage diseases.
Collapse
Affiliation(s)
- Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| |
Collapse
|
16
|
Ströbele S, Schneider M, Schneele L, Siegelin MD, Nonnenmacher L, Zhou S, Karpel-Massle G, Westhoff MA, Halatsch ME, Debatin KM. A Potential Role for the Inhibition of PI3K Signaling in Glioblastoma Therapy. PLoS One 2015; 10:e0131670. [PMID: 26121251 PMCID: PMC4488267 DOI: 10.1371/journal.pone.0131670] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/05/2015] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor and among the most difficult to treat malignancies per se. In almost 90% of all GBM alterations in the PI3K/Akt/mTOR have been found, making this survival cascade a promising therapeutic target, particular for combination therapy that combines an apoptosis sensitizer, such as a pharmacological inhibitor of PI3K, with an apoptosis inducer, such as radio- or chemotherapy. However, while in vitro data focusing mainly on established cell lines has appeared rather promising, this has not translated well to a clinical setting. In this study, we analyze the effects of the dual kinase inhibitor PI-103, which blocks PI3K and mTOR activity, on three matched pairs of GBM stem cells/differentiated cells. While blocking PI3K-mediated signaling has a profound effect on cellular proliferation, in contrast to data presented on two GBM cell lines (A172 and U87) PI-103 actually counteracts the effect of chemotherapy. While we found no indications for a potential role of the PI3K signaling cascade in differentiation, we saw a clear and strong contribution to cellular motility and, by extension, invasion. While blocking PI3K-mediated signaling concurrently with application of chemotherapy does not appear to be a valid treatment option, pharmacological inhibitors, such as PI-103, nevertheless have an important place in future therapeutic approaches.
Collapse
Affiliation(s)
- Stephanie Ströbele
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
| | - Matthias Schneider
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
| | - Lukas Schneele
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Shaoxia Zhou
- Department of Clinical Chemistry, University Medical Center Ulm, Ulm, Germany
| | - Georg Karpel-Massle
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- * E-mail:
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
17
|
Zhang DM, Xu HG, Wang L, Li YJ, Sun PH, Wu XM, Wang GJ, Chen WM, Ye WC. Betulinic Acid and its Derivatives as Potential Antitumor Agents. Med Res Rev 2015; 35:1127-55. [PMID: 26032847 DOI: 10.1002/med.21353] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Betulinic acid (BA) is a lupane-type pentacyclic triterpene, distributed ubiquitously throughout the plant kingdom. BA and its derivatives demonstrate multiple bioactivities, particularly an antitumor effect. This review critically describes the recent research on isolation, synthesis, and derivatization of BA and its natural analogs betulin and 23-hydroxybetulinic acid. The subsequent part of the review focuses on the current knowledge of antitumor properties, combination treatments, and pharmacological mechanisms of these compounds. A 3D-QSAR analysis of 62 BA derivatives against human ovarian cancer A2780 is also included to provide information concerning the structure-cytotoxicity relationships of these compounds.
Collapse
Affiliation(s)
- Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Hong-Gui Xu
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Lei Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ying-Jie Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Ping-Hua Sun
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao-Ming Wu
- Institute of Pharmaceutical Research, College of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Guang-Ji Wang
- Institute of Pharmaceutical Research, College of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Wei-Min Chen
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
18
|
Pfarr K, Danciu C, Arlt O, Neske C, Dehelean C, Pfeilschifter JM, Radeke HH. Simultaneous and dose dependent melanoma cytotoxic and immune stimulatory activity of betulin. PLoS One 2015; 10:e0118802. [PMID: 25756279 PMCID: PMC4355578 DOI: 10.1371/journal.pone.0118802] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022] Open
Abstract
Conventional cytostatic cancer treatments rarely result in the complete eradication of tumor cells. Therefore, new therapeutic strategies focus on antagonizing the immunosuppressive activity of established tumors. In particular, recent studies of antigen-loaded dendritic cells (DCs) eliciting a specific antitumor immune response has raised the hopes of achieving the complete elimination of tumor tissue. Genistein, fingolimod and betulin have already been described as active compounds in different types of cancer. Herein, we applied an integrated screening approach to characterize both their cytostatic and their immune-modulating properties side-by-side. As will be described in detail, our data confirmed that all three compounds exerted proapoptotic and antiproliferative activity in different B16 melanoma cell lines to a given extent, as revealed by an MTT assay, CFSE and DAPI staining. However, while genistein and fingolimod also affected the survival of primary bone marrow (BM) derived DCs of C57BL/6 mice, betulin exhibited a lower cytotoxicity for BMDCs in comparison to the melanoma cells. Moreover, we could show for the first time, that only betulin caused a simultaneous, highly specific immune-stimulating activity, as measured by the IL-12p70 release of Toll-like receptor 4-stimulated BMDCs by ELISA, which was due to increased IL-12p35 mRNA expression. Interestingly, the activation of DCs resulted in enhanced T lymphocyte stimulation, indicated by increased IL-2 and IFN-γ production of cytotoxic T cells in spleen cell co-culture assays which led to a decreased viability of B16 cells in an antigen specific model system. This may overcome the immunosuppressive environment of a tumor and destroy tumor cells more effectively in vivo if the immune response is specific targeted against the tumor tissue by antigen-loaded dendritic cells. In summary, cytostatic agents, such as betulin, that simultaneously exhibit immune stimulatory activity may serve as lead compounds and hold great promise as a novel approach for an integrated cancer therapy.
Collapse
Affiliation(s)
- Kathrin Pfarr
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Corina Danciu
- Departments of Pharmacognosy and Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy Victor Babes, Timisoara, Romania
| | - Olga Arlt
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Christina Neske
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Cristina Dehelean
- Departments of Pharmacognosy and Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy Victor Babes, Timisoara, Romania
| | - Josef M. Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Heinfried H. Radeke
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
19
|
Bache M, Bernhardt S, Passin S, Wichmann H, Hein A, Zschornak M, Kappler M, Taubert H, Paschke R, Vordermark D. Betulinic acid derivatives NVX-207 and B10 for treatment of glioblastoma--an in vitro study of cytotoxicity and radiosensitization. Int J Mol Sci 2014; 15:19777-90. [PMID: 25361208 PMCID: PMC4264138 DOI: 10.3390/ijms151119777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/11/2023] Open
Abstract
Betulinic acid (BA), a pentacyclic triterpene, represents a new therapeutic substance that has potential benefits for treating glioblastoma. Recently, new strategies for producing BA derivatives with improved properties have evolved. However, few studies have examined the combination of BA or BA derivatives using radiotherapy. The effects of two BA derivatives, NVX-207 and B10, on cellular and radiobiological behavior were analyzed using glioblastoma cell lines (U251MG, U343MG and LN229). Based on IC50 values under normoxic conditions, we detected a 1.3-2.9-fold higher cytotoxicity of the BA derivatives B10 and NVX-207, respectively, compared to BA. Incubation using both BA derivatives led to decreased cell migration, cleavage of PARP and decreased protein expression levels of Survivin. Weak radiation sensitivity enhancement was observed in U251MG cells after treatment with both BA derivatives. The enhancement factors at an irradiation dose of 6 Gy after treatment with 5 µM NVX-207 and 5 µM B10 were 1.32 (p=0.029) and 1.55 (p=0.002), respectively. In contrast to BA, neither NVX-207 nor B10 had additional effects under hypoxic conditions. Our results suggest that the BA derivatives NVX-207 and B10 improve the effects of radiotherapy on human malignant glioma cells, particularly under normoxic conditions.
Collapse
Affiliation(s)
- Matthias Bache
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120 Halle, Germany.
| | - Stephan Bernhardt
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120 Halle, Germany.
| | - Sarina Passin
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120 Halle, Germany.
| | - Henri Wichmann
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120 Halle, Germany.
| | - Anja Hein
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120 Halle, Germany.
| | - Martin Zschornak
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120 Halle, Germany.
| | - Matthias Kappler
- Department of Oral and Maxillofacial Plastic Surgery, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120 Halle, Germany.
| | - Helge Taubert
- Clinic of Urology, Friedrich Alexander University Hospital Erlangen, Hartmann Str. 14, D-91054 Erlangen, Germany.
| | - Reinhard Paschke
- Biozentrum, Martin Luther Universität Halle-Wittenberg, Weinbergweg 22, D-06120 Halle, Germany.
| | - Dirk Vordermark
- Department of Radiotherapy, Martin Luther University Halle-Wittenberg, Ernst Grube Straße 40, D-06120 Halle, Germany.
| |
Collapse
|
20
|
Singly protonated dehydronorcantharidin silver coordination polymer induces apoptosis of lung cancer cells via reactive oxygen species-mediated mitochondrial pathway. Eur J Med Chem 2014; 86:1-11. [DOI: 10.1016/j.ejmech.2014.08.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 07/11/2014] [Accepted: 08/14/2014] [Indexed: 12/25/2022]
|
21
|
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Campanella M, Candi E, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, Di Daniele N, Dixit VM, Dynlacht BD, El-Deiry WS, Fimia GM, Flavell RA, Fulda S, Garrido C, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Joseph B, Jost PJ, Kaufmann T, Kepp O, Klionsky DJ, Knight RA, Kumar S, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lugli E, Madeo F, Malorni W, Marine JC, Martin SJ, Martinou JC, Medema JP, Meier P, Melino S, Mizushima N, Moll U, Muñoz-Pinedo C, Nuñez G, Oberst A, Panaretakis T, Penninger JM, Peter ME, Piacentini M, Pinton P, Prehn JH, Puthalakath H, Rabinovich GA, Ravichandran KS, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Shi Y, Simon HU, Stockwell BR, Szabadkai G, Tait SW, Tang HL, Tavernarakis N, Tsujimoto Y, Vanden Berghe T, Vandenabeele P, Villunger A, Wagner EF, Walczak H, White E, Wood WG, Yuan J, Zakeri Z, Zhivotovsky B, Melino G, Kroemer G. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2014; 22:58-73. [PMID: 25236395 PMCID: PMC4262782 DOI: 10.1038/cdd.2014.137] [Citation(s) in RCA: 689] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.
Collapse
Affiliation(s)
- L Galluzzi
- 1] Gustave Roussy Cancer Center, Villejuif, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - J M Bravo-San Pedro
- 1] Gustave Roussy Cancer Center, Villejuif, France [2] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [3] INSERM, U1138, Gustave Roussy, Paris, France
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy
| | - S A Aaronson
- Department of Oncological Sciences, The Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - J M Abrams
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - D Adam
- Institute of Immunology, Christian-Albrechts University, Kiel, Germany
| | - E S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - L Altucci
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Napoli, Italy
| | - D Andrews
- Department of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - M Annicchiarico-Petruzzelli
- Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata - Istituto Ricovero Cura Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | - E H Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - N G Bazan
- Neuroscience Center of Excellence, School of Medicine, New Orleans, LA, USA
| | - M J Bertrand
- 1] VIB Inflammation Research Center, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - K Bianchi
- 1] Barts Cancer Institute, Cancer Research UK Centre of Excellence, London, UK [2] Queen Mary University of London, John Vane Science Centre, London, UK
| | - M V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - K Blomgren
- Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - C Borner
- Institute of Molecular Medicine and Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University, Freiburg, Germany
| | - D E Bredesen
- 1] Buck Institute for Research on Aging, Novato, CA, USA [2] Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - C Brenner
- 1] INSERM, UMRS769, Châtenay Malabry, France [2] LabEx LERMIT, Châtenay Malabry, France [3] Université Paris Sud/Paris XI, Orsay, France
| | - M Campanella
- Department of Comparative Biomedical Sciences and Consortium for Mitochondrial Research, University College London (UCL), London, UK
| | - E Candi
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - F Cecconi
- 1] Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, Rome, Italy [2] Department of Biology, University of Rome Tor Vergata; Rome, Italy [3] Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - F K Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - N S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - E H Cheng
- Human Oncology and Pathogenesis Program and Department of Pathology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - J E Chipuk
- Department of Oncological Sciences, The Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - J A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), North Carolina, NC, USA
| | - A Ciechanover
- Tumor and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel
| | - T M Dawson
- 1] Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (ICE), Departments of Neurology, Pharmacology and Molecular Sciences, Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA [2] Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - V L Dawson
- 1] Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering (ICE), Departments of Neurology, Pharmacology and Molecular Sciences, Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA [2] Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA
| | - V De Laurenzi
- Department of Experimental and Clinical Sciences, Gabriele d'Annunzio University, Chieti, Italy
| | - R De Maria
- Regina Elena National Cancer Institute, Rome, Italy
| | - K-M Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - N Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - V M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - B D Dynlacht
- Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, NY, USA
| | - W S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medicine (Hematology/Oncology), Penn State Hershey Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - G M Fimia
- 1] Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy [2] Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani, Istituto Ricovero Cura Carattere Scientifico (IRCCS), Rome, Italy
| | - R A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - S Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University, Frankfurt, Germany
| | - C Garrido
- 1] INSERM, U866, Dijon, France [2] Faculty of Medicine, University of Burgundy, Dijon, France
| | - M-L Gougeon
- Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - D R Green
- Department of Immunology, St Jude's Children's Research Hospital, Memphis, TN, USA
| | - H Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - G Hajnoczky
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J M Hardwick
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - M O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - H Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - B Joseph
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institute, Stockholm, Sweden
| | - P J Jost
- Medical Department for Hematology, Technical University of Munich, Munich, Germany
| | - T Kaufmann
- Institute of Pharmacology, Medical Faculty, University of Bern, Bern, Switzerland
| | - O Kepp
- 1] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [2] INSERM, U1138, Gustave Roussy, Paris, France [3] Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France
| | - D J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - R A Knight
- 1] Medical Molecular Biology Unit, Institute of Child Health, University College London (UCL), London, UK [2] Medical Research Council Toxicology Unit, Leicester, UK
| | - S Kumar
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia [2] School of Medicine and School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - J J Lemasters
- Departments of Drug Discovery and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - B Levine
- 1] Center for Autophagy Research, University of Texas, Southwestern Medical Center, Dallas, TX, USA [2] Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA
| | - A Linkermann
- Division of Nephrology and Hypertension, Christian-Albrechts University, Kiel, Germany
| | - S A Lipton
- 1] The Scripps Research Institute, La Jolla, CA, USA [2] Sanford-Burnham Center for Neuroscience, Aging, and Stem Cell Research, La Jolla, CA, USA [3] Salk Institute for Biological Studies, La Jolla, CA, USA [4] University of California, San Diego (UCSD), San Diego, CA, USA
| | - R A Lockshin
- Department of Biological Sciences, St. John's University, Queens, NY, USA
| | - C López-Otín
- Department of Biochemistry and Molecular Biology, Faculty of Medecine, Instituto Universitario de Oncología (IUOPA), University of Oviedo, Oviedo, Spain
| | - E Lugli
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - F Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - W Malorni
- 1] Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita (ISS), Roma, Italy [2] San Raffaele Institute, Sulmona, Italy
| | - J-C Marine
- 1] Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, Leuven, Belgium [2] Laboratory for Molecular Cancer Biology, Center of Human Genetics, Leuven, Belgium
| | - S J Martin
- Department of Genetics, The Smurfit Institute, Trinity College, Dublin, Ireland
| | - J-C Martinou
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - J P Medema
- Laboratory for Experiments Oncology and Radiobiology (LEXOR), Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - P Meier
- Institute of Cancer Research, The Breakthrough Toby Robins Breast Cancer Research Centre, London, UK
| | - S Melino
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - N Mizushima
- Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - U Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - C Muñoz-Pinedo
- Cell Death Regulation Group, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - G Nuñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - A Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - T Panaretakis
- Department of Oncology-Pathology, Cancer Centrum Karolinska (CCK), Karolinska Institute, Stockholm, Sweden
| | - J M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - M E Peter
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M Piacentini
- 1] Department of Biology, University of Rome Tor Vergata; Rome, Italy [2] Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases Lazzaro Spallanzani, Istituto Ricovero Cura Carattere Scientifico (IRCCS), Rome, Italy
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and LTTA Center, University of Ferrara, Ferrara, Italy
| | - J H Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons, Dublin, Ireland
| | - H Puthalakath
- Department of Biochemistry, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - G A Rabinovich
- Laboratory of Immunopathology, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - K S Ravichandran
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - R Rizzuto
- Department Biomedical Sciences, University of Padova, Padova, Italy
| | - C M Rodrigues
- Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - D C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - T Rudel
- Department of Microbiology, University of Würzburg; Würzburg, Germany
| | - Y Shi
- Soochow Institute for Translational Medicine, Soochow University, Suzhou, China
| | - H-U Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - B R Stockwell
- 1] Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA [2] Departments of Biological Sciences and Chemistry, Columbia University, New York, NY, USA
| | - G Szabadkai
- 1] Department Biomedical Sciences, University of Padova, Padova, Italy [2] Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London (UCL), London, UK
| | - S W Tait
- 1] Cancer Research UK Beatson Institute, Glasgow, UK [2] Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - H L Tang
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - N Tavernarakis
- 1] Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece [2] Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Y Tsujimoto
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - T Vanden Berghe
- 1] VIB Inflammation Research Center, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - P Vandenabeele
- 1] VIB Inflammation Research Center, Ghent, Belgium [2] Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium [3] Methusalem Program, Ghent University, Ghent, Belgium
| | - A Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - E F Wagner
- Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - H Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London (UCL), London, UK
| | - E White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - W G Wood
- 1] Department of Pharmacology, University of Minnesota School of Medicine, Minneapolis, MN, USA [2] Geriatric Research, Education and Clinical Center, VA Medical Center, Minneapolis, MN, USA
| | - J Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Z Zakeri
- 1] Department of Biology, Queens College, Queens, NY, USA [2] Graduate Center, City University of New York (CUNY), Queens, NY, USA
| | - B Zhivotovsky
- 1] Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden [2] Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - G Melino
- 1] Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy [2] Medical Research Council Toxicology Unit, Leicester, UK
| | - G Kroemer
- 1] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France [3] INSERM, U1138, Gustave Roussy, Paris, France [4] Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Villejuif, France [5] Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
22
|
Westhoff MA, Faham N, Marx D, Nonnenmacher L, Jennewein C, Enzenmüller S, Gonzalez P, Fulda S, Debatin KM. Sequential dosing in chemosensitization: targeting the PI3K/Akt/mTOR pathway in neuroblastoma. PLoS One 2013; 8:e83128. [PMID: 24391739 PMCID: PMC3877010 DOI: 10.1371/journal.pone.0083128] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/31/2013] [Indexed: 01/14/2023] Open
Abstract
Breaking resistance to chemotherapy is a major goal of combination therapy in many tumors, including advanced neuroblastoma. We recently demonstrated that increased activity of the PI3K/Akt network is associated with poor prognosis, thus providing an ideal target for chemosensitization. Here we show that targeted therapy using the PI3K/mTOR inhibitor NVP-BEZ235 significantly enhances doxorubicin-induced apoptosis in neuroblastoma cells. Importantly, this increase in apoptosis was dependent on scheduling: while pretreatment with the inhibitor reduced doxorubicin-induced apoptosis, the sensitizing effect in co-treatment could further be increased by delayed addition of the inhibitor post chemotherapy. Desensitization for doxorubicin-induced apoptosis seemed to be mediated by a combination of cell cycle-arrest and autophagy induction, whereas sensitization was found to occur at the level of mitochondria within one hour of NVP-BEZ235 posttreatment, leading to a rapid loss of mitochondrial membrane potential with subsequent cytochrome c release and caspase-3 activation. Within the relevant time span we observed marked alterations in a ∼30 kDa protein associated with mitochondrial proteins and identified it as VDAC1/Porin protein, an integral part of the mitochondrial permeability transition pore complex. VDAC1 is negatively regulated by the PI3K/Akt pathway via GSK3β and inhibition of GSK3β, which is activated when Akt is blocked, ablated the sensitizing effect of NVP-BEZ235 posttreatment. Our findings show that cancer cells can be sensitized for chemotherapy induced cell death – at least in part – by NVP-BEZ235-mediated modulation of VDAC1. More generally, we show data that suggest that sequential dosing, in particular when multiple inhibitors of a single pathway are used in the optimal sequence, has important implications for the general design of combination therapies involving molecular targeted approaches towards the PI3K/Akt/mTOR signaling network.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Najmeh Faham
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Daniela Marx
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Claudia Jennewein
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Stefanie Enzenmüller
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Patrick Gonzalez
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Simone Fulda
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- * E-mail: (SF); (KMD)
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- * E-mail: (SF); (KMD)
| |
Collapse
|
23
|
Mitochondrial toxin betulinic acid induces in vitro eryptosis in human red blood cells through membrane permeabilization. Arch Toxicol 2013; 88:755-68. [PMID: 24241250 DOI: 10.1007/s00204-013-1162-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/05/2013] [Indexed: 01/12/2023]
Abstract
Betulinic acid (BA), a compound isolated from the bark of white birch (Betula pubescens), was reported to induce apoptosis in many types of cancer through mitochondrial dysfunction with low side effects in normal cells. Because of these features, BA is regarded as a potential anti-cancer agent. However, the effect of BA on the induction of cell death in human erythrocytes remains unknown. Given that BA is a mitochondrial toxin and mitochondria are the central cell death regulator, we hypothesized that BA is unable to elicit apoptosis (also known as eryptosis or erythroptosis) in human erythrocytes devoid of mitochondria. This study therefore tried to determine the in vitro effect of BA on the induction of eryptosis/erythroptosis. Contrary to our prediction, BA caused phosphatidylserine externalization, increase in cellular Ca(2+) ion concentration ([Ca(2+)]i) and eryptosis/erythroptosis in human erythrocytes with a lethal dose larger than that in cancer lines. Mechanistically, the rise of [Ca(2+)]i seems not to be the only key mediator in the BA-mediated eryptosis/erythroptosis because depletion of external Ca(2+) and use of Ca(2+) channels blockers could not eliminate the BA's effect. Also, BA was able to elicit discocyte-echinocyte transformation and release calcein from the RBC ghosts in a way similar to digitonin through membrane permeabilization. Collectively, we report here for the first time that BA induced eryptosis/erythroptosis in human erythrocytes through Ca(2+) loading and membrane permeabilization.
Collapse
|
24
|
Sami A, Karsy M. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding. Tumour Biol 2013; 34:1991-2002. [PMID: 23625692 DOI: 10.1007/s13277-013-0800-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/08/2013] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV astrocytoma with a median survival of 12 months despite current multi-modal treatment options. GBM is distinguished clinicopathologically into primary and secondary subtypes. Mutations of phosphatase and tensin homolog, and subsequent upregulation of the downstream protein kinase B/mammalian target of rapamycin (mTOR) signaling pathway, are commonly seen in primary GBM and less predominantly in secondary GBM. While investigations into targeted treatments of mTOR have been attempted, feedback regulation within the mTOR signaling pathway may account for therapeutic resistance. Currently, rapamycin analogs, dual-targeted mTOR complex 1 and 2 agents as well as dual mTOR and phosphatidylinositol-3 kinase-targeted agents are being investigated experimentally and in clinical trials. This review will discuss the experimental potential of these agents in the treatment of GBM and their current stage in the GBM drug pipeline. Knowledge obtained from the application of these agents can help in understanding the pathogenesis of GBM as well as delineating subsequent treatment strategies.
Collapse
Affiliation(s)
- Arshawn Sami
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | |
Collapse
|
25
|
Grzmil M, Hemmings BA. Overcoming resistance to rapalogs in gliomas by combinatory therapies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1371-80. [PMID: 23395884 DOI: 10.1016/j.bbapap.2013.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/30/2013] [Indexed: 12/31/2022]
Abstract
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Michal Grzmil
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | |
Collapse
|