1
|
Tolentino S, Monteiro MM, Saldanha-Araújo F, Cunha-Filho M, Gratieri T, Guerra ENS, Gelfuso GM. Bioadhesive Chitosan Films Loading Curcumin for Safe and Effective Skin Cancer Topical Treatment. Pharmaceutics 2024; 17:18. [PMID: 39861668 PMCID: PMC11768514 DOI: 10.3390/pharmaceutics17010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. Methods: The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer® 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation. Results: The films demonstrated physical stability and preserved curcumin content at room temperature for 90 days. Drug release was effectively controlled during the first 8 h, with release rates ranging from 51.6 ± 4.8% to 65.6 ± 13.0%. The films also enhanced drug penetration into the skin compared to a curcumin solution used as a control (stratum corneum: 1.3 ± 0.1 to 1.9 ± 0.8 µg/cm²; deeper skin layers: 1.7 ± 0.1 to 2.7 ± 0.2 µg/cm²). A cytotoxicity test on metastatic melanoma cells showed that curcumin at topical doses exerted activity similar to that delivered via the skin. Furthermore, curcumin alone was more effective in inhibiting tumor cells than radiotherapy alone (p < 0.01), with no additional benefit observed when curcumin was combined with radiotherapy. Finally, irritation tests confirmed that the films were safe for topical application. Conclusion: The developed chitosan-based bioadhesive films represent a promising alternative for the topical treatment of skin tumors using curcumin.
Collapse
Affiliation(s)
- Seila Tolentino
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| | - Mylene M. Monteiro
- Laboratory of Oral Histopathology, University of Brasilia, Brasília 70910-900, Brazil; (M.M.M.); (E.N.S.G.)
| | - Felipe Saldanha-Araújo
- Laboratory of Hematology and Stem Cells (LHCT), School of Health Sciences, University of Brasília, Brasília 70910-900, Brazil;
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| | - Eliete N. Silva Guerra
- Laboratory of Oral Histopathology, University of Brasilia, Brasília 70910-900, Brazil; (M.M.M.); (E.N.S.G.)
| | - Guilherme M. Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| |
Collapse
|
2
|
Tolentino S, Cardoso CO, Monteiro MM, Taveira SF, Gratieri T, Cunha-Filho M, Guerra ENS, Gelfuso GM. Chitosan-based mucoadhesive films loaded with curcumin for topical treatment of oral cancer. Int J Biol Macromol 2024; 278:134887. [PMID: 39168194 DOI: 10.1016/j.ijbiomac.2024.134887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
This study aimed to develop mucoadhesive chitosan-based films capable of enhancing the curcumin penetration into the oral mucosa to treat oral cancers. We developed three films containing medium molecular weight chitosan (190-310 KDa) and other excipients (polyvinyl alcohol, Poloxamer®407, and propylene glycol) that have proven to be compatible with each other and with curcumin in thermal analyses. The films were smooth, flexible, and precipitates free, with uniform weight and thickness, pH compatible with the oral mucosa, resistance to traction, and entrapped curcumin in a high proportion. They also exhibited necessary swelling and mucoadhesion for tissue adherence. Ex vivo penetration studies proved that the films significantly increased the penetration of curcumin into the oral mucosa compared to control, even when the mucosa was subjected to a condition of simulated salivation. Curcumin exhibited cytotoxic activity in vitro in the two head and neck cancer cell lines (FaDu, SCC-9) at doses close to those found in penetration studies with the films. When combined with radiotherapy, curcumin demonstrated superiority over single doses of radiotherapy at 4, 8, and 12 Gy. Therefore, the developed films may represent a promising alternative for the topical treatment of oral tumors.
Collapse
Affiliation(s)
- Seila Tolentino
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasília, DF, Brazil
| | - Camila O Cardoso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasília, DF, Brazil
| | - Mylene M Monteiro
- Laboratory of Oral Histopathology, University of Brasilia, 70910-900 Brasília, DF, Brazil
| | - Stephania F Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), Federal University of Goias, 74605-170 Goiania, GO, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasília, DF, Brazil
| | - Eliete N S Guerra
- Laboratory of Oral Histopathology, University of Brasilia, 70910-900 Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
3
|
Solanki R, Parmar B, Jadav M, Pooja D, Kulhari H, Patel S. Berberine encapsulated phenylboronic acid-conjugated pullulan nanoparticles: Synthesis, characterization and anticancer activity validated in A431 skin cancer cells and 3D spheroids. Int J Biol Macromol 2024; 273:132737. [PMID: 38825265 DOI: 10.1016/j.ijbiomac.2024.132737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polysaccharide-based drug delivery systems are in high demand due to their biocompatibility, non-toxicity, and low-cost. In this study, sialic acid receptor targeted 4-carboxy phenylboronic acid modified pullulan-stearic acid conjugate (4-cPBA-PUL-SA) was synthesized and characterized for the delivery of Berberine (BBR). BBR-loaded 4-cPBA-PUL-SA nanoparticles (BPPNPs) were monodispersed (PDI: 0.238 ± 0.07), with an average hydrodynamic particle size of 191.6 nm and 73.6 % encapsulation efficiency. BPPNPs showed controlled BBR release and excellent colloidal stability, indicating their potential for drug delivery application. The cytotoxicity results indicated that BPPNPs exhibited dose and time-dependent cytotoxicity against human epidermoid carcinoma cells (A431) as well as 3D spheroids. Targeted BPPNPs demonstrated significantly higher anticancer activity compared to BBR and non-targeted BPNPs. The IC50 values for BPPNPs (2.29 μg/ml) were significantly lower than BPNPs (4.13 μg/ml) and BBR (19.61 μg/ml), indicating its potential for skin cancer treatment. Furthermore, CSLM images of A431 cells and 3D spheroids demonstrated that BPPNPs have higher cellular uptake and induced apoptosis compared to free BBR and BPNPs. In conclusion, BPPNPs demonstrate promising potential as an effective drug delivery system for skin cancer therapy.
Collapse
Affiliation(s)
- Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Bhavik Parmar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Deep Pooja
- Parul Institute of Pharmacy & Research, Parul University, Vadodara- 391760, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar 382030, India.
| |
Collapse
|
4
|
Alsadi N, Yasavoli-Sharahi H, Mueller R, Cuenin C, Chung F, Herceg Z, Matar C. Protective Mechanisms of Polyphenol-Enriched Blueberry Preparation in Preventing Inflammation in the Skin against UVB-Induced Damage in an Animal Model. Antioxidants (Basel) 2023; 13:25. [PMID: 38275645 PMCID: PMC10812677 DOI: 10.3390/antiox13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
UVB significantly impacts the occurrence of cutaneous disorders, ranging from inflammatory to neoplastic diseases. Polyphenols derived from plants have been found to exhibit photoprotective effects against various factors that contribute to skin cancer. During the fermentation of the polyphenol-enriched blueberry preparation (PEBP), small oligomers of polyphenols were released, thus enhancing their photoprotective effects. This study aimed to investigate the protective effects of PEBP on UVB-induced skin inflammation. Topical preparations of polyphenols were applied to the skin of dorsally shaved mice. Mice were subsequently exposed to UVB and were sacrificed 90 min after UVB exposure. This study revealed that pretreatment with PEBP significantly inhibited UVB-induced recruitment of mast and neutrophil cells and prevented the loss of skin thickness. Furthermore, the findings show that PEBP treatment resulted in the downregulation of miR-210, 146a, and 155 and the upregulation of miR-200c and miR-205 compared to the UVB-irradiated mice. Additionally, PEBP was found to reduce the expression of IL-6, IL-1β, and TNFα, inhibiting COX-2 and increasing IL-10 after UVB exposure. Moreover, DNA methylation analysis indicated that PEBP might potentially reduce the activation of inflammation-related pathways such as MAPK, Wnt, Notch, and PI3K-AKT signaling. Our finding suggests that topical application of PEBP treatment may effectively prevent UVB-induced skin damage by inhibiting inflammation.
Collapse
Affiliation(s)
- Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
| | - Rudolf Mueller
- Pathology and Laboratory Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
| | - Felicia Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France; (C.C.); (F.C.); (Z.H.)
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (N.A.); (H.Y.-S.)
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Xie Q, Zhang R, Liu D, Yang J, Hu Q, Shan C, Li X. Apigenin inhibits growth of melanoma by suppressing miR-512-3p and promoting the G1 phase of cell cycle involving the p27 Kip1 protein. Mol Cell Biochem 2022; 477:1569-1582. [PMID: 35194732 DOI: 10.1007/s11010-022-04363-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
In the present study, we screened multiple melanoma cell lines for treatment of Apigenin and miRNA expression, also studied the role of miR-512-3p in melanoma. RT-PCR analysis was done for screening miRNA in melanoma cell lines (WM1361B, WM983A, WM1341D, SK-MEL-3, SH-4, SK-MEL-24 and RPMI-7951) compared to normal human epidermal melanocytes. Colony formation assay for cell viability studies, cell cycle by flowcytometry and protein expression by immunoblot analysis. For in vivo analysis tumour xenograft mouse model was created. Immunohistochemistry was done for PCNA positive cells. For expression of miR-512-3p in tumour tissues fluorescence in situ hybridization was done. In silico studies were done by molecular docking studies. The WM1361B and WM983A cell lines showed overexpression of miR-512-3p and increased cell proliferation compared to normal human epidermal melanocytes. Treatment of anti-miR-512-3p to WM1361B and WM983A cells halted cell proliferation and also caused G1-phase arrest. We studied the effect of Apigenin on the expression levels of miR-512-3p and associated molecular targets. Apigenin treatment in WM1361B and WM983A cells showed inhibition in expression of miR-512-3p, arrest of G1 phase of cell cycle, cytotoxicity and revival of p27 Kip1. Apigenin treatment significantly suppressed the growth of WM1361B in tumour induced mice, the activity was associated with decreased levels of miR-512-3p, tumour cell proliferation and increased levels of p27 Kip1 protein. Docking studies confirm potential affinity of Apigenin for p27 Kip1. Apigenin acts as an inhibitor of miR-512-3p by suppressing growth of melanoma both in vitro and in vivo targeting the p27 Kip1 axis.
Collapse
Affiliation(s)
- Qun Xie
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China
| | - Ruirui Zhang
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China
| | - Dandan Liu
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China.
| | - Jing Yang
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China.
| | - Qiang Hu
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China
| | - Chao Shan
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China
| | - Xiaohan Li
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China
| |
Collapse
|
6
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
7
|
Juin SK, Ghosh S, Majumdar S. Glycyrrhizic acid facilitates anti-tumor immunity by attenuating Tregs and MDSCs: An immunotherapeutic approach. Int Immunopharmacol 2020; 88:106932. [PMID: 32890791 DOI: 10.1016/j.intimp.2020.106932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Melanoma is one of the most aggressive malignancies and its treatment remains challenging due to its highly metastatic property and availability of limited effective drugs. In addition, immunosuppresive tumor microenvironment (TME) has been identified as major barrier to evoke anti-tumor response in melanoma. Recent studies revealed that immunosuppressive TME is directly correlated with heightened activations of T regulatory cells (Tregs) and Myeloid derived suppressor cells (MDSCs) functions. In this study, we investigated the anti-cancer effect of a triterpenoid, glycyrrhizic acid (GA) on melanoma. Our study revealed that GA not only exhibited anti-proliferative effects on melanoma cells it significantly restricted progression of melanoma tumor. However, the therapeutic efficacy of GA in impressive regression of tumor was found to be directly correlated with induction of apoptosis and modulation of cytokines from Th2 to Th1 type. To unravel the mechanism of anti-melanoma effect of GA, it has been delineated that GA inhibits pSTAT3 to evade anti-tumor suppressive function of Tregs and MDSCs. Downregulation of FOXP3, GITR and CTLA4 in tumor-infiltrating Tregs and inhibition of Cox2, PGE2 and Arginase 1 in intra-tumoral MDSC were evidenced as some of the key events during therapeutic intervention of GA in melanoma management. Moreover, GA effectively restricted advanced stage solid tumor while used in combination with Mycobacterium indicus pranii, a known immunomodulator, which alone is reported to be ineffective to restrict advanced stage solid tumor. Thus, our findings may open up a novel insight of GA as a promising agent in cancer immunotherapy or adjuvant therapy in future.
Collapse
Affiliation(s)
- Subir Kumar Juin
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Sweta Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
8
|
Sajadimajd S, Bahramsoltani R, Iranpanah A, Kumar Patra J, Das G, Gouda S, Rahimi R, Rezaeiamiri E, Cao H, Giampieri F, Battino M, Tundis R, Campos MG, Farzaei MH, Xiao J. Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacol Res 2020; 151:104584. [PMID: 31809853 DOI: 10.1016/j.phrs.2019.104584] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/01/2019] [Accepted: 12/01/2019] [Indexed: 02/08/2023]
Abstract
Polyphenols are one of most important phytochemicals distributing in herb plants, vegetables and fruits, which known as important anticancer agents. Given the high incidence and mortality of skin cancer, this study aimed to uncover the chemopreventive effects of polyphenols against skin cancer metastasis. Electronic databases including Scopus, PubMed, and Cochrane library were used to compile the literature from 2000 to August 2019. Only in vivo mechanistic studies with English full-texts were chosen for this review. Polyphenols were included in this study if they were administered in purified form; while total extract and fractions were excluded. Among the 8254 primarily selected papers, only a final number of 34 studies were included. The chemopreventive effects of polyphenols as anthocyanins, ellagitanins, EGCG, oleuropeindihydroxy phenyl, punicalagin, quercetin, resveratrol and theaflavin, were mainly examined in treatment of melanoma as the highly metastatic form of this cutaneous cancer. Those properties are mediated by modulation of angiogenesis, apoptosis, inflammation, metastasis, proliferation, pathways such as EGFR/MAPK, mTOR/PI3K/Akt, JAK/STAT, FAK/RTK2, PGE-2/VEGF, PGE-1/ERK/HIIF-1α, and modulation of related signals including NF-κB, P21WAF/CIP1, Bim, Bax, Bcl2, Bclx, Bim, Puma, Noxa, ILs and MMPs. Chemopreventive effects of polyphenols are mediated by several signaling pathways against skin carcinogenesis and metastasis, implying the importance of polyphenols to open up new horizons in development of anti-skin cancer therapeutic strategies.
Collapse
Affiliation(s)
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sushanto Gouda
- Amity Institute of Forestry and Wildlife, Amity University, Noida, Uttar Pradesh, India.
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Elnaz Rezaeiamiri
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hui Cao
- Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, Guangdong, 519031, China.
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain.
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036, Rende, CS, Italy.
| | - Maria G Campos
- Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, Coimbra, Portugal; Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, Coimbra, Portugal.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Kang H. MicroRNA-Mediated Health-Promoting Effects of Phytochemicals. Int J Mol Sci 2019; 20:ijms20102535. [PMID: 31126043 PMCID: PMC6566171 DOI: 10.3390/ijms20102535] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
Phytochemicals are known to benefit human health by modulating various cellular processes, including cell proliferation, apoptosis, and inflammation. Due to the potential use of phytochemicals as therapeutic agents against human diseases such as cancer, studies are ongoing to elucidate the molecular mechanisms by which phytochemicals affect cellular functions. It has recently been shown that phytochemicals may regulate the expression of microRNAs (miRNAs). MiRNAs are responsible for the fine-tuning of gene expression by controlling the expression of their target mRNAs in both normal and pathological cells. This review summarizes the recent findings regarding phytochemicals that modulate miRNA expression and promote human health by exerting anticancer, photoprotective, and anti-hepatosteatosis effects. Identifying miRNAs modulated by phytochemicals and understanding the regulatory mechanisms mediated by their target mRNAs will facilitate the efforts to maximize the therapeutic benefits of phytochemicals.
Collapse
Affiliation(s)
- Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|
10
|
Anthocyanins from Hibiscus sabdariffa calyx attenuate in vitro and in vivo melanoma cancer metastasis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Melo MNDO, Oliveira AP, Wiecikowski AF, Carvalho RS, Castro JDL, de Oliveira FAG, Pereira HMG, da Veiga VF, Capella MMA, Rocha L, Holandino C. Phenolic compounds from Viscum album tinctures enhanced antitumor activity in melanoma murine cancer cells. Saudi Pharm J 2018; 26:311-322. [PMID: 29556122 PMCID: PMC5856955 DOI: 10.1016/j.jsps.2018.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/29/2018] [Indexed: 12/26/2022] Open
Abstract
Cancer is one of the biggest problems in public health worldwide. Plants have been shown important role in anticancer research. Viscum album L. (Santalaceae), commonly known as mistletoe, is a semi-parasitic plant that grows on different host trees. In complementary medicine, extracts from European mistletoe (Viscum album L.) have been used in the treatment of cancer. The study was conducted to identify chemical composition and antitumor potential of Viscum album tinctures. Chemical analysis performed by high resolution chromatography equipped with high resolution mass spectrometer identified caffeic acid, chlorogenic acid, sakuranetin, isosakuranetin, syringenin 4-O-glucoside, syringenin 4-O-apiosyl-glucoside, alangilignoside C and ligalbumoside A compounds. Some of these compounds are probably responsible for the reduction of tumoral cellular growth in a dose-dependent manner. It was observed that melanoma murine cells (B16F10) were more sensitive to V. album tinctures than human leukaemic cells (K562), besides non-tumoral cells (MA-104) had a much lower cytotoxicity to them. Apoptotic-like cells were observed under light microscopy and were confirmed by a typical DNA fragmentation pattern. Additionally, flow cytometry results using Annexin-V/FITC permitted to quantify increased expression of early and late apoptotic markers on tumoral cells, confirming augmented Sub G0 population, which was probably associated with a consistent decrease in G1, and an increase in S or G2/M populations. Results indicate the chemical composition of V. album tinctures influences the mechanisms of in vitro tumoral cell death, suggesting a potential use in cancer pharmacotherapy research.
Collapse
Key Words
- % v/v, % volume/volume
- Antitumoral
- DMEM, Dulbecco’s Modified Eagle Medium
- HPLC, high performance liquid chromatography
- HRMS, high resolution mass
- Lignans
- Mistletoe
- NP/PEG, Diphenylboriloxyethilamine/polyetileneglicol
- PDA, photodiode array detector
- Phenolic compounds
- TA, tincture A
- TB, tincture B
- TLC, Thin Layer Chromatography
- UFLC, ultra fast liquid chromatography
- UHPLC, ultra high performance liquid chromatography
- Viscum album
Collapse
Affiliation(s)
- Michelle Nonato de Oliveira Melo
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Vegetal Biotechnology Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Passos Oliveira
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Corresponding author at: Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Bloco B subsolo, sala 11, Avenida Carlos Chagas Filho 373, Ilha do Fundão/Cidade Universitária, Zip code: 21941-902 Rio de Janeiro, RJ, Brazil.Multidisciplinary Laboratory of Pharmaceutical SciencesFaculty of PharmacyFederal University of Rio de JaneiroCentro de Ciências da SaúdeBloco B subsolo, sala 11, Avenida Carlos Chagas Filho 373, Ilha do Fundão/Cidade UniversitáriaZip code: 21941-902 Rio de JaneiroRJBrazil
| | - Adalgisa Felippe Wiecikowski
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Sampaio Carvalho
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana de Lima Castro
- Brazilian Doping Control Laboratory, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Venicio Feo da Veiga
- Microscopy Sector Professor Paulo de Góes, Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Marques Alves Capella
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Rocha
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, Niterói, RJ, Brazil
| | - Carla Holandino
- Multidisciplinary Laboratory of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Park H, Park H, Chung TW, Choi HJ, Jung YS, Lee SO, Ha KT. Effect of Sorbus commixta on the invasion and migration of human hepatocellular carcinoma Hep3B cells. Int J Mol Med 2017; 40:483-490. [PMID: 28586002 DOI: 10.3892/ijmm.2017.3010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/18/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor metastasis is a main cause of cancer-related morbidity and mortality. Thus, a number of medicinal herbs and phytochemicals have been investigated as possible candidates for the inhibition of cancer metastasis. Sorbus commixta Hedl. (SC) is a traditional medicinal plant used in the treatment of inflammatory diseases, as it has antioxidant, anti-inflammatory, anti-atherosclerotic and anti-hepatotoxic activities. In this study, we demonstrate that the water extract of SC exerts inhibitory effect on the invasion and migration of hepatocellular carcinoma Hep3B cells. The activity and expression of matrix metalloproteinase (MMP)-9, which is responsible for the invasion of cancer cells, was decreased by SC treatment. The invasive and migratory potentials of the Hep3B cells were also decreased, as evidence by in vitro assay using the Boyden chamber system. In addition, the expression of the chemokine receptors, C-X-C chemokine receptor type 4 (CXCR)4 and C-X-C chemokine receptor type 6 (CXCR6), were inhibited by SC in Hep3B cells. Furthermore, actin fiber organization was markedly suppressed by SC treatment. Taken together, the findings of this study suggest for the first time, to the best of our knowledge, that SC suppresses the invasion and migration of highly metastatic Hep3B cells.
Collapse
Affiliation(s)
- Hyerin Park
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Hyunwook Park
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - Tae-Wook Chung
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Hee-Jung Choi
- Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| | - Yeon-Seop Jung
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Syng-Ook Lee
- Department of Food Science and Technology, Keimyung University, Daegu 42601, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam-do 626-870, Republic of Korea
| |
Collapse
|
13
|
Avram S, Coricovac DE, Pavel IZ, Pinzaru I, Ghiulai R, Baderca F, Soica C, Muntean D, Branisteanu DE, Spandidos DA, Tsatsakis AM, Dehelean CA. Standardization of A375 human melanoma models on chicken embryo chorioallantoic membrane and Balb/c nude mice. Oncol Rep 2017; 38:89-99. [PMID: 28535001 PMCID: PMC5492638 DOI: 10.3892/or.2017.5658] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
Cutaneous melanoma is a metastatic disease characterized by high resistance to treatment, the incidence of which has alarmingly increased worldwide over the past years. A thorough characterization of tumor onset, progression and metastasis is compulsory to overcome the gaps existent in melanoma biology. The present study suggests a well-established protocol and a detailed histological description of human melanoma models in ovo and in vivo obtained by the inoculation of A375 cells to chick embryo chorioallantoic membrane (CAM) and Balb/c nude mice. The inoculation of A375 cells on CAM led to the formation of compact primary and secondary tumors on day 4 post-inoculation, with mean surface area values of 2.2±0.4 mm2 and 1.5±0.3 mm2, respectively. Moreover, the vessels around the tumors presented a spike wheel pattern, indicating a strong angiogenic reaction. All the injected mice, apart from one, developed solid polypoid primary tumors with lobulated surfaces and intense vascularization, and achromic epithelioid malignant melanocytes with vesiculous nuclei and necrosis area were detected. Metastasis was histologically confirmed in only 30% of the mice with the tumor xenografts. These data indicate that the standardization protocols proposed are complex and reproducible, and can be further employed for the therapeutic surveillance of antiangiogenic and anticancer agents.
Collapse
Affiliation(s)
- Stefana Avram
- Department of Pharmacognosy, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Dorina-Elena Coricovac
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Iulia Pinzaru
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Flavia Baderca
- Department of Microscopic Morphology, Faculty of Medicine, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 300041, Romania
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Danina Muntean
- Department of Pathophysiology, Faculty of Medicine, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 300041, Romania
| | - Daciana E Branisteanu
- Department of Dermatology and Venereology, 'Grigore T. Popa' University of Medicine and Pharmacy Iasi, Iasi 7000115, Romania
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - Cristina Adriana Dehelean
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| |
Collapse
|
14
|
Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett 2017; 391:125-140. [PMID: 28131904 DOI: 10.1016/j.canlet.2017.01.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/02/2017] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
Melanoma is a cutaneous neoplastic growth of melanocytes with great potential to invade and metastasize, especially when not treated early and effectively. Epithelial-mesenchymal transition (EMT) is the process by which melanocytes lose their epithelial characteristics and acquire mesenchymal phenotypes. Mesenchymal protein expression increases the motility, invasiveness, and metastatic potential of melanoma. Many pathways play a role in promotion of mesenchymal protein expression including RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, Wnt/β-catenin, and several others. Downstream effectors of these pathways induce expression of EMT transcription factors including Snail, Slug, Twist, and Zeb that promote repression of epithelial and induction of mesenchymal character. Emerging research has demonstrated that a variety of small molecule inhibitors as well as phytochemicals can influence the progression of EMT and may even reverse the process, inducing re-expression of epithelial markers. Phytochemicals are of particular interest as supplementary treatment options because of their relatively low toxicities and anti-EMT properties. Modulation of EMT signaling pathways using synthetic small molecules and phytochemicals is a potential therapeutic strategy for reducing the aggressive progression of metastatic melanoma. In this review, we discuss the emerging pathways and transcription factor targets that regulate EMT and evaluate potential synthetic small molecules and naturally occurring compounds that may reduce metastatic melanoma progression.
Collapse
|
15
|
Yin X, Yu XW, Zhu P, Zhang YM, Zhang XH, Wang F, Zhang JJ, Yan W, Xi Y, Wan JB, Kang JX, Zou ZQ, Bu SZ. Endogenously synthesized n-3 fatty acids in fat-1 transgenic mice prevent melanoma progression by increasing E-cadherin expression and inhibiting β-catenin signaling. Mol Med Rep 2016; 14:3476-84. [PMID: 27573698 DOI: 10.3892/mmr.2016.5639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 07/13/2016] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma is the most lethal form of skin cancer. Although preclinical studies have shown that n-3 polyunsaturated fatty acids (PUFAs) are beneficial for prevention of melanoma, the molecular mechanisms underlying the protective effects of n‑3 PUFAs on melanoma remain largely unknown. In the present study, endogenously increased levels of n-3 PUFAs in the tumor tissues of omega‑3 fatty acid desaturase (fat‑1) transgenic mice was associated with a reduction in the growth rate of melanoma xenografts. This reduction in tumor growth in fat‑1 mice compared with wild‑type controls may have been associated, in part, to the: i) Increased expression of E‑cadherin and the reduced expression of its transcriptional repressors, the zinc finger E‑box binding homeobox 1 and snail family transcriptional repressor 1; ii) significant repression of the epidermal growth factor receptor/Akt/β‑catenin signaling pathway; and iii) formation of significant levels of n‑3 PUFA‑derived lipid mediators, particularly resolvin D2 and E1, maresin 1 and 15‑hydroxyeicosapentaenoic acid. In addition, vitamin E administration counteracted n‑3 PUFA‑induced lipid peroxidation and enhanced the antitumor effect of n‑3 PUFAs, which suggests that the protective role of n‑3 PUFAs against melanoma is not mediated by n‑3 PUFAs‑induced lipid peroxidation. These results highlight a potential role of n‑3 PUFAs supplementation for the chemoprevention of melanoma in high‑risk individuals, and as a putative adjuvant agent in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Xuan Yin
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiong-Wei Yu
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Pan Zhu
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yuan-Ming Zhang
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiao-Hong Zhang
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Feng Wang
- Clinical Laboratory, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jin-Jie Zhang
- Maritime Faculty, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wang Yan
- Neurosurgery Department, Second Hospital of Ningbo, Ningbo, Zhejiang 315010, P.R. China
| | - Yang Xi
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 519000, P.R. China
| | - Jing-Xuan Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zu-Quan Zou
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shi-Zhong Bu
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
16
|
Singh T, Prasad R, Katiyar SK. Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. Am J Cancer Res 2016; 6:1287-1301. [PMID: 27429844 PMCID: PMC4937733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/01/2016] [Indexed: 06/06/2023] Open
Abstract
Lung cancer and its metastasis is the leading cause of cancer-related mortality world-wide. Non-small cell lung cancer (NSCLC) accounts for about 90% of total lung cancer cases. Despite advancements in therapeutic approaches, only limited improvement has been achieved. Therefore, alternative strategies are required for the management of lung cancer. Here we report the chemotherapeutic effect of silymarin, a phytochemical from milk thistle plant (Silybum marianum L. Gaertn.), on NSCLC cell migration using metastatic human NSCLC cell lines (A549, H1299 and H460) together with the molecular targets underlying these effects. Using an in vitro cell migration assay, we found that treatment of human NSCLC cells (A549, H1299 and H460) with silymarin (0, 5, 10 and 20 µg/mL) for 24 h resulted in concentration-dependent inhibition of cell migration, which was associated with the inhibition of histone deacetylase (HDAC) activity and reduced levels of class 1 HDAC proteins (HDAC1, HDAC2, HDAC3 and HDAC8) and concomitant increases in the levels of histone acetyltransferase activity (HAT). Known HDAC inhibitors (sodium butyrate and trichostatin A) exhibited similar patterns of therapeutic effects on the lung cancer cells. Treatment of A549 and H460 cells with silymarin reduced the expression of the transcription factor ZEB1 and restored expression of E-cadherin. The siRNA knockdown of ZEB1 also reduced the expression of HDAC proteins and enhanced re-expression of the levels of E-cadherin in NSCLC cells. MicroRNA-203 (miR-203) acts as a tumor suppressor, regulates tumor cell invasion and is repressed by ZEB1 in cancer cells. Silymarin treatment restored the levels of miR-203 in NSCLC cells. These findings indicate that silymarin can effectively inhibit lung cancer cell migration and provide a coherent model of its mechanism of action suggesting that silymarin may be an important therapeutic option for the prevention or treatment of lung cancer metastasis when administered either alone or with standard cancer therapeutic drugs.
Collapse
Affiliation(s)
- Tripti Singh
- Department of Dermatology, University of Alabama at BirminghamBirmingham, AL 35294, USA
| | - Ram Prasad
- Department of Dermatology, University of Alabama at BirminghamBirmingham, AL 35294, USA
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at BirminghamBirmingham, AL 35294, USA
- Environmental Health Sciences, University of Alabama at BirminghamBirmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL 35294, USA
- Birmingham Veterans Affairs Medical CenterBirmingham, AL 35294, USA
| |
Collapse
|
17
|
Prasad R, Katiyar SK. Down-regulation of miRNA-106b inhibits growth of melanoma cells by promoting G1-phase cell cycle arrest and reactivation of p21/WAF1/Cip1 protein. Oncotarget 2015; 5:10636-49. [PMID: 25361006 PMCID: PMC4279399 DOI: 10.18632/oncotarget.2527] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
MiR-106b is overexpressed in various types of cancers and is associated with the regulation of the carcinogenic processes. Using RT-PCR, we have identified overexpression of miRNA-106b in various melanoma cell lines (A375, Hs294t, SK-Mel28, SK-Mel 119, Mel 1241, Mel 1011 and Mel 928) as compared to its expression in normal human epidermal melanocytes (NHEM). The overexpression of miR-106b in melanoma cells (A375, Hs294t) was associated with greater cell proliferation capacity than NHEM. Treatment of A375 and Hs294t cells with anti-miR-106b resulted in inhibition of cell proliferation as well as G1-phase arrest. We determined the effects of grape seed proanthocyanidins (GSPs) on the expression of miRNA-106b and its underlying molecular targets. Treatment of A375 and Hs294t cells with GSPs resulted in suppression of the levels of miRNA-106b, cytotoxicity, G1-phase arrest and reactivation of p21/WAF1/Cip1. Dietary GSPs significantly inhibited growth of A375 melanoma cell tumor xenografts in nude mice, which was associated with reduction in the levels of miRNA-106b, tumor cell proliferation and increases in the levels of p21/WAF1/Cip1 protein. These studies suggest that miRNA-106b plays a crucial role in melanoma growth and that GSPs act as an inhibitor of miR-106b thereby blocking melanoma growth in vitro and in vivo models.
Collapse
Affiliation(s)
- Ram Prasad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA. Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA. Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA. Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| |
Collapse
|
18
|
Bailon-Moscoso N, González-Arévalo G, Velásquez-Rojas G, Malagon O, Vidari G, Zentella-Dehesa A, Ratovitski EA, Ostrosky-Wegman P. Phytometabolite Dehydroleucodine Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Human Astrocytoma Cells through p73/p53 Regulation. PLoS One 2015; 10:e0136527. [PMID: 26309132 PMCID: PMC4550445 DOI: 10.1371/journal.pone.0136527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/04/2015] [Indexed: 12/01/2022] Open
Abstract
Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.
Collapse
Affiliation(s)
- Natalia Bailon-Moscoso
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | | | - Omar Malagon
- Departamento de Química Aplicada, Universidad Técnica Particular de Loja, Loja, Ecuador
- Dipartimento di Chimica Organica, University of Pavia, Pavia, Italy
| | - Giovanni Vidari
- Dipartimento di Chimica Organica, University of Pavia, Pavia, Italy
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición“Salvador Zubirán”, México, D. F., Mexico
| | - Edward A. Ratovitski
- Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador
- Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., Mexico
- * E-mail:
| |
Collapse
|
19
|
Yang X, Du T, Wang X, Zhang Y, Hu W, Du X, Miao L, Han C. IDH1, a CHOP and C/EBPβ-responsive gene under ER stress, sensitizes human melanoma cells to hypoxia-induced apoptosis. Cancer Lett 2015; 365:201-10. [PMID: 26049021 DOI: 10.1016/j.canlet.2015.05.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/22/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023]
Abstract
Isocitrate dehydrogenase1 (IDH1) is of great importance in cell metabolism and energy conversion. However, alterations in IDH1 in response to stress and excise-regulated mechanisms are not well described. Here we investigated gene expression profiles under ER stress in melanoma cells and found that IDH1 was dramatically increased with ER stress induced by tunicamycin. Elevated IDH1 subsequently sensitized human melanoma cells to hypoxia-induced apoptosis and promoted HIF-1α degradation. In addition, we revealed that CHOP and C/EBPβ were involved in hypoxia-induced apoptosis via transcriptional regulation of IDH1 expression. Our data indicate that IDH1, regulated by CHOP and C/EBPβ in response to ER stress treatment, inhibits survival of melanoma cells under hypoxia and promotes HIF-1α degradation. Therefore, we propose that IDH1 may serve as a valuable target for melanoma therapy.
Collapse
Affiliation(s)
- Xuejun Yang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Tongde Du
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Wanglai Hu
- Department of Immunology, Anhui Medical University, Hefei, Anhui 230601, China
| | - Xiaofeng Du
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China
| | - Lin Miao
- Oncology Department, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Second Affiliated Hospital, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
20
|
Soares AS, Costa VM, Diniz C, Fresco P. Inosine strongly enhances proliferation of human C32 melanoma cells through PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways. Basic Clin Pharmacol Toxicol 2015; 116:25-36. [PMID: 24909096 DOI: 10.1111/bcpt.12280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 05/26/2014] [Indexed: 12/14/2022]
Abstract
Malignant melanoma is the most deadly type of skin cancer. The lack of effective pharmacological approaches for this tumour can be related to the incomplete understanding of the pathophysiological mechanisms involved in melanoma cell proliferation. Adenosine has growth-promoting and growth inhibitory effects on tumour cells. We aimed to investigate effects of adenosine and its metabolic product, inosine, on human C32 melanoma cells and the signalling pathways involved. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and bromodeoxyuridine (BrdU) proliferation assays were used to evaluate adenosine, adenosine deaminase and inosine effects, in the absence or presence of adenosine receptor (AR), A3 AR and P2Y1 R antagonists and PLC, PKC, MEK1/2 and PI3K inhibitors. ERK1/2 levels were determined using an ELISA kit. Adenosine and inosine levels were quantified using an enzyme-coupled assay. Adenosine caused cell proliferation through AR activation. Adenosine deaminase increased inosine levels (nanomolar concentrations) on the extracellular space, in a time-dependent manner, inducing proliferation through A3 AR activation. Micromolar concentrations of inosine enhanced proliferation through A3 AR activation, causing an increase in ERK1/2 levels, and P2Y1 R activation via ENT-dependent mechanisms. We propose the simultaneous activation of PLC-PKC-MEK1/2-ERK1/2 and PI3K pathways as the main mechanism responsible for the proliferative effect elicited by inosine and its significant role in melanoma cancer progression.
Collapse
Affiliation(s)
- Ana Sofia Soares
- REQUIMTE, Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
21
|
Chen J, Luan Y, Yu R, Zhang Z, Zhang J, Wang W. Transient receptor potential (TRP) channels, promising potential diagnostic and therapeutic tools for cancer. Biosci Trends 2014; 8:1-10. [PMID: 24647107 DOI: 10.5582/bst.8.1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite the advances in detection of and therapies for various tumors, high rates of treatment failure and mortality still exist throughout the world. These high rates are mainly due to the powerful capability of tumor cells to proliferate and migrate. Recent studies regarding the transient receptor potential (TRP) have indicated that TRP channels are associated with tumors and that TRP channels might represent potential targets for cancer treatment. TRP channels are important calcium-selective ion channels in many different tissues and cell types in mammals and are crucial regulators of calcium and sodium. TRP were first discovered in the photoreceptors of Drosophila with gene defects or mutations. TRP channels can be divided into seven subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), TRPA (ankyrin transmembrane protein), and TRPN (NomPC-like). TRPC proteins are conserved across organisms since they are most homologous to Drosophila TRP. TRP superfamilies have been linked to many physiological and pathological functions, including cell differentiation, proliferation, apoptosis, and ion homeostasis. This review focuses on the properties of TRP in oncogenesis, cancer proliferation, and cell migration.
Collapse
Affiliation(s)
- Jianpeng Chen
- Department of Oncology, Provincial Hospital Affiliated with Shandong University
| | | | | | | | | | | |
Collapse
|
22
|
Vaid M, Singh T, Prasad R, Katiyar SK. Silymarin inhibits melanoma cell growth both in vitro and in vivo by targeting cell cycle regulators, angiogenic biomarkers and induction of apoptosis. Mol Carcinog 2014; 54:1328-39. [PMID: 25174976 DOI: 10.1002/mc.22208] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/13/2014] [Accepted: 06/26/2014] [Indexed: 12/13/2022]
Abstract
Cutaneous malignant melanoma is the leading cause of death from skin diseases and is often associated with activating mutations of the proto-oncogene BRAF. To develop more effective strategies for the prevention or treatment of melanoma, we have examined the inhibitory effects of silymarin, a flavanoid from Silybum marianum, on melanoma cells. Using A375 (BRAF-mutated) and Hs294t (non BRAF-mutated but highly metastatic) human melanoma cell lines, we found that in vitro treatment with silymarin resulted in a dose-dependent: (i) reduction in cell viability; (ii) enhancement of either Go/G1 (A375) or G2-M (Hs294t) phase cell cycle arrest with corresponding alterations in cyclins and cyclin-dependent kinases; and (iii) induction of apoptosis. The silymarin-induced apoptosis of human melanoma cells was associated with a reduction in the levels of anti-apoptotic proteins (Bcl-2 and Bcl-xl), an increase in the levels of pro-apoptotic protein (Bax), and activation of caspases. Further, oral administration of silymarin (500 mg/kg body weight/2× a week) significantly inhibited (60%, P < 0.01) the growth of BRAF-mutated A375 melanoma tumor xenografts, and this was associated with: (i) inhibition of cell proliferation; (ii) induction of apoptosis of tumor cells; (iii) alterations in cell cycle regulatory proteins; and (iv) reduced expression of tumor angiogenic biomarkers in tumor xenograft tissues. These results indicate that silymarin may have a chemotherapeutic effect on human melanoma cell growth and warrant its further evaluation.
Collapse
Affiliation(s)
- Mudit Vaid
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tripti Singh
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ram Prasad
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Santosh K Katiyar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
23
|
Kumar R, Kaur R, Singh AP, Arora S. Diminution of hepatic response to 7, 12-dimethylbenz(α)anthracene by ethyl acetate fraction of Acacia catechu willd. through modulation of xenobiotic and anti-oxidative enzymes in rats. PLoS One 2014; 9:e90083. [PMID: 24587216 PMCID: PMC3937415 DOI: 10.1371/journal.pone.0090083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/30/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Liver is the primary metabolizing site of body and is prone to damage by exogenous as well as endogenous intoxicants. Polycyclic aromatic hydrocarbons such as 7, 12- dimethylbenz(α)anthracene (DMBA) is an exogenous hepatotoxin, which is well known for modulating phase I, II and anti-oxidative enzymes of liver. Plants contain plethora of polyphenolic compounds which can reverse the damaging effect of various xenobiotics. The present study investigated protective role of the ethyl acetate fraction of Acacia catechu Willd. (EAF) against DMBA induced alteration in hepatic metabolizing and anti-oxidative enzymes in rats. METHODOLOGY AND PRINCIPAL FINDINGS The rats were subjected to hepatic damage by treating with DMBA for 7 weeks on alternative days and treatment schedule was terminated at the end of 14 weeks. The rats were euthanized at the end of protocol and livers were homogenized. The liver homogenates were used to analyse phase I (NADPH-cytochrome P450 reducatse, NADH-cytochrome b5 reductase, cytochrome P420, cytochrome b5), phase II (glutathione-S-transferase, DT diaphorase and γ-Glutamyl transpeptidase) and antioxidative enzymes (catalase, superoxide dismutase, ascorbate peroxidase, glutathione reductase, guiacol peroxidase and lactate dehydrogenase). Furthermore, other oxidative stress parameters (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes and reduced glutathione) and liver marker enzymes (serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase and alkaline phosphatase) were also studied. The DMBA induced significant changes in activity of hepatic enzymes that was reversed by treatment with three dose levels of EAF. CONCLUSION It is concluded that EAF affords hepato-protection against DMBA in rats through modulation of phase I, II and anti-oxidative enzymes.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Rajbir Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|