1
|
Wang N, Luo L, Xu X, Zhou H, Li F. Focused ultrasound-induced cell apoptosis for the treatment of tumours. PeerJ 2024; 12:e17886. [PMID: 39184389 PMCID: PMC11344538 DOI: 10.7717/peerj.17886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is a serious public health problem worldwide. Traditional treatments, such as surgery, radiotherapy, chemotherapy, and immunotherapy, do not always yield satisfactory results; therefore, an efficient treatment for tumours is urgently needed. As a convenient and minimally invasive modality, focused ultrasound (FUS) has been used not only as a diagnostic tool but also as a therapeutic tool in an increasing number of studies. FUS can help treat malignant tumours by inducing apoptosis. This review describes the three apoptotic pathways, apoptotic cell clearance, and how FUS affects these three apoptotic pathways. This review also discusses the role of thermal and cavitation effects on apoptosis, including caspase activity, mitochondrial dysfunction, and Ca2+ elease. Finally, this article reviews various aspects of FUS combination therapy, including sensitization by radiotherapy and chemotherapy, gene expression upregulation, and the introduction of therapeutic gases, to provide new ideas for clinical tumour therapy.
Collapse
Affiliation(s)
- Na Wang
- Chongqing University, School of Medicine, Chongqing, China
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Li Luo
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Xinzhi Xu
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Hang Zhou
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| | - Fang Li
- Chongqing University Cancer Hospital, Ultrasound Department, Chongqing, China
| |
Collapse
|
2
|
Zhang J, Zhou J, Tang L, Ma J, Wang Y, Yang H, Wang X, Fan W. Custom-Design of Multi-Stimuli-Responsive Degradable Silica Nanoparticles for Advanced Cancer-Specific Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400353. [PMID: 38651235 DOI: 10.1002/smll.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities. This review scrutinizes the burgeoning utility of degradable silica nanoparticles in combination with chemotherapy and other treatment modalities. Commencing the elucidation of degradable silica synthesis and degradation mechanisms, emphasis is placed on the responsiveness of these materials to endogenous (e.g., pH, redox reactions, hypoxia, and enzymes) and exogenous stimuli (e.g., light and high-intensity focused ultrasound). Moreover, this exploration delves into strategies harnessing degradable silica nanoparticles in chemotherapy alone, coupled with radiotherapy, photothermal therapy, photodynamic therapy, gas therapy, immunotherapy, starvation therapy, and chemodynamic therapy, elucidating multimodal synergies. Concluding with an assessment of advances, challenges, and constraints in oncology, despite hurdles, future investigations are anticipated to augment the role of degradable silica in cancer therapy. These insights can serve as a compass for devising more efficacious combined tumor treatment strategies.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jiani Zhou
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | | | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Ying Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
3
|
Hu S, Zhang X, Melzer A, Landgraf L. Ultrasound-induced cavitation renders prostate cancer cells susceptible to hyperthermia: Analysis of potential cellular and molecular mechanisms. Front Genet 2023; 14:1122758. [PMID: 37152995 PMCID: PMC10154534 DOI: 10.3389/fgene.2023.1122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Focused ultrasound (FUS) has become an important non-invasive therapy for prostate tumor ablation via thermal effects in the clinic. The cavitation effect induced by FUS is applied for histotripsy, support drug delivery, and the induction of blood vessel destruction for cancer therapy. Numerous studies report that cavitation-induced sonoporation could provoke multiple anti-proliferative effects on cancer cells. Therefore, cavitation alone or in combination with thermal treatment is of great interest but research in this field is inadequate. Methods: Human prostate cancer cells (LNCap and PC-3) were exposed to 40 s cavitation using a FUS system, followed by water bath hyperthermia (HT). The clonogenic assay, WST-1 assay, and Transwell® invasion assay, respectively, were used to assess cancer cell clonogenic survival, metabolic activity, and invasion potential. Fluorescence microscopy using propidium iodide (PI) as a probe of cell membrane integrity was used to identify sonoporation. The H2A.X assay and Nicoletti test were conducted in the mechanism investigation to detect DNA double-strand breaks (DSBs) and cell cycle arrest. Immunofluorescence microscopy and flow cytometry were performed to determine the distribution and expression of 5α-reductase (SRD5A). Results: Short FUS shots with cavitation (FUS-Cav) in combination with HT resulted in, respectively, a 2.2, 2.3, and 2.8-fold decrease (LNCap) and a 2.0, 1.5, and 1.6-fold decrease (PC-3) in the clonogenic survival, cell invasiveness and metabolic activity of prostate cancer cells when compared to HT alone. FUS-Cav immediately induced sonoporation in 61.7% of LNCap cells, and the combination treatment led to a 1.4 (LNCap) and 1.6-fold (PC-3) increase in the number of DSBs compared to HT alone. Meanwhile, the combination therapy resulted in 26.68% of LNCap and 31.70% of PC-3 with cell cycle arrest in the Sub-G1 phase and 35.37% of PC-3 with cell cycle arrest in the G2/M phase. Additionally, the treatment of FUS-Cav combined with HT block the androgen receptor (AR) signal pathway by reducing the relative Type I 5α-reductase (SRD5A1) level to 38.28 ± 3.76% in LNCap cells, and decreasing the relative Type III 5α-reductase 3 (SRD5A3) level to 22.87 ± 4.88% in PC-3 cells, in contrast, the relative SRD5A level in untreated groups was set to 100%. Conclusion: FUS-induced cavitation increases the effects of HT by interrupting cancer cell membranes, inducing the DSBs and cell cycle arrest, and blocking the AR signal pathway of the prostate cancer cells, with the potential to be a promising adjuvant therapy in prostate cancer treatment.
Collapse
Affiliation(s)
- Shaonan Hu
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Xinrui Zhang
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| | - Andreas Melzer
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
- Institute for Medical Science and Technology (IMSaT), University of Dundee, Dundee, United Kingdom
| | - Lisa Landgraf
- Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Image-guided locoregional non-intravascular interventional treatments for hepatocellular carcinoma: Current status. J Interv Med 2021; 4:1-7. [PMID: 34805939 PMCID: PMC8562266 DOI: 10.1016/j.jimed.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly and frequent cancers worldwide, although great advancement in the treatment of this malignancy have been made within the past few decades. It continues to be a major health issue due to an increasing incidence and a poor prognosis. The majority of patients have their HCC diagnosed at an intermediate or advanced stage in theUSA or China. Curative therapy such as surgical resection or liver transplantation is not considered anoption of treatment at these stages. Transarterial chemoembolization (TACE), the most widely used locoregional therapeutic approach, used to be the mainstay of treatment for cases with unresectable cancer entities. However, for those patients with hypovascular tumors or impaired liver function reserve, TACE is a suboptimal treatment option. For example, embolization does not result in complete coverage of a hypovascular tumor, and may rather promotes postoperative tumor recurrence, or leave residual tumor, in these TACE-resistance patients. In addition, TACE carries a higher risk of hepatic decompensation in patients with poor liver function or reserve. Non-vascular interventional locoregional therapies for HCC include radiofrequency ablation (RFA), microwave ablation (MWA), high-intensity focused ultrasound (HIFU), laser-induced thermotherapy (LITT), cryosurgical ablation (CSA), irreversible Electroporation (IRE), percutaneous ethanol injection (PEI), and brachytherapy. Recent advancements in these techniques have significantly improved the treatment efficacy of HCC and expanded the population of patients who qualify for treatment. This review embraces the current status of imaging-guided locoregional non-intravascular interventional treatments for HCCs, with a primary focus on the clinical evaluation and assessment of the efficacy of combined therapies using these interventional techniques.
Collapse
|
5
|
Zhang X, Melzer A. Image guided ablation. Scott Med J 2021; 66:175-177. [PMID: 34743636 PMCID: PMC8573691 DOI: 10.1177/0036933020973637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xinrui Zhang
- Scientist, ICCAS, Faculty of Medicine, University Leipzig, Germany
| | - Andreas Melzer
- Director, ICCAS, Faculty of Medicine, University Leipzig, Germany.,Foundation Director of IMSaT (Institute for Medical Science & Technology), IMSaT, University Dundee, UK
| |
Collapse
|
6
|
Tang Y, Chen C, Jiang B, Wang L, Jiang F, Wang D, Wang Y, Yang H, Ou X, Du Y, Wang Q, Zou J. Bifidobacterium bifidum-Mediated Specific Delivery of Nanoparticles for Tumor Therapy. Int J Nanomedicine 2021; 16:4643-4659. [PMID: 34267516 PMCID: PMC8275162 DOI: 10.2147/ijn.s315650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Hypoxia is considered to be obstructive to tumor treatment, but the reduced oxygen surroundings provide a suitable habitat for Bifidobacterium bifidum (BF) to colonize. The anaerobe BF selectively colonizes into tumors following systemic injection due to its preference for the hypoxia in the tumor cores. Therefore, BF may be a potential targeting agent which could be used effectively in tumor treatment. We aimed to determine whether a novel BF-mediated strategy, that was designed to deliver AP-PFH/PLGA NPs (aptamers CCFM641-5-functionalized Perfluorohexane (PFH) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles) by aptamer-directed approach into solid tumor based on the tumor-targeting ability of BF, could improve efficiency of high intensity focused ultrasound (HIFU) treatment of breast cancer. Methods We synthesized AP-PFH/PLGA NPs using double emulsion method and carbodiimide method. Then, we evaluated targeting ability of AP-PFH/PLGA NPs to BF in vivo. Finally, we studied the efficacy of HIFU ablation based on BF plus AP-PFH/PLGA NPs (BF-mediated HIFU ablation) in tumor. Results The elaborately designed AP-PFH/PLGA NPs can target BF colonized in tumor to achieve high tumor accumulation, which can significantly enhance HIFU therapeutic efficiency. We also found that, compared with traditional chemotherapy, this therapy not only inhibits tumor growth, but also significantly prolongs the survival time of mice. More importantly, this treatment strategy has no obvious side effects. Conclusion We successfully established a novel therapy method, BF-mediated HIFU ablation, which provides an excellent platform for highly efficient and non-invasive therapy of tumor.
Collapse
Affiliation(s)
- Yu Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chun Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Binglei Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fujie Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Disen Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yaotai Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haiyan Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xia Ou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
7
|
Saliev T, Feril LB, Ogawa K, Watanabe A, Begimbetova D, Molkenov A, Alimbetov D, Tachibana K. Induction of Apoptosis in U937 Cells by Using a Combination of Bortezomib and Low-Intensity Ultrasound. Med Sci Monit 2016; 22:5049-5057. [PMID: 28003640 PMCID: PMC5201119 DOI: 10.12659/msm.898323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background We scrutinized the feasibility of apoptosis induction in blood cancer cells by means of low-intensity ultrasound and the proteasome inhibitor bortezomib (Velcade). Material/Methods Human leukemic monocyte lymphoma U937 cells were subjected to ultrasound in the presence of bortezomib and the echo contrast agent Sonazoid. Two types of acoustic intensity (0.18 W/cm2 and 0.05 W/cm2) were used for the experiments. Treated U937 cells were analyzed for viability and levels of early and late apoptosis. In addition, scanning electron microscopy analysis of treated cells was performed. Results The percentage of cells that underwent early apoptosis in the group treated with ultrasound and Sonazoid was 8.0±1.31% (intensity 0.18 W/cm2) and 7.0±1.69% (0.05 W/cm2). However, coupling of bortezomib and Sonazoid resulted in an increase in the percentage of cells in the early apoptosis phase, up to 32.50±3.59% (intensity 0.18 W/cm2) and 33.0±4.90% (0.05 W/cm2). The percentage of U937 cells in the late apoptosis stage was not significantly different from that in the group treated with bortezomib only. Conclusions Our findings indicate the feasibility of apoptosis induction in blood cancer cells by using a combination of bortezomib, ultrasound contrast agents, and low-intensity ultrasound.
Collapse
Affiliation(s)
- Timur Saliev
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Loreto B Feril
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Koichi Ogawa
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Akiko Watanabe
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | - Askhat Molkenov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Dauren Alimbetov
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Katsuro Tachibana
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|