1
|
Li J, Tan LX, Sun B, Griffin N, Niknezhad SV, Yu C, Berthoin L, Cruz-Pacheco N, Mohabbat S, Sinada H, Efraim Y, Ting Chen FY, An L, Gaylord EA, Bahney CS, Lombaert IM, Knox SM. Chronic degenerative failure of salivary glands can be reversed through restoring mitochondrial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630834. [PMID: 39803569 PMCID: PMC11722244 DOI: 10.1101/2024.12.31.630834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
There are no therapies for reversing chronic organ degeneration. Non-healing degenerative wounds are thought to be irreparable, in part, by the inability of the tissue to respond to reparative stimuli. As such, treatments are typically aimed at slowing tissue degeneration or replacing cells through transplantation. Building on our previous studies showing acutely injured salivary glands, and specifically secretory acini, can be regenerated, we reveal that non-healing, degenerating murine salivary glands remain responsive to a neuromimetic (muscarinic) agonist with treatment resulting in the restoration of tissue. Not only is degenerated tissue structure and function returned to a homeostatic-like state, but this outcome is also sustained months after treatment termination. Furthermore, despite an eventual reduction in saliva secretion, the gland responds to a second round of treatment, fully regaining secretory function that resembles uninjured controls. Our findings suggest this rescue is due to a reversal of an aberrant de-differentiated acinar cell state and mitochondrial dysfunction through a muscarinic-calcium signaling pathway. Thus, these data challenge the concept that organ degeneration is irreversible and provides a readily testable therapeutic strategy for epithelial organ restoration that may significantly benefit a diversity of chronic disease conditions.
Collapse
Affiliation(s)
- Jianlong Li
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- These authors contributed equally
| | - Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, California, USA; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- These authors contributed equally
| | - Bo Sun
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
- These authors contributed equally
| | - Nathan Griffin
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Seyyed Vahid Niknezhad
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Chieh Yu
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Lionel Berthoin
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Noel Cruz-Pacheco
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Seayar Mohabbat
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Hanan Sinada
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Yael Efraim
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Feeling Yu Ting Chen
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Luye An
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Eliza A. Gaylord
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Chelsey S. Bahney
- University of California, San Francisco. Orthopedic Trauma Institute, San Francisco, CA
| | - Isabelle M.A. Lombaert
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Co–senior authors
| | - Sarah M. Knox
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, California, USA
- Co–senior authors
- Lead contact
| |
Collapse
|
2
|
Cao Y, Ren Q, Chang S, Cui W, Zhao P, Wang Y. N6-methyladenosine RNA methylation modification regulates the transcription of viral-derived E (XSR) miRNAs to promote ALV-J replication. Vet Microbiol 2024; 298:110218. [PMID: 39159504 DOI: 10.1016/j.vetmic.2024.110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The E (XSR) element located in the 3'UTR of the ALV-J genome has the capability to transcribe and generate viral-derived E (XSR) miRNA. However, the biological function and transcriptional regulation mechanism of this process remain unclear. In this study, the impact of E (XSR) miRNA on ALV-J replication and the regulatory effect of N6-methyladenosine (m6A) methylation on its transcription were investigated. The results demonstrated that E (XSR) miRNA could stimulate ALV-J replication and suppress apoptosis in DF-1 cells in vitro. E (XSR) miRNA's promotion of ALV-J replication was not associated with the type I interferon pathway, but achieved by suppressing the expression of the host GPC5 gene. The transcription of E (XSR) miRNA could be promoted by m6A methylation modification, where m6A modification was found at the A6880 and A7016 sites of ALV-J gRNA. This study provides a new perspective on the transcription of ALV-J E (XSR) miRNA and its regulatory function in ALV-J replication.
Collapse
Affiliation(s)
- Yuqing Cao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Qingling Ren
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Wenping Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China.
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Zoonoses, Tai'an, China.
| |
Collapse
|
3
|
Amorós-Pérez B, Rivas-Pardo B, Gómez del Moral M, Subiza JL, Martínez-Naves E. State of the Art in CAR-T Cell Therapy for Solid Tumors: Is There a Sweeter Future? Cells 2024; 13:725. [PMID: 38727261 PMCID: PMC11083689 DOI: 10.3390/cells13090725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has proven to be a powerful treatment for hematological malignancies. The situation is very different in the case of solid tumors, for which no CAR-T-based therapy has yet been approved. There are many factors contributing to the absence of response in solid tumors to CAR-T cells, such as the immunosuppressive tumor microenvironment (TME), T cell exhaustion, or the lack of suitable antigen targets, which should have a stable and specific expression on tumor cells. Strategies being developed to improve CAR-T-based therapy for solid tumors include the use of new-generation CARs such as TRUCKs or bi-specific CARs, the combination of CAR therapy with chemo- or radiotherapy, the use of checkpoint inhibitors, and the use of oncolytic viruses. Furthermore, despite the scarcity of targets, a growing number of phase I/II clinical trials are exploring new solid-tumor-associated antigens. Most of these antigens are of a protein nature; however, there is a clear potential in identifying carbohydrate-type antigens associated with tumors, or carbohydrate and proteoglycan antigens that emerge because of aberrant glycosylations occurring in the context of tumor transformation.
Collapse
Affiliation(s)
- Beatriz Amorós-Pérez
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Inmunotek S.L., 28805 Madrid, Spain;
| | - Benigno Rivas-Pardo
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Manuel Gómez del Moral
- Department of Cellular Biology, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain;
| | | | - Eduardo Martínez-Naves
- Department of Immunology, Ophthalmology and ORL, School of Medicine, Universidad Complutense of Madrid (UCM), 28040 Madrid, Spain; (B.A.-P.); (B.R.-P.)
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
4
|
Ma Z, Chen H, Xia Z, You J, Han C, Wang S, Xia W, Bai Y, Liu T, Xu L, Zhou G, Xu Y, Yin R. Energy stress-induced circZFR enhances oxidative phosphorylation in lung adenocarcinoma via regulating alternative splicing. J Exp Clin Cancer Res 2023; 42:169. [PMID: 37461053 PMCID: PMC10351155 DOI: 10.1186/s13046-023-02723-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) contribute to multiple biological functions and are also involved in pathological conditions such as cancer. However, the role of circRNAs in metabolic reprogramming, especially upon energy stress in lung adenocarcinoma (LUAD), remains largely unknown. METHODS Energy stress-induced circRNA was screened by circRNA profiling and glucose deprivation assays. RNA-seq, real-time cell analyzer system (RTCA) and measurement of oxygen consumption rate (OCR) were performed to explore the biological functions of circZFR in LUAD. The underlying mechanisms were investigated using circRNA pull-down, RNA immunoprecipitation, immunoprecipitation and bioinformatics analysis of alternative splicing. Clinical implications of circZFR were assessed in 92 pairs of LUAD tissues and adjacent non-tumor tissues, validated in established patient-derived tumor xenograft (PDTX) model. RESULTS CircZFR is induced by glucose deprivation and is significantly upregulated in LUAD compared to adjacent non-tumor tissues, enhancing oxidative phosphorylation (OXPHOS) for adaptation to energy stress. CircZFR is strongly associated with higher T stage and poor prognosis in patients with LUAD. Mechanistically, circZFR protects heterogeneous nuclear ribonucleoprotein L-like (HNRNPLL) from degradation by ubiquitination to regulate alternative splicing, such as myosin IB (MYO1B), and subsequently activates the AKT-mTOR pathway to facilitate OXPHOS. CONCLUSION Our study provides new insights into the role of circRNAs in anticancer metabolic therapies and expands our understanding of alternative splicing.
Collapse
Affiliation(s)
- Zhifei Ma
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Hao Chen
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Department of Thoracic Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, 226361, China
| | - Zhijun Xia
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, 21009, P.R. China
| | - Jing You
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211116, P.R. China
| | - Chencheng Han
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211116, P.R. China
| | - Siwei Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, 21009, P.R. China
| | - Wenjia Xia
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211116, P.R. China
| | - Yongkang Bai
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Tongyan Liu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211116, P.R. China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, 21009, P.R. China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, P.R. China.
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
- Biobank of Lung Cancer, Jiangsu Biobank of Clinical Resources, Nanjing, 21009, P.R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211116, P.R. China
- Department of Science and Technology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 21009, P.R. China
| |
Collapse
|
5
|
Baldavira CM, Prieto TG, Machado-Rugolo J, de Miranda JT, da Silveira LKR, Velosa APP, Teodoro WR, Ab’Saber A, Takagaki T, Capelozzi VL. Modeling extracellular matrix through histo-molecular gradient in NSCLC for clinical decisions. Front Oncol 2022; 12:1042766. [PMID: 36452484 PMCID: PMC9703002 DOI: 10.3389/fonc.2022.1042766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 09/26/2023] Open
Abstract
Lung cancer still represents a global health problem, being the main type of tumor responsible for cancer deaths. In this context, the tumor microenvironment, and the extracellular matrix (ECM) pose as extremely relevant. Thus, this study aimed to explore the prognostic value of epithelial-to-mesenchymal transition (EMT), Wnt signaling, and ECM proteins expression in patients with non-small-cell lung carcinoma (NSCLC) with clinical stages I-IIIA. For that, we used 120 tissue sections from patients and evaluated the immunohistochemical, immunofluorescence, and transmission electron microscopy (TEM) to each of these markers. We also used in silico analysis to validate our data. We found a strong expression of E-cadherin and β-catenin, which reflects the differential ECM invasion process. Therefore, we also noticed a strong expression of chondroitin sulfate (CS) and collagens III and V. This suggests that, after EMT, the basal membrane (BM) enhanced the motility of invasive cells. EMT proteins were directly associated with WNT5A, and collagens III and V, which suggests that the WNT pathway drives them. On the other hand, heparan sulfate (HS) was associated with WNT3A and SPARC, while WNT1 was associated with CS. Interestingly, the association between WNT1 and Col IV suggested negative feedback of WNT1 along the BM. In our cohort, WNT3A, WNT5A, heparan sulfate and SPARC played an important role in the Cox regression model, influencing the overall survival (OS) of patients, be it directly or indirectly, with the SPARC expression stratifying the OS into two groups: 97 months for high expression; and 65 for low expression. In conclusion, the present study identified a set of proteins that may play a significant role in predicting the prognosis of NSCLC patients with clinical stages I-IIIA.
Collapse
Affiliation(s)
| | | | - Juliana Machado-Rugolo
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Health Technology Assessment Center, Clinical Hospital, Medical School of São Paulo State University, Botucatu, São Paulo, Brazil
| | - Jurandir Tomaz de Miranda
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Lizandre Keren Ramos da Silveira
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre Ab’Saber
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Teresa Takagaki
- Division of Pneumology, Instituto do Coração (Incor), University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Wang F, Li Y, Li Z, Zou Z, Lu Y, Xu C, Zhao Z, Wang H, Wang Y, Guo S, Jin L, Wang J, Li Q, Jiang G, Xia F, Shen B, Wu J. Prognostic value of GPC5 polymorphism rs2352028 and clinical characteristics in Chinese lung cancer patients. Future Oncol 2022; 18:3165-3177. [PMID: 36165234 DOI: 10.2217/fon-2022-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: GPC5 rs2352028 is associated with the risk of lung cancer, but its relationship with lung cancer prognosis is unclear. Materials & methods: The authors collected blood samples from 888 patients with lung cancer and used a Cox proportional hazards model to analyze the association between prognosis and GPC5 polymorphism rs2352028. Results: GPC5 rs2352028 C > T was associated with a better prognosis. Patients with CT genotype had longer overall survival than those with CC genotype. Additionally, older and early-stage patients with CT + TT genotype had a lower risk of death than those with CC genotype. Conclusion: GPC5 rs2352028 C > T may play a protective role in patients with lung cancer and GPC5 rs2352028 may be a potential genetic marker for lung cancer prognosis.
Collapse
Affiliation(s)
- Fan Wang
- Company 1 of Basic Medical Science, Navy Military Medical University, Shanghai, 200433, China
| | - Yutao Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhengxing Li
- Company 6 of Basic Medical Science, Navy Military Medical University, Shanghai, 200433, China
| | - Zixiu Zou
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yongming Lu
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, 571199, China
| | - Chang Xu
- Clinical College of Xiangnan University, Chenzhou, 423000, China
| | - ZongXu Zhao
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, 571199, China
| | - HuaiZhou Wang
- Department of Laboratory Diagnosis, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, 200433, China
| | - Yi Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shicheng Guo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, TongJi University, Shanghai, 200120, China
| | - GengXi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, 200433, China
| | - Fan Xia
- Department of Respiratory Disease, Navy 905 Hospital, Shanghai, 200235, China
| | - Bo Shen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Junjie Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Department of Pulmonary and Critical Care Medicine, Shanghai Geriatric Medical Center, Shanghai, 200032, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
7
|
Yang X, Chen Y, Zhou Y, Wu C, Li Q, Wu J, Hu WW, Zhao WQ, Wei W, Wu CP, Jiang JT, Ji M. GPC5 suppresses lung cancer progression and metastasis via intracellular CTDSP1/AhR/ARNT signaling axis and extracellular exosome secretion. Oncogene 2021; 40:4307-4323. [PMID: 34079082 DOI: 10.1038/s41388-021-01837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Glypican-5 (GPC5) is a member of heparan sulfate proteoglycans, and its biological importance in initiation and progression of lung cancer remains controversial. In the present study, we revealed that GPC5 transcriptionally enhanced the expression of CTDSP1 (miR-26b host gene) via AhR-ARNT pathway, and such up-regulation of CTDSP1 intracellularly contributed to the inhibited proliferation of lung cancer cells. Moreover, exosomes derived from GPC5-overexpressing human lung cancer cells (GPC5-OE-derived exosomes) had an extracellular repressive effect on human lymphatic endothelial cells (hLECs), leading to decreased tube formation and migration. Comparison between GPC5-WT- and GPC5-OE-derived exosomes showed that miR-26b (embedded within introns of CTDSP1 gene) was significantly up-regulated in GPC5-OE-derived exosomes and critical to the influence on hLECs. On the mechanism, we demonstrated that miR-26b transferred into hLECs directly targeted to PTK2 3'-UTR and led to PTK2 down-regulation, resulting in defects in tube formation and migration of hLECs. By uncovering the regulation network among GPC5, miR-26b, miR-26b host gene (CTDSP1), and target gene (PTK2), our findings demonstrated that GPC5 functioned as a tumor suppressor in human lung cancer.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China. .,Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China. .,Institute of Cell Therapy, Soochow University, Changzhou, P.R. China.
| | - Yan Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - You Zhou
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China.,Institute of Cell Therapy, Soochow University, Changzhou, P.R. China.,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Chen Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Qing Li
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wen Wei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wei Qing Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Wei Wei
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Chang Ping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China
| | - Jing Ting Jiang
- Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, P.R. China. .,Institute of Cell Therapy, Soochow University, Changzhou, P.R. China. .,Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China.
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, P.R. China.
| |
Collapse
|
8
|
Zhang Q, Shi R, Bai Y, Meng L, Hu J, Zhu H, Liu T, De X, Wang S, Wang J, Xu L, Zhou G, Yin R. Meiotic nuclear divisions 1 (MND1) fuels cell cycle progression by activating a KLF6/E2F1 positive feedback loop in lung adenocarcinoma. Cancer Commun (Lond) 2021; 41:492-510. [PMID: 33734616 PMCID: PMC8211349 DOI: 10.1002/cac2.12155] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/19/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background Considering the increase in the proportion of lung adenocarcinoma (LUAD) cases among all lung cancers and its considerable contribution to cancer‐related deaths worldwide, we sought to identify novel oncogenes to provide potential targets and facilitate a better understanding of the malignant progression of LUAD. Methods The results from the screening of transcriptome and survival analyses according to the integrated Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) data were combined, and a promising risk biomarker called meiotic nuclear divisions 1 (MND1) was selectively acquired. Cell viability assays and subcutaneous xenograft models were used to validate the oncogenic role of MND1 in LUAD cell proliferation and tumor growth. A series of assays, including mass spectrometry, co‐immunoprecipitation (Co‐IP), and chromatin immunoprecipitation (ChIP), were performed to explore the underlying mechanism. Results MND1 up‐regulation was identified to be an independent risk factor for overall survival in LUAD patients evaluated by both tissue microarray staining and third party data analysis. In vivo and in vitro assays showed that MND1 promoted LUAD cell proliferation by regulating cell cycle. The results of the Co‐IP, ChIP and dual‐luciferase reporter assays validated that MND1 competitively bound to tumor suppressor Kruppel‐like factor 6 (KLF6), and thereby protecting E2F transcription factor 1 (E2F1) from KLF6‐induced transcriptional repression. Luciferase reporter and ChIP assays found that E2F1 activated MND1 transcription by binding to its promoter in a feedback manner. Conclusions MND1, KLF6, and E2F1 form a positive feedback loop to regulate cell cycle and confer DDP resistance in LUAD. MND1 is crucial for malignant progression and may be a potential therapeutic target in LUAD patients.
Collapse
Affiliation(s)
- Quanli Zhang
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, P. R. China
| | - Run Shi
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, München, Bayern, D-80539, Germany
| | - Yongkang Bai
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China
| | - Lijuan Meng
- Department of Geriatric Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210009, P. R. China
| | - Jingwen Hu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, P. R. China
| | - Hongyu Zhu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China
| | - Tongyan Liu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, P. R. China
| | - Xiaomeng De
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, P. R. China
| | - Siwei Wang
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, P. R. China
| | - Jie Wang
- Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, P. R. China.,Jiangsu Biobank of Clinical Resources, Nanjing, Jiangsu, 210009, P. R. China
| | - Lin Xu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, P. R. China
| | - Rong Yin
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,Jiangsu Biobank of Clinical Resources, Nanjing, Jiangsu, 210009, P. R. China
| |
Collapse
|
9
|
Reyes-Ramos AM, Álvarez-García YR, Solodin N, Almodovar J, Alarid ET, Torres-Garcia W, Domenech M. Collagen I Fibrous Substrates Modulate the Proliferation and Secretome of Estrogen Receptor-Positive Breast Tumor Cells in a Hormone-Restricted Microenvironment. ACS Biomater Sci Eng 2021; 7:2430-2443. [PMID: 33688723 DOI: 10.1021/acsbiomaterials.0c01803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The fibril orientation of type I collagen has been shown to contribute to tumor invasion and metabolic changes. Yet, there is limited information about its impact on tumor cells' behavior in a restrictive growth environment. Restrictive growth environments are generated by the inhibition of a proliferation stimulus during therapy or as an inflammatory response to suppress tumor expansion. In this study, the impact of a type I collagen matrix orientation and fibrous architecture on cell proliferation and response to estrogen receptor (ER) therapy were examined using estrogen-dependent breast tumor cells (MCF-7 and T-47D) cultured in a hormone-restricted environment. The use of hormone-free culture media, as well as pharmacological inhibitors of ER, Tamoxifen, and Fulvestrant, were investigated as hormone restrictive conditions. Examination of cultures at 72 h showed that tumor cell proliferation was significantly stimulated (1.8-fold) in the absence of hormones on collagen fibrous substrates, but not on polycaprolactone fibrous substrates of equivalent orientation. ER inhibitors did not suppress cell proliferation on collagen fibrous substrates. The examination of reporter cells for ER signaling showed a lack of activity, thus confirming a shift toward an ER-independent proliferation mechanism. Examination of two selective inhibitors of α2β1 and α1β1 integrins showed that cell proliferation is suppressed in the presence of the α2β1 integrin inhibitor only, thereby indicating that the observed changes in tumor cell behavior are caused by a combination of integrin signaling and/or an intrinsic structural motif that is uniquely present in the collagen fibrils. Adjacent coculture studies on collagen substrates showed that tumor cells on collagen can stimulate the proliferation of cells on tissue culture plastic through soluble factors. The magnitude of this effect correlated with the increased surface anisotropy of the substrate. This sensing in fibril orientation was further supported by a differential expression pattern of secreted proteins that were identified on random and aligned orientation substrates. Overall, this study shows a new role for electrospun collagen I fibrous substrates by supporting a shift toward an ER-independent tumor cell proliferation mechanism in ER+ breast tumor cells.
Collapse
Affiliation(s)
- Ana M Reyes-Ramos
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, United States
| | - Yasmín R Álvarez-García
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Natalia Solodin
- Department of Oncology, McArdle Laboratories for Cancer Research and University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Elaine T Alarid
- Department of Oncology, McArdle Laboratories for Cancer Research and University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Wandaliz Torres-Garcia
- Department of Industrial Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, United States
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, United States
| |
Collapse
|
10
|
Takeuchi M, Takeuchi K, Takai T, Yamaguchi R, Furukawa T, Akagi KI, Takeuchi JK. Subcellular localization of glypican-5 is associated with dynamic motility of the human mesenchymal stem cell line U3DT. PLoS One 2021; 16:e0226538. [PMID: 33606708 PMCID: PMC7895401 DOI: 10.1371/journal.pone.0226538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 09/05/2020] [Indexed: 11/18/2022] Open
Abstract
Glypican-5 (GPC5) is a heparan sulfate proteoglycan (HSPG) localized to the plasma membrane. We previously reported that in the human mesenchymal stem cell line UE6E7T-3, GPC5 is overexpressed in association with transformation and promotes cell proliferation by acting as a co-receptor for Sonic hedgehog signaling. In this study, we found using immunofluorescence microscopy that in transformed cells (U3DT), GPC5 localized not only at primary cilia on the cell surface, but also at the leading edge of migrating cells, at the intercellular bridge and blebs during cytokinesis, and in extracellular vesicles. In each subcellular region, GPC5 colocalized with fibroblast growth factor receptor (FGFR) and the small GTPases Rab11 and ARF6, indicating that GPC5 is delivered to these regions by Rab11-associated recycling endosomes. These colocalizations suggest that GPC5 plays an important role in FGF2 stimulation of cell migration, which was abrogated by knockdown of GPC5. Our findings indicate that GPC5 plays a role in regulation of U3DT cell migration and provides several insights into the functions of GPC5 that could be elucidated by future studies.
Collapse
Affiliation(s)
- Masao Takeuchi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Kikuko Takeuchi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Tomoyo Takai
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Ritsuko Yamaguchi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Tetsushi Furukawa
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Ken-ichi Akagi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Jun K. Takeuchi
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Kiely M, Tse LA, Koka H, Wang D, Lee P, Wang F, Wu C, Tsang KH, Chan WC, Law SH, Zhang H, Karlins E, Zhu B, Hutchinson A, Hicks B, Zhu B, Yang XR. Age-related DNA methylation in paired normal and tumour breast tissue in Chinese breast cancer patients. Epigenetics 2020; 16:677-691. [PMID: 32970968 PMCID: PMC8143246 DOI: 10.1080/15592294.2020.1819661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related DNA methylation is a potential mechanism contributing to breast cancer development. Studies of primarily Caucasian women have identified many CpG sites of age-related methylation in non-diseased breast tissue possibly driving cancer development over time. There is a paucity of studies involving Asian women whose ages at breast cancer onset are usually younger than Caucasians. We identified the 181 most consistent age-related methylation events in non-diseased breast tissue across published studies. Age-related methylation events were measured in adjacent normal and breast tumour tissue in an exclusively Asian population at the previously identified age-related methylation sites. Age-related methylation was found in 118 probes in adjacent normal breast tissue. Methylation of 99% of these sites was increased with age and predominantly located on CpG islands in promoter regions. To ascertain biological relevance to breast cancer, we focused on the 37 sites with overall higher methylation in tumour compared to adjacent normal samples. Some sites positively related to age, including AQP5 and CORO6, inversely correlated with gene expression. Several others have known involvement in suppression of carcinogenesis including GPC5 and SST, suggesting that perturbation of epigenetic regulation at these sites due to ageing may contribute to the progression of carcinogenesis. This study highlights an age-related methylation landscape in non-tumour tissue, consistent not just across studies, but also across different populations. We present candidate age-related methylation sites warranting further investigation as potential epigenetic drivers of breast cancer. They may serve as potential targets of site-specific demethylation intervention strategies for the prevention of age-related breast cancer.
Collapse
Affiliation(s)
- Maeve Kiely
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Lap Ah Tse
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Hela Koka
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Priscilla Lee
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Feng Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Cherry Wu
- North District Hospital, Hong Kong, China
| | | | | | | | - Han Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Eric Karlins
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA.,Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
13
|
Roles of Proteoglycans and Glycosaminoglycans in Cancer Development and Progression. Int J Mol Sci 2020; 21:ijms21175983. [PMID: 32825245 PMCID: PMC7504257 DOI: 10.3390/ijms21175983] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) spatiotemporally controls cell fate; however, dysregulation of ECM remodeling can lead to tumorigenesis and cancer development by providing favorable conditions for tumor cells. Proteoglycans (PGs) and glycosaminoglycans (GAGs) are the major macromolecules composing ECM. They influence both cell behavior and matrix properties through direct and indirect interactions with various cytokines, growth factors, cell surface receptors, adhesion molecules, enzymes, and glycoproteins within the ECM. The classical features of PGs/GAGs play well-known roles in cancer angiogenesis, proliferation, invasion, and metastasis. Several lines of evidence suggest that PGs/GAGs critically affect broader aspects in cancer initiation and the progression process, including regulation of cell metabolism, serving as a sensor of ECM's mechanical properties, affecting immune supervision, and participating in therapeutic resistance to various forms of treatment. These functions may be implemented through the characteristics of PGs/GAGs as molecular bridges linking ECM and cells in cell-specific and context-specific manners within the tumor microenvironment (TME). In this review, we intend to present a comprehensive illustration of the ways in which PGs/GAGs participate in and regulate several aspects of tumorigenesis; we put forward a perspective regarding their effects as biomarkers or targets for diagnoses and therapeutic interventions.
Collapse
|
14
|
Abstract
Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline R Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Hu J, Bai Y, Zhang Q, Li M, Yin R, Xu L. Identification of LBX2 as a novel causal gene of lung adenocarcinoma. Thorac Cancer 2020; 11:2137-2145. [PMID: 32567804 PMCID: PMC7396393 DOI: 10.1111/1759-7714.13506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most predominant histological type of lung cancer with a poor prognosis. In this study, we demonstrate that LBX2 regulates cell proliferation, migration and invasion and the potential molecular mechanism in LUAD. Methods The Cancer Genome Atlas dataset was accessed to screen for novel genes and immunohistochemistry (IHC) assays were performed to determine the association between LBX2 expression and clinicopathological features of LUAD. 5‐ethynyl‐2′‐deoxyuridine, colony formation and Real Time xCELLigence analysis system were used to evaluate the cell proliferation abilities of LUAD. Wound healing, transwell and Matrigel assays were used to detect cell migration and invasion capacities. Xenograft tumor models were used to assess the oncogenic role of LBX2 in vivo. Results We found that LBX2 was hyperexpressed in LUAD and correlated with clinicopathological features and poor prognosis in LUAD patients. Knockdown of LBX2 inhibited cell proliferation, migration and invasion of LUAD, whereas ectopic expression of LBX2 enhanced tumor growth, migration, and invasion. We further found that LBX2 might participate in epithelial‐to‐mesenchymal transition (EMT) progression and influence EMT‐related gene expression. Conclusions The current study suggests that LBX2 plays an oncogenic role in LUAD and may participate in tumor proliferation, migration, and invasion through EMT progression. Key points
Collapse
Affiliation(s)
- Jingwen Hu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Yongkang Bai
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Quanli Zhang
- Department of Scientific Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Ming Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
16
|
Ma Z, Han C, Xia W, Wang S, Li X, Fang P, Yin R, Xu L, Yang L. circ5615 functions as a ceRNA to promote colorectal cancer progression by upregulating TNKS. Cell Death Dis 2020; 11:356. [PMID: 32393760 PMCID: PMC7214456 DOI: 10.1038/s41419-020-2514-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs), non-coding RNAs generated by precursor mRNA back-splicing of exons, have been reported to fulfill multiple roles in cancer. However, the role of quite a lot circRNAs in colorectal cancer (CRC) remains mostly unknown. Herein, we explored the expression profiles of circRNAs in 5 paired samples of CRC patients by microarray and noted a circRNA, hsa_circ_0005615 (circ5615), was significantly upregulated in CRC tissues. Circ5615 was derived from exon 2 of NFATC3 and its upregulation was tightly correlated with higher T stage and poor prognosis in CRC patients. Studies in vitro and in vivo demonstrated that knockdown of circ5615 in cancer cells inhibited proliferation and cell cycle acceleration, while overexpression promoted malignant phenotypes. Mechanistically, RNA immunoprecipitation, biotin-coupled probe pull-down and luciferase reporter assays revealed circ5615 effectively bound to miR-149-5p and might play a role like miR-149-5p sponge. Additionally, tankyrase (TNKS), regulator of β-catenin stabilization, was identified as circ5615 downstream and the potential miR-149-5p targets by RNA-seq and bioinformatics analysis. We further verified the upregulation of β-catenin and cyclin D1 induced by circ5615. Our results indicated that circ5615 exerted oncogenic function as competing endogenous RNA (ceRNA) of miR-149-5p to release TNKS and activated Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zhifei Ma
- Department of Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Chencheng Han
- Department of Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Wenjia Xia
- Department of Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Siwei Wang
- Department of Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Xiang Li
- Department of Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Panqi Fang
- Department of Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Rong Yin
- Department of Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Lin Xu
- Department of Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Liu Yang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
17
|
The TWIST1-centered competing endogenous RNA network promotes proliferation, invasion, and migration of lung adenocarcinoma. Oncogenesis 2019; 8:62. [PMID: 31645542 PMCID: PMC6811597 DOI: 10.1038/s41389-019-0167-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/24/2022] Open
Abstract
The proposed competing endogenous RNA (ceRNA) mechanism suggested that diverse RNA species, including protein-coding messenger RNAs and non-coding RNAs such as long non-coding RNAs, pseudogenes and circular RNAs could communicate with each other by competing for binding to shared microRNAs. The ceRNA network (ceRNET) is involved in tumor progression and has become a hot research topic in recent years. To date, more attention has been paid to the role of non-coding RNAs in ceRNA crosstalk. However, coding transcripts are more abundant and powerful than non-coding RNAs and make up the majority of miRNA targets. In this study, we constructed a mRNA-mRNA related ceRNET of lung adenocarcinoma (LUAD) and identified the highlighted TWIST1-centered ceRNET, which recruits SLC12A5 and ZFHX4 as its ceRNAs. We found that TWIST1/SLC12A5/ZFHX4 are all upregulated in LUAD and are associated with poorer prognosis. SLC12A5 and ZFHX4 facilitated proliferation, migration, and invasion in vivo and in vitro, and their effects were reversed by miR-194–3p and miR-514a-3p, respectively. We further verified that SLC12A5 and ZFHX4 affected the function of TWIST1 by acting as ceRNAs. In summary, we constructed a mRNA-mRNA related ceRNET for LUAD and highlighted the well-known oncogene TWIST1. Then we verified that SLC12A5 and ZFHX4 exert their oncogenic function by regulating TWIST1 expression through a ceRNA mechanism.
Collapse
|
18
|
Mao Y, Fan W, Hu H, Zhang L, Michel J, Wu Y, Wang J, Jia L, Tang X, Xu L, Chen Y, Zhu J, Feng Z, Xu L, Yin R, Tang Q. MAGE-A1 in lung adenocarcinoma as a promising target of chimeric antigen receptor T cells. J Hematol Oncol 2019; 12:106. [PMID: 31640756 PMCID: PMC6805483 DOI: 10.1186/s13045-019-0793-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cancer/testis antigens (CTAs) are a special type of tumor antigen and are believed to act as potential targets for cancer immunotherapy. Methods In this study, we first screened a rational CTA MAGE-A1 for lung adenocarcinoma (LUAD) and explored the detailed characteristics of MAGE-A1 in LUAD development through a series of phenotypic experiments. Then, we developed a novel MAGE-A1-CAR-T cell (mCART) using lentiviral vector based on our previous MAGE-A1-scFv. The anti-tumor effects of this mCART were finally investigated in vitro and in vivo. Results The results showed striking malignant behaviors of MAGE-A1 in LUAD development, which further validated the rationality of MAGE-A1 as an appropriate target for LUAD treatment. Then, the innovative mCART was successfully constructed, and mCART displayed encouraging tumor-inhibitory efficacy in LUAD cells and xenografts. Conclusions Taken together, our data suggest that MAGE-A1 is a promising candidate marker for LUAD therapy and the MAGE-A1-specific CAR-T cell immunotherapy may be an effective strategy for the treatment of MAGE-A1-positive LUAD.
Collapse
Affiliation(s)
- Yuan Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.,NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Hao Hu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Louqian Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jerod Michel
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yaqin Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Lizhou Jia
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaojun Tang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Zhenqing Feng
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, The Fourth Clinical College of Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Qi Tang
- NHC Key Laboratory of Antibody Technique, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China. .,Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Wang L, Liang Y, Mao Q, Xia W, Chen B, Shen H, Xu L, Jiang F, Dong G. Circular RNA circCRIM1 inhibits invasion and metastasis in lung adenocarcinoma through the microRNA (miR)-182/miR-93-leukemia inhibitory factor receptor pathway. Cancer Sci 2019; 110:2960-2972. [PMID: 31301086 PMCID: PMC6726696 DOI: 10.1111/cas.14131] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/29/2022] Open
Abstract
In recent years, circular RNAs (circRNAs) have been revealed to have important roles in carcinogenesis. Metastasis is the leading cause of lung adenocarcinoma (LUAC) death. However, the contributions of circRNA to the metastasis of LUAC remain largely unknown. Based on circBase data and our biobank tissues, we identified circCRIM1 (a circRNA derived from exons 2, 3 and 4 of the CRIM1 gene, hsa_circ_0002346) as having a significantly decreased expression in LUAC samples compared with matched normal control samples. Both in vivo and in vitro experiments revealed that circCRIM1 suppresses the invasion and metastasis of LUAC. In vitro precipitation of circRNAs, luciferase reporter assay, and biotin‐coupled microRNA capture were carried out to investigate the Ago2‐dependent interaction of circCRIM1 and microRNA (miR)‐93/miR‐182. Mechanistically, we found that circCRIM1 could promote the expression of leukemia inhibitory factor receptor, a well‐known tumor suppressor, by sponging miR‐93 and miR‐182. In the clinical and pathological analyses, the downregulation of circCRIM1 in LUAC was significantly correlated with lymphatic metastasis and TNM stage, which served as an independent risk factor for the overall survival of patients with LUAC. Our study showed that circCRIM1 inhibits the invasion and metastasis of lung adenocarcinoma cancer cells, which makes it a potential therapeutic target.
Collapse
Affiliation(s)
- Lin Wang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Oncology, Department of Geriatric Lung Cancer Laboratory, The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yingkuan Liang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bing Chen
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Hongyu Shen
- Department of Oncology, Department of Geriatric Lung Cancer Laboratory, The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
20
|
Hong X, Zhang Z, Pan L, Ma W, Zhai X, Gu C, Zhang Y, Bi X, Huang W, Pei H, Liu Z. MicroRNA-301b promotes the proliferation and invasion of glioma cells through enhancing activation of Wnt/β-catenin signaling via targeting Glypican-5. Eur J Pharmacol 2019; 854:39-47. [PMID: 30951720 DOI: 10.1016/j.ejphar.2019.03.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 02/08/2023]
Abstract
Accumulating evidence has suggested that Glypican-5 (GPC5) is a tumor suppressor gene in many types of cancers. However, whether GPC5 is involved in glioma remains unknown. This study was designed to explore the expression, biological function and regulatory mechanism of GPC5 in glioma. Our results demonstrated that GPC5 expression was significantly decreased in multiple glioma cell lines. Gain-of-function experiments showed that the ectopic expression of GPC5 markedly inhibited the proliferation, invasion and Wnt/β-catenin signaling of glioma cell lines. GPC5 was identified as a target gene of microRNA-301b (miR-301b). Further data showed that miR-301b expression was significantly up-regulated in glioma tissues and cell lines. In addition, miR-301b expression was inversely correlated with GPC5 expression in clinical glioma tissues. The overexpression of miR-301b promoted the proliferation, invasion and Wnt/β-catenin signaling of glioma cell lines, whereas the inhibition of miR-301b showed the opposite effect. However, the silencing of GPC5 significantly reversed the antitumor effect of miR-301b inhibition. Overall, our results revealed a tumor suppressive role of GPC5 in glioma and suggested that GPC5 expression was regulated by miR-301b. Our study indicates that the inhibition of miR-301b represses the proliferation and invasion of glioma cells by up-regulating GPC5 expression.
Collapse
Affiliation(s)
- Xin Hong
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Zhengliang Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Longfei Pan
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Wei Ma
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Xu Zhai
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Changwei Gu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Yaru Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Xiaoju Bi
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Wan Huang
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China
| | - Honghong Pei
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China.
| | - Zhong Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China.
| |
Collapse
|
21
|
Long Noncoding RNA SBF2-AS1 Is Critical for Tumorigenesis of Early-Stage Lung Adenocarcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:543-553. [PMID: 31071530 PMCID: PMC6506611 DOI: 10.1016/j.omtn.2019.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/30/2019] [Accepted: 04/04/2019] [Indexed: 01/10/2023]
Abstract
Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) are deeply involved in the development of various cancers. This study identified that SBF2-AS1, an early-stage-specific lncRNA, is critical for the tumorigenesis of lung adenocarcinoma (LUAD). We first analyzed LUAD transcriptome data from The Cancer Genome Atlas and the GEO database by weighted gene co-expression network analysis (WGCNA). Five early LUAD-specific lncRNAs were filtered out, and only SBF2-AS1 was upregulated in LUAD. High expression of SBF2-AS1 indicates poor survival of LUAD, especially the early-stage LUAD, but not lung squamous cell carcinoma. SBF2-AS1 promotes LUAD cells proliferation in vitro, and RNA-sequencing data shows that many cell-cycle-related genes were downregulated after SBF2-AS1 knockdown. Mechanically, SBF2-AS1 could competitively bind with miR-338-3p and miR-362-3p to increase E2F1 expression. Finally, we show that the SBF2-AS1-miR-338-3p/362-3p-E2F1 axis could promote LUAD tumorigenesis in vitro and in vivo. Our study demonstrates that SBF2-AS1, an early-stage-specific lncRNA, promotes LUAD tumorigenesis by sponging miR-338-3p and miR-362-3p and increasing E2F1 expression. The SBF2-AS1-miR-338-3p/362-3p-E2F1 regulatory axis may serve as a prognostic marker and potential therapeutic target for LUAD.
Collapse
|
22
|
Zhang L, Mao Y, Mao Q, Fan W, Xu L, Chen Y, Xu L, Wang J. FLOT1 promotes tumor development, induces epithelial-mesenchymal transition, and modulates the cell cycle by regulating the Erk/Akt signaling pathway in lung adenocarcinoma. Thorac Cancer 2019; 10:909-917. [PMID: 30838797 PMCID: PMC6449277 DOI: 10.1111/1759-7714.13027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Abstract
Background FLOT1 is a scaffolding protein of lipid rafts that is believed to be involved in numerous cellular processes. However, few studies have explored the function of FLOT1 in the development of lung adenocarcinoma (LUAD) and the underlying mechanisms of FLOT1 activity. Methods FLOT1 knockdown and overexpression models were constructed via lentivirus. Cell growth, invasion, migration, and apoptosis were detected to evaluate the role of FLOT1 in LUAD development. Epithelial–mesenchymal transition (EMT) and cell cycle regulatory markers were then examined. Finally, the influence of FLOT1 on the Erk/Akt signaling pathway was investigated. Results FLOT1 promoted cell growth, invasion, and migration and inhibited cell apoptosis. In addition, FLOT1 induced EMT and modulated the cell cycle by activating the Erk/Akt signaling pathway. Conclusion The findings indicate a significant role of FLOT1 in LUAD development. Targeting FLOT1 may be a potential therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Louqian Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Yuan Mao
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Li Xu
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Yan Chen
- Department of Pathology, Jiangsu Cancer Hospital, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jun Wang
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Laboratory, Geriatric Hospital of Nanjing Medical University, Jiangsu Province Geriatric Hospital, Nanjing, China
| |
Collapse
|
23
|
Yang C, Wang Y, Xu W, Liu Z, Zhou S, Zhang M, Cui D. Genome-wide association study using diversity outcross mice identified candidate genes of pancreatic cancer. Genomics 2018; 111:1882-1888. [PMID: 30578891 DOI: 10.1016/j.ygeno.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
To understand the genetic causes of pancreatic cancer (PC), we conducted a genome-wide association study (GWAS) using the diversity outbred (DO) mice population to identify susceptibility genes underlying 7,12-dimethylbenzanthraene (DMBA) induced PC. The phenotype studied was the percent PC lesion area in the DO mice population. We genotyped 7851 SNP markers specifically designed for DO mice across the whole mouse genome. Four susceptibility genes with P values exceeding the genome-wide threshold for percent PC lesion area (P < 2.37 × 10-6) were identified, i.e., Epha4, Gpc5, Kcnj6, Arid1b. The most significant SNP of Gpc5 (UNC140360310) that is associated with PC lesion area in mice also significantly influences the Gpc5 expression, suggesting that this Gpc5 SNP exerts its role in PC through cis-regulating the gene expression of Gpc5. Together, our data supported that Gpc5 as a tumor suppressor gene involved in the etiology of PC.
Collapse
Affiliation(s)
- Chuanjia Yang
- Department of General Surgery, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yan Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, China
| | - Weixue Xu
- Department of General Surgery, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Zhen Liu
- Department of General Surgery, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Siqi Zhou
- Department of General Surgery, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Minglu Zhang
- Department of General Surgery, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China
| | - Dongxu Cui
- Department of General Surgery, The Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
24
|
Zhu B, Pan Y, Zheng X, Zhang Q, Wu Y, Luo J, Li Q, Lu E, Xu L, Jin G, Ren B. A clinical, biologic and mechanistic analysis of the role of ZNF692 in cervical cancer. Gynecol Oncol 2018; 152:396-407. [PMID: 30466806 DOI: 10.1016/j.ygyno.2018.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Cervical cancer (CC) is the most common malignancy in women. The zinc finger protein 692 (ZNF692) has been identified as a transcription factor and its aberrant expression participates in tumorigenesis of various cancers. However, its biological function and molecular mechanisms in cervical cancer remain unclear. METHODS Microarrays were analysed by immunohistochemistry (IHC) to investigate the expression of ZNF692 in cervical cancer and its relationship with clinicopathologic characteristics. siRNAs and expression plasmids were used to reveal the biological function of ZNF692 in CC and subcutaneous xenograft model to examine the role of ZNF692 in vivo. Chromatin Immunoprecipitation and luciferase reporter assay were performed to ascertain whether ZNF692 binds to the promoter region of p27kip1. RESULTS By analyzing The Cancer Genome Atlas (TCGA) dataset, we confirmed ZNF692 as a potential oncogene in CC. ZNF692 expression was up-regulated in CC tissues compared with that in adjacent normal tissues, and its overexpression was correlated with poor clinicopathologic characteristics. Moreover, ZNF692 promoted the proliferation, migration and invasion of CC cells both in vitro and in vivo. Regarding molecular mechanisms, up-regulation of ZNF692 was found to enhance the G1/S transition via regulating the p27kip1/PThr160-CDK2 signal pathway in CC cells. CONCLUSION ZNF692 promotes CC cells proliferation and invasion through suppressing p27kip1 transcription by directly binding its promoter region, which suggests that ZNF692 may serve as an underlying therapeutic target and prognostic marker in CC.
Collapse
Affiliation(s)
- Biqing Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China
| | - Yinpeng Pan
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China; Department of Thoracic Surgery, the First People's Hospital of Lianyungang City Affiliated with Lianyungang Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiufen Zheng
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China; Department of Clinical Pharmacy, China Pharmaceutical University, China
| | - Quanli Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China
| | - Yaqin Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, China
| | - Qian Li
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China
| | - Emei Lu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China.
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, China.
| | - Binhui Ren
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, the Affiliated Cancer Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, China.
| |
Collapse
|
25
|
Li N, Gao W, Zhang YF, Ho M. Glypicans as Cancer Therapeutic Targets. Trends Cancer 2018; 4:741-754. [PMID: 30352677 PMCID: PMC6209326 DOI: 10.1016/j.trecan.2018.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
Glypicans are a group of cell-surface glycoproteins in which heparan sulfate (HS) glycosaminoglycan chains are covalently linked to a protein core. The glypican gene family is broadly conserved across animal species and plays important roles in biological processes. Glypicans can function as coreceptors for multiple signaling molecules known for regulating cell growth, motility, and differentiation. Some members of the glypican family, including glypican 2 (GPC2) and glypican 3 (GPC3), are expressed in childhood cancers and liver cancers, respectively. Antibody-based therapies targeting glypicans are being investigated in preclinical and clinical studies, with the goal of treating solid tumors that do not respond to standard therapies. These studies may establish glypicans as a new class of therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Gao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yi-Fan Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell Immunol 2018; 333:46-57. [DOI: 10.1016/j.cellimm.2018.03.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 01/20/2023]
|
27
|
Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol 2018; 73:105-121. [DOI: 10.1016/j.matbio.2018.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
28
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
29
|
Sun Y, Xu K, He M, Fan G, Lu H. Overexpression of Glypican 5 (GPC5) Inhibits Prostate Cancer Cell Proliferation and Invasion via Suppressing Sp1-Mediated EMT and Activation of Wnt/β-Catenin Signaling. Oncol Res 2018; 26:565-572. [PMID: 28893348 PMCID: PMC7844840 DOI: 10.3727/096504017x15044461944385] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glypican 5 (GPC5) belongs to the family of heparan sulfate proteoglycans (HSPGs). It was initially known as a regulator of growth factors and morphogens. Recently, there have been reports on its correlation with the tumorigenic process in the development of some cancers. However, little is known about its precise role in prostate cancer (PCa). In the present study, we explored the expression pattern and biological functions of GPC5 in PCa cells. Our results showed that GPC5 was lowly expressed in PCa cell lines. Upregulation of GPC5 significantly inhibited PCa cell proliferation and invasion in vitro as well as attenuated tumor growth in vivo. We also found that overexpression of GPC5 inhibited the epithelial-mesenchymal transition (EMT) and Wnt/β-catenin signaling activation, which was mediated by Sp1. Taken together, we suggest GPC5 as a tumor suppressor in PCa and provide promising therapeutic strategies for PCa.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, P.R. China
| | - Kai Xu
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, P.R. China
| | - Miao He
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, P.R. China
| | - Guilian Fan
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, P.R. China
| | - Hongming Lu
- Department of Pathology, General Hospital of Daqing Oil Field, Daqing, P.R. China
| |
Collapse
|
30
|
Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z, Xu W, Zhang E, Wang J, Fang T, Hu J, Dong G, Yin R, Wang J, Xu L. The Circular RNA circPRKCI Promotes Tumor Growth in Lung Adenocarcinoma. Cancer Res 2018; 78:2839-2851. [PMID: 29588350 DOI: 10.1158/0008-5472.can-17-2808] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/13/2018] [Accepted: 03/23/2018] [Indexed: 11/16/2022]
Abstract
Somatic copy number variations (CNV) may drive cancer progression through both coding and noncoding transcripts. However, noncoding transcripts resulting from CNV are largely unknown, especially for circular RNAs. By integrating bioinformatics analyses of alerted circRNAs and focal CNV in lung adenocarcinoma, we identify a proto-oncogenic circular RNA (circPRKCI) from the 3q26.2 amplicon, one of the most frequent genomic aberrations in multiple cancers. circPRKCI was overexpressed in lung adenocarcinoma tissues, in part due to amplification of the 3q26.2 locus, and promoted proliferation and tumorigenesis of lung adenocarcinoma. circPRKCI functioned as a sponge for both miR-545 and miR-589 and abrogated their suppression of the protumorigenic transcription factor E2F7 Intratumor injection of cholesterol-conjugated siRNA specifically targeting circPRKCI inhibited tumor growth in a patient-derived lung adenocarcinoma xenograft model. In summary, circPRKCI is crucial for tumorigenesis and may serve as a potential therapeutic target in patients with lung adenocarcinoma.Significance: These findings reveal high expression of the circular RNA circPRKCI drives lung adenocarcinoma tumorigenesis. Cancer Res; 78(11); 2839-51. ©2018 AACR.
Collapse
Affiliation(s)
- Mantang Qiu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Wenjia Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Rui Chen
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
- Department of Cardiothoracic Surgery, Taixing People's Hospital, The Affiliated Taixing Hospital of Yangzhou University, Taixing, China
| | - Siwei Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Zhifei Ma
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Weizhang Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Tian Fang
- Department of Comparative Medicine, Jingling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jingwen Hu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
- Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China.
| |
Collapse
|
31
|
Wang S, Qiu M, Xia W, Xu Y, Mao Q, Wang J, Dong G, Xu L, Yang X, Yin R. Glypican-5 suppresses Epithelial-Mesenchymal Transition of the lung adenocarcinoma by competitively binding to Wnt3a. Oncotarget 2018; 7:79736-79746. [PMID: 27806326 PMCID: PMC5346747 DOI: 10.18632/oncotarget.12945] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that Glypican-5 (GPC5), one of the members of heparan sulfate proteoglycan, was a novel tumor metastasis suppressor in lung adenocarcinoma (LAC). However, it remains unclear how GPC5 suppresses lung cancer metastasis. Here, we found over-expression GPC5 induced significant Epithelial-Mesenchymal Transition (EMT) process of A549 cells in vitro. Bioinformatic analysis of RNA sequencing data indicated that GPC5 was co-expressed with EMT related markers, E-cadherin and Vimentin. Wnt/β-catenin signaling pathway was also significantly enriched after overexpressing GPC5. Further in vitro experiments demonstrated that overexpressing GPC5 could block the translocation of β-catenin from cytoplasm to nucleus and therefore inactivate the Wnt/β-catenin signaling pathway by competitively binding to Wnt3a. Subsequent rescue experiments demonstrated that GPC5-induced metastatic phenotype and EMT process suppression were significantly reversed when cells cultured in Wnt3a conditioned media. By establishing the metastatic model in severe combined immune deficiency (SCID) mice, we also demonstrated that overexpressing GPC5 suppressed LAC migration and accordingly alerted EMT related markers, which including up-regulated E-cadherin and down-regulated Vimentin in both lung and liver metastasis. Finally, clinical samples of LAC further validated that GPC5 expression was positively correlated with E-cadherin, and negatively correlated with both Twist1 and MMP2. Taken together, these data suggested that GPC5 is able to suppress the LAC metastasis by competitively binding to Wnt3a and inactivating the Wnt/β-catenin signaling pathway. Our findings expanded the role and the molecular mechanism of GPC5 on malignant bionomics of LAC.
Collapse
Affiliation(s)
- Siwei Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Wenjia Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Youtao Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Qixing Mao
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Jie Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Xin Yang
- Department of Oncology, The Third Hospital of Soochow University, Changzhou, 213003, China
| | - Rong Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Biobank of Clinical Resources, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| |
Collapse
|
32
|
Chen R, Xia W, Wang X, Qiu M, Yin R, Wang S, Xi X, Wang J, Xu Y, Dong G, Xu L, De W. Upregulated long non-coding RNA SBF2-AS1 promotes proliferation in esophageal squamous cell carcinoma. Oncol Lett 2018; 15:5071-5080. [PMID: 29552140 DOI: 10.3892/ol.2018.7968] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 09/01/2017] [Indexed: 11/06/2022] Open
Abstract
Esophageal cancer is one of the most common types of malignant tumors located within the digestive system, with >50% of esophageal cancer cases worldwide occurring in China. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are frequently dysregulated in cancer; however, few lncRNAs have been characterized in esophageal squamous cell carcinoma (ESCC). In the present study, a novel lncRNA, SET-binding factor 2 (SBF2) antisense RNA1 (SBF2-AS1) was exhibited in ESCC. Expression levels of SBF2-AS1 in ESCC and adjacent non-cancerous tissues were detected using the reverse transcription-quantitative polymerase chain reaction. SBF2-AS1 was knocked down, and proliferation, migration, invasion, apoptosis and the cell cycle were examined in ESCC cells. Results identified that SBF2-AS1 was significantly upregulated in ESCC compared with adjacent non-cancerous tissues (fold increase, 8.82; P=0.023). The SBF2-AS1 expression level was significantly increased in patients who had a smoking (9.927 vs. 4.507; P=0.030) and/or drinking (10.938 vs. 4.232; P=0.032) history. Patients with a large tumor size exhibited increased SBF2-AS1 expression (≥4 vs. <4 cm, 14.898 vs. 5.435; P=0.018). Patients with advanced ESCC exhibited increased upregulation of SBF2-AS1 [tumor-node-metastasis (TNM) I-II vs. TNM III-IV, 1.302 vs. 15.475; P<0.01]. SBF2-AS1 was also silenced using small interfering RNA. Cell proliferative and invasive ability were significantly inhibited (P<0.05) following SBF2-AS1 silencing, the cell cycle was arrested in the G2 phase; however, there was no significant difference in the proportion of apoptotic cells. Gene Set Enrichment Analysis revealed that genes associated with cell cycle biological processes, including the cancer suppressor gene cyclin-dependent kinase 1A (CDKN1A), were significantly associated with SBF2-AS1 in ESCC tissues. Further validation confirmed that CDKN1A expression levels were increased in ECA-109 cells following SBF2-AS1 silencing. The results of the present study demonstrate that SBF2-AS1 is significantly upregulated in ESCC, and that silencing of SBF2-AS1 inhibits the proliferative and invasive ability of ESCC cells. SBF2-AS1 may be a novel biomarker and therefore a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Rui Chen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of Thoracic Surgery, The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China.,Department of Cardiothoracic Surgery, Taixing People's Hospital, The Affiliated Taixing Hospital of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Wenjia Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of Thoracic Surgery, The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaoxiao Wang
- Department of GCP Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Mantang Qiu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of Thoracic Surgery, The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Siwei Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of Thoracic Surgery, The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaoxiang Xi
- Department of Cardiothoracic Surgery, Taixing People's Hospital, The Affiliated Taixing Hospital of Yangzhou University, Taixing, Jiangsu 225400, P.R. China
| | - Jie Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu, Nanjing, Jiangsu 210009, P.R. China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China.,Department of GCP Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
33
|
Yuan Q, Zhang Y, Li J, Cao G, Yang W. High expression of microRNA-4295 contributes to cell proliferation and invasion of pancreatic ductal adenocarcinoma by the down-regulation of Glypican-5. Biochem Biophys Res Commun 2018; 497:73-79. [PMID: 29407175 DOI: 10.1016/j.bbrc.2018.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 12/21/2022]
Abstract
A growing amount of evidence has documented that Glypican-5 (GPC5) is an important regulator of tumor progression. However, little is known about the role of GPC5 in pancreatic ductal adenocarcinoma (PDAC). In this study, we aimed to investigate the potential function and regulatory mechanism of GPC5 in PDAC. We found that GPC5 expression was significantly down-regulated in PDAC cell lines. The overexpression of GPC5 inhibited cell proliferation and the invasion of PDAC cells. In addition, the overexpression of GPC5 suppressed Wnt/β-catenin signaling in PDAC cells. Bioinformatic analysis predicted that GPC5 was a target gene of microRNA-4295 (miR-4295). The inhibition of miR-4295 significantly up-regulated the expression of GPC5. Moreover, the inhibition of miR-4295 inhibited the proliferation, invasion and Wnt/β-catenin signaling in PDAC cells. Notably, the knockdown of GPC5 partially reversed the anti-tumor effect of miR-4295 inhibition. Taken together, our results suggest GPC5 as a tumor suppressor in PDAC and its expression is possibly regulated by miR-4295. Our study indicates that the miR-4295/GPC5 axis may play an important role in the pathogenesis of PADC and has potential applications for the development of PDAC therapy.
Collapse
Affiliation(s)
- Qinggong Yuan
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Gang Cao
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China
| | - Wenbin Yang
- Department of General Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
34
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
35
|
Glycosaminoglycans and glycolipids as potential biomarkers in lung cancer. Glycoconj J 2017; 34:661-669. [PMID: 28822024 DOI: 10.1007/s10719-017-9790-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/05/2017] [Accepted: 07/31/2017] [Indexed: 02/04/2023]
Abstract
In this report, we used liquid chromatography-mass spectrometry and Western blotting to analyze the content and structure of glycosaminoglycans, glycolipids and selected proteins to compare differences between patient-matched normal and cancerous lung tissues obtained from lung cancer patients. The cancer tissue samples contained over twice as much chondroitin sulfate (CS)/dermatan sulfate (DS) as did the normal tissue samples, while the amount of heparan sulfate (HS) and hyaluronan (HA) in normal and cancer tissues were not significantly different. In HS, several minor disaccharide components, including NS6S, NS2S and 2S were significantly lower in cancer tissues, while the levels of major disaccharides, TriS, NS and 0S disaccharides were not significantly different in normal and cancer tissues. In regards to CS/DS, the level of 4S disaccharide (the major component of CS-type A and DS) decreased and the level of 6S disaccharide (the major component of CS- type C) increased in cancer tissues. We also compared the content and structure of GAGs in lung tissues from smoking and non-smoking patients. Analysis of the glycolipids showed all lipids present in these lung tissues, with the exception of sphingomyelin were higher in cancer tissues than in normal tissues. Western analysis showed that syndecan 1 and 2 proteoglycans displayed much higher expression in cancer tissue/biopsy samples. This investigation begins to provide an understanding of patho-physiological roles on glycosaminoglycans and glycolipids and might be useful in identifying potential biomarkers in lung cancer.
Collapse
|
36
|
Zhang Q, Zheng X, Sun Q, Shi R, Wang J, Zhu B, Xu L, Zhang G, Ren B. ZNF692 promotes proliferation and cell mobility in lung adenocarcinoma. Biochem Biophys Res Commun 2017; 490:1189-1196. [PMID: 28669730 DOI: 10.1016/j.bbrc.2017.06.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022]
Abstract
By analyzing The Cancer Genome Atlas (TCGA) datasets, we discovered that the zinc finger protein 692 (ZNF692) were over-expressed in Lung adenocarcinoma (LUAD) tissues compared to adjacent non-tumor tissues (P < 0.0001). In this study, we investigated the function of ZNF692 in the progression of LUAD. We found that ZNF692 knockdown inhibited LUAD cells proliferation, migration, and invasion both in vitro and in vivo. And LUAD cell apoptosis was induced following the down-regulation of ZNF692. Our results show that ZNF692 is over-expressed in LUAD tissues compared to adjacent normal tissues, and hyper-expression of ZNF692 in LUAD is an independent risk factor for worse overall survival in LUAD patients (HR: 8.800, 95%CI: 1.082-71.560, P = 0.042) by Tissue Microarray stain assay (TMA). GO analysis indicated that most genes were enriched in metabolic process which were associated highly with ZNF692 levels. Collectively, our results suggested that ZNF692 may serve as a potential oncogene and biomarker in LUAD by influencing cell metabolism.
Collapse
Affiliation(s)
- Quanli Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Xiufen Zheng
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Qi Sun
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China.
| | - Run Shi
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Jie Wang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Biqing Zhu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Lin Xu
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| | - Guangqin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Binhui Ren
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, 210009, PR China; Department of Thoracic Surgery, Jiangsu Cancer Hospital, Institute Affiliated to Nanjing Medical University, Cancer Institute of Jiangsu Province, Baiziting 42, Xuanwu District, Nanjing, 210009, PR China.
| |
Collapse
|
37
|
Oliveira-Ferrer L, Legler K, Milde-Langosch K. Role of protein glycosylation in cancer metastasis. Semin Cancer Biol 2017; 44:141-152. [PMID: 28315783 DOI: 10.1016/j.semcancer.2017.03.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 02/06/2023]
Abstract
Although altered glycosylation has been detected in human cancer cells decades ago, only investigations in the last years have enormously increased our knowledge about the details of protein glycosylation and its role in tumour progression. Many proteins, which are heavily glycosylated, i.e. adhesion proteins or proteases, play an important role in cancer metastasis that represents the crucial and frequently life-threatening step in progression of most tumour types. Compared to normal tissue, tumour cells often show altered glycosylation patters with appearance of new tumour-specific antigens. In this review, we give an overview about the role of glycosylation in tumour metastasis, describing recent results about O-glycans, N-glycans and glycosaminoglycans. We show that glycan structures, glycosylated proteins and glycosylation enzymes have influence on different steps of the metastatic process, including epithelial-mesenchymal transition (EMT), migration, invasion/intravasation and extravasation of tumour cells. Regarding the important role of cancer metastasis for patients survival, further knowledge about the consequences of altered glycosylation patterns in tumour cells is needed which might eventually lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Karen Legler
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Milde-Langosch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Wang X, Sun Q, Chen C, Yin R, Huang X, Wang X, Shi R, Xu L, Ren B. ZYG11A serves as an oncogene in non-small cell lung cancer and influences CCNE1 expression. Oncotarget 2016; 7:8029-42. [PMID: 26771237 PMCID: PMC4884973 DOI: 10.18632/oncotarget.6904] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022] Open
Abstract
By analyzing The Cancer Genome Atlas (TCGA) database, we identified ZYG11A as a potential oncogene. We determined the expression of ZYG11A in NSCLC tissues and explored its clinical significance. And also evaluated the effects of ZYG11A on NSCLC cell proliferation, migration, and invasion both in vitro and in vivo. Our results show that ZYG11A is hyper-expressed in NSCLC tissues compared to adjacent normal tissues, and increased expression of ZYG11A is associated with a poor prognosis (HR: 2.489, 95%CI: 1.248-4.963, p = 0.010). ZYG11A knockdown induces cell cycle arrest and inhibits proliferation, migration, and invasion of NSCLC cells. ZYG11A knockdown also results in decreased expression of CCNE1. Over-expression of CCNE1 in cells with ZYG11A knockdown restores their oncogenic activities. Our data suggest that ZYG11A may serve as a novel oncogene promoting tumorigenicity of NSCLC cells by inducing cell cycle alterations and increasing CCNE1 expression.
Collapse
Affiliation(s)
- Xin Wang
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of The Fourth Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Sun
- Department of Cardiothoracic Surgery at Jinling Hospital, Southern Medical University, Nanjing, Jiangsu, China
| | - Chen Chen
- Department of The Second Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Yin
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Xing Huang
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of The Fourth Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Wang
- Department of The Fourth Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Run Shi
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of The Fourth Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Xu
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Binhui Ren
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Xia W, Qiu M, Chen R, Wang S, Leng X, Wang J, Xu Y, Hu J, Dong G, Xu PL, Yin R. Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep 2016; 6:35576. [PMID: 27752108 PMCID: PMC5067712 DOI: 10.1038/srep35576] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/16/2016] [Indexed: 12/17/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent and deadly types of cancer worldwide especially in Eastern Asia and the prognosis of ESCC remain poor. Recent evidence suggests that circular RNAs (circRNAs) play important roles in multiple diseases, including cancer. In this study, we characterized a novel circRNA termed hsa_circ_0067934 in ESCC tumor tissues and cell lines. We analyzed a cohort of 51 patients and found that hsa_circ_0067934 was significantly overexpressed in ESCC tissues compared with paired adjacent normal tissues. The high expression level of hsa_circ_0067934 was associated with poor differentiation (P = 0.025), I-II T stage (P = 0.04), and I-II TNM stage (P = 0.021). The in vitro silence of hsa_circ_0067934 by siRNA inhibited the proliferation and migration of ESCC cells and blocked cell cycle progression. Cell fraction analyses and fluorescence in situ hybridization detected that hsa_circ_0067934 was mostly located in the cytoplasm. Our findings suggest that hsa_circ_0067934 is upregulated in ESCC tumor tissue. Our data suggest that hsa_circ_0067934 represents a novel potential biomarker and therapeutic target of ESCC.
Collapse
Affiliation(s)
- Wenjia Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Rui Chen
- The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China.,Department of Cardiothoracic Surgery, Taixing People's Hospital, The Affiliated Taixing Hospital of Yangzhou University, Taixing 225400, China
| | - Siwei Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Xuechun Leng
- Department of Thoracic Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Jie Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Youtao Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Jingwen Hu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China.,Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Prof Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Rong Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| |
Collapse
|
40
|
Wang MS, Huo YX, Li Y, Otecko NO, Su LY, Xu HB, Wu SF, Peng MS, Liu HQ, Zeng L, Irwin DM, Yao YG, Wu DD, Zhang YP. Comparative population genomics reveals genetic basis underlying body size of domestic chickens. J Mol Cell Biol 2016; 8:542-552. [PMID: 27744377 DOI: 10.1093/jmcb/mjw044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/16/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
Body size is the most important economic trait for animal production and breeding. Several hundreds of loci have been reported to be associated with growth trait and body weight in chickens. The loci are mapped to large genomic regions due to the low density and limited number of genetic markers in previous studies. Herein, we employed comparative population genomics to identify genetic basis underlying the small body size of Yuanbao chicken (a famous ornamental chicken) based on 89 whole genomes. The most significant signal was mapped to the BMP10 gene, whose expression was upregulated in the Yuanbao chicken. Overexpression of BMP10 induced a significant decrease in body length by inhibiting angiogenic vessel development in zebrafish. In addition, three other loci on chromosomes 1, 2, and 24 were also identified to be potentially involved in the development of body size. Our results provide a paradigm shift in identification of novel loci controlling body size variation, availing a fast and efficient strategy. These loci, particularly BMP10, add insights into ongoing research of the evolution of body size under artificial selection and have important implications for future chicken breeding.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Yong-Xia Huo
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- College of Life Science, Anhui University, Hefei 230601, China
| | - Yan Li
- Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming 650091, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ling-Yan Su
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Hai-Bo Xu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Shi-Fang Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - He-Qun Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - David M Irwin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Yong-Gang Yao
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
- Laboratory for Conservation and Utilization of Bio-Resource, Yunnan University, Kunming 650091, China
| |
Collapse
|
41
|
miR-216b Targets FGFR1 and Confers Sensitivity to Radiotherapy in Pancreatic Ductal Adenocarcinoma Patients Without EGFR or KRAS Mutation. Pancreas 2016; 45:1294-302. [PMID: 27101576 DOI: 10.1097/mpa.0000000000000640] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The success of gemcitabine plus radiotherapy is dependent on the mutation status of pancreatic ductal adenocarcinoma (PDAC) tumors in the EGFR and KRAS genes; however, radiotherapy resistance may also be modulated epigenetically by microRNA (miRNA) regulation. In this study, we examined the potential effect of miRNAs on the resistance to radiotherapy in cases without EGFR or KRAS mutation. METHODS The association of EGFR and KRAS mutation status and different expression patterns of 6 selected miRNAs related to the EGFR/KRAS signaling pathway were evaluated in the tumors of 42 patients with PDAC. RESULTS Reduced miR-216b and miR-217 expression was associated with aggressive tumor characteristics and shortened disease-free survival. In addition, miR-216b expression was reduced 2.7-fold in the cases that did not benefit from therapy, although they did not demonstrate EGFR or KRAS expression (P = 0.0316). A negative correlation between FGFR1 and miR-216b expression (r = -0.355) was found in the tumors of these cases. CONCLUSIONS Further studies and validations are required; in the tumors of patients with PDAC without activating mutations and induced expression of EGFR/KRAS genes, down-regulated miR-216b expression may be associated with a poor response to radiotherapy via deregulation of another signaling pathway related to FGFR1 signaling.
Collapse
|
42
|
Zhang H, Wang G, Yang X, Qiu M, Xu L. [Investigation of Gene Expression Profile of A549 Cells after Overexpression of GPC5
by High Throughput Transcriptome Sequencing]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:545-9. [PMID: 27561806 PMCID: PMC5972980 DOI: 10.3779/j.issn.1009-3419.2016.08.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
背景与目的 磷脂酰肌醇蛋白聚糖-5(glypican-5, GPC5)是一个重要的抑癌基因, 然而GPC5对肺腺癌细胞增殖能力和基因表达的影响目前研究甚少。本研究拟在肺腺癌A549细胞中过表达GPC5以研究细胞增殖能力和基因表达变化情况。 方法 通过慢病毒载体构建稳定过表达GPC5的A549细胞株, 通过Cell Counter Kit 8 (CCK8)、平板克隆和EdU实验检测细胞增殖能力; 通过高通量转录组测序研究基因表达变化。 结果 相对于空白载体组, CCK8实验发现过表达GPC5可以明显抑制A549细胞的增殖速率; 平板克隆实验结果显示, 过表达GPC5之后A549细胞克隆形成能力下降(181±17 vs 278±23);EdU染色结果显示过表达GPC5后阳性染色细胞比例下降。转录组测序结果提示过表达GPC5之后, 2, 108个基因表达发生明显变化, 其中具有正性调节细胞增殖作用的基因明显下调。 结论 过表达GPC5可以明显抑制肺腺癌细A549的增殖能力, 而且过表达GPC5后具有正性调节细胞增殖作用的基因表达下调。
Collapse
Affiliation(s)
- Haitian Zhang
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Guoxiang Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xin Yang
- Department of Oncology, the First People's Hospital of Changzhou, Changzhou 213003, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| |
Collapse
|
43
|
Abstract
Glypican-5 (GPC5) belongs to the glypican family of proteoglycans that have been implicated in a variety of physiological processes, ranging from cell proliferation to morphogenesis. However, the role of GPC5 in human cancer remains poorly understood. We report that knockdown of GPC5 in bronchial epithelial cells promoted, and forced expression of GPC5 in non-small lung cancer (NSCLC) cells suppressed, the anchorage-independent cell growth. In vivo, expression of GPC5 inhibited xenograft tumor growth of NSCLC cells. Furthermore, we found that GPC5 was expressed predominantly as a membrane protein, and its expression led to diminished phosphorylation of several oncogenic receptor tyrosine kinases, including the ERBB family members ERBB2 and ERBB3, which play critical roles in lung tumorigenesis. Collectively, our results suggest that GPC5 may act as a tumor suppressor, and reagents that activate GPC5 may be useful for treating NSCLC. GPC5 suppresses anchorage-independent growth of lung cancer cells. GPC5 suppresses xenograft growth of lung cancer cells. GPC5 is localized to the membrane and suppresses oncogenic RTKs.
Collapse
|
44
|
Yuan S, Yu Z, Liu Q, Zhang M, Xiang Y, Wu N, Wu L, Hu Z, Xu B, Cai T, Ma X, Zhang Y, Liao C, Wang L, Yang P, Bai L, Li Y. GPC5, a novel epigenetically silenced tumor suppressor, inhibits tumor growth by suppressing Wnt/β-catenin signaling in lung adenocarcinoma. Oncogene 2016; 35:6120-6131. [DOI: 10.1038/onc.2016.149] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 03/19/2016] [Accepted: 03/25/2016] [Indexed: 02/06/2023]
|
45
|
Prognostic significance of GPC5 expression in patients with prostate cancer. Tumour Biol 2015; 37:6413-8. [DOI: 10.1007/s13277-015-4499-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022] Open
|
46
|
Amankwah EK, Lin HY, Tyrer JP, Lawrenson K, Dennis J, Chornokur G, Aben KKH, Anton-Culver H, Antonenkova N, Bruinsma F, Bandera EV, Bean YT, Beckmann MW, Bisogna M, Bjorge L, Bogdanova N, Brinton LA, Brooks-Wilson A, Bunker CH, Butzow R, Campbell IG, Carty K, Chen Z, Chen YA, Chang-Claude J, Cook LS, Cramer DW, Cunningham JM, Cybulski C, Dansonka-Mieszkowska A, du Bois A, Despierre E, Dicks E, Doherty JA, Dörk T, Dürst M, Easton DF, Eccles DM, Edwards RP, Ekici AB, Fasching PA, Fridley BL, Gao YT, Gentry-Maharaj A, Giles GG, Glasspool R, Goodman MT, Gronwald J, Harrington P, Harter P, Hasmad HN, Hein A, Heitz F, Hildebrandt MA, Hillemanns P, Hogdall CK, Hogdall E, Hosono S, Iversen ES, Jakubowska A, Jensen A, Ji BT, Karlan BY, Jim H, Kellar M, Kiemeney LA, Krakstad C, Kjaer SK, Kupryjanczyk J, Lambrechts D, Lambrechts S, Le ND, Lee AW, Lele S, Leminen A, Lester J, Levine DA, Liang D, Lim BK, Lissowska J, Lu K, Lubinski J, Lundvall L, Massuger LF, Matsuo K, McGuire V, McLaughlin JR, McNeish I, Menon U, Milne RL, Modugno F, Moysich KB, Ness RB, Nevanlinna H, Eilber U, Odunsi K, Olson SH, Orlow I, Orsulic S, Weber RP, Paul J, Pearce CL, Pejovic T, Pelttari LM, Permuth-Wey J, Pike MC, Poole EM, Risch HA, Rosen B, Rossing MA, Rothstein JH, Rudolph A, Runnebaum IB, Rzepecka IK, Salvesen HB, Schernhammer E, Schwaab I, Shu XO, Shvetsov YB, Siddiqui N, Sieh W, Song H, Southey MC, Spiewankiewicz B, Sucheston-Campbell L, Teo SH, Terry KL, Thompson PJ, Thomsen L, Tangen IL, Tworoger SS, van Altena AM, Vierkant RA, Vergote I, Walsh CS, Wang-Gohrke S, Wentzensen N, Whittemore AS, Wicklund KG, Wilkens LR, Wu AH, Wu X, Woo YL, Yang H, Zheng W, Ziogas A, Kelemen LE, Berchuck A, Schildkraut JM, Ramus SJ, Goode EL, Monteiro AN, Gayther SA, Narod SA, Pharoah PDP, Sellers TA, Phelan CM. Epithelial-Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk. Genet Epidemiol 2015; 39:689-97. [PMID: 26399219 PMCID: PMC4721602 DOI: 10.1002/gepi.21921] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 01/24/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.
Collapse
Affiliation(s)
- Ernest K. Amankwah
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
- Clinical and Translational Research Organization, All Children’s Hospital Johns Hopkins Medicine, St Petersburg, FL
| | - Hui-Yi Lin
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan P. Tyrer
- Department of Public Health and Primary Care, The Centre for Cancer Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Kate Lawrenson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Joe Dennis
- Department of Public Health and Primary Care, The Centre for Cancer Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Ganna Chornokur
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Katja KH. Aben
- Department for Health Evidence, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Comprehensive Cancer Center The Netherlands, Nijmegen, The Netherlands
| | - Hoda Anton-Culver
- Genetic Epidemiology Research Institute, UCI Center for Cancer Genetics Research and Prevention, School of Medicine, Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Natalia Antonenkova
- Byelorussian Institute for Oncology and Medical Radiology Aleksandrov N.N., Minsk, Belarus
| | - Fiona Bruinsma
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Elisa V. Bandera
- Cancer Prevention and Control, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Yukie T. Bean
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg Comprehensive Cancer Center, Erlangen EMN, Germany
| | - Maria Bisogna
- Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Line Bjorge
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Natalia Bogdanova
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| | - Louise A. Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Angela Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC Canada
| | - Clareann H. Bunker
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Ralf Butzow
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
- Department of Pathology, Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Ian G. Campbell
- Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Australia
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Karen Carty
- Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Zhihua Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Y. Ann Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Jenny Chang-Claude
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Linda S. Cook
- Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Daniel W. Cramer
- Obstetrics and Gynecology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Andreas du Bois
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/ Knappschaft GmbH, Essen, Germany
- Department of Gynaecology and Gynaecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Evelyn Despierre
- Division of Gynecologic Oncology; Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Ed Dicks
- Department of Oncology, The Centre for Cancer Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Jennifer A. Doherty
- Department of Community and Family Medicine, Section of Biostatistics & Epidemiology, Dartmouth Medical School, Hanover, NH, USA
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Thilo Dörk
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| | - Matthias Dürst
- Department of Gynecology, Friedrich Schiller University, Jena, Germany
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Diana M. Eccles
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Robert P. Edwards
- Ovarian Cancer Center of Excellence, Department of Obstetrics Gynecology/RS, Division of Gynecological Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg Comprehensive Cancer Center, Erlangen EMN, Germany
- University of California at Los Angeles, David Geffen School of Medicine, Department of Medicine, Division of Hematology and Oncology, Los Angeles, CA, USA
| | - Brooke L. Fridley
- Biostatistics and Informatics Shared Resource, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | | | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Rosalind Glasspool
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Marc T. Goodman
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jacek Gronwald
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Patricia Harrington
- Department of Oncology, The Centre for Cancer Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Philipp Harter
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/ Knappschaft GmbH, Essen, Germany
- Department of Gynaecology and Gynaecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | - Hanis N. Hasmad
- Cancer Research Initiatives Foundation, Sime Darby Medical Center, Subang Jaya, Malaysia
| | - Alexander Hein
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University, Erlangen-Nuremberg Comprehensive Cancer Center, Erlangen EMN, Germany
| | - Florian Heitz
- Department of Gynaecology and Gynaecologic Oncology, Kliniken Essen-Mitte/ Evang. Huyssens-Stiftung/ Knappschaft GmbH, Essen, Germany
- Department of Gynaecology and Gynaecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany
| | | | - Peter Hillemanns
- Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany
| | - Claus K. Hogdall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Hogdall
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
- Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Satoyo Hosono
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | | | - Anna Jakubowska
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Allan Jensen
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Beth Y. Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heather Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA
| | - Melissa Kellar
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Susanne K. Kjaer
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jolanta Kupryjanczyk
- Department of Pathology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Diether Lambrechts
- Vesalius Research Center, VIB, University of Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Belgium
| | - Sandrina Lambrechts
- Division of Gynecologic Oncology; Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Nhu D. Le
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Alice W. Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Shashi Lele
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Arto Leminen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Douglas A. Levine
- Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Dong Liang
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Boon Kiong Lim
- Department of Obstetrics and Gynaecology, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Karen Lu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Lubinski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lene Lundvall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Leon F.A.G. Massuger
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Keitaro Matsuo
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, Japan
| | - Valerie McGuire
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ian McNeish
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Usha Menon
- Women's Cancer, UCL EGA Institute for Women's Health, London, UK
| | - Roger L. Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Francesmary Modugno
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Women's Cancer Research Program, Magee-Women's Research Institute and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kirsten B. Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Roberta B. Ness
- The University of Texas School of Public Health, Houston, TX, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Ursula Eilber
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sandra Orsulic
- Women's Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rachel Palmieri Weber
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - James Paul
- CRUK Clinical Trials Unit, The Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - Celeste L. Pearce
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Department of Epidemiology, University of Michigan,1415 Washington Heights, Ann Arbor, Michigan, USA
| | - Tanja Pejovic
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Liisa M. Pelttari
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | | | - Malcolm C. Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elizabeth M. Poole
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Harvey A. Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Barry Rosen
- Department of Gynecology-Oncology, Princess Margaret Hospital, and Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mary Anne Rossing
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Joseph H. Rothstein
- Department of Health Research and Policy- Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anja Rudolph
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Ingo B. Runnebaum
- Department of Gynecology, Friedrich Schiller University, Jena, Germany
| | - Iwona K. Rzepecka
- Department of Pathology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Helga B. Salvesen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eva Schernhammer
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Ira Schwaab
- Institut für Humangenetik, Wiesbaden, Germany
| | - Xiao-Ou Shu
- Epidemiology Center and Vanderbilt, Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yurii B. Shvetsov
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Nadeem Siddiqui
- Department of Gynaecological Oncology, Glasgow Royal Infirmary, Glasgow, G31 2ER, UK
| | - Weiva Sieh
- Department of Health Research and Policy- Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Honglin Song
- Department of Oncology, The Centre for Cancer Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Melissa C. Southey
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Lara Sucheston-Campbell
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Center, Subang Jaya, Malaysia
- University Malaya Medical Centre, University of Malaya, Kuala Lumpur, Maylaysia
| | - Kathryn L. Terry
- Obstetrics and Gynecology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Pamela J. Thompson
- Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lotte Thomsen
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ingvild L. Tangen
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
- Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Shelley S. Tworoger
- Obstetrics and Gynecology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Anne M. van Altena
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Robert A. Vierkant
- Department of Health Science Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Ignace Vergote
- Division of Gynecologic Oncology; Leuven Cancer Institute, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Christine S. Walsh
- Women's Cancer Program at the Samuel Oschin Comprehensive, Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shan Wang-Gohrke
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Alice S. Whittemore
- Department of Health Research and Policy- Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristine G. Wicklund
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Lynne R. Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Hawaii, USA
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yin-Ling Woo
- Department of Obstetrics and Gynaecology, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia
| | - Hannah Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Argyrios Ziogas
- Genetic Epidemiology Research Institute, UCI Center for Cancer Genetics Research and Prevention, School of Medicine, Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Linda E. Kelemen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | - Joellen M. Schildkraut
- Cancer Prevention, Detection & Control Research Program, Duke Cancer Institute, Durham, NC, USA
| | - Susan J. Ramus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Ellen L. Goode
- Department of Health Science Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - Alvaro N.A. Monteiro
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Simon A. Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Steven A. Narod
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Paul D. P. Pharoah
- The Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Thomas A. Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|
47
|
Qiu M, Xu Y, Wang J, Zhang E, Sun M, Zheng Y, Li M, Xia W, Feng D, Yin R, Xu L. A novel lncRNA, LUADT1, promotes lung adenocarcinoma proliferation via the epigenetic suppression of p27. Cell Death Dis 2015; 6:e1858. [PMID: 26291312 PMCID: PMC4558496 DOI: 10.1038/cddis.2015.203] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) are known to regulate the development and progression of various cancers. However, few lncRNAs have been well characterized in lung adenocarcinoma (LUAD). Here, we identified the expression profile of lncRNAs and protein-coding genes via microarrays analysis of paired LUAD tissues and adjacent non-tumor tissues from five female non-smokes with LUAD. A total of 498 lncRNAs and 1691 protein-coding genes were differentially expressed between LUAD tissues and paired adjacent normal tissues. A novel lncRNA, LUAD transcript 1 (LUADT1), which is highly expressed in LUAD and correlates with T stage, was characterized. Both in vitro and in vivo data showed that LUADT1 knockdown significantly inhibited proliferation of LUAD cells and induced cell cycle arrest at the G0–G1 phase. Further analysis indicated that LUADT1 may regulate cell cycle progression by epigenetically inhibiting the expression of p27. RNA immunoprecipitation and chromatin immunoprecipitation assays confirmed that LUADT1 binds to SUZ12, a core component of polycomb repressive complex 2, and mediates the trimethylation of H3K27 at the promoter region of p27. The negative correlation between LUADT1 and p27 expression was confirmed in LUAD tissue samples. These data suggested that a set of lncRNAs and protein-coding genes were differentially expressed in LUAD. LUADT1 is an oncogenic lncRNA that regulates LUAD progression, suggesting that dysregulated lncRNAs may serve as key regulatory factors in LUAD progression.
Collapse
Affiliation(s)
- M Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - Y Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,The First Clinical College of Nanjing Medical University, Nanjing 210000, China
| | - J Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,Department of Scientific Research, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - E Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210000, China
| | - M Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210000, China
| | - Y Zheng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,Department of Nursing, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, China
| | - M Li
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - W Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - D Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, 210000, China
| | - R Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| | - L Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Baiziting 42, Nanjing 210009, China
| |
Collapse
|
48
|
Wang H, Dong X, Gu X, Qin R, Jia H, Gao J. The MicroRNA-217 Functions as a Potential Tumor Suppressor in Gastric Cancer by Targeting GPC5. PLoS One 2015; 10:e0125474. [PMID: 26098560 PMCID: PMC4476558 DOI: 10.1371/journal.pone.0125474] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/24/2015] [Indexed: 01/09/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. Emerging evidence has shown that aberrant expression of microRNAs (miRNAs) plays important roles in cancer progression. However, little is known about the potential role of miR-217 in GC. In this study, we investigated the role of miR-217 on GC cell proliferation and invasion. The expression of miR-217 was down-regulated in GC cells and human GC tissues. Enforced expression of miR-217 inhibited GC cells proliferation and invasion. Moreover, Glypican-5 (GPC5), a new ocncogene, was identified as the potential target of miR-217. In addition, overexpression of miR-217 impaired GPC5-induced promotion of proliferation and invasion in GC cells. In conclusion, these findings revealed that miR-217 functioned as a tumor suppressor and inhibited the proliferation and invasion of GC cells by targeting GPC5, which might consequently serve as a therapeutic target for GC patients.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Xiaolin Dong
- Department of neurology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Xin Gu
- Department of General Surgery, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Rong Qin
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Hongping Jia
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Jianpeng Gao
- Department of Gastroenterology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, 650051, Yunnan, China
- * E-mail:
| |
Collapse
|
49
|
Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation. PLoS One 2015; 10:e0126562. [PMID: 25978455 PMCID: PMC4433180 DOI: 10.1371/journal.pone.0126562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/03/2015] [Indexed: 12/23/2022] Open
Abstract
Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN); these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma) and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5), which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1), the cell surface receptor for hedgehog (Hh) signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells) through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional contribution of genes showed by expression profiling to the neoplastic transformation of human fibroblasts and human mesenchymal stem cells (hMSC).
Collapse
|
50
|
CCAT2 is a lung adenocarcinoma-specific long non-coding RNA and promotes invasion of non-small cell lung cancer. Tumour Biol 2014; 35:5375-80. [PMID: 24504682 DOI: 10.1007/s13277-014-1700-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/26/2014] [Indexed: 02/07/2023] Open
Abstract
The prognosis of non-small cell lung cancer (NSCLC) is still poor, and it is necessary to identify effectively diagnostic and prognostic biomarkers for NSCLC. Recent evidence demonstrates that long non-coding RNA (lncRNA) is actively transcribed from human genome. Some lncRNAs show a time- or tissue-specific expression manner and play important roles in diverse biological processes. Additionally, various cancer-associated lncRNAs have been identified, such as metastasis-associated lung adenocarcinoma transcript 1 for lung cancer. Here, we characterized the expression profile of a novel lncRNA, colon cancer-associated transcript 2 (CCAT2), in lung cancer and found that CCAT2 was significantly over-expressed in NSCLC tissues compared with paired adjacent normal tissues, with an average up-regulation fold of 7.5. Intriguingly, over-expression of CCAT2 was significantly associated with lung adenocarcinoma (p=0.033) but not squamous cell cancer. Silencing CCAT2 by siRNA led to inhibition of proliferation and invasion in NSCLC cell lines in vitro. Additionally, CCAT2 combined with CEA could predict lymph node metastasis. Our findings indicate that CCAT2 is a lung adenocarcinoma-specific lncRNA and promotes invasion of NSCLC and highlight its potential as a biomarker for lymph node metastasis.
Collapse
|