1
|
Wang L, Lin Y, Yao Z, Babu N, Lin W, Chen C, Du L, Cai S, Pan Y, Xiong X, Ye Q, Ren H, Zhang D, Chen Y, Yeung SCJ, Bremer E, Zhang H. Targeting undruggable phosphatase overcomes trastuzumab resistance by inhibiting multi-oncogenic kinases. Drug Resist Updat 2024; 76:101118. [PMID: 39094301 DOI: 10.1016/j.drup.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
AIMS Resistance to targeted therapy is one of the critical obstacles in cancer management. Resistance to trastuzumab frequently develops in the treatment for HER2+ cancers. The role of protein tyrosine phosphatases (PTPs) in trastuzumab resistance is not well understood. In this study, we aim to identify pivotal PTPs affecting trastuzumab resistance and devise a novel counteracting strategy. METHODS Four public datasets were used to screen PTP candidates in relation to trastuzumab responsiveness in HER2+ breast cancer. Tyrosine kinase (TK) arrays were used to identify kinases that linked to protein tyrosine phosphate receptor type O (PTPRO)-enhanced trastuzumab sensitivity. The efficacy of small activating RNA (saRNA) in trastuzumab-conjugated silica nanoparticles was tested for PTPRO upregulation and resistance mitigation in cell models, a transgenic mouse model, and human cancer cell line-derived xenograft models. RESULTS PTPRO was identified as the key PTP which influences trastuzumab responsiveness and patient survival. PTPRO de-phosphorated several TKs, including the previously overlooked substrate ERBB3, thereby inhibiting multiple oncogenic pathways associated with drug resistance. Notably, PTPRO, previously deemed "undruggable," was effectively upregulated by saRNA-loaded nanoparticles. The upregulated PTPRO simultaneously inhibited ERBB3, ERBB2, and downstream SRC signaling pathways, thereby counteracting trastuzumab resistance. CONCLUSIONS Antibody-conjugated saRNA represents an innovative approach for targeting "undruggable" PTPs.
Collapse
Affiliation(s)
- Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China; Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Hematology, University of Groningen, University Medical Center Groningen, the Netherlands; Shantou University Medical College, Shantou, China
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China; Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Nipun Babu
- Shantou University Medical College, Shantou, China
| | - Wan Lin
- Shantou University Medical College, Shantou, China
| | | | - Liang Du
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Songwang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiao Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Qiantao Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Zhuhai Institute of Jinan University, Zhuhai, China
| | - Hongzheng Ren
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Dianzheng Zhang
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Hao Zhang
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China; Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| |
Collapse
|
2
|
Uinarni H, Oghenemaro EF, Menon SV, Hjazi A, Ibrahim FM, Kaur M, Zafarjonovna AZ, Deorari M, Jabir MS, Zwamel AH. Breaking Barriers: Nucleic Acid Aptamers in Gastrointestinal (GI) Cancers Therapy. Cell Biochem Biophys 2024; 82:1763-1776. [PMID: 38916791 DOI: 10.1007/s12013-024-01367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Conventional cancer therapies can have significant adverse effects as they are not targeted to cancer cells and may damage healthy cells. Single-stranded oligonucleotides assembled in a particular architecture, known as aptamers, enable them to attach selectively to target areas. Usually, they are created by Systematic Evolution of Ligand by Exponential enrichment (SELEX), and they go through a rigorous pharmacological revision process to change their therapeutic half-life, affinity, and specificity. They could thus offer a viable substitute for antibodies in the targeted cancer treatment market. Although aptamers can be a better choice in some situations, antibodies are still appropriate for many other uses. The technique of delivering aptamers is simple and reasonable, and the time needed to manufacture them is relatively brief. Aptamers do not require animals or an immune response to be produced, in contrast to antibodies. When used as a medication, aptamers can directly suppress tumor cells. As an alternative, they can be included in systems for targeted drug delivery that administer medications specifically to tumor cells while reducing toxicity to healthy cells. The most recent and cutting-edge methods for treating gastrointestinal (GI) tract cancer with aptamers will be covered in this review, with a focus on targeted therapy as a means of conquering resistance to traditional medicines.
Collapse
Affiliation(s)
- Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.
- Radiology department of Pantai Indah Kapuk Hospital Jakarta, Jakarta, Indonesia.
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Fatma Magdi Ibrahim
- Assisstant professor, Community Health Nursing, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
- Lecturer, geriatric nursing, Mansoura University, Mansoura, Egypt
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Majid S Jabir
- Department of applied sciences, University of technology, Baghdad, Iraq
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Wang L, Yao Q, Guo X, Wang B, Si J, Wang X, Jing S, Yan M, Shi Y, Song G, Shen X, Guan J, Zhao Y, Zhu C. Targeted delivery of CEBPA-saRNA for the treatment of pancreatic ductal adenocarcinoma by transferrin receptor aptamer decorated tetrahedral framework nucleic acid. J Nanobiotechnology 2024; 22:392. [PMID: 38965606 PMCID: PMC11223357 DOI: 10.1186/s12951-024-02665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Pancreatic cancer, predominantly pancreatic ductal adenocarcinoma (PDAC), remains a highly lethal malignancy with limited therapeutic options and a dismal prognosis. By targeting the underlying molecular abnormalities responsible for PDAC development and progression, gene therapy offers a promising strategy to overcome the challenges posed by conventional radiotherapy and chemotherapy. This study sought to explore the therapeutic potential of small activating RNAs (saRNAs) specifically targeting the CCAAT/enhancer-binding protein alpha (CEBPA) gene in PDAC. To overcome the challenges associated with saRNA delivery, tetrahedral framework nucleic acids (tFNAs) were rationally engineered as nanocarriers. These tFNAs were further functionalized with a truncated transferrin receptor aptamer (tTR14) to enhance targeting specificity for PDAC cells. The constructed tFNA-based saRNA formulation demonstrated exceptional stability, efficient saRNA release ability, substantial cellular uptake, biocompatibility, and nontoxicity. In vitro experiments revealed successful intracellular delivery of CEBPA-saRNA utilizing tTR14-decorated tFNA nanocarriers, resulting in significant activation of tumor suppressor genes, namely, CEBPA and its downstream effector P21, leading to notable inhibition of PDAC cell proliferation. Moreover, in a mouse model of PDAC, the tTR14-decorated tFNA-mediated delivery of CEBPA-saRNA effectively upregulated the expression of the CEBPA and P21 genes, consequently suppressing tumor growth. These compelling findings highlight the potential utility of saRNA delivered via a designed tFNA nanocarrier to induce the activation of tumor suppressor genes as an innovative therapeutic approach for PDAC.
Collapse
Affiliation(s)
- Li Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Geriatric Medical Center, Shanghai, China
| | - Xuerui Guo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Bingmei Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingye Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shisong Jing
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Yan
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yan Shi
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiyu Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yicheng Zhao
- China-Japan Union Hospital of Jilin University, Changchun, China.
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China.
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China.
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zhou Y, Yao Z, Lin Y, Zhang H. From Tyrosine Kinases to Tyrosine Phosphatases: New Therapeutic Targets in Cancers and Beyond. Pharmaceutics 2024; 16:888. [PMID: 39065585 PMCID: PMC11279542 DOI: 10.3390/pharmaceutics16070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) regulate the level of tyrosine phosphorylation in proteins. PTKs are key enzymes that catalyze the transfer of an ATP phosphoric acid to a tyrosine residue on target protein substrates. Protein tyrosine phosphatases (PTPs) are responsible for the dephosphorylation of tyrosine residues and play a role in countering PTK overactivity. As widespread oncogenes, PTKs were once considered to be promising targets for therapy. However, tyrosine kinase inhibitors (TKIs) now face a number of challenges, including drug resistance and toxic side effects. Treatment strategies now need to be developed from a new perspective. In this review, we assess the current state of TKIs and highlight the role of PTPs in cancer and other diseases. With the advances of allosteric inhibition and the development of multiple alternative proprietary drug strategies, the reputation of PTPs as "undruggable" targets has been overturned, and they are now considered viable therapeutic targets. We also discuss the strategies and prospects of PTP-targeted therapy, as well as its future development.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
| | - Zhimeng Yao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Urology Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Yusheng Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510660, China
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, and Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou 510632, China; (Y.Z.); (Z.Y.); (Y.L.)
- Department of Pathology, Gongli Hospital of Shanghai Pudong New Area, Shanghai 200135, China
- Zhuhai Institute of Jinan University, Zhuhai 511436, China
| |
Collapse
|
5
|
Cao Z, Liu X, Zhang W, Zhang K, Pan L, Zhu M, Qin H, Zou C, Wang W, Zhang C, He Y, Lin W, Zhang Y, Han D, Li M, Gu J. Biomimetic Macrophage Membrane-Camouflaged Nanoparticles Induce Ferroptosis by Promoting Mitochondrial Damage in Glioblastoma. ACS NANO 2023; 17:23746-23760. [PMID: 37991252 PMCID: PMC10722604 DOI: 10.1021/acsnano.3c07555] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
The increasing understanding of ferroptosis has indicated its role and therapeutic potential in cancer; however, this knowledge has yet to be translated into effective therapies. Glioblastoma (GBM) patients face a bleak prognosis and encounter challenges due to the limited treatment options available. In this study, we conducted a genome-wide CRISPR-Cas9 screening in the presence of a ferroptosis inducer (RSL3) to identify the key driver genes involved in ferroptosis. We identified ALOX15, a key lipoxygenase (LOX), as an essential driver of ferroptosis. Small activating RNA (saRNA) was used to mediate the expression of ALOX15 promoted ferroptosis in GBM cells. We then coated saALOX15-loaded mesoporous polydopamine (MPDA) with Angiopep-2-modified macrophage membranes (MMs) to reduce the clearance by the mononuclear phagocyte system (MPS) and increase the ability of the complex to cross the blood-brain barrier (BBB) during specific targeted therapy of orthotopic GBM. These generated hybrid nanoparticles (NPs) induced ferroptosis by mediating mitochondrial dysfunction and rendering mitochondrial morphology abnormal. In vivo, the modified MM enabled the NPs to target GBM cells, exert a marked inhibitory effect on GBM progression, and promote GBM radiosensitivity. Our results reveal ALOX15 to be a promising therapeutic target in GBM and suggest a biomimetic strategy that depends on the biological properties of MMs to enhance the in vivo performance of NPs for treating GBM.
Collapse
Affiliation(s)
- Zhengcong Cao
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Xiao Liu
- Department
of Neurosurgery, Xijing Hospital, Xi’an 710032, China
| | - Wangqian Zhang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Keying Zhang
- Department
of Urology, Xijing Hospital, Xi’an 710032, China
| | - Luxiang Pan
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Maorong Zhu
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Haozhe Qin
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Cheng Zou
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Weizhong Wang
- Department
of Neurosurgery, Xijing Hospital, Xi’an 710032, China
| | - Cong Zhang
- Department
of Radiation Oncology, Xijing Hospital, Xi’an 710032, China
| | - Yalong He
- Department
of Neurosurgery, Xijing Hospital, Xi’an 710032, China
| | - Wei Lin
- Department
of Neurosurgery, Xijing Hospital, Xi’an 710032, China
| | - Yingqi Zhang
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Donghui Han
- Department
of Urology, Xijing Hospital, Xi’an 710032, China
| | - Meng Li
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| | - Jintao Gu
- State
Key Laboratory of Cancer Biology, Biotechnology Center, School of
Pharmacy, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
6
|
Yu Y, Gao Y, He L, Fang B, Ge W, Yang P, Ju Y, Xie X, Lei L. Biomaterial-based gene therapy. MedComm (Beijing) 2023; 4:e259. [PMID: 37284583 PMCID: PMC10239531 DOI: 10.1002/mco2.259] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/08/2023] Open
Abstract
Gene therapy, a medical approach that involves the correction or replacement of defective and abnormal genes, plays an essential role in the treatment of complex and refractory diseases, such as hereditary diseases, cancer, and rheumatic immune diseases. Nucleic acids alone do not easily enter the target cells due to their easy degradation in vivo and the structure of the target cell membranes. The introduction of genes into biological cells is often dependent on gene delivery vectors, such as adenoviral vectors, which are commonly used in gene therapy. However, traditional viral vectors have strong immunogenicity while also presenting a potential infection risk. Recently, biomaterials have attracted attention for use as efficient gene delivery vehicles, because they can avoid the drawbacks associated with viral vectors. Biomaterials can improve the biological stability of nucleic acids and the efficiency of intracellular gene delivery. This review is focused on biomaterial-based delivery systems in gene therapy and disease treatment. Herein, we review the recent developments and modalities of gene therapy. Additionally, we discuss nucleic acid delivery strategies, with a focus on biomaterial-based gene delivery systems. Furthermore, the current applications of biomaterial-based gene therapy are summarized.
Collapse
Affiliation(s)
- Yi Yu
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yijun Gao
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Liming He
- Department of StomatologyChangsha Stomatological HospitalChangshaChina
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Wenhui Ge
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoyan Xie
- Department of StomatologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
7
|
Zhang Q, Guo Y, Kang M, Lin WH, Wu JC, Yu Y, Li LC, Sang A. p21CIP/WAF1 saRNA inhibits proliferative vitreoretinopathy in a rabbit model. PLoS One 2023; 18:e0282063. [PMID: 36821623 PMCID: PMC9949646 DOI: 10.1371/journal.pone.0282063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
PURPOSE Proliferative vitreoretinopathy (PVR) is a disease process resulting from proliferation of retinal pigment epithelial (RPE) cells in the vitreous and periretinal area, leading to periretinal membrane formation and traction and eventually to postoperative failure after vitreo-retinal surgery for primary rhegmatogenous retinal detachment (RRD). The present study was designed to test the therapeutic potential of a p21CIP/WAF1 (p21) inducing saRNA for PVR. METHODS A chemically modified p21 saRNA (RAG1-40-53) was tested in cultured human RPE cells for p21 induction and for the inhibition of cell proliferation, migration and cell cycle progression. RAG1-40-53 was further conjugated to a cholesterol moiety and tested for pharmacokinetics and pharmacodynamics in rabbit eyes and for therapeutic effects after intravitreal administration in a rabbit PVR model established by injecting human RPE cells. RESULTS RAG1-40-53 (0.3 mg, 1 mg) significantly induced p21 expression in RPE cells and inhibited cell proliferation, the progression of cell cycle at the G0/G1 phase and TGF-β1 induced migration. After a single intravitreal injection into rabbit eyes, cholesterol-conjugated RAG1-40-53 exhibited sustained concentration in the vitreal humor beyond at least 8 days and prevented the progression of established PVR. CONCLUSION p21 saRNA could represent a novel therapeutics for PVR by exerting a antiproliferation and antimigration effect on RPE cells.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- Dalian Medical University, Lvshunkou District, Dalian City, Liaoning Province, China
| | - Yangchen Guo
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- Nantong University, Nantong City, Jiangsu Province, China
| | - Moorim Kang
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
| | - Wei-Hsiang Lin
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
| | - Jian-Cheng Wu
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
| | - Ying Yu
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- * E-mail: (LCL); (YY); (AS)
| | - Long-Cheng Li
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
- Institute of Reproductive Medicine, Nantong University, Nantong City, Jiangsu Province, China
- * E-mail: (LCL); (YY); (AS)
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- * E-mail: (LCL); (YY); (AS)
| |
Collapse
|
8
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
9
|
Sasso J, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022; 65:6975-7015. [PMID: 35533054 PMCID: PMC9115888 DOI: 10.1021/acs.jmedchem.2c00024] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Barbara J. B. Ambrose
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Ruchira S. Datta
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Matthew T. Basel
- College
of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Nanotechnology
Innovation Center Kansas State, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Qiongqiong Angela Zhou
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
10
|
Song Z, Shah S, Lv B, Ji N, Liu X, Yan L, Khan M, Zhao Y, Wu P, Liu S, Zheng L, Su L, Wang X, Lv Z. Anti-aging and anti-oxidant activities of murine short interspersed nuclear element antisense RNA. Eur J Pharmacol 2021; 912:174577. [PMID: 34688636 DOI: 10.1016/j.ejphar.2021.174577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/09/2022]
Abstract
Short interspersed nuclear elements (SINEs) play a key role in regulating gene expression, and SINE RNAs are involved in age-related diseases. We investigated the anti-aging effects of a genetically engineered murine SINE B1 antisense RNA (B1as RNA) and explored its mechanism of action in naturally senescent BALB/c (≥14 months) and moderately senscent C57BL/6N (≥9 months) mice. After tail vein injection, B1as RNA was available in the blood of mice for approximately 30 min, persisted for approximately 2-4 h in most detected tissues and persisted approximately 48 h in lungs. We found that treatment with B1as RNA improved stamina and promoted hair re-growth in aged mice. Treatment with B1as RNA also partially rescued the increase in mitochondrial DNA copy number in liver and spleen tissues observed in aged and moderately senescent mice. Finally, treatment with B1as RNA increased the activities of superoxide dismutase and glutathione peroxidase in aged and moderately senescent mice, reduced these animals' malondialdehyde and reactive oxygen species levels, and modulated the expression of several aging-associated genes, including Sirtuin 1, p21, p16Ink4a, p15Ink4b and p19Arf, and anti-oxidant genes (Sesn1 and Sesn 2). These data suggest that B1as RNA inhibits the aging process by enhancing antioxidant activity, promoting the scavenging of free radicals, and modulating the expression of aging-associated genes. This is the first report describing the anti-aging activity of SINE antisense RNA, which may serve as an effective nucleic acid drug for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Zhixue Song
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Baixue Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, PR China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, PR China.
| | - Ning Ji
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Xin Liu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Lifang Yan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Murad Khan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Yufang Zhao
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Peiyuan Wu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Shufeng Liu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Long Zheng
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Libo Su
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| |
Collapse
|
11
|
Zhu Y, Ma X, Zhang H, Wu Y, Kang M, Fang Y, Xue Y. Mechanism of circADD2 as ceRNA in Childhood Acute Lymphoblastic Leukemia. Front Cell Dev Biol 2021; 9:639910. [PMID: 34055775 PMCID: PMC8155473 DOI: 10.3389/fcell.2021.639910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Acute lymphocytic leukemia (ALL) is the most common malignant tumor in children. Increasing evidence suggests that circular RNAs (circRNAs) play critical regulatory roles in tumor biology. However, the expression patterns and roles of circRNAs in childhood acute lymphoblastic leukemia (ALL) remain largely unknown. Methods: circADD2 was selected by microarray assay and confirmed by qRT-PCR; in vitro effects of circADD2 were determined by CCK-8 and flow cytometry; while mice subcutaneous tumor model was designed for in vivo analysis. RNA immunoprecipitation and dual-luciferase assay were applied for mechanistic study. Protein levels were examined by Western blot assay. Results: circADD2 was down-regulated in ALL tissues and cell lines. Overexpression of circADD2 inhibited cell proliferation and promoted apoptosis both in vitro and in vivo. Briefly, circADD2 could directly sponge miR-149-5p, and the level of AKT2, a target gene of miR-149-5p, was downregulated by circADD2. Conclusion: circADD2, as a tumor suppressor in ALL, can sponge miR-149-5p, and may serve as a potential biomarker for the diagnosis or treatment of ALL.
Collapse
Affiliation(s)
- Yuting Zhu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Xiaopeng Ma
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Heng Zhang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yijun Wu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Salimimoghadam S, Taefehshokr S, Loveless R, Teng Y, Bertoli G, Taefehshokr N, Musaviaroo F, Hajiasgharzadeh K, Baradaran B. The role of tumor suppressor short non-coding RNAs on breast cancer. Crit Rev Oncol Hematol 2020; 158:103210. [PMID: 33385514 DOI: 10.1016/j.critrevonc.2020.103210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
Characterized by remarkable levels of aggression and malignancy, BC remains one of the leading causes of death in females world wide. Accordingly, significant efforts have been made to develop early diagnostic tools, increase treatment efficacy, and improve patient prognosis. Hopefully, many of the molecular mechanisms underlying BC have been detected and show promising targeting potential. In particular, short and long non-coding RNAs (ncRNAs) are a class of endogenous BC controllers and include a number of different species including microRNAs, Piwi-interacting RNAs, small nucleolar RNA, short interfering RNAs, and tRNA-derivatives. In this review, we discuss the tumor suppressing roles of ncRNAs in the context of BC, and the mechanisms by which ncRNAs target tumor hallmarks, including apoptosis, proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, and cell cycle progression, in addition to their diagnostic and prognostic significance in cancer treatment.
Collapse
Affiliation(s)
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Milan, Italy.
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Khan M, Yan L, Lv B, Ji N, Shah S, Liu X, Song Z, Zhao Y, Wang X, Lv Z. The preparation of endotoxin-free genetically engineered murine B1 antisense RNA. Anal Biochem 2020; 599:113737. [PMID: 32305428 DOI: 10.1016/j.ab.2020.113737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/09/2022]
Abstract
One of the major limitations in the production of genetically engineered RNA from Escherichia coli (E. coli) is contamination by endotoxin. Here we report the first method that is capable of removing endotoxin from genetically engineered RNA. As a proof of concept, we transformed E. coli with a plasmid containing a tandem short interspersed nuclear elements from the mouse genome (SINE B1 elements). We then evaluated several extraction methods (SDS-NaCl centrifugation, SDS-NaCl filtration, TRIzol and SDS hot-phenol) and refinements thereof, and measured the resulting RNA yield, RNA purity, RNA integrity and endotoxin content. SDS-NaCl filtration with 2 mol/L NaCl, incorporating DEPC as an RNA protective agent, effectively removed endotoxin and resulted in a good RNA yield. Triton X-114 phase separation further reduced the endotoxin content of SDS-NaCl filtration-extracted RNA. RNA extracted by SDS-NaCl filtration with Triton X-114 phase separation did not cause adverse reactions in BALB/c mice and did not induce fever in rabbits when injected into these animals. The RNA met the requirements of nucleic acid reagents for in vivo experiments on animals.
Collapse
Affiliation(s)
- Murad Khan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, China
| | - Lifang Yan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, China
| | - Baixue Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, China
| | - Ning Ji
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, China
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, China
| | - Zhixue Song
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, China
| | - Yufang Zhao
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
14
|
Zheng B, Mai Q, Jiang J, Zhou Q. The Therapeutic Potential of Small Activating RNAs for Colorectal Carcinoma. Curr Gene Ther 2019; 19:140-146. [PMID: 31284860 DOI: 10.2174/1566523219666190708111404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/17/2019] [Accepted: 06/02/2019] [Indexed: 12/15/2022]
Abstract
Small double-strand RNAs have been recognized as master regulators of gene expression.
In contrast to the evolutionary conserved RNA interference machinery, which degrades or inhibits the
translation of target mRNAs, small activating RNA (saRNA) activates the specific gene in a target dependent
manner through a similar mechanism as RNAi. Recently, saRNA mediated expression regulation
of specific genes has been extensively studied in cancer researches. Of particular interest is the
application of the RNA mediated gene activation within colorectal cancer (CRC) development, due to
the high incidence of the CRC. In this review, we summarize the current knowledge of saRNA mediated
genetic activation and its underlying mechanisms. Furthermore, we highlight the advantages of
the utilization of saRNAs induced gene expression as an investigating tool in colorectal cancer research.
Finally, the possibility and the challenge of the saRNA application as a potential therapy for
colorectal cancer are addressed.
Collapse
Affiliation(s)
- Bin Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - QingYun Mai
- The Center for Reproductive medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - JinXing Jiang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - QinQin Zhou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Zakrevsky P, Bindewald E, Humbertson H, Viard M, Dorjsuren N, Shapiro BA. A Suite of Therapeutically-Inspired Nucleic Acid Logic Systems for Conditional Generation of Single-Stranded and Double-Stranded Oligonucleotides. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E615. [PMID: 30991728 PMCID: PMC6526476 DOI: 10.3390/nano9040615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 01/16/2023]
Abstract
Several varieties of small nucleic acid constructs are able to modulate gene expression via one of a number of different pathways and mechanisms. These constructs can be synthesized, assembled and delivered to cells where they are able to impart regulatory functions, presenting a potential avenue for the development of nucleic acid-based therapeutics. However, distinguishing aberrant cells in need of therapeutic treatment and limiting the activity of deliverable nucleic acid constructs to these specific cells remains a challenge. Here, we designed and characterized a collection of nucleic acids systems able to generate and/or release sequence-specific oligonucleotide constructs in a conditional manner based on the presence or absence of specific RNA trigger molecules. The conditional function of these systems utilizes the implementation of AND and NOT Boolean logic elements, which could ultimately be used to restrict the release of functionally relevant nucleic acid constructs to specific cellular environments defined by the high or low expression of particular RNA biomarkers. Each system is generalizable and designed with future therapeutic development in mind. Every construct assembles through nuclease-resistant RNA/DNA hybrid duplex formation, removing the need for additional 2'-modifications, while none contain any sequence restrictions on what can define the diagnostic trigger sequence or the functional oligonucleotide output.
Collapse
Affiliation(s)
- Paul Zakrevsky
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| | - Eckart Bindewald
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Hadley Humbertson
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Nomongo Dorjsuren
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| | - Bruce A Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
16
|
MicroRNA in Lung Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11020265. [PMID: 30813457 PMCID: PMC6406837 DOI: 10.3390/cancers11020265] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer, with distant metastasis frequently developing in lung cancer, even at initial diagnosis, resulting in poor prognosis and high mortality. However, available biomarkers cannot reliably predict cancer spreading sites. The metastatic cascade involves highly complicated processes including invasion, migration, angiogenesis, and epithelial-to-mesenchymal transition that are tightly controlled by various genetic expression modalities along with interaction between cancer cells and the extracellular matrix. In particular, microRNAs (miRNAs), a group of small non-coding RNAs, can influence the transcriptional and post-transcriptional processes, with dysregulation of miRNA expression contributing to the regulation of cancer metastasis. Nevertheless, although miRNA-targeted therapy is widely studied in vitro and in vivo, this strategy currently affords limited feasibility and a few miRNA-targeted therapies for lung cancer have entered into clinical trials to date. Advances in understanding the molecular mechanism of metastasis will thus provide additional potential targets for lung cancer treatment. This review discusses the current research related to the role of miRNAs in lung cancer invasion and metastasis, with a particular focus on the different metastatic lesions and potential miRNA-targeted treatments for lung cancer with the expectation that further exploration of miRNA-targeted therapy may establish a new spectrum of lung cancer treatments.
Collapse
|
17
|
Takei H, Kobayashi SS. Targeting transcription factors in acute myeloid leukemia. Int J Hematol 2018; 109:28-34. [PMID: 29956082 DOI: 10.1007/s12185-018-2488-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022]
Abstract
Transcription factors recognize and bind to consensus sequence elements that are specific for each transcription factor, and the transcription factors then regulate downstream gene expression. In the bone marrow, transcription factors, such as C/EBPα, PU.1, and RUNX1, control essential genes to maintain the normal hematopoietic system. Dysregulation of transcription factors caused by gene mutations, chromosomal aberrations, or aberrant expression can lead to cancer, including acute myeloid leukemia. In the past, transcription factors were not considered "druggable" targets. However, a better understanding of the pathology of malignant tumors and mechanisms of transcriptional regulation has enabled us to develop novel therapeutic strategies that target transcription factors. In this review, we focus on transcription factors that play important roles in leukemogenesis and current efforts and prospects in the development of transcriptional therapy. We believe that such a therapeutic approach will benefit patients with cancers that involve acute myeloid leukemia in the near future.
Collapse
Affiliation(s)
- Hisashi Takei
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Susumu S Kobayashi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa-shi, Chiba, 277-8577, Japan.
- Harvard Stem Cell Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
18
|
Vaschetto LM. miRNA activation is an endogenous gene expression pathway. RNA Biol 2018; 15:826-828. [PMID: 29537927 PMCID: PMC6152443 DOI: 10.1080/15476286.2018.1451722] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/07/2018] [Indexed: 12/27/2022] Open
Abstract
Transfection of small non-coding RNAs (sncRNAs) molecules has become a routine technique widely used for silencing gene expression by triggering post-transcriptional and transcriptional RNA interference (RNAi) pathways. Moreover, in the past decade, small activating (saRNA) sequences targeting promoter regions were also reported, thereby a RNA-based gene activation (RNAa) mechanism has been proposed. In this regard, Turner and colleagues recently discovered an endogenous microRNA (miRNA) which binds its promoter in order to upregulate its own expression. Interestingly, several miRNA-induced RNA activation (miRNAa) phenomena have since then been identified. My objective here is to introduce the reader into the emergent miRNAa research field, as well as bring together important discoveries about this unexplored transcriptional activation pathway.
Collapse
Affiliation(s)
- Luis M. Vaschetto
- Instituto de Diversidad y Ecología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas (IDEA, CONICET), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
- Cátedra de Diversidad Animal I, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, (FCEFyN, UNC), Av. Vélez Sarsfield 299, X5000JJC Córdoba, Argentina
| |
Collapse
|
19
|
Wang LL, Guo HH, Zhan Y, Feng CL, Huang S, Han YX, Zheng WS, Jiang JD. Specific up-regulation of p21 by a small active RNA sequence suppresses human colorectal cancer growth. Oncotarget 2018; 8:25055-25065. [PMID: 28445988 PMCID: PMC5421909 DOI: 10.18632/oncotarget.15918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/22/2016] [Indexed: 12/25/2022] Open
Abstract
The double stranded small active RNA (saRNA)- p21-saRNA-322 inhibits tumor growth by stimulating the p21 gene expression. We focused our research of p21-saRNA-322 on colorectal cancer because 1) p21 down-regulation is a signature abnormality of the cancer, and 2) colorectal cancer might be a suitable target for in situ p21-saRNA-322 delivery. The goal of the present study is to learn the activity of p21-saRNA-322 in colorectal cancer. Three human colorectal cancer cell lines, HCT-116, HCT-116 (p53–/−) and HT-29 were transfected with the p21-saRNA-322. The expression of P21 protein and p21 mRNA were measured using the Western blot and reverse transcriptase polymerase chain reaction (RT-PCR). The effect of p21-saRNA-322 on cancer cells was evaluated in vitro; and furthermore, a xenograft colorectal tumor mode in mice was established to estimate the tumor suppressing ability of p21-saRNA-322 in vivo. The results showed that in all three colorectal cancer cell lines, the expression of p21 mRNA and P21 protein were dramatically elevated after p21-saRNA-322 transfection. Transfection of p21-saRNA-322 caused apoptosis and cell cycle arrest at the G0/G1. Furthermore, anti-proliferation effect, reduction of colonies formation and cell senescence were observed in p21-saRNA-322 treated cells. Animal studies showed that p21-saRNA-322 treatment significantly inhibited the HT-29 tumor growth and facilitated p21 activation in vivo. These results indicated that, p21-saRNA-322-induceded up-regulation of p21 might be a promising therapeutic option for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yun Zhan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chen-Lin Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuai Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
20
|
Feng CL, Han YX, Guo HH, Ma XL, Wang ZQ, Wang LL, Zheng WS, Jiang JD. Self-assembling HA/PEI/dsRNA-p21 ternary complexes for CD44 mediated small active RNA delivery to colorectal cancer. Drug Deliv 2017; 24:1537-1548. [PMID: 28994324 PMCID: PMC8240987 DOI: 10.1080/10717544.2017.1386732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/27/2017] [Indexed: 11/03/2022] Open
Abstract
Our previous work proved that sequence specific double strand RNA (dsRNA-p21) effectively activated p21 gene expression of colorectal cancer (CRC) cells and consequently suppressed CRC growth. However, efficient delivery system is a significant challenge to achieve sufficient therapy. In this study, a self-assembled HA/PEI/dsRNA-p21 ternary complex (TC-dsRNA-p21) was developed for the tumor-target delivery of dsRNA-p21 into CRC cells. Hyaluronic acid (HA) was introduced to shield the PEI/dsRNA-p21 binary complexes (BC-dsRNA-p21) for reducing the cytotoxicity of PEI and for increasing the tumor-targeted intracellular uptake by cancer cells through HA-CD44 mediated endocytosis. Comparing to the BC-dsRNA-p21, the TC-dsRNA-p21 showed increase in size, decrease in zeta potential, low cytotoxicity as well as high stability in physiological conditions due to the anionic shielding. Confocal microscopy analysis and flow cytometry confirmed that TC-dsRNA-p21 had high transfection efficiency in the CD44-abundant Lovo cells, as compared with binary complex. In vitro physiological experiment showed that, comparing to the control group, the TC-dsRNA-p21 effectively activated the expression of p21 mRNA and P21 protein, causing blockage of cell cycle at G0/G1 phase and suppression of cancer cell proliferation as well as colony formation. Furthermore, in vivo distribution experiment demonstrated that the TC-dsRNA-p21 could effectively accumulate at rectal wall for up to 10 h, following in situ application. These findings indicated that TC-dsRNA-p21 might hold great potential for delivering dsRNA-p21 to treat CRC.
Collapse
Affiliation(s)
- Chen-Lin Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zhi-Qiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
21
|
Liu C, Zhao Y, Yin S, Liu S, Zhang H, Wang X, Lv Z. The expression and construction of engineering Escherichia coli producing humanized AluY RNAs. Microb Cell Fact 2017; 16:183. [PMID: 29084536 PMCID: PMC5663053 DOI: 10.1186/s12934-017-0800-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Exogenous RNAs can specifically up-regulate or down-regulate gene expression after they enter into cells. Alu RNAs are the main constituent of human transcriptome and participate in gene expression regulation. AluY elements belong to a subfamily of Alus and are the youngest Alus. In this paper, we established the technology method of preparing genetically engineered humanized AluY RNAs (AluY RNAs) from Escherichia coli (E. coli) strains. This technology method also can be used to prepare other genetically engineered humanized RNAs that can be used for cytology experiments. RESULTS Different copies of human AluY elements were inserted into pET-28α plasmid (pET) to construct pET-AluY plasmids that were transformed into BMBL21-DE3 (DE3) E. coli. Isopropylthio-β-D-galactoside (IPTG) induction inhibited transformed bacterial growth after DE3 E. coli were transformed by pET-AluY × 8 plasmid (8 copies of AluYs were inserted into pET); northern blotting was used to detect the amount of AluY RNAs after 2, 4, 6, 8, 10, 12, 14 and 16 h inducing with IPTG. The results showed that the amount of AluY RNAs was the highest at 4 h; 1, 2, 4, 8 or 14 copies of AluY elements were inserted into the pET to construct pET-AluY plasmids that were transformed into DE3 bacteria, the northern blotting results showed that AluY RNAs production amount increased with the increase of AluY copy number; pET-AluY × 8 DE3 bacteria did not produce AluY RNAs without IPTG induction, AluY RNA production kept similar when inducing by 0.1-0.4 mg/ml IPTG induction, however, AluY RNA production slightly decreased if deviating from the above concentration range; pET-AluY × 8 DE3 bacteria were cultured at 34, 37 or 40 °C and the results showed that AluY RNA production was the highest under 37 °C cultivation; pET-AluY × 8 plasmid was transformed into three kinds of BL21 bacteria, including DE3, BMBL21-DE3-pLysS (pLysS) and Trans BL 21 (TransBL), the results showed that AluY RNA production was the highest when using DE3 bacteria. CONCLUSIONS The optimal conditions of producing AluY RNAs were: a kind of host bacteria of DE3, an engineering bacteria concentration of OD600 1.0, an IPTG concentration of 0.2 mg/ml, a culturing temperature of 37 °C and a culturing time of 4 h. Pure AluY RNAs occupied 15.8% of extractive total RNAs and the mean yield of pure AluY RNAs in 100 ml bacteria solution was 0.46 mg.
Collapse
Affiliation(s)
- Chao Liu
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Yuehua Zhao
- School of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Shuxian Yin
- School of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Shufeng Liu
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Huanling Zhang
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Xiufang Wang
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Key Lab of Laboratory Animal, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
22
|
Xu X, Li J, Zhu Y, Xie B, Wang X, Wang S, Xie H, Yan H, Ying Y, Lin Y, Liu B, Wang W, Zheng X. CRISPR-ON-Mediated KLF4 overexpression inhibits the proliferation, migration and invasion of urothelial bladder cancer in vitro and in vivo. Oncotarget 2017; 8:102078-102087. [PMID: 29254226 PMCID: PMC5731936 DOI: 10.18632/oncotarget.22158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Kruppel like factor 4 (KLF4), a transcription factor associated with carcinogenesis and tumor progression, plays an important role in various malignancies. In the present study, we utilized the CRISPR-ON system to upregulate KLF4 expression level and subsequently investigated the effect and mechanism of KLF4 in the carcinogenesis and progression of urothelial bladder cancer (UBC). Immunohistochemistry (IHC) and quantitative RT-PCR (qRT-PCR) were used to evaluate the expression of KLF4. The CpG methylation status of the promoter region was analyzed using bisulfite-sequencing PCR (BSP). CRISPR-ON system comprised sgRNA and dCas9 protein combined with a transcriptional activation domain. The cell proliferation and cell cycle were assessed by CCK-8 assay, flow cytometry and colony formation assay. The cell motility ability was evaluated using trans-well assay. In vivo tumorigenesis assay and lung metastasis model were also performed. The KLF4 expression was significantly downregulated in UBC tissues. The high CpG methylation status in the promoter of KLF4 was confirmed using BSP. KLF4 overexpression was successfully achieved via CRISPR-ON system, which inhibited the proliferation and induced G1-phase arrest in T24 cells through the regulation of AKT/p21 signal. Furthermore, enforced expression of KLF4 also abrogated the migration and invasion of T24 cells by suppressing EMT progression. Finally, in vivo models indicated that the upregulation of KLF4 could inhibit tumorigenesis and lung metastasis in nude mice. In conclusion, KLF4 overexpression mediated by CRISPR-ON inhibits tumorigenesis and EMT progression in UBC cells, representing a potential therapeutic target, and CRISPR-ON system could be a therapeutic strategy for UBC in the future.
Collapse
Affiliation(s)
- Xin Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Jiangfeng Li
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Yi Zhu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Bo Xie
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, P.R. China
| | - Xiao Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Song Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Haiyun Xie
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Huaqing Yan
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Yufan Ying
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Yiwei Lin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Ben Liu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| | - Xiangyi Zheng
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P.R. China
| |
Collapse
|
23
|
Zhang Q, Wang C, Miao S, Li C, Chen Z, Li F. Enhancing E-cadherin expression via promoter-targeted miR-373 suppresses bladder cancer cells growth and metastasis. Oncotarget 2017; 8:93969-93983. [PMID: 29212202 PMCID: PMC5706848 DOI: 10.18632/oncotarget.21400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022] Open
Abstract
Previous studies showed that miR-373 had the capacity to induce tumor suppressor gene E-cadherin expression in prostate cancer cells. However, whether miR-373 can activate the expression of E-cadherin in human bladder cancer (BCa) cells and inhibit cells remains to be elucidated. Here, we found that both miR-373 and E-cadherin were low expressed in BCa tissues and cell lines, and significantly correlated with tumor stage, grade, and lymph node metastasis. In addition, decreased E-cadherin expression or low expression of both miR-373 and E-cadherin is associated with poor overall survival in patients with BCa. Transfection of miR-373 into BCa cells readily activated E-cadherin expression by targeting promoter. Moreover, miR-373 exhibited robust capacity to inhibit cells proliferation, suppress migration and invasion by enhancing E-cadherin expression, and significantly suppress the growth of xenografts and metastasis in nude mice. Altogether, our findings indicate that miR-373 may as a tumor suppressor in BCa by activating E-cadherin expression.
Collapse
Affiliation(s)
- Qingsong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chenghe Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shuo Miao
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Chuanchang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
24
|
Tumor-selective lipopolyplex encapsulated small active RNA hampers colorectal cancer growth in vitro and in orthotopic murine. Biomaterials 2017; 141:13-28. [PMID: 28666099 DOI: 10.1016/j.biomaterials.2017.06.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023]
Abstract
Small active RNA (saRNA)-induced gene activation (RNAa) is a novel strategy to treat cancer. Our previous work proved that the p21-saRNA-322 successfully hindered colorectal cancer growth by activating p21 gene. However, the barrier for successful saRNA therapy is lack of efficient drug delivery. In the present study, a rectal delivery system entitled p21-saRNA-322 encapsulated tumor-selective lipopolyplex (TSLPP-p21-saRNA-322) which consist of PEI/p21-saRNA-322 polyplex core and hyaluronan (HA) modulated lipid shell was developed to treat colorectal cancer. Our results showed that this system maintained at the rectum for more than 6 h and preferentially accumulated at tumor site. CD44 knock down experiment instructed that the superb cellular uptake of TSLPP-p21-saRNA-322 attributed to HA-CD44 recognition. An orthotopic model of bio-luminescence human colorectal cancer in mice was developed using microsurgery and TSLPP-p21-saRNA-322 demonstrated a superior antitumor efficacy in vitro and in vivo. Our results provide preclinical proof-of-concept for a novel method to treat colorectal cancer by rectal administration of TSLPP formulated p21-saRNA-322.
Collapse
|
25
|
Li C, Ge Q, Liu J, Zhang Q, Wang C, Cui K, Chen Z. Effects of miR-1236-3p and miR-370-5p on activation of p21 in various tumors and its inhibition on the growth of lung cancer cells. Tumour Biol 2017. [PMID: 28631573 DOI: 10.1177/1010428317710824] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Chuanchang Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiangqiang Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jiaxuan Liu
- Department of Pathology, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Qingsong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghe Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kai Cui
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Li S, Wang C, Yu X, Wu H, Hu J, Wang S, Ye Z. miR-3619-5p inhibits prostate cancer cell growth by activating CDKN1A expression. Oncol Rep 2016; 37:241-248. [DOI: 10.3892/or.2016.5250] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/24/2016] [Indexed: 11/06/2022] Open
|
27
|
Wang X, Ma Z, Kong X, Lv Z. Effects of RNAs on chromatin accessibility and gene expression suggest RNA-mediated activation. Int J Biochem Cell Biol 2016; 79:24-32. [PMID: 27497987 DOI: 10.1016/j.biocel.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023]
Abstract
The study of the interaction between RNA and DNA sequences in activating genes has important significance for understanding the mechanisms of RNA-mediated activation. Here, we used in vitro chromatin reconstitution approach to observe whether RNAs increase DNase I digestion, plasmid transfection to observe whether RNAs promote gene expression, and bioinformatics analysis to predict the binding ability of RNAs to centromere DNA (constitutive heterochromatin). Synthetic RNAs (23nt) that were complementary to mouse albumin gene and total liver RNA increased DNase I digestion sensitivity of mouse albumin gene, suggesting that RNAs can increase chromatin accessibility. Transcribed sense-antisense tandem Alu elements activated an enhanced green fluorescent protein reporter gene after stable transfection. Bioinformatics analysis showed that the binding strength of RNA population to centromere DNAs is significantly lower than that of their flanking sequences, which suggests that the centromere is not easily affected by RNAs produced from other transcribed regions and may be the reason why centromeres consist of constitutive heterochromatin. The results in this paper illustrate that RNAs complementary to DNA sequences play roles in activating genes. Since RNA is mainly produced from the cell's own DNA, the work presented in this paper suggests that RNAs transcribed from DNA create feedback that activates DNA transcription.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China.
| | - Zhihong Ma
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China; Clinical Laboratory, The Second Hospital of Tangshan, 21 North Jianshe Road, Tangshan, Hebei Province, China.
| | - Xianglong Kong
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China; Clinical Laboratory, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, Hebei Province, China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
28
|
Wu Z, Li Y, Li Z, Liu Z, Qin Z, Li X, Ye Y, Bu L, Lin B, Wang Z, Jia G, Chen G. Transcriptional regulation of E-cadherin by small activating RNA: A new double-stranded RNA. Int J Oncol 2016; 49:1620-8. [DOI: 10.3892/ijo.2016.3643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/11/2016] [Indexed: 11/06/2022] Open
|
29
|
Wang C, Ge Q, Zhang Q, Chen Z, Hu J, Li F, Ye Z. Targeted p53 activation by saRNA suppresses human bladder cancer cells growth and metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:53. [PMID: 27012825 PMCID: PMC4807596 DOI: 10.1186/s13046-016-0329-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Previous study showed that dsP53-285 has the capacity to induce tumor suppressor gene p53 expression by targeting promoter in non-human primates' cells. And it is well known that TP53 gene is frequently mutant or inactivated in human bladder cancer. Hereby, whether this small RNA can activate the expression of wild-type p53 and inhibit human bladder cancer cells remains to be elucidated. METHODS Oligonucleotide and lentivirus were used to overexpress dsP53-285 and dsControl. Real-time PCR and western blot were used to detect genes' mRNA and protein expression, respectively. Cell proliferation assay, colony formation, flow cytometry, transwell assay and wound healing assay were performed to determine the effects on bladder cancer cells proliferation and migration/invasion in vitro. Animal models were carried out to analyze the effects on cells growth and metastasis in vivo. RESULTS Transfection of dsP53-285 into human bladder cancer cell lines T24 and EJ readily activate wild-type p53 expression by targeting promoter. Moreover, dsP53-285 exhibited robust capacity to inhibit cells proliferation and colony formation, induce cells G0/G1 arrest, suppress migration and invasion. Besides, the Cyclin-CDK genes (Cyclin D1 and CDK4/6) were down-regulated and the EMT-associated genes (E-cadherin, β-catenin, ZEB1 and Vimentin) were also expressed inversely after dsP53-285 treatment. In addition, dsP53-285 could also significantly suppress the growth of bladder cancer xenografts and metastasis in nude mice. Most importantly, the anti-tumor effects mediated by dsP53-285 were mainly achieved by manipulating wild-type p53 expression. CONCLUSION Our findings indicate that the dsP53-285 can upregulate wild-type p53 expression in human bladder cancer cells through RNA activation, and suppresses cells proliferation and metastasis in vitro and in vivo.
Collapse
Affiliation(s)
- Chenghe Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Wuhan, 430030, Hubei, China.,Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Qiangqiang Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Wuhan, 430030, Hubei, China
| | - Qingsong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Wuhan, 430030, Hubei, China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Wuhan, 430030, Hubei, China.
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Wuhan, 430030, Hubei, China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Wuhan, 430030, Hubei, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Wuhan, 430030, Hubei, China
| |
Collapse
|
30
|
Ge Q, Wang C, Ruan Y, Chen Z, Liu J, Ye Z. Overexpression of p53 activated by small activating RNA suppresses the growth of human prostate cancer cells. Onco Targets Ther 2016; 9:231-41. [PMID: 26811691 PMCID: PMC4712973 DOI: 10.2147/ott.s96710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previous research has reported that a particular double-stranded RNA, named dsP53-285, has the capacity to induce expression of the tumor suppressor gene TP53 in chimpanzee cells by targeting its promoter. Usually, it is the wild-type p53 protein, rather than mutants, which exhibits potent cancer-inhibiting effects. In addition, nonhuman primates, such as chimpanzees, share almost identical genome sequences with humans. This prompted us to speculate whether dsP53-285 can trigger wild-type p53 protein expression in human prostate cancer (PCa) cells and consequently suppress cell growth. The human PCa cell lines LNCaP and DU145 were transfected with dsP53-285 for 72 hours. Compared with the dsControl and mock transfection groups, expression of both p53 messenger RNA and p53 protein was significantly enhanced after dsP53-285 transfection, and this enhancement was followed by upregulation of p21, which indirectly indicated that dsP53-285 induced wild-type p53 expression. Moreover, overexpression of wild-type p53 mediated by dsP53-285 downregulated the expression of Cyclin D1 and cyclin-dependent kinase 4/6, thereby inducing PCa cell cycle arrest in G0/G1 phase and then inhibiting cell proliferation and clonogenicity. More importantly, dsP53-285 suppressed PCa cells mainly by modulating wild-type p53 expression. In conclusion, our study provides evidence that dsP53-285 can significantly stimulate wild-type p53 expression in the human PCa cell lines LNCaP and DU145 and can exert potent antitumor effects.
Collapse
Affiliation(s)
- Qiangqiang Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chenghe Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
31
|
Papadopoulos K, Wattanaarsakit P, Prasongchean W, Narain R. Gene therapies in clinical trials. POLYMERS AND NANOMATERIALS FOR GENE THERAPY 2016. [DOI: https:/doi.org/10.1016/b978-0-08-100520-0.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
32
|
Promoter-associated endogenous and exogenous small RNAs suppress human bladder cancer cell metastasis by activating p21 (CIP1/WAF1) expression. Tumour Biol 2015; 37:6589-98. [PMID: 26643891 DOI: 10.1007/s13277-015-4571-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/01/2015] [Indexed: 01/28/2023] Open
Abstract
Accumulating data suggest that micro RNAs (miRNAs) or double-stranded RNAs (dsRNAs) can activate gene expression by targeting promoters. The cyclin-dependent kinase inhibitor p21 (CIP1/WAF1) (p21) has also been shown to suppress epithelial-mesenchymal transition (EMT) which plays a crucial role in the early stage of tumor metastases and invasiveness. In a previous study, we have reported that miR-370-5p is low-expressed in bladder cancer (BCa) tissues and cell lines. Here, we identified that miR-370-5p and sequence homology dsRNA (dsP21-555) fully complementary to promoter hold the potent abilities to induce p21 expression. Moreover, transfection of miR-370-5p or dsP21-555 into BCa cells remarkably inverts EMT-associated genes (increases epithelial cell makers E-cadherin and β-catenin, and decreases mesenchymal cell markers ZEB1 and Vimentin) expression mainly via regulating p21 expression. Besides, through manipulating p21, both the candidates can retard BCa cell migration and invasion. In summary, our results provide evidence that both endogenous and exogenous small RNAs may function to induce p21 expression by interacting with the similar promoter region and impede BCa metastasis.
Collapse
|
33
|
Rad SMAH, Langroudi L, Kouhkan F, Yazdani L, Koupaee AN, Asgharpour S, Shojaei Z, Bamdad T, Arefian E. Transcription factor decoy: a pre-transcriptional approach for gene downregulation purpose in cancer. Tumour Biol 2015; 36:4871-81. [PMID: 25835969 DOI: 10.1007/s13277-015-3344-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/15/2015] [Indexed: 12/13/2022] Open
Abstract
Gene therapy as a therapeutic approach has been the dream for many scientists around the globe. Many strategies have been proposed and applied for this purpose, yet the void for a functional safe method is still apparent. Since most of the diseases are caused by undesirable upregulation (oncogenes) or downregulation (tumor suppressor genes) of genes, major gene therapy's techniques affect gene expression. Most of the methods are used in post-transcriptional level such as RNA inhibitory (RNAi) and splice-switching oligonucleotides (SSOs). RNAi blocks messenger RNA (mRNA) translation by mRNA degradation or interruption between attachments of mRNA with ribosomes' subunits. However, one of the novel methods is the usage of transcription factor targeted decoys. DNA decoys are the new generation of functional gene downregulatory oligonucleotides which compete with specific binding sites of transcription factors. Considering the exponential growth of this technique in both in vitro and in vivo studies, in this paper, we aim to line out the description, design, and application of decoys in research and therapy.
Collapse
|
34
|
A New Double Stranded RNA Suppresses Bladder Cancer Development by Upregulating p21 (Waf1/CIP1) Expression. BIOMED RESEARCH INTERNATIONAL 2015; 2015:304753. [PMID: 25918708 PMCID: PMC4396018 DOI: 10.1155/2015/304753] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that miR-1180-5p has potent ability to upregulate p21 expression by targeting promoter and inhibit bladder cancer. This prompted us to conjecture that a candidate dsRNA (dsP21-397) with perfect complementarity to the miR-1180-5p target site of p21 promoter may also trigger p21 expression. Transfection of dsP21-397 into T24 and EJ cells significantly activated p21 expression at 72 h and the activation presented in a time-course and dose-dependent manner. Moreover, the p21-activated activities of dsP21-397 and miR-1180-5p are not significantly different. Overexpression of p21 downregulated Cyclin D1, CDK4/6, and Cyclin A2 expression, and thereby induced cell cycle arrest and inhibited proliferation. Moreover, dsP21-397 suppressed bladder cancer largely depended on manipulating p21. In conclusion, our study identifies a pair of miRNA-dsRNA mediating endogenous p21 overexpression.
Collapse
|