1
|
Kgosiemang IKR, Lefojane R, Adegoke AM, Ogunyemi O, Mashele SS, Sekhoacha MP. Pharmacological Significance, Medicinal Use, and Toxicity of Extracted and Isolated Compounds from Euphorbia Species Found in Southern Africa: A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:469. [PMID: 39943031 PMCID: PMC11821031 DOI: 10.3390/plants14030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 02/16/2025]
Abstract
This study documents the Euphorbiaceae family of plants in Southern Africa, with a focus on their traditional medicinal applications, pharmacological properties, toxicity, and active secondary metabolites. A review of the literature from scientific journals, books, dissertations, and conference papers spanning from 1962 to 2023 was conducted for 15 Euphorbia species. Recent findings indicate that specific compounds found in Euphorbia plants exhibit significant biological and pharmacological properties. However, the white sticky latex sap they contain is highly toxic, although it may also have medicinal applications. Phytochemical analyses have demonstrated that these plants exhibit beneficial effects, including antibacterial, antioxidant, antiproliferative, anticancer, anti-inflammatory, antiviral, antifungal, and anti-HIV activities. Key phytochemicals such as euphol, cycloartenol, tirucallol, and triterpenoids contribute to their therapeutic efficacy, along with various proteins like lectin and lysozyme. Despite some Euphorbiaceae species undergoing screening for medicinal compounds, many remain insufficiently examined, highlighting a critical gap in the research literature. Given their historical usage, further investigations are essential to evaluate the medicinal significance of Euphorbia species through detailed studies of isolated compounds and their pharmacokinetics and pharmacodynamics. This research will serve as a valuable resource for future inquiries into the benefits of lesser-studied Euphorbia species.
Collapse
Affiliation(s)
- Ipeleng Kopano Rosinah Kgosiemang
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Relebohile Lefojane
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Ayodeji Mathias Adegoke
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa;
- Cancer Research and Molecular Biology Laboratories, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Oludare Ogunyemi
- Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria;
| | - Samson Sitheni Mashele
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa; (I.K.R.K.); (R.L.); (S.S.M.)
| | - Mamello Patience Sekhoacha
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9301, South Africa;
| |
Collapse
|
2
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Jansen RA, Mainardi S, Dias MH, Bosma A, van Dijk E, Selig R, Albrecht W, Laufer SA, Zender L, Bernards R. Small-molecule inhibition of MAP2K4 is synergistic with RAS inhibitors in KRAS-mutant cancers. Proc Natl Acad Sci U S A 2024; 121:e2319492121. [PMID: 38377196 PMCID: PMC10907260 DOI: 10.1073/pnas.2319492121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
The Kirsten rat sarcoma viral oncogene homologue KRAS is among the most commonly mutated oncogenes in human cancers, thus representing an attractive target for precision oncology. The approval for clinical use of the first selective inhibitors of G12C mutant KRAS therefore holds great promise for cancer treatment. However, despite initial encouraging clinical results, the overall survival benefit that patients experience following treatment with these inhibitors has been disappointing to date, pointing toward the need to develop more powerful combination therapies. Here, we show that responsiveness to KRASG12C and pan-RAS inhibitors in KRAS-mutant lung and colon cancer cells is limited by feedback activation of the parallel MAP2K4-JNK-JUN pathway. Activation of this pathway leads to elevated expression of receptor tyrosine kinases that reactivate KRAS and its downstream effectors in the presence of drug. We find that the combination of sotorasib, a drug targeting KRASG12C, and the MAP2K4 inhibitor HRX-0233 prevents this feedback activation and is highly synergistic in a panel of KRASG12C-mutant lung and colon cancer cells. Moreover, combining HRX-0233 and sotorasib is well-tolerated and resulted in durable tumor shrinkage in mouse xenografts of human lung cancer cells, suggesting a therapeutic strategy for KRAS-driven cancers.
Collapse
Affiliation(s)
- Robin A. Jansen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Sara Mainardi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Matheus Henrique Dias
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | - Emma van Dijk
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| | | | | | - Stefan A. Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen72074, Germany
- Tübingen Center for Academic Drug Discovery and Development, Tübingen72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (EXC 2180), Eberhard Karls Universität Tübingen, Tübingen72076, Germany
| | - Lars Zender
- Tübingen Center for Academic Drug Discovery and Development, Tübingen72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (EXC 2180), Eberhard Karls Universität Tübingen, Tübingen72076, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, Tübingen72076, Germany
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg69120, Germany
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam1066 CX, The Netherlands
| |
Collapse
|
4
|
Zhang X, Qiao Z, Guan B, Wang F, Shen X, Shu H, Shan Y, Cong Y, Xing S, Yu Z. Fluacrypyrim Protects Hematopoietic Stem and Progenitor Cells against Irradiation via Apoptosis Prevention. Molecules 2024; 29:816. [PMID: 38398568 PMCID: PMC10893289 DOI: 10.3390/molecules29040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Ionizing radiation (IR)-induced hematopoietic injury has become a global concern in the past decade. The underlying cause of this condition is a compromised hematopoietic reserve, and this kind of hematopoietic injury could result in infection or bleeding, in addition to lethal mishaps. Therefore, developing an effective treatment for this condition is imperative. Fluacrypyrim (FAPM) is a recognized effective inhibitor of STAT3, which exhibits anti-inflammation and anti-tumor effects in hematopoietic disorders. In this context, the present study aimed to determine whether FAPM could serve as a curative agent in hematopoietic-acute radiation syndrome (H-ARS) after total body irradiation (TBI). The results revealed that the peritoneally injection of FAPM could effectively promote mice survival after lethal dose irradiation. In addition, promising recovery of peripheral blood, bone marrow (BM) cell counts, hematopoietic stem cell (HSC) cellularity, BM colony-forming ability, and HSC reconstituting ability upon FAPM treatment after sublethal dose irradiation was noted. Furthermore, FAPM could reduce IR-induced apoptosis in hematopoietic stem and progenitor cells (HSPCs) both in vitro and in vivo. Specifically, FAPM could downregulate the expressions of p53-PUMA pathway target genes, such as Puma, Bax, and Noxa. These results suggested that FAPM played a protective role in IR-induced hematopoietic damage and that the possible underlying mechanism was the modulation of apoptotic activities in HSCs.
Collapse
Affiliation(s)
- Xuewen Zhang
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zizhi Qiao
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo Guan
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Fangming Wang
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Xing Shen
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui Shu
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Yajun Shan
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuwen Cong
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shuang Xing
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zuyin Yu
- Beijing Key Laboratory for Radiobiology, Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
5
|
Wang D, Sun T, Xia Y, Zhao Z, Sheng X, Li S, Ma Y, Li M, Su X, Zhang F, Li P, Ma D, Ye J, Lu F, Ji C. Homodimer-mediated phosphorylation of C/EBPα-p42 S16 modulates acute myeloid leukaemia differentiation through liquid-liquid phase separation. Nat Commun 2023; 14:6907. [PMID: 37903757 PMCID: PMC10616288 DOI: 10.1038/s41467-023-42650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
CCAAT/enhancer binding protein α (C/EBPα) regulates myeloid differentiation, and its dysregulation contributes to acute myeloid leukaemia (AML) progress. Clarifying its functional implementation mechanism is of great significance for its further clinical application. Here, we show that C/EBPα regulates AML cell differentiation through liquid-liquid phase separation (LLPS), which can be disrupted by C/EBPα-p30. Considering that C/EBPα-p30 inhibits the functions of C/EBPα through the LZ region, a small peptide TAT-LZ that could instantaneously interfere with the homodimerization of C/EBPα-p42 was constructed, and dynamic inhibition of C/EBPα phase separation was observed, demonstrating the importance of C/EBPα-p42 homodimers for its LLPS. Mechanistically, homodimerization of C/EBPα-p42 mediated its phosphorylation at the novel phosphorylation site S16, which promoted LLPS and subsequent AML cell differentiation. Finally, decreasing the endogenous C/EBPα-p30/C/EBPα-p42 ratio rescued the phase separation of C/EBPα in AML cells, which provided a new insight for the treatment of the AML.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhe Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xue Sheng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuying Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuhua Su
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Chaib M, Sipe LM, Yarbro JR, Bohm MS, Counts BR, Tanveer U, Pingili AK, Daria D, Marion TN, Carson JA, Thomas PG, Makowski L. PKC agonism restricts innate immune suppression, promotes antigen cross-presentation and synergizes with agonistic CD40 antibody therapy to activate CD8 + T cells in breast cancer. Cancer Lett 2022; 531:98-108. [PMID: 35074498 PMCID: PMC9867936 DOI: 10.1016/j.canlet.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2022] [Accepted: 01/13/2022] [Indexed: 01/26/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immature innate cell population that expands in pathological conditions such as cancer and suppresses T cells via production of immunosuppressive factors. Conversely, efficient cytotoxic T cell priming is dependent on the ability of antigen-presenting cells (APCs) to cross-present tumor antigens to CD8+ T cells, a process that requires a specific subtype of dendritic cells (DCs) called conventional DC1 (cDC1) which are often dysfunctional in cancer. One way to activate cDC1 is ligation of CD40 which is abundantly expressed by myeloid cells and its agonism leads to myeloid cell activation. Thus, targeting MDSCs while simultaneously expanding cross-presenting DCs represents a promising strategy that, when combined with agonistic CD40, may result in long-lasting protective immunity. In this study, we investigated the effect of PKC agonists PEP005 and prostratin on MDSC expansion, differentiation, and recruitment to the tumor microenvironment. Our findings demonstrate that PKC agonists decreased MDSC expansion from hematopoietic progenitors and induced M-MDSC differentiation to an APC-like phenotype that expresses cDC1-related markers via activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Simultaneously, PKC agonists favored cDC1 expansion at the expense of cDC2 and plasmacytoid DCs (pDC). Functionally, PKC agonists blunted MDSC suppressive activity and enhanced MDSC cross-priming capacity both in vitro and in vivo. Finally, combination of PKC agonism with agonistic CD40 mAb resulted in a marked reduction in tumor growth with a significant increase in intratumoral activated CD8+ T cells and tissue-resident memory CD8+ T cells in a syngeneic breast cancer mouse model. In sum, this work proposes a novel promising strategy to simultaneously target MDSCs and promote APC function that may have highly impactful clinical relevance in cancer patients.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Laura M. Sipe
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Johnathan R. Yarbro
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Margaret S. Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Brittany R. Counts
- Division of Regenerative and Rehabilitation Sciences, College of Health Professions, UTHSC Memphis, USA
| | - Ubaid Tanveer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ajeeth K. Pingili
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Deidre Daria
- Office of Vice Chancellor for Research, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tony N. Marion
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Office of Vice Chancellor for Research, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - James A. Carson
- Division of Regenerative and Rehabilitation Sciences, College of Health Professions, UTHSC Memphis, USA,UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Paul G. Thomas
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA,UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Corresponding author. Cancer Research Building Room 322, UTHSC Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Memphis, TN, 38163, USA. (L. Makowski)
| |
Collapse
|
7
|
Chen D, Chu F, Zhang G, Wang Q, Li Y, Zhang M, He Q, Yang J, Wang H, Sun P, Xu J, Chen P. 12-Deoxyphorbol 13-acetate inhibits RANKL-induced osteoclastogenesis via the attenuation of MAPK signaling and NFATc1 activation. Int Immunopharmacol 2021; 101:108177. [PMID: 34626872 DOI: 10.1016/j.intimp.2021.108177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/04/2021] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Osteoporosis, characterized by bone loss and microstructure damage, occurs when osteoclast activity outstrips osteoblast activity. Natural compounds with inhibitory effect on osteoclast differentiation and function have been evidenced to protect from osteoporosis. After multiple compounds screening, 12-deoxyphorbol 13-acetate (DPA) was found to decline RANKL-induced osteoclastogenesis dose-dependently by attenuating activities of NFATc1 and c-Fos, followed by decreasing the level of osteoclast function-associated genes and proteins including Acp5, V-ATPase-d2 and CTSK. Mechanistically, we found that DPA suppressing RANKL-induced downstream signaling pathways, including MAPK signaling pathway and calcium oscillations. Furthermore, the in vivo efficacy of DPA was further confirmed in an OVX-induced osteoporosis mice model. Collectively, the results in our presentation reveal that DPA might be a promising compound to manage osteoporosis.
Collapse
Affiliation(s)
- Delong Chen
- Department of Orthopaedic Surgery, Clifford Hospital, Jinan University, Guangzhou 510006, China
| | - Feifan Chu
- The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Gangyu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ying Li
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510360, China
| | - Meng Zhang
- Department of Orthopedics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Qi He
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junzheng Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haibin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ping Sun
- Department of Endocrinology, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Peng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
8
|
Dias MH, Bernards R. Playing cancer at its own game: activating mitogenic signaling as a paradoxical intervention. Mol Oncol 2021; 15:1975-1985. [PMID: 33955157 PMCID: PMC8333773 DOI: 10.1002/1878-0261.12979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
In psychotherapy, paradoxical interventions are characterized by a deliberate reinforcement of the pathological behavior to improve the clinical condition. Such a counter-intuitive approach can be considered when more conventional interventions fail. The development of targeted cancer therapies has enabled the selective inhibition of activated oncogenic signaling pathways. However, in advanced cancers, such therapies, on average, deliver modest benefits due to the development of resistance. Here, we review the perspective of a 'paradoxical intervention' in cancer therapy: rather than attempting to inhibit oncogenic signaling, the proposed therapy would further activate mitogenic signaling to disrupt the labile homeostasis of cancer cells and overload stress response pathways. Such overactivation can potentially be combined with stress-targeted drugs to kill overstressed cancer cells. Although counter-intuitive, such an approach exploits intrinsic and ubiquitous differences between normal and cancer cells. We discuss the background underlying this unconventional approach and how such intervention might address some current challenges in cancer therapy.
Collapse
Affiliation(s)
- Matheus Henrique Dias
- Division of Molecular CarcinogenesisOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - René Bernards
- Division of Molecular CarcinogenesisOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
9
|
Ji J, Zhuang Y, Wang H, Feng C, Zhao Y, Zhang X. M-CSF and prostratin induced Mregs promote immune tolerance in transplanted mice through Arg-1 pathway. Int Immunopharmacol 2021; 99:108014. [PMID: 34332340 DOI: 10.1016/j.intimp.2021.108014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Regulatory macrophages (Mregs) are a group of heterogeneous macrophages. These cells could induce immunosuppressive effects through the expression of immune regulatory molecules and cytokines. METHODS The differentiation of Mregs was induced by treating bone marrow cells with M-CSF and prostratin in vitro. The cell-phenotypes and immunosuppressive function were determined by flow cytometry. Rt-PCR was employed to assess the mechanisms of Mregs. Skin grafted mouse model was used for in vivo validation. RESULTS Mregs induced by M-CSF + prostratin had a strong inhibitory effect on T cell proliferation and cytokines production. The phenotype of induced bone marrow cells changed towards Mregs. These Mregs could induce the differentiation of Tregs in vivo. Arg-1 expression in these cells were significantly upregulated. Inhibition of arginase (Arg) or arginine supplement significantly reversed the immunosuppressive function. In mice skin-grafted models, adoptive transfer of these Mregs significantly prolonged allograft survival. In mice models, Arg-1 expression significantly elevated on skin grafts cells and Tregs increased in graft tissues. CONCLUSIONS We successfully developed a Mregs-inducing protocol with the combination of M-CSF and prostratin in vitro. M-CSF + prostratin induced Mregs prevented mice skin graft rejection through upregulating the expression Arg-1.
Collapse
Affiliation(s)
- Jiawei Ji
- Capital Medical University, Beijing, China; Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Yuan Zhuang
- Department of Blood Transfusion, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haozhou Wang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Chang Feng
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China.
| |
Collapse
|
10
|
Zhou H, Jia X, Yang F, Shi P. miR-148a-3p suppresses the progression of acute myeloid leukemia via targeting cyclin-dependent kinase 6 (CDK6). Bioengineered 2021; 12:4508-4519. [PMID: 34308752 PMCID: PMC8806774 DOI: 10.1080/21655979.2021.1956400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
To study the regulation of miR-148a-3p on CDK6 and its mechanism in the progress of acute myeloid leukemia (AML), differential miRNAs were analyzed by bioinformatics, and the miR-148a-3p levels in AML cell lines were detected. Results showed that miR-148a-3p played a crucial role in AML, and the level was lower in AML cells, especially in J111 and KG-1a cells. In J111 and KG-1a cells, the up-regulation of miR-148a-3p mimics blocked the cell growth by arresting cell cycle at G2/M and enhancing cell apoptosis. Transwell and EMT markers detection indicated that miR-148a-3p reduced the cell migration and invasion. Afterward, through bioinformatics analysis, it showed that the CDK6 is one of the direct target genes of miR-148a-3p. DLR assay confirmed the target regulation. CDK6 overexpression reversed the effects of miR-148a-3p on AML cells. Collectively, miR-148a-3p inhibited the process of AML cells through disturbing the CDK-6 expression, implying that the trageting miR-148a-3p might be regarded as effective therapy of AML.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Jia
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Fan Yang
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pengfei Shi
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Liu Z, Ding Z, Chen K, Xu M, Yu T, Tong G, Zhang H, Li P. Balancing skeleton and functional groups in total syntheses of complex natural products: a case study of tigliane, daphnane and ingenane diterpenoids. Nat Prod Rep 2021; 38:1589-1617. [PMID: 33508045 DOI: 10.1039/d0np00086h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Total synthesis of natural products has greatly contributed to natural product research, organic synthesis and drug discovery and development. However, in most cases, the efficiency of total synthesis is far from sufficient for direct practical industrial application. Thus, designing a concise and efficient synthetic route with balanced efforts between building the complex skeleton and introducing functional groups is highly desirable. In this critical review, we first present an introduction of this issue and a philosophical framework that cover possible synthetic approaches. Next, we have chosen the biogenetically closely related, biologically important and synthetically extremely challenging natural products, tiglianes, daphnanes and ingenanes as the particular case for the discussion, since in the past 40 years many synthetic approaches have been reported. The successes and pitfalls included therefore serve as the basis to draw some conclusions that may inspire future development in this area.
Collapse
Affiliation(s)
- Zhi Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Kai Chen
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Guanghu Tong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, LaJolla, California 92037, USA
| | - Hailong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China. and State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
12
|
Tsai JY, Rédei D, Hohmann J, Wu CC. 12-Deoxyphorbol Esters Induce Growth Arrest and Apoptosis in Human Lung Cancer A549 Cells Via Activation of PKC-δ/PKD/ERK Signaling Pathway. Int J Mol Sci 2020; 21:E7579. [PMID: 33066446 PMCID: PMC7589005 DOI: 10.3390/ijms21207579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Prostratin, a non-tumor promoting 12-deoxyphorbol ester, has been reported as a protein kinase C (PKC) activator and is shown to have anti-proliferative activity in certain cancer cell types. Here we show that GRC-2, a prostratin analogue isolated from Euphorbia grandicornis, is ten-fold more potent than prostratin for inhibiting the growth of human non-small cell lung cancer (NSCLC) A549 cells. Flow cytometry assay revealed that GRC-2 and prostratin inhibited cell cycle progression at the G2/M phase and induced apoptosis. The cytotoxic effect of GRC-2 and prostratin was accompanied by activation and nuclear translocation of PKC-δ and PKD as well as hyperactivation of extracellular signal-related kinase (ERK). Knockdown of either PKC-δ, PKD or ERK significantly protected A549 cancer cells from GRC-2- and prostratin-induced growth arrest as well as apoptosis. Taken together, our results have shown that prostratin and a more potent analogue GRC-2 reduce cell viability in NSCLC A549 cells, at least in part, through activation of the PKC-δ/PKD/ERK pathway, suggesting the potential of prostratin and GRC-2 as anticancer agents.
Collapse
Affiliation(s)
- Ju-Ying Tsai
- Graduate Institute of Natural Products, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Dóra Rédei
- Department of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (D.R.); (J.H.)
| | - Judit Hohmann
- Department of Pharmacognosy, Interdisciplinary Excellence Centre, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (D.R.); (J.H.)
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
13
|
Deka SJ, Trivedi V. Potentials of PKC in Cancer Progression and Anticancer Drug Development. Curr Drug Discov Technol 2020; 16:135-147. [PMID: 29468974 DOI: 10.2174/1570163815666180219113614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 01/07/2023]
Abstract
PKC is a family of serine-threonine kinases which play crucial roles in the regulation of important signal transduction pathways in mammalian cell-biology. These enzymes are themselves regulated by various molecules that can serve as ligands to the regulatory domains and translocate PKC to membrane for activity. The role of PKC in the modulation of both proliferative and apoptotic signaling in cancer has become a subject of immense interest after it was discovered that PKC regulates a myriad of enzymes and transcription factors involved in carcinogenic signaling. Therefore, PKC has served as an attractive target for the development of newer generation of anti-cancer drugs. The following review discusses the potential of PKC to be regarded as a target for anti-cancer therapy. We also review all the molecules that have been discovered so far to be regulators/activators/inhibitors of PKC and also how far these molecules can be considered as potential candidates for anti-cancer drug development based on PKC.
Collapse
Affiliation(s)
- Suman J Deka
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
14
|
Tong G, Ding Z, Liu Z, Ding YS, Xu L, Zhang H, Li P. Total Synthesis of Prostratin, a Bioactive Tigliane Diterpenoid: Access to Multi-Stereocenter Cyclohexanes from a Phenol. J Org Chem 2020; 85:4813-4837. [DOI: 10.1021/acs.joc.0c00022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guanghu Tong
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhengwei Ding
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhi Liu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - You-Song Ding
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Hailong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi’an Jiaotong University, Xi’an, 710061, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
- Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
15
|
Khandekar D, Amara S, Tiriveedhi V. Immunogenicity of Tumor Initiating Stem Cells: Potential Applications in Novel Anticancer Therapy. Front Oncol 2019; 9:315. [PMID: 31106150 PMCID: PMC6494937 DOI: 10.3389/fonc.2019.00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor initiating stem cells (TISCs) are a subset of tumor cells, which are implicated in cancer relapse and resistance to chemotherapy. The metabolic programs that drive TISC functions are exquisitely unique and finely-tuned by various oncogene-driven transcription factors to facilitate pro-cancerous adaptive challenges. While this change in TISC metabolic machinery allows for the identification of associated molecular targets with diagnostic and prognostic value, these molecules also have a potential immunological application. Recent studies have shown that these TISC-associated molecules have strong antigenic properties enabling naïve CD8+T lymphocytes to differentiate into cytotoxic effector phenotype with anticancer potential. In spite of the current challenges, a detailed understanding in this direction offers an immense immunotherapeutic opportunity. In this review, we highlight the molecular targets that characterize TISCs, the metabolic landscape of TISCs, potential antitumor immune cell activation, and the opportunities and challenges they present in the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Durga Khandekar
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Suneetha Amara
- Department of Medicine, St. Thomas Hospital-Midtown, Nashville, TN, United States
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
16
|
SHP1 and SHP2 inhibition enhances the pro-differentiative effect of phorbol esters: an alternative approach against acute myeloid leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:80. [PMID: 30764849 PMCID: PMC6376690 DOI: 10.1186/s13046-019-1097-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022]
Abstract
Background The differentiation-based therapy for acute promyelocytic leukemia (APL) is an inspiring example for the search of novel strategies aimed at treatment of other subtypes of acute myeloid leukemia (AML). Thus, the discovery of new molecular players in cell differentiation becomes a paramount research area to achieve this goal. Here, the involvement of the protein tyrosine phosphatases SHP1 and SHP2 on leukemic cells differentiation is shown, along with the therapeutic possibilities of their targeting to enhance the differentiation induction effect of phorbol esters. Methods The oxidation status and enzymatic activity of SHP1 and SHP2 during PMA-induced differentiation of HEL cells was evaluated. Additionally, the effects of RNAi-mediated downregulation of these phosphatases on cell differentiation was studied. Afterwards, the impact of chemical inhibition of SHP1 and SHP2 on differentiation both in the presence and absence of phorbol esters was tested. Finally, the anti-leukemic potential of phorbol esters and chemical inhibitors of SHP1 and SHP2 was addressed in several AML model cell lines, a xenograft mouse model and AML primary cells in vitro. Results An increase of oxidation with a concomitant decrease of activity was observed for both phosphatases at the onset of PMA-induced differentiation. Consistently, silencing of these proteins favored the process, with an enhanced effect upon their simultaneous downregulation. Moreover, the proteins SRC and β-catenin were identified as downstream targets of SHP1 and SHP2 in this context. In agreement with these findings, chemical inhibition of the phosphatases promoted cell differentiation itself and enhanced the effect of phorbol esters. Interestingly, treatment with the phorbol ester prostratin and the dual inhibitor of SHP1 and SHP2 NSC87877 synergistically hampered the proliferation of AML cell lines, prolonged the survival of xenografted mice and reduced the clonogenic potential of AML primary cells. Conclusions SHP1 and SHP2 are relevant mediators of differentiation in AML cells and their inhibition either alone or in combination with prostratin seems a promising differentiation-based therapeutic strategy against different subtypes of AML beyond APL. Electronic supplementary material The online version of this article (10.1186/s13046-019-1097-z) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
|
18
|
Vibsanin A sensitizes human acute myeloid leukemia cells to tyrosine kinase inhibitor-induced myeloid differentiation via activation of PKC and upregulation of Lyn. Biochem Biophys Res Commun 2018; 502:110-115. [DOI: 10.1016/j.bbrc.2018.05.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022]
|
19
|
Yang M, Xing S, Ou HL, Zhang L, Shen X, Xiong GL, Wang FM, Xiao H, Tu YH, Cong YW, Wang XR, Yu ZY. Vibsanol A induces differentiation of acute myeloid leukemia cells via activation of the PKC signaling pathway and induction of ROS. Leuk Lymphoma 2018; 59:2414-2422. [PMID: 29334822 DOI: 10.1080/10428194.2017.1421754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Meng Yang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, China
| | - Shuang Xing
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong-Ling Ou
- Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, China
| | - Lu Zhang
- Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, China
| | - Xing Shen
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo-Lin Xiong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fang-Min Wang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - He Xiao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yan-Hong Tu
- Department of Otorhinolaryngology, First Hospital Affiliated to Anhui University of Chinese Medicine, Hefei, China
| | - Yu-Wen Cong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xin-Ru Wang
- Department of Clinical Laboratory, The General Hospital of PLA Rocket Force, Beijing, China
| | - Zu-Yin Yu
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Graduates, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Alotaibi D, Amara S, Johnson TL, Tiriveedhi V. Potential anticancer effect of prostratin through SIK3 inhibition. Oncol Lett 2017; 15:3252-3258. [PMID: 29435066 DOI: 10.3892/ol.2017.7674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022] Open
Abstract
Prostratin, a phorbol ester natural plant compound, has been demonstrated to exert an anti-retroviral effect through activation of latent cluster of differentiation (CD)4+T lymphocytes and inhibition of viral entry into the cell through downregulation of chemokine receptor type 4 (CXCR4) expression. However, the potential effect of prostratin on cancer is yet to be defined. As CXCR4 is well known to induce cancer migration, it was hypothesized that prostratin induces an anti-cancer effect through inhibition of CXCR4 expression. The authors previously demonstrated that high stimulating conditions (sub-minimal IL-17, 0.1 ng/ml, synergized with high salt, Δ0.05 M NaCl) promote breast cancer cell proliferation and CXCR4 expression through upregulation of salt-inducible kinase (SIK)-3. The present study demonstrated that prostratin selectively exerted increased cytotoxicity (IC50 of 7 µM) when breast cancer cells were cultured in high stimulating conditions, compared with regular basal culture conditions (IC50 of 35 µM). Furthermore, the cytotoxic potential of prostratin was increased seven-fold in the four breast cancer cell lines (MCF-7, MDA-MB-231, BT-20 and AU-565) compared with the non-malignant MCF10A breast epithelial cell line. This suggested that prostratin specifically targets cancer cells over normal cells. Mechanistic studies revealed that prostratin inhibited CXCR4 expression in breast cancer cells through downregulation of SIK3 expression. Overall, the data suggest that prostratin is a novel drug target for the pro-oncogenic factor SIK3. These studies could form a basis for further research to evaluate the anticancer effect of prostratin in a combinatorial chemotherapeutic regimen.
Collapse
Affiliation(s)
- Dalal Alotaibi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Suneetha Amara
- Department of Medicine, St Thomas-Midtown, Nashville, TN 37203, USA
| | - Terrance L Johnson
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
21
|
Promising Role of Toll-Like Receptor 8 Agonist in Concert with Prostratin for Activation of Silent HIV. J Virol 2017; 91:JVI.02084-16. [PMID: 27928016 DOI: 10.1128/jvi.02084-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/29/2016] [Indexed: 01/03/2023] Open
Abstract
The persistence of latently HIV-infected cells in patients under combined antiretroviral treatment (cART) remains the major hurdle for HIV eradication. Thus far, individual compounds have not been sufficiently potent to reactivate latent virus and guarantee its elimination in vivo. Thus, we hypothesized that transcriptional enhancers, in concert with compounds triggering the innate immune system, are more efficient in reversing latency by creating a Th1 supportive milieu that acts against latently HIV-infected cells at various levels. To test our hypothesis, we screened six compounds on a coculture of latently infected cells (J-lat) and monocyte-derived dendritic cells (MDDCs). The protein kinase C (PKC) agonist prostratin, with a Toll-like receptor 8 (TLR8) agonist, resulted in greater reversion of HIV latency than any single compound. This combinatorial approach led to a drastic phenotypic and functional maturation of the MDDCs. Tumor necrosis factor (TNF) and cell-cell interactions were crucial for the greater reversion observed. Similarly, we found a greater potency of the combination of prostratin and TLR8 agonist in reversing HIV latency when applying it to primary cells of HIV-infected patients. Thus, we demonstrate here the synergistic interplay between TLR8-matured MDDCs and compounds acting directly on latently HIV-infected cells, targeting different mechanisms of latency, by triggering various signaling pathways. Moreover, TLR8 triggering may reverse exhaustion of HIV-specific cytotoxic T lymphocytes that might be essential for killing or constraining the latently infected cells. IMPORTANCE Curing HIV is the Holy Grail. The so-called "shock and kill" strategy relies on drug-mediated reversion of HIV latency and the subsequent death of those cells under combined antiretroviral treatment. So far, no compound achieves efficient reversal of latency or eliminates this latent reservoir. The compounds may not target all of the latency mechanisms in all latently infected cells. Moreover, HIV-associated exhaustion of the immune system hinders the efficient elimination of the reactivated cells. In this study, we demonstrated synergistic latency reversion by combining agonists for protein kinase C and Toll-like receptor 8 in a coculture of latently infected cells with myeloid dendritic cells. The drug prostratin stimulates directly the transcriptional machinery of latently infected cells, and the TLR8 agonist acts indirectly by maturing dendritic cells. These findings highlight the importance of the immune system and its activation, in combination with direct-acting compounds, to reverse latency.
Collapse
|
22
|
Yu ZY, Xiao H, Wang LM, Shen X, Jing Y, Wang L, Sun WF, Zhang YF, Cui Y, Shan YJ, Zhou WB, Xing S, Xiong GL, Liu XL, Dong B, Feng JN, Wang LS, Luo QL, Zhao QS, Cong YW. Natural Product Vibsanin A Induces Differentiation of Myeloid Leukemia Cells through PKC Activation. Cancer Res 2016; 76:2698-709. [PMID: 26984756 DOI: 10.1158/0008-5472.can-15-1616] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/13/2016] [Indexed: 11/16/2022]
Abstract
All-trans retinoic acid (ATRA)-based cell differentiation therapy has been successful in treating acute promyelocytic leukemia, a unique subtype of acute myeloid leukemia (AML). However, other subtypes of AML display resistance to ATRA-based treatment. In this study, we screened natural, plant-derived vibsane-type diterpenoids for their ability to induce differentiation of myeloid leukemia cells, discovering that vibsanin A potently induced differentiation of AML cell lines and primary blasts. The differentiation-inducing activity of vibsanin A was mediated through direct interaction with and activation of protein kinase C (PKC). Consistent with these findings, pharmacological blockade of PKC activity suppressed vibsanin A-induced differentiation. Mechanistically, vibsanin A-mediated activation of PKC led to induction of the ERK pathway and decreased c-Myc expression. In mouse xenograft models of AML, vibsanin A administration prolonged host survival and inhibited PKC-mediated inflammatory responses correlated with promotion of skin tumors in mice. Collectively, our results offer a preclinical proof of concept for vibsanin A as a myeloid differentiation-inducing compound, with potential application as an antileukemic agent. Cancer Res; 76(9); 2698-709. ©2016 AACR.
Collapse
Affiliation(s)
- Zu-Yin Yu
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - He Xiao
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Li-Mei Wang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xing Shen
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu Jing
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen-Feng Sun
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan-Feng Zhang
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu Cui
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ya-Jun Shan
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wen-Bing Zhou
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Xing
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo-Lin Xiong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Lan Liu
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bo Dong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jian-Nan Feng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing-Liang Luo
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Yu-Wen Cong
- Department of Pathophysiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
23
|
Yu X, Xia W, Li S, Blumenfeld J, Zhang B, Yang J, Miao J, Gu ZJ. Antitumor effect and underlying mechanism of RGD-modified adenovirus mediated IL-24 expression on myeloid leukemia cells. Int Immunopharmacol 2015. [DOI: 10.1016/j.intimp.2015.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Geribaldi-Doldán N, Flores-Giubi E, Murillo-Carretero M, García-Bernal F, Carrasco M, Macías-Sánchez AJ, Domínguez-Riscart J, Verástegui C, Hernández-Galán R, Castro C. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation. Int J Neuropsychopharmacol 2015; 19:pyv085. [PMID: 26224011 PMCID: PMC4772272 DOI: 10.1093/ijnp/pyv085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 07/22/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. METHODOLOGY We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. RESULTS We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. CONCLUSIONS This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical agents to facilitate neuronal renewal.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Area de Fisiología, Facultad de Medicina, Universidad de Cadiz, Cádiz, Spain (Mrs Geribaldi-Doldán, Mrs Flores-Giubi, Dr Murillo-Carretero, Mr García-Bernal, Dr Carrasco, Dr Domínguez-Riscart, and Dr Castro); Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain (Mrs Flores-Giubi, Dr Macías-Sánchez, and Dr Hernández-Galán); Departamento de Anatomía y Embriología Humana, Universidad de Cádiz, Cádiz, Spain (Dr Verástegui)
| | - Eugenia Flores-Giubi
- Area de Fisiología, Facultad de Medicina, Universidad de Cadiz, Cádiz, Spain (Mrs Geribaldi-Doldán, Mrs Flores-Giubi, Dr Murillo-Carretero, Mr García-Bernal, Dr Carrasco, Dr Domínguez-Riscart, and Dr Castro); Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain (Mrs Flores-Giubi, Dr Macías-Sánchez, and Dr Hernández-Galán); Departamento de Anatomía y Embriología Humana, Universidad de Cádiz, Cádiz, Spain (Dr Verástegui)
| | - Maribel Murillo-Carretero
- Area de Fisiología, Facultad de Medicina, Universidad de Cadiz, Cádiz, Spain (Mrs Geribaldi-Doldán, Mrs Flores-Giubi, Dr Murillo-Carretero, Mr García-Bernal, Dr Carrasco, Dr Domínguez-Riscart, and Dr Castro); Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain (Mrs Flores-Giubi, Dr Macías-Sánchez, and Dr Hernández-Galán); Departamento de Anatomía y Embriología Humana, Universidad de Cádiz, Cádiz, Spain (Dr Verástegui)
| | - Francisco García-Bernal
- Area de Fisiología, Facultad de Medicina, Universidad de Cadiz, Cádiz, Spain (Mrs Geribaldi-Doldán, Mrs Flores-Giubi, Dr Murillo-Carretero, Mr García-Bernal, Dr Carrasco, Dr Domínguez-Riscart, and Dr Castro); Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain (Mrs Flores-Giubi, Dr Macías-Sánchez, and Dr Hernández-Galán); Departamento de Anatomía y Embriología Humana, Universidad de Cádiz, Cádiz, Spain (Dr Verástegui)
| | - Manuel Carrasco
- Area de Fisiología, Facultad de Medicina, Universidad de Cadiz, Cádiz, Spain (Mrs Geribaldi-Doldán, Mrs Flores-Giubi, Dr Murillo-Carretero, Mr García-Bernal, Dr Carrasco, Dr Domínguez-Riscart, and Dr Castro); Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain (Mrs Flores-Giubi, Dr Macías-Sánchez, and Dr Hernández-Galán); Departamento de Anatomía y Embriología Humana, Universidad de Cádiz, Cádiz, Spain (Dr Verástegui)
| | - Antonio J Macías-Sánchez
- Area de Fisiología, Facultad de Medicina, Universidad de Cadiz, Cádiz, Spain (Mrs Geribaldi-Doldán, Mrs Flores-Giubi, Dr Murillo-Carretero, Mr García-Bernal, Dr Carrasco, Dr Domínguez-Riscart, and Dr Castro); Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain (Mrs Flores-Giubi, Dr Macías-Sánchez, and Dr Hernández-Galán); Departamento de Anatomía y Embriología Humana, Universidad de Cádiz, Cádiz, Spain (Dr Verástegui)
| | - Jesús Domínguez-Riscart
- Area de Fisiología, Facultad de Medicina, Universidad de Cadiz, Cádiz, Spain (Mrs Geribaldi-Doldán, Mrs Flores-Giubi, Dr Murillo-Carretero, Mr García-Bernal, Dr Carrasco, Dr Domínguez-Riscart, and Dr Castro); Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain (Mrs Flores-Giubi, Dr Macías-Sánchez, and Dr Hernández-Galán); Departamento de Anatomía y Embriología Humana, Universidad de Cádiz, Cádiz, Spain (Dr Verástegui)
| | - Cristina Verástegui
- Area de Fisiología, Facultad de Medicina, Universidad de Cadiz, Cádiz, Spain (Mrs Geribaldi-Doldán, Mrs Flores-Giubi, Dr Murillo-Carretero, Mr García-Bernal, Dr Carrasco, Dr Domínguez-Riscart, and Dr Castro); Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain (Mrs Flores-Giubi, Dr Macías-Sánchez, and Dr Hernández-Galán); Departamento de Anatomía y Embriología Humana, Universidad de Cádiz, Cádiz, Spain (Dr Verástegui)
| | - Rosario Hernández-Galán
- Area de Fisiología, Facultad de Medicina, Universidad de Cadiz, Cádiz, Spain (Mrs Geribaldi-Doldán, Mrs Flores-Giubi, Dr Murillo-Carretero, Mr García-Bernal, Dr Carrasco, Dr Domínguez-Riscart, and Dr Castro); Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain (Mrs Flores-Giubi, Dr Macías-Sánchez, and Dr Hernández-Galán); Departamento de Anatomía y Embriología Humana, Universidad de Cádiz, Cádiz, Spain (Dr Verástegui)
| | - Carmen Castro
- Area de Fisiología, Facultad de Medicina, Universidad de Cadiz, Cádiz, Spain (Mrs Geribaldi-Doldán, Mrs Flores-Giubi, Dr Murillo-Carretero, Mr García-Bernal, Dr Carrasco, Dr Domínguez-Riscart, and Dr Castro); Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain (Mrs Flores-Giubi, Dr Macías-Sánchez, and Dr Hernández-Galán); Departamento de Anatomía y Embriología Humana, Universidad de Cádiz, Cádiz, Spain (Dr Verástegui).
| |
Collapse
|