1
|
Azhar NA, Paramanantham Y, B W M Nor WMFS, B M Said NA. MicroRNA-146b-5p/FDFT1 mediates cisplatin sensitivity in bladder cancer by redirecting cholesterol biosynthesis to the non-sterol branch. Int J Biochem Cell Biol 2024; 176:106652. [PMID: 39270927 DOI: 10.1016/j.biocel.2024.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Chemotherapy against muscle-invasive bladder cancer is increasingly challenged by the prevalence of chemoresistance. The cholesterol biosynthesis pathway has garnered attention in studies of chemoresistance, but conflicting clinical and molecular findings necessitate a clearer understanding of its underlying mechanisms. Recently, we identified farnesyl-diphosphate farnesyltransferase 1 (FDFT1)-the first specific gene in this pathway-as a tumor suppressor and chemoresistance modulator. Raman spectroscopy revealed higher levels of FDFT1-related metabolites in chemotherapy-sensitive bladder cancer tissue compared to resistant tissue; however, this observation lacks mechanistic insight. FDFT1 expression was reduced in our cisplatin-resistant bladder cancer cells (T24R) compared to parental cisplatin-sensitive cells (T24). Using functional knockdown and ectopic overexpression in T24/T24R cells, we mechanistically demonstrate the pathway through which FDFT1 mediates cisplatin sensitivity in bladder cancer cells. Bioinformatics analysis and rescue experiments showed that microRNA-146b-5p directly targets and downregulates FDFT1, reducing the cisplatin sensitivity of T24 cells, which can be restored by forced FDFT1 expression. Further investigation into the downstream cholesterol pathway revealed that FDFT1 suppression redirects its substrate toward the non-sterol branch of the pathway, as evidenced by the upregulation of non-sterol branch-associated genes and a reduced total cholesterol level in the sterol branch. Since the non-sterol pathway leads to the prenylation of isoprenoids and activation of Ras and Rho family proteins involved in cancer progression and chemoresistance, our findings suggest that redirection of the cholesterol biosynthesis pathway is a key mechanism underlying FDFT1-mediated cisplatin resistance in bladder cancer. The miR-146b-5p/FDFT1 axis represents a promising target for overcoming chemoresistance in bladder cancer.
Collapse
Affiliation(s)
- Nurul Amniyyah Azhar
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | | | - Nur Akmarina B M Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Zhang Y, Li J. Recent advancements in understanding of biological role of homeobox C9 in human cancers. World J Clin Oncol 2024; 15:1168-1176. [PMID: 39351453 PMCID: PMC11438841 DOI: 10.5306/wjco.v15.i9.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Homeobox (HOX) C9, a member of the HOX family, is an important transcription factor, and it plays a significant role in various biological processes. This family of genes is highly valued for their essential roles in establishing and maintaining the body axis during embryonic development and adult tissues. Further, HOXC9 plays a central role in neuronal differentiation, angiogenesis, and adipose distribution, which are essential for the development of the nervous system, maturation of tissues and organs, and maintenance of energy balance and metabolic health. Recent research has found that abnormal HOXC9 expression is closely associated with the development and progression of various tumor types. The HOXC9 expression level can be an indicator of tumor prognosis. Therefore, elucidating the association between HOXC9 expression and its regulatory mechanisms and tumorigenesis can provide novel insights on the diagnosis and treatment of patients with cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Clinical Laboratory, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang 222042, Jiangsu Province, China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang 222042, Jiangsu Province, China
| |
Collapse
|
3
|
Dimitrov G, Mangaldzhiev R, Slavov C, Popov E. Contemporary Molecular Markers for Predicting Systemic Treatment Response in Urothelial Bladder Cancer: A Narrative Review. Cancers (Basel) 2024; 16:3056. [PMID: 39272913 PMCID: PMC11394076 DOI: 10.3390/cancers16173056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The search for dependable molecular biomarkers to enhance routine clinical practice is a compelling challenge across all oncology fields. Urothelial bladder carcinoma, known for its significant heterogeneity, presents difficulties in predicting responses to systemic therapies and outcomes post-radical cystectomy. Recent advancements in molecular cancer biology offer promising avenues to understand the disease's biology and identify emerging predictive biomarkers. Stratifying patients based on their recurrence risk post-curative treatment or predicting the efficacy of conventional and targeted therapies could catalyze personalized treatment selection and disease surveillance. Despite progress, reliable molecular biomarkers to forecast responses to systemic agents, in neoadjuvant, adjuvant, or palliative treatment settings, are still lacking, underscoring an urgent unmet need. This review aims to delve into the utilization of current and emerging molecular signatures across various stages of urothelial bladder carcinoma to predict responses to systemic therapy.
Collapse
Affiliation(s)
- George Dimitrov
- Department of Medical Oncology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Radoslav Mangaldzhiev
- Department of Medical Oncology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Chavdar Slavov
- Department of Urology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| | - Elenko Popov
- Department of Urology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria
| |
Collapse
|
4
|
Liu L, Zhang Z, Jiang C, Zhu Y, Han R, Wu L, Xu Y. HOXC9 characterizes a suppressive tumor immune microenvironment and integration with multiple immune biomarkers predicts response to PD-1 blockade plus chemotherapy in lung adenocarcinoma. Aging (Albany NY) 2024; 16:4841-4861. [PMID: 38446596 PMCID: PMC10968688 DOI: 10.18632/aging.205637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The quest for dependable biomarkers to predict responses to immune checkpoint inhibitors (ICIs) combined with chemotherapy in advanced non-small cell lung cancer remains unfulfilled. HOXC9, known for its role in oncogenesis and creating a suppressive tumor microenvironment (TME), shows promise in enhancing predictive precision when included as a TME biomarker. This study explores the predictive significance of HOXC9 for ICI plus chemotherapy efficacy in lung adenocarcinoma (LUAD). METHODS Following the bioinformatic findings, assays were performed to ascertain the effects of Hoxc9 on oncogenesis and response to programmed death 1 (PD-1) blockade. Furthermore, a cohort of LUAD patients were prospectively enrolled to receive anti-PD-1 plus chemotherapy. Based on the expression levels, baseline characteristics, and clinical outcomes, the predictive potential of HOXC9, PD-L1, CD4, CD8, CD68, and FOXP3 was integrally analyzed. HOXC9 not only mediated oncogenesis, but also corelated with suppressive TME. CMT167 and LLC cell lines unveiled the impacts of Hoxc9 on proliferation, invasion, and migration. Subsequently, tumor-bearing murine models were established to validate the inverse relationship between Hoxc9 expression and effective CD8+ T cells. RESULTS Inhibition of Hoxc9 significantly curtailed tumor growth (P<0.05), independent of PD-1 blockade. In patient studies, while individual markers fell short in prognosticating survival, a notable elevation in CD8-positive expression was observed in responders (P=0.042). Yet, the amalgamation of HOXC9 with other markers provided a more distinct differentiation between responders and non-responders. Notably, patients displaying PD-L1+/HOXC9- and CD8+/HOXC9- phenotypes exhibited significantly prolonged progression-free survival. CONCLUSIONS The expression of HOXC9 may serve as a biomarker to amplifying predictive efficacy for ICIs plus chemotherapy, which is also a viable oncogene and therapeutic target for immunotherapy in LUAD.
Collapse
Affiliation(s)
- Liang Liu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhenshan Zhang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201315, China
| | - Chenxue Jiang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yaoyao Zhu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Ruiqin Han
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100191, China
| | - Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
5
|
Chin FW, Chan SC, Veerakumarasivam A. Homeobox Gene Expression Dysregulation as Potential Diagnostic and Prognostic Biomarkers in Bladder Cancer. Diagnostics (Basel) 2023; 13:2641. [PMID: 37627900 PMCID: PMC10453580 DOI: 10.3390/diagnostics13162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
Homeobox genes serve as master regulatory transcription factors that regulate gene expression during embryogenesis. A homeobox gene may have either tumor-promoting or tumor-suppressive properties depending on the specific organ or cell lineage where it is expressed. The dysregulation of homeobox genes has been reported in various human cancers, including bladder cancer. The dysregulated expression of homeobox genes has been associated with bladder cancer clinical outcomes. Although bladder cancer has high risk of tumor recurrence and progression, it is highly challenging for clinicians to accurately predict the risk of tumor recurrence and progression at the initial point of diagnosis. Cystoscopy is the routine surveillance method used to detect tumor recurrence. However, the procedure causes significant discomfort and pain that results in poor surveillance follow-up amongst patients. Therefore, the development of reliable non-invasive biomarkers for the early detection and monitoring of bladder cancer is crucial. This review provides a comprehensive overview of the diagnostic and prognostic potential of homeobox gene expression dysregulation in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Soon-Choy Chan
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
6
|
Sun J, Wang X, Ding Y, Xiao B, Wang X, Ali MM, Ma L, Xie Z, Gu Z, Chen G, Tao WA. Proteomic and phosphoproteomic landscape of salivary extracellular vesicles to assess OSCC therapeutical outcomes. Proteomics 2023; 23:e2200319. [PMID: 36573687 DOI: 10.1002/pmic.202200319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Circulating extracellular vesicles (EVs) have emerged as an appealing source for surrogates to evaluate the disease status. Herein, we present a novel proteomic strategy to identify proteins and phosphoproteins from salivary EVs to distinguish oral squamous cell carcinoma (OSCC) patients from healthy individuals and explore the feasibility to evaluate therapeutical outcomes. Bi-functionalized magnetic beads (BiMBs) with Ti (IV) ions and a lipid analog, 1,2-Distearoyl-3-sn-glycerophosphoethanolamine (DSPE) are developed to efficiently isolate EVs from small volume of saliva. In the discovery stage, label-free proteomics and phosphoproteomics quantification showed 315 upregulated proteins and 132 upregulated phosphoproteins in OSCC patients among more than 2500 EV proteins and 1000 EV phosphoproteins, respectively. We further applied targeted proteomics by coupling parallel reaction monitoring with parallel accumulation-serial fragmentation (prm-PASEF) to measure panels of proteins and phosphoproteins from salivary EVs collected before and after surgical resection. A panel of three total proteins and three phosphoproteins, most of which have previously been associated with OSCC and other cancer types, show sensitive response to the therapy in individual patients. Our study presents a novel strategy to the discovery of effective biomarkers for non-invasive assessment of OSCC surgical outcomes with small amount of saliva.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Xiaole Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Bolin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinxin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - W Andy Tao
- Department of Chemistry and Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA.,Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
El-Mahdy HA, Elsakka EGE, El-Husseiny AA, Ismail A, Yehia AM, Abdelmaksoud NM, Elshimy RAA, Noshy M, Doghish AS. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay - A review. Pathol Res Pract 2023; 242:154316. [PMID: 36682282 DOI: 10.1016/j.prp.2023.154316] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reham A A Elshimy
- Clinical & Chemical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
8
|
The Roles of miRNAs in Predicting Bladder Cancer Recurrence and Resistance to Treatment. Int J Mol Sci 2023; 24:ijms24020964. [PMID: 36674480 PMCID: PMC9864802 DOI: 10.3390/ijms24020964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Bladder cancer (BCa) is associated with significant morbidity, with development linked to environmental, lifestyle, and genetic causes. Recurrence presents a significant issue and is managed in the clinical setting with intravesical chemotherapy or immunotherapy. In order to address challenges such as a limited supply of BCG and identifying cases likely to recur, it would be advantageous to use molecular biomarkers to determine likelihood of recurrence and treatment response. Here, we review microRNAs (miRNAs) that have shown promise as predictors of BCa recurrence. MiRNAs are also discussed in the context of predicting resistance or susceptibility to BCa treatment.
Collapse
|
9
|
Crosstalk of miRNAs with signaling networks in bladder cancer progression: Therapeutic, diagnostic and prognostic functions. Pharmacol Res 2022; 185:106475. [DOI: 10.1016/j.phrs.2022.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
|
10
|
Xiao Y, Ju L, Qian K, Jin W, Wang G, Zhao Y, Jiang W, Liu N, Wu K, Peng M, Cao R, Li S, Shi H, Gong Y, Zheng H, Liu T, Luo Y, Ma H, Chang L, Li G, Cao X, Tian Y, Xu Z, Yang Z, Shan L, Guo Z, Yao D, Zhou X, Chen X, Guo Z, Liu D, Xu S, Ji C, Yu F, Hong X, Luo J, Cao H, Zhang Y, Wang X. Non-invasive diagnosis and surveillance of bladder cancer with driver and passenger DNA methylation in a prospective cohort study. Clin Transl Med 2022; 12:e1008. [PMID: 35968916 PMCID: PMC9377153 DOI: 10.1002/ctm2.1008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND State-of-art non-invasive diagnosis processes for bladder cancer (BLCA) harbour shortcomings such as low sensitivity and specificity, unable to distinguish between high- (HG) and low-grade (LG) tumours, as well as inability to differentiate muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). This study investigates a comprehensive characterization of the entire DNA methylation (DNAm) landscape of BLCA to determine the relevant biomarkers for the non-invasive diagnosis of BLCA. METHODS A total of 304 samples from 224 donors were enrolled in this multi-centre, prospective cohort study. BLCA-specific DNAm signature discovery was carried out with genome-wide bisulfite sequencing in 32 tumour tissues and 12 normal urine samples. A targeted sequencing assay for BLCA-specific DNAm signatures was developed to categorize tumour tissue against normal urine, or MIBC against NMIBC. Independent validation was performed with targeted sequencing of 259 urine samples in a double-blinded manner to determine the clinical diagnosis and prognosis value of DNAm-based classification models. Functions of genomic region harbouring BLCA-specific DNAm signature were validated with biological assays. Concordances of pathology to urine tumour DNA (circulating tumour DNA [ctDNA]) methylation, genomic mutations or other state-of-the-art diagnosis methods were measured. RESULTS Genome-wide DNAm profile could accurately classify LG tumour from HG tumour (LG NMIBC vs. HG NMIBC: p = .038; LG NMIBC vs. HG MIBC, p = .00032; HG NMIBC vs. HG MIBC: p = .82; Student's t-test). Overall, the DNAm profile distinguishes MIBC from NMIBC and normal urine. Targeted-sequencing-based DNAm signature classifiers accurately classify LG NMIBC tissues from HG MIBC and could detect tumours in urine at a limit of detection of less than .5%. In tumour tissues, DNAm accurately classifies pathology, thus outperforming genomic mutation or RNA expression profiles. In the independent validation cohort, pre-surgery urine ctDNA methylation outperforms fluorescence in situ hybridization (FISH) assay to detect HG BLCA (n = 54) with 100% sensitivity (95% CI: 82.5%-100%) and LG BLCA (n = 26) with 62% sensitivity (95% CI: 51.3%-72.7%), both at 100% specificity (non-BLCA: n = 72; 95% CI: 84.1%-100%). Pre-surgery urine ctDNA methylation signature correlates with pathology and predicts recurrence and metastasis. Post-surgery urine ctDNA methylation (n = 61) accurately predicts recurrence-free survival within 180 days, with 100% accuracy. CONCLUSION With the discovery of BLCA-specific DNAm signatures, targeted sequencing of ctDNA methylation outperforms FISH and DNA mutation to detect tumours, predict recurrence and make prognoses.
Collapse
|
11
|
Tan Y, Zhao F, Liu S, Huang T, Zang C, Sha D, Kong L, Ge F, Huang D, Pu Y. A New Functional Gene, Zinc Finger Protein 485 (ZNF485), is Involved in Bladder Cancer Proliferation. Bladder Cancer 2022; 8:165-177. [PMID: 38993359 PMCID: PMC11181812 DOI: 10.3233/blc-211623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bladder cancer is the second most common urological cancer worldwide, with low early diagnosis and high mortality. The limited progress in diagnostics and treatment greatly impedes the survival of bladder cancer patients. OBJECTIVE Potential therapeutic biomarkers are urgently needed for future clinical treatment. METHODS We analyzed the sequencing data and corresponding clinicopathological features and survival information of bladder cancer patients in the TCGA database and identified a new zinc finger protein 485 gene, termed ZNF485, which is highly expressed in the tissues of bladder cancer patients and was verified in cells, animal models and tissue microarrays. RESULTS We found that inhibition of ZNF485 in the bladder cancer cell lines T24 and 5637 obviously inhibited proliferation and promoted the apoptosis of cancer cells. Furthermore, wound healing and invasion assays showed that downregulation of ZNF485 significantly decreased the mobility and invasion of T24 and 5637 cells. In addition, ZNF485-shRNA transfection obviously inhibited tumor growth in nude mice. Immunohistochemical results of clinical samples showed that the expression level of ZNF485 protein in cancer tissues was higher than that in adjacent tissues. Mechanistic analysis identified possible downstream target genes. CONCLUSIONS Taken together, the results provide evidence that ZNF485 is involved in bladder cancer proliferation and might be a potential therapeutic biomarker for the treatment of this disease.
Collapse
Affiliation(s)
- Yiao Tan
- Department of Urology Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Fangfang Zhao
- Department of Cancer Epigenetics Program, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Shuhan Liu
- Department of Urology Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Tao Huang
- Department of Urology Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Chunbao Zang
- Department of Radiation Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Dan Sha
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lingsuo Kong
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Fangfang Ge
- Department of Provincial Clinical College, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Dabing Huang
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Youguang Pu
- Department of Cancer Epigenetics Program, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| |
Collapse
|
12
|
Ran Q, Xu D, Wang Q, Wang D. Hypermethylation of the Promoter Region of miR-23 Enhances the Metastasis and Proliferation of Multiple Myeloma Cells via the Aberrant Expression of uPA. Front Oncol 2022; 12:835299. [PMID: 35707350 PMCID: PMC9189361 DOI: 10.3389/fonc.2022.835299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple myeloma has a long course, with no obvious symptoms in the early stages. However, advanced stages are characterized by injury to the bone system and represent a severe threat to human health. The results of the present work indicate that the hypermethylation of miR-23 promoter mediates the aberrant expression of uPA/PLAU (urokinase plasminogen activator, uPA) in multiple myeloma cells. miR-23, a microRNA that potentially targets uPA’s 3’UTR, was predicted by the online tool miRDB. The endogenous expressions of uPA and miR-23 are related to disease severity in human patients, and the expression of miR-23 is negatively related to uPA expression. The hypermethylation of the promoter region of miR-23 is a promising mechanism to explain the low level of miR-23 or aberrant uPA expression associated with disease severity. Overexpression of miR-23 inhibited the expression of uPA by targeting the 3’UTR of uPA, not only in MM cell lines, but also in patient-derived cell lines. Overexpression of miR-23 also inhibited in vitro and in vivo invasion of MM cells in a nude mouse model. The results therefore extend our knowledge about uPA in MM and may assist in the development of more effective therapeutic strategies for MM treatment.
Collapse
Affiliation(s)
- Qijie Ran
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| | - Dehong Xu
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Qi Wang
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Dongsheng Wang
- Department of Neurosurgery, The Fifth People’s Hospital of Dalian, Dalian, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian City, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| |
Collapse
|
13
|
The role of tumour microenvironment-driven miRNAs in the chemoresistance of muscle-invasive bladder cancer-a review. Urol Oncol 2022; 40:133-148. [PMID: 35246373 DOI: 10.1016/j.urolonc.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022]
Abstract
Successful treatment for muscle-invasive bladder cancer is challenged by the ability of cancer cells to resist chemotherapy. While enormous progress has been made toward understanding the divergent molecular mechanisms underlying chemoresistance, the heterogenous interplay between the bladder tumour and its microenvironment presents significant challenges in comprehending the occurrence of chemoresistance. The last decade has seen exponential interest in the exploration of microRNA (miRNA) as a tool in the management of chemoresistance. In this review, we highlight the miRNAs involved in the tumour microenvironment crosstalk that contributes to the chemoresistance in bladder cancer. Decrypting the role of miRNAs in the interplay beholds scope for future clinical translational application in managing the long-standing concerns of chemoresistance in muscle-invasive bladder cancer.
Collapse
|
14
|
HSD17B6 downregulation predicts poor prognosis and drives tumor progression via activating Akt signaling pathway in lung adenocarcinoma. Cell Death Discov 2021; 7:341. [PMID: 34750355 PMCID: PMC8576029 DOI: 10.1038/s41420-021-00737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Lung adenocarcinoma is one of the most frequent tumor subtypes, involving changes in a variety of oncogenes and tumor suppressor genes. Hydroxysteroid 17-Beta Dehydrogenase 6 (HSD17B6) could synthetize dihydrotestosterone, abnormal levels of which are associated with progression of multiple tumors. Previously, we showed that HSD17B6 inhibits malignant progression of hepatocellular carcinoma. However, the mechanisms underlying inhibiting tumor development by HSD17B6 are not clear. Moreover, its role in lung adenocarcinoma (LUAD) is yet unknown. Here, we investigated its expression profile and biological functions in LUAD. Analysis of data from the LUAD datasets of TCGA, CPTAC, Oncomine, and GEO revealed that HSD17B6 mRNA and protein expression was frequently lower in LUAD than in non-neoplastic lung tissues, and its low expression correlated significantly with advanced tumor stage, large tumor size, poor tumor differentiation, high tumor grade, smoking, and poor prognosis in LUAD. In addition, its expression was negatively regulated by miR-31-5p in LUAD. HSD17B6 suppressed LUAD cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), and radioresistance. Furthermore, HSD17B6 overexpression in LUAD cell lines enhanced PTEN expression and inhibited AKT phosphorylation, inactivating downstream oncogenes like GSK3β, β-catenin, and Cyclin-D independent of dihydrotestosterone, revealing an underlying antitumor mechanism of HSD17B6 in LUAD. Our findings indicate that HSD17B6 may function as a tumor suppressor in LUAD and could be a promising prognostic indicator for LUAD patients, especially for those receiving radiotherapy.
Collapse
|
15
|
Feng Y, Zhang T, Wang Y, Xie M, Ji X, Luo X, Huang W, Xia L. Homeobox Genes in Cancers: From Carcinogenesis to Recent Therapeutic Intervention. Front Oncol 2021; 11:770428. [PMID: 34722321 PMCID: PMC8551923 DOI: 10.3389/fonc.2021.770428] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
The homeobox (HOX) genes encoding an evolutionarily highly conserved family of homeodomain-containing transcriptional factors are essential for embryogenesis and tumorigenesis. HOX genes are involved in cell identity determination during early embryonic development and postnatal processes. The deregulation of HOX genes is closely associated with numerous human malignancies, highlighting the indispensable involvement in mortal cancer development. Since most HOX genes behave as oncogenes or tumor suppressors in human cancer, a better comprehension of their upstream regulators and downstream targets contributes to elucidating the function of HOX genes in cancer development. In addition, targeting HOX genes may imply therapeutic potential. Recently, novel therapies such as monoclonal antibodies targeting tyrosine receptor kinases, small molecular chemical inhibitors, and small interfering RNA strategies, are difficult to implement for targeting transcriptional factors on account of the dual function and pleiotropic nature of HOX genes-related molecular networks. This paper summarizes the current state of knowledge on the roles of HOX genes in human cancer and emphasizes the emerging importance of HOX genes as potential therapeutic targets to overcome the limitations of present cancer therapy.
Collapse
Affiliation(s)
- Yangyang Feng
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongyue Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Xie
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Weidle UH, Birzele F. Bladder Cancer-related microRNAs With In Vivo Efficacy in Preclinical Models. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:245-263. [PMID: 35403137 PMCID: PMC8988954 DOI: 10.21873/cdp.10033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 06/14/2023]
Abstract
Progressive and metastatic bladder cancer remain difficult to treat. In this review, we critique seven up-regulated and 25 down-regulated microRNAs in order to identify new therapeutic entities and corresponding targets. These microRNAs were selected with respect to their efficacy in bladder cancer-related preclinical in vivo models. MicroRNAs and related targets interfering with chemoresistance, cell-cycle, signaling, apoptosis, autophagy, transcription factor modulation, epigenetic modification and metabolism are described. In addition, we highlight microRNAs targeting transmembrane receptors and secreted factors. We discuss druggability issues for the identified targets.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences,Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
17
|
Wang W, Wang Y, Piao H, Li B, Zhu Z, Li D, Wang T, Liu K. Bioinformatics Analysis Reveals MicroRNA-193a-3p Regulates ACTG2 to Control Phenotype Switch in Human Vascular Smooth Muscle Cells. Front Genet 2021; 11:572707. [PMID: 33510768 PMCID: PMC7835941 DOI: 10.3389/fgene.2020.572707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Aortic dissection (AD) is among the most fatal cardiovascular diseases. However, the pathogenesis of AD remains poorly understood. This study aims to integrate the microRNAs (miRNA) and mRNA profiles and use bioinformatics analyses with techniques in molecular biology to delineate the potential mechanisms involved in the development of AD. We used the human miRNA and mRNA microarray datasets GSE98770, GSE52093, and GEO2R, Venn diagram analysis, gene ontology, and protein–protein interaction networks to identify target miRNAs and mRNAs involved in AD. RNA interference, western blotting, and luciferase reporter assays were performed to validate the candidate miRNAs and mRNAs in AD tissues and human vascular smooth muscle cells (VSMCs). Furthermore, we studied vascular smooth muscle contraction in AD. In silico analyses revealed that miR-193a-3p and ACTG2 were key players in the pathogenesis of AD. miR-193a-3p was upregulated in the AD tissues. We also found that biomarkers for the contractile phenotype in VSMCs were downregulated in AD tissues. Overexpression and depletion of miR-193a-3p enhanced and suppressed VSMC proliferation and migration, respectively. Dual luciferase reporter assays confirmed that ACTG2 was a target of miR-193a-3p. ACTG2 was also downregulated in human AD tissues and VMSCs overexpressing miR-193a-3p. Taken together, miR-193a-3p may be a novel regulator of phenotypic switching in VSMCs and the miR-193a-3p/ACTG2 axis may serve as a promising diagnostic biomarker and therapeutic candidate for AD.
Collapse
Affiliation(s)
- Weitie Wang
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, The Second Hospital of Jilin University, Changchun, China
| | - Yong Wang
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, The Second Hospital of Jilin University, Changchun, China
| | - Hulin Piao
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, The Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, The Second Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, The Second Hospital of Jilin University, Changchun, China
| | - Tiance Wang
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery of the Second Hospital of Jilin University, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Azar MRMH, Aghazadeh H, Mohammed HN, Sara MRS, Hosseini A, Shomali N, Tamjidifar R, Tarzi S, Mansouri M, Sarand SP, Marofi F, Akbari M, Xu H, Shotorbani SS. miR-193a-5p as a promising therapeutic candidate in colorectal cancer by reducing 5-FU and Oxaliplatin chemoresistance by targeting CXCR4. Int Immunopharmacol 2021; 92:107355. [PMID: 33429333 DOI: 10.1016/j.intimp.2020.107355] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths worldwide. The role of microRNAs (miRNAs/miRs) as small (19-25 nucleotides in length) non-coding RNA molecules that modify gene expression has been shown in several types of cancer. 5-Fluorouracil (5-FU) and oxaliplatin (Ox) are two common chemotherapeutic agents used to treat cancer. The present study aimed to evaluate the expression levels of miR-193a-5p in CRC, and its effect on the C-X-C Motif Chemokine Receptor 4 (CXCR4) target gene alone and in combination with chemotherapeutic drugs, to determine its possible role in chemoresistance. CRC tissues and adjacent non-cancerous tissue were obtained from 67 patients who had undergone surgery to determine the expression levels of miR-193a-5p and CXCR4. Subsequently, qPCR and Western blotting were performed to determine the effect of miR-193a-5p and chemotherapy drugs on CXCR4. َAlso, MTT assay, and flow cytometry was performed to determine their role in cell viability and apoptosis. Besides, the relationship between miR-193a-5p and CXCR4 with patients' clinical features was investigated. The results of the present study showed that miR-193a-5p was significantly downregulated, whereas CXCR4 was significantly upregulated in tumor tissues obtained from patients with CRC compared with the adjacent non-tumor healthy controls. In addition, the upregulation of miR-193-5p reduced the expression levels of CXCR4, particularly in combination with 5-FU and OX. Besides, using rescue experiments, the present study showed that miR-193a-5p replacement was able to suppress CXCR4-induced CRC cell proliferation by directly targeting CXCR4. Furthermore, there was a significant association between miR-193a-5p and CXCR4 with certain clinicopathological characteristics, particularly with metastasis-related features. These results suggest that miR-193a-5p serves a tumor-suppressive function in CRC and can directly target CXCR4 and decrease its mRNA and protein expression levels. Additionally, miR-193a-5p in combination with 5-FU and Ox potentiated reducing CXR4 expression, which may reveal its contribution to tumor chemoresistance. In conclusion, miR-193-5p may be applicable as a prognostic and diagnostic marker, and also serve as a therapeutic factor by reducing CXCR4 in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
| | - Hamed Aghazadeh
- Pharmaceutical Engineering Department, Faculty of Chemical Engineering, University of Tehran, Tehran 1417414418, Iran
| | | | - Mehdi Rezai Seghin Sara
- Department of Biochemistry, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Rozita Tamjidifar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Biology Ahar Branch, Islamic Azad University, Ahar 5451116714, Iran
| | - Saeed Tarzi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Biology Ahar Branch, Islamic Azad University, Ahar 5451116714, Iran
| | - Mahmoud Mansouri
- University of Tehran, Master of Sciences in Applied Chemistry, Tehran 1417414418, Iran
| | - Sahar Pashaei Sarand
- Amirkabir University of Technology (Polytechnic of Tehran), Master of Sciences in Applied Chemistry, Tehran 441315875, Iran
| | - Faroogh Marofi
- Department of Hematology, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Huaxi Xu
- Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
19
|
Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 2020; 15:136. [PMID: 33183321 PMCID: PMC7659041 DOI: 10.1186/s13000-020-01054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the world which is mainly observed among men. There is a declining mortality rates in developed countries. Although, the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa. MAIN BODY In present review we summarized all of the lncRNAs and miRNAs associated with chemotherapeutic resistance in bladder tumor cells. CONCLUSIONS This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which can be useful to select a proper drug based on the lncRNA profiles of patients to reduce the cytotoxic effects of chemotherapy in such patients.
Collapse
|
20
|
Taheri M, Shirvani-Farsani Z, Ghafouri-Fard S, Omrani MD. Expression profile of microRNAs in bladder cancer and their application as biomarkers. Biomed Pharmacother 2020; 131:110703. [PMID: 32890965 DOI: 10.1016/j.biopha.2020.110703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) comprises 3% of all cancers and is particularly common in the developed countries. Early diagnosis is an important necessity in improvement of BC prognosis, as patients' outcome is significantly different between muscle invasive BC (MIBC) and non-muscle invasive BC cases. This cancer is resulted from an intricate interaction between genetic and environmental factors. Recent studies have identified microRNAs (miRNAs) as potential modulators of carcinogenic potential of BC cells. These small transcripts regulate expression of target genes mostly through binding with their 3' untranslated regions. Expression of several oncomiRs has been increased in BC tissues, peripheral blood or urine samples of these patients. These miRNAs promote oncogenic potential of BC through modulation of epithelial-mesenchymal transition or PI3K/AKT, JAK/STAT and NF-κB/Snail signaling pathways. Besides, a number of tumor suppressive miRNAs have been down-regulated in BC samples leading to enhanced proliferation, invasiveness and metastasis of these cells. TGFβ1, Akt, MAPK, MET/SMAD3/SNAIL, MAPK1/Slug/vimentin and Wnt7a/β-catenin pathways and axes are among molecular targets of these miRNAs. Aberrant expressions of miRNAs in biofluids of patients with BC have potentiated them as molecular markers for prediction of disease course. In the current review, we provided a summary of studies which reported aberrant expression of miRNAs and their implications in the diagnosis or prognosis of patients with BC.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University G.C., Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Khordadmehr M, Shahbazi R, Baradaran B, Sadreddini S, Shanebandi D, Hajiasgharzadeh K. Restoring of miR-193a-5p Sensitizes Breast Cancer Cells to Paclitaxel through P53 Pathway. Adv Pharm Bull 2020; 10:595-601. [PMID: 33072537 PMCID: PMC7539307 DOI: 10.34172/apb.2020.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/11/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose: Recent evidence presented the important role of microRNAs in health and disease particularly in human cancers. Among those, miR-193 family contributes as a tumor suppressor in different benign and malignant cancers like breast cancer (BC) via interaction with specific targets. On the other hand, it was stated that miR-193 is able to modulate some targets in chemoresistant cancer cells. Therefore, the aim of this study was to evaluate the potential function of miR-193a-5p and paclitaxel in the apoptosis induction by targeting P53 in BC cells. Methods: At first, miR-193a-5p mimics were transfected to MDA-MB-231 BC cell line which indicated the lower expression level of miR-193a-5p. Subsequently, the transfected cells were treated with paclitaxel. Then, cell viability, apoptosis, and migration were evaluated by MTT, flow cytometry and DAPI staining, and scratch-wound motility assays, respectively. Moreover, the expression levels of P53 was evaluated by qRT-PCR. Results: The expression level of miR-193a-5p was restored in MDA-MB-231 cells which profoundly inhibited the proliferation (P<0.0001), induced apoptosis (P <0.0001) and harnessed migration (P <0.0001) in the BC cells and more effectiveness was observed in combination with paclitaxel. Interestingly, increased miR-193a-5p expression led to a reduction in P53 mRNA, offering that it can be a potential target of miR-193a. Conclusion: Taken together, it is concluded that the combination of miR-193a-5p restoration and paclitaxel could be potentially considered as an effective therapeutic strategy to get over chemoresistance during paclitaxel chemotherapy
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, 51665-1647, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Dariush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 51666-14761, Tabriz, Iran
| |
Collapse
|
22
|
Cai Z, Zhang F, Chen W, Zhang J, Li H. miRNAs: A Promising Target in the Chemoresistance of Bladder Cancer. Onco Targets Ther 2019; 12:11805-11816. [PMID: 32099386 PMCID: PMC6997227 DOI: 10.2147/ott.s231489] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy is an important cancer treatment method. Tumor chemotherapy resistance is one of the main factors leading to tumor progression. Like other malignancies, bladder cancer, especially muscle-invasive bladder cancer, is prone to chemotherapy resistance. Additionally, only approximately 50% of muscle-invasive bladder cancer responds to cisplatin-based chemotherapy. miRNAs are a class of small, endogenous, noncoding RNAs that regulate gene expression at the posttranscriptional level, which results in the inhibition of translation or the degradation of mRNA. In the study of miRNAs and cancer, including gastric cancer, prostate cancer, liver cancer, and colorectal cancer, it has been found that miRNAs can regulate the expression of genes related to tumor resistance, thereby promoting the progression of tumors. In bladder cancer, miRNAs are also closely related to chemotherapy resistance, suggesting that miRNAs can be a new therapeutic target for the chemotherapy resistance of bladder cancer. Therefore, understanding the mechanisms of miRNAs in the chemotherapy resistance of bladder cancer is an important foundation for restoring the chemotherapy sensitivity of bladder cancer and improving the efficacy of chemotherapy and patient survival. In this article, we review the role of miRNAs in the development of chemotherapy-resistant bladder cancer and the various resistance mechanisms that involve apoptosis, the cell cycle, epithelial-mesenchymal transition (EMT), and cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Fa Zhang
- Department of Urology, First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Weijie Chen
- Department of Urology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine University, Shanghai, People's Republic of China
| | - Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
23
|
Yu M, Zhan J, Zhang H. HOX family transcription factors: Related signaling pathways and post-translational modifications in cancer. Cell Signal 2019; 66:109469. [PMID: 31733300 DOI: 10.1016/j.cellsig.2019.109469] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
HOX family transcription factors belong to a highly conserved subgroup of the homeobox superfamily that determines cellular fates in embryonic morphogenesis and the maintenance of adult tissue architecture. HOX family transcription factors play key roles in numerous cellular processes including cell growth, differentiation, apoptosis, motility, and angiogenesis. As tumor promoters or suppressors HOX family members have been reported to be closely related with a variety of cancers. They closely regulate tumor initiation and growth, invasion and metastasis, angiogenesis, anti-cancer drug resistance and stem cell origin. Here, we firstly described the pivotal roles of HOX transcription factors in tumorigenesis. Then, we summarized the main signaling pathways regulated by HOX transcription factors, including Wnt/β-catenin, transforming growth factor β, mitogen-activated protein kinase, phosphoinositide 3-kinase/Akt, and nuclear factor-κB signalings. Finally, we outlined the important post-translational modifications of HOX transcription factors and their regulation in cancers. Future research directions on the HOX transcription factors are also discussed.
Collapse
Affiliation(s)
- Miao Yu
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China
| | - Jun Zhan
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| | - Hongquan Zhang
- Peking University Health Science Center, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
| |
Collapse
|
24
|
Tian LJ, Wu YP, Wang D, Zhou ZH, Xue SB, Zhang DY, Wei YG, Liu W. Upregulation of Long Noncoding RNA (lncRNA) X-Inactive Specific Transcript (XIST) is Associated with Cisplatin Resistance in Non-Small Cell Lung Cancer (NSCLC) by Downregulating MicroRNA-144-3p. Med Sci Monit 2019; 25:8095-8104. [PMID: 31659146 PMCID: PMC6839396 DOI: 10.12659/msm.916075] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Patients with advanced non-small cell lung cancer (NSCLC) treated with cisplatin, also termed cis-diamminedichloroplatinum (CDDP) or diamminedichloroplatinum (DDP), may develop chemoresistance. This study aimed to investigate the role of long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) and multidrug resistance-1 (MDR1) in tumor tissue samples and the chemoresistant human NSCLC cell lines, H460/DDP and A549/DDP, and in a murine A549/DDP tumor xenograft. MATERIAL AND METHODS Tissue samples were from patients with NSCLC who responded cisplatin (DDP-sensitive) (n=24), patients with NSCLC unresponsive to cisplatin (DDP-resistant) (n=30), and normal lung tissue (n=25). In H460/DDP and A549/DDP cells, expression of XIST, microRNA (miR)-144-3p, MDR1, and multidrug resistance-associated protein 1 (MRP1) were detected by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. The MTT assay measured cell survival and proliferation, a transwell assay evaluated cell migration, and flow cytometry measured apoptosis. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays examined the relationship between XIST and miR-144-3p. Tumor xenografts from A549/DDP cells were studied in BALB/c nude mice. RESULTS In tissue from patients with DDP-resistant NSCLC and the mouse A549/DDP tumor xenograft, lncRNA-XIST expression was upregulated and miR-144-3p expression was inhibited. In A549/DDP and H460/DDP cells, down-regulation of lncRNA-XIST and upregulation of miR-144-3p reduced cell survival, proliferation, migration, induced apoptosis and suppressed MDR1 and MRP1 expression. CONCLUSIONS Upregulation of lncRNA-XIST was associated with cisplatin resistance in NSCLC by downregulating miRNA-144-3p in H460/DDP and A549/DDP cells, a murine A549/DDP tumor xenograft, and human tumor tissues from patients with cisplatin-resistant NSCLC.
Collapse
MESH Headings
- A549 Cells
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Animals
- Apoptosis/physiology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Proliferation/physiology
- Cisplatin/pharmacology
- Drug Resistance, Neoplasm
- Female
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
|
25
|
Khordadmehr M, Shahbazi R, Sadreddini S, Baradaran B. miR-193: A new weapon against cancer. J Cell Physiol 2019; 234:16861-16872. [PMID: 30779342 DOI: 10.1002/jcp.28368] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
microRNAs (miRNAs) are known as a large group of short noncoding RNAs, which structurally consist of 19-22 nucleotides in length and functionally act as one of the main regulators of gene expression in important biological and physiological contexts like cell growth, apoptosis, proliferation, differentiation, movement (cell motility), and angiogenesis as well as disease formation and progression importantly in cancer cell invasion, migration, and metastasis. Among these notable tiny molecules, many studies recently presented the important role of the miR-193 family comprising miR-193a-3p, miR-193a-5p, miR-193b-3p, and miR-193b-5p in health and disease biological processes by interaction with special targeting and signaling, which mainly contribute as a tumor suppressor. Therefore, in the present paper, we review the functional role of this miRNA family in both health and disease conditions focusing on various tumor developments, diagnoses, prognoses, and treatment.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Tan Y, Zhang T, Zhou L, Liu S, Liang C. MiR-34b-3p Represses the Multidrug-Chemoresistance of Bladder Cancer Cells by Regulating the CCND2 and P2RY1 Genes. Med Sci Monit 2019; 25:1323-1335. [PMID: 30778022 PMCID: PMC6391854 DOI: 10.12659/msm.913746] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Chemoresistance is a main limitation in chemotherapy for therapeutic cancer. MicroRNA (miRNA) has been indicated in the progression and tumorigenesis of many types of cancer, but the effect of miR-34b-3p in bladder cancer (BCa) cells is still unknown. Material/Methods This research compared the multidrug-sensitive (5637) BCa cell line and the multidrug-resistant (EJ) BCa cell line. We found that CCND2 (G1/S-specific cyclin-D2) and P2RY1 (purinergic receptor P2Y1) were the targets of miR-34b-3p, as further validated by qRT-PCR (quantitative real-time polymerase chain reaction) and western blot analysis. Results Forced reversal of the levels of miR-34b-3p or CCND2/P2RY1 changed the chemoresistance profiles in both 5637 cells and EJ cells. Further experiments suggested that the CCND2 gene and the P2RY1 gene act in concert to negatively correlate with miR-34b-3p effect on BCa multidrug-chemoresistance. Conclusions These results not only reveal new players regulating BCa chemoresistance, but also provide clues for effective chemotherapy for BCa patients.
Collapse
Affiliation(s)
- Yiao Tan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland).,Institute of Urology, Anhui Medical University, Hefei, Anhui, China (mainland).,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland).,Department of Urology, West Branch of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Tengyue Zhang
- Department of Oncology, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Linyu Zhou
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Shuhan Liu
- Department of Urology, West Branch of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (mainland)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland).,Institute of Urology, Anhui Medical University, Hefei, Anhui, China (mainland).,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
27
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Biomed Pharmacother 2019; 111:873-881. [PMID: 30841466 DOI: 10.1016/j.biopha.2018.12.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Today, cancer is one of the most common causes of death. Osteosarcoma (OS) is a tumor in long bones and its prevalence is high in teenagers and young people. Among the methods that used to treat cancer, one can name chemotherapy, surgery, and radiotherapy. Since these methods have some disadvantages and they are not absolutely successful, the use of microRNAs (miRNAs) is very useful in diagnosis and treatment of OS. MiRNAs are small non-coding RNA molecules, containing 18-25 nucleotides, which are involved in the regulation of gene expression via binding to messenger RNA (mRNA). These RNAs are divided into two classes of suppressors and oncogenes. During OS, there is aberrant expression of several miRNAs. Among these miRNAs are downregulation of miR-193 that has been associated with cancer occurrence. The aim of the current manuscript is to have overview on the treatment approaches of OS with special focus on miR-193.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Yu M, Liu Z, Liu Y, Zhou X, Sun F, Liu Y, Li L, Hua S, Zhao Y, Gao H, Zhu Z, Na M, Zhang Q, Yang R, Zhang J, Yao Y, Chen X. PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J 2018; 286:1136-1153. [PMID: 30548198 DOI: 10.1111/febs.14724] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/05/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023]
Abstract
The protein tyrosine phosphatase PTP1B, which is encoded by PTPN1, is a ubiquitously expressed nonreceptor protein tyrosine phosphatase. PTP1B has long been known to negatively regulate insulin and leptin receptor signalling. Recently, it was reported to be aberrantly expressed in cancer cells and to function as an important oncogene. In this study, we found that PTP1B protein levels are dramatically increased in breast cancer (BC) tissues and that PTP1B promotes the proliferation, and suppresses the apoptosis, of both HER2-positive and triple-negative BC cell lines. Bioinformatics analysis identified that the miRNA, miR-193a-3p, might potentially target PTP1B. We demonstrate that miR-193a-3p regulates PTP1B in BC cells and that it regulates the proliferation and apoptosis of BC cells by targeting PTP1B, both in vitro and in vivo. In conclusion, this study confirms that PTP1B acts as an oncogene in BC and demonstrates that miR-193a-3p can serve as a tumour suppressor gene in BC by targeting PTP1B.
Collapse
Affiliation(s)
- Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Zhijian Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Yuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Xinyan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Liuyi Li
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Shiyu Hua
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Yi Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Haidong Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Zhouting Zhu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Muhan Na
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Qipeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| | - Rong Yang
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Jiangsu, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhong Yao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Jiangsu, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of life sciences, Nanjing University, Jiangsu, China
| |
Collapse
|
29
|
Yu HM, Wang C, Yuan Z, Chen GL, Ye T, Yang BW. LncRNA NEAT1 promotes the tumorigenesis of colorectal cancer by sponging miR-193a-3p. Cell Prolif 2018; 52:e12526. [PMID: 30407674 PMCID: PMC6430453 DOI: 10.1111/cpr.12526] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/06/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives LncRNA nuclear‐enriched abundant transcript 1 (NEAT1) participates in the development and progression of multiple malignancies. However, the molecular mechanism by which NEAT1 contributes to colorectal cancer (CRC) remains unclear. Methods The association between lncRNA NEAT1 expression and clinicopathological characteristics and prognosis in patients with CRC was analysed by TCGA RNA‐sequencing data. MTT, colony formation, flow cytometry, transwell assays and a xenograft tumour model were used to assess the functions of NEAT1. Bioinformatics and spearman correlation analysis were used to identify the NEAT1‐specific binding with miRNAs, and luciferase gene report and RIP assays were performed to confirm the interaction between miR‐193a‐3p (miR‐193a) and NEAT1 in CRC cells. Results Upregulation of NEAT1 expression was significantly correlated with TNM stage, poor survival and tumour recurrence in patients with CRC, and acted as an independent prognostic factor for tumour recurrence. Knockdown of NEAT1 suppressed cell proliferation, colony formation abilities and invasive potential and induced cell apoptosis, but overexpression of NEAT1 reversed these effects. Furthermore, NEAT1 was confirmed to act as a sponge of miR‐193a, and knockdown of NEAT1 attenuated miR‐193a inhibitor‐induced tumour promoting effects and L17RD expression in CRC cells. miR‐193a harboured negative correlation with NEAT1 and IL17RD expression in CRC specimens. In vivo experiment further validated the inhibitory effects of NEAT1 knockdown on xenograft tumour growth. Conclusion Our findings demonstrate that lncRNA NEAT1 acts as an oncogenic role in CRC cells by sponging miR‐193a and may represent a potential marker for CRC patients.
Collapse
Affiliation(s)
- Hong-Mei Yu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Yuan
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guang-Liang Chen
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Ye
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bi-Wei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Ma H, Yuan L, Li W, Xu K, Yang L. The LncRNA H19/miR-193a-3p axis modifies the radio-resistance and chemotherapeutic tolerance of hepatocellular carcinoma cells by targeting PSEN1. J Cell Biochem 2018; 119:8325-8335. [PMID: 29968942 DOI: 10.1002/jcb.26883] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022]
Abstract
This study was designated to verify if the lncRNA H19/miR-193a-3p axis would play a regulatory role in the radio-/chemo-resistances of HCC cells through targeting PSEN1. Within the study, five human HCC cell lines were prepared, including Bel-7402, HepG2, Hep3b, QGY-7703, and SMMC-7721. Moreover, docetaxel (DT), paclitaxel (Pt), vinorelbine (Vb), and 5-fluorouracil (5-Fu) were managed as the chemo-therapeutics, and single-dose X-rays were performed as radio-therapies. Besides, lncRNA H19 and miR-193a-3p were detected by qRT-PCR and Western blot were implemented to quantify the expressional levels of PSEN1, Ku80, γ-H2AX, and RAD51. Luciferase reporter gene assay was advanced to verify the targeted relationship between lncRNA H19 and miR-193a-3p. As a consequence, QGY-7703 and Bel-7402 were, respectively, the most radiation-sensitive and radiation-proof cell lines, and Bel-7402 was associated with the highest resistances to DT, Pt, Vb, and 5-FU. The restrained lncRNA H19 and over-expressed miR-193a-3p expressions tended to significantly elevate the survival rate and proliferation of Bel-7402 cells, when they were exposed to radiation and subject to chemo-therapies. The lncRNA H19 was also found to directly target miR-193a-3p in inducing the HCC development. PSEN1 appeared to be subject to the modification of lncRNA H19 and miR-193a-3p in its acting on the survival rates and proliferative abilities of HCC cells. The lncRNA H19/miR-193a-3p/PSEN1 axis could be regarded as the treatment targets for HCC, so as to further improve the treatment efficacy of chemo- and radio-therapies for HCC.
Collapse
Affiliation(s)
- Hongbin Ma
- Department of Radiotherapy, Eastern Hepatobiliary Surgery Hospital, ShangHai, China
| | - Lei Yuan
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wanhu Li
- Department of Radiology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Kaiyun Xu
- Department of General Medicine, Eastern Hepatobiliary Surgery Hospital, ShangHai, China
| | - Liang Yang
- Department of Radiotherapy, Eastern Hepatobiliary Surgery Hospital, ShangHai, China
| |
Collapse
|
31
|
A regulatory circuitry between miR-193a/miR-600 and WT1 enhances leukemogenesis in acute myeloid leukemia. Exp Hematol 2018; 61:59-68.e5. [PMID: 29452230 DOI: 10.1016/j.exphem.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
Abstract
The aberrant overexpression of Wilms tumor-1 (WT1) in acute myeloid leukemia (AML) plays an important role in blast cell survival by enhancing proliferation and inhibiting apoptosis. However, the mechanism underlying the overexpression of WT1 remains unclear. Here, we identified miR-193a (miR-193a-5p) and miR-600 targeting and degrading WT1. MiR-193a and miR-600 synergistically reduced WT1 expression and suppressed the activity of a luciferase reporter by binding coding sequence and the 3'-untranslated region of WT1 mRNA, respectively. Furthermore, the expression of miR-193a and miR-600 was decreased in AML patients compared with normal controls. DNA hypermethylation in pre-miR-193a promoter, but not pre-miR-600 promoter, caused the downregulation of miR-193a. Most intriguingly, ectopic expression of WT1 inhibited miR-600 expression, in turn, by binding the putative pre-miR-600 promoter, leading to the downregulation of miR-600 in AML blasts. Ectopic expression of miR-193a and miR-600 synergistically inhibited cell proliferation, induced apoptosis, and decreased colony formation in leukemia cells. Finally, overexpression of miR-193a and miR-600 decreased the growth of K562-inoculated tumor xenografts and extended survival time in THP1-transplanted leukemia mice. In conclusion, these data reveal an important role of miRNAs-WT1 circuitry in leukemia cells and the therapeutic promise of restoring miR-193a and miR-600 expression in AML patients.
Collapse
|
32
|
Sun Y, Zeng C, Gan S, Li H, Cheng Y, Chen D, Li R, Zhu W. LncRNA HOTTIP-Mediated HOXA11 Expression Promotes Cell Growth, Migration and Inhibits Cell Apoptosis in Breast Cancer. Int J Mol Sci 2018; 19:ijms19020472. [PMID: 29415429 PMCID: PMC5855694 DOI: 10.3390/ijms19020472] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/16/2022] Open
Abstract
As the most common cause of cancer death in women, the pathogenesis of breast cancer still remains unclear. Here, we reported a long non-coding RNA (lncRNA), HOTTIP (HOXA transcript at the distal tip), that may play an important role in the pathogenesis of breast cancer. Using gain-and-loss-of experiments in vitro and in vivo, we observed the marked upregulation of HOTTIP/HOXA11 in the breast cancer cell line, MCF-7, and the downregulation of HOTTIP or HOXA11, which might inhibit cell proliferation and migration but promote cell apoptosis in breast cancer MCF-7 cells. In addition, by further rescue experiments with HOXA11 overexpression, we uncovered a novel potential regulatory mechanism between HOTTIP and one of its physical HOXA clusters, HOXA11. Hence, HOTTIP may mediate, at least partly, HOXA11 expression involved in cell growth, migration, and apoptosis of breast cancer MCF-7 cells.
Collapse
Affiliation(s)
- Yanqin Sun
- Department of Pathology, Guangdong Medical University, Dongguan 523808, China.
| | - Chao Zeng
- Department of Pathology, Guangdong Medical University, Dongguan 523808, China.
| | - Siyuan Gan
- Department of Pathology, Guangdong Medical University, Dongguan 523808, China.
| | - Hongmei Li
- Department of Pathology, Guangdong Medical University, Dongguan 523808, China.
| | - Ying Cheng
- Department of Pathology, Guangdong Medical University, Dongguan 523808, China.
| | - Dongjie Chen
- Department of Radiotherapy, State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China.
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Dongguan 523808, China.
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
33
|
MicroRNA-31 functions as a tumor suppressor and increases sensitivity to mitomycin-C in urothelial bladder cancer by targeting integrin α5. Oncotarget 2018; 7:27445-57. [PMID: 27050274 PMCID: PMC5053662 DOI: 10.18632/oncotarget.8479] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/16/2016] [Indexed: 11/25/2022] Open
Abstract
Urothelial bladder cancer (UBC) is a common genitourinary malignancy. MiR-31, a well-identified miRNA, exhibits diverse properties in different cancers. However, the specific functions and mechanisms of miR-31 in UBC have not been investigated. In this study, tumor samples, especially invasive UBC, showed significantly reduced level of miR-31, as compared with normal urothelium. Prognostic analysis using the EORTC model showed that down-regulation of miR-31 correlated with higher risks of recurrence and progression in noninvasive UBC cases. Remarkably, overexpression of miR-31 mimics in UBC cell lines inhibited cell proliferation, migration and invasion. Integrin α5 (ITGA5), an integrin family member, was subsequently identified as a direct target of miR-31 in UBC cells. When treated with mitomycin-C (MMC), miR-31-expressing UBC cells displayed lower survival and higher apoptotic rates, and deactivated Akt and ERK. These effects arising from miR-31 overexpression were abrogated by ITGA5 restoration. Furthermore, miR-31 markedly inhibited tumor growth and increased the effectiveness of MMC in UBC xenografts. In summary, our data suggest that miR-31 is a prognostic predictor and can serve as a potential therapeutic target of UBC.
Collapse
|
34
|
Involvement of aberrantly activated HOTAIR/EZH2/miR-193a feedback loop in progression of prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:159. [PMID: 29141691 PMCID: PMC5688662 DOI: 10.1186/s13046-017-0629-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022]
Abstract
Background Though androgen deprivation therapy is the standard treatment for prostate cancer (PCa), most patients would inevitably progress to castration-resistant prostate cancer (CRPC) which is the main cause of PCa death. Therefore, the identification of novel molecular mechanism regulating cancer progression and achievement of new insight into target therapy would be necessary for improving the benefits of PCa patients. This study aims to study the function and regulatory mechanism of HOTAIR/EZH2/miR-193a feedback loop in PCa progression. Methods MSKCC and TCGA datasets were used to identify miR-193a expression profile in PCa. Cell Counting Kit-8 (CCK-8) assays, colony formation, invasion, migration, flow cytometry, a xenograft model and Gene Set Enrichment Analysis were used to detect and analyze the biological function of miR-193a. Then, we assessed the role of HOTAIR and EZH2 in regulation of miR-193a expression by using plasmid, lentivirus and small interfering RNA (siRNA). Luciferase reporter assays and chromatin immunoprecipitation assays were performed to detect the transcriptional activation of miR-193a by EZH2 and HOTAIR. Further, qRT-PCR and luciferase reporter assays were conducted to examine the regulatory role of miR-193a controlling the HOTAIR expression in PCa. Finally, the correlation between HOTAIR, EZH2 and miR-193a expression were analyzed using In situ hybridization and immunohistochemistry. Results We found that miR-193a was significantly downregulated in metastatic PCa through mining MSKCC and TCGA datasets. In vitro studies revealed that miR-193a inhibited PCa cell growth, suppressed migration and invasion, and promoted apoptosis; in vivo results demonstrated that overexpression of miR-193a mediated by lentivirus dramatically reduced PCa xenograft tumor growth. Importantly, we found EZH2 coupled with HOTAIR to repress miR-193a expression through trimethylation of H3K27 at miR-193a promoter in PC3 and DU145 cells. Interestingly, further evidence illustrated that miR-193a directly targets HOTAIR showing as significantly reduced HOTAIR level in miR-193a overexpressed cells and tissues. The expression level of miR-193a was inversely associated with that of HOTAIR and EZH2 in PCa. Conclusion This study firstly demonstrated that miR-193a acted as tumor suppressor in CRPC and the autoregulatory feedback loop of HOTAIR/EZH2/miR-193a served an important mechanism in PCa development. Targeting this aberrantly activated feedback loop may provide a potential therapeutic strategy. Electronic supplementary material The online version of this article (doi: 10.1186/s13046-017-0629-7) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Xie F, Hosany S, Zhong S, Jiang Y, Zhang F, Lin L, Wang X, Gao S, Hu X. MicroRNA-193a inhibits breast cancer proliferation and metastasis by downregulating WT1. PLoS One 2017; 12:e0185565. [PMID: 29016617 PMCID: PMC5634539 DOI: 10.1371/journal.pone.0185565] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/14/2017] [Indexed: 01/22/2023] Open
Abstract
In many cancers, microRNA-193a (miR-193a) is a suppressor miRNA, but its underlying anti-oncogenic activity in breast cancer is not known. In this study, we found decreased miR-193a (specifically, miR-193a-5p) expression not only in breast cancer cell lines but also in breast cancer tissues as compared with the adjacent non-tumor tissues. Ectopic miR-193a overexpression inhibited the proliferation, colony formation, migration, and invasion of MDA-MB-231 and BT549 cells. miR-193a reduced Wilms’ tumor 1 (WT1) expression and repressed luciferase reporter activity by binding WT1 coding region sequences; mutation of the predicted miR-193a binding site abolished this effect. miR-193a and WT1 expression were significantly inversely correlated in breast cancer tissues. Importantly, the anti-cancer activity induced by miR-193a was partially reversed by WT1 overexpression, indicating an important role for WT1 in such activity related to miR-193a. Our results reveal that miR-193a-WT1 interaction plays an important role in breast cancer metastasis, and suggest that restoring miR-193a expression is a therapeutic strategy in breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Base Sequence
- Binding Sites
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Mutation
- Neoplasm Metastasis
- Signal Transduction
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
Collapse
Affiliation(s)
- FeiYan Xie
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Sumayyah Hosany
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Shen Zhong
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yang Jiang
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Fen Zhang
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - LiLi Lin
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - XiaoBo Wang
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - ShenMeng Gao
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- * E-mail: (SMG); (XQH)
| | - XiaoQu Hu
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- * E-mail: (SMG); (XQH)
| |
Collapse
|
36
|
Biological Function of MicroRNA193a-3p in Health and Disease. Int J Genomics 2017; 2017:5913195. [PMID: 29038785 PMCID: PMC5605928 DOI: 10.1155/2017/5913195] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that act mainly as negative regulators of gene expression. Several studies demonstrated that miRNAs take part in numerous biological processes, such as proliferation, apoptosis, and migration. The dysregulation of miRNAs has been frequently observed in different types of disease, including cancer. Here, we provide a comprehensive review on the human miR-193a-3p by considering its role in both physiological and pathological contexts. Different mechanisms involved in regulating miR-193a-3p expression have been reported, including epigenetic modifications and transcription factors. In physiological contexts, miR-193a-3p seemed able to limit proliferation and cell cycle progression in normal cells. Remarkably, several publications demonstrated that miR-193a-3p acted as a tumor suppressor miRNA in cancer by targeting different genes involved in proliferation, apoptosis, migration, invasion, and metastasis. Furthermore, the downregulation of miR-193a-3p has been observed in many primary tumors and altered levels of circulating miR-193a-3p have been identified in serum or plasma of cancer patients and subjects affected by Parkinson's disease or by schizophrenia. In a clinical perspective, further studies are needed to explore the antitumor effects of the miR-193a-3p mimics delivery and the relevance of this miRNA detection as a possible diagnostic and prognostic biomarker.
Collapse
|
37
|
Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18071514. [PMID: 28703782 PMCID: PMC5536004 DOI: 10.3390/ijms18071514] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are—for the time being—not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells.
Collapse
|
38
|
He M, Zhou W, Li C, Guo M. MicroRNAs, DNA Damage Response, and Cancer Treatment. Int J Mol Sci 2016; 17:ijms17122087. [PMID: 27973455 PMCID: PMC5187887 DOI: 10.3390/ijms17122087] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
As a result of various stresses, lesions caused by DNA-damaging agents occur constantly in each cell of the human body. Generally, DNA damage is recognized and repaired by the DNA damage response (DDR) machinery, and the cells survive. When repair fails, the genomic integrity of the cell is disrupted—a hallmark of cancer. In addition, the DDR plays a dual role in cancer development and therapy. Cancer radiotherapy and chemotherapy are designed to eliminate cancer cells by inducing DNA damage, which in turn can promote tumorigenesis. Over the past two decades, an increasing number of microRNAs (miRNAs), small noncoding RNAs, have been identified as participating in the processes regulating tumorigenesis and responses to cancer treatment with radiation therapy or genotoxic chemotherapies, by modulating the DDR. The purpose of this review is to summarize the recent findings on how miRNAs regulate the DDR and discuss the therapeutic functions of miRNAs in cancer in the context of DDR regulation.
Collapse
Affiliation(s)
- Mingyang He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weiwei Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chuang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
39
|
Majidinia M, Yousefi B. DNA damage response regulation by microRNAs as a therapeutic target in cancer. DNA Repair (Amst) 2016; 47:1-11. [DOI: 10.1016/j.dnarep.2016.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
|
40
|
Zhou J, Duan H, Xie Y, Ning Y, Zhang X, Hui N, Wang C, Zhang J, Zhou J. MiR-193a-5p Targets the Coding Region of AP-2α mRNA and Induces Cisplatin Resistance in Bladder Cancers. J Cancer 2016; 7:1740-1746. [PMID: 27698912 PMCID: PMC5039396 DOI: 10.7150/jca.15620] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
Transcription factor AP-2 alpha (AP-2α or TFAP2A) is a newly identified prognostic marker of chemotherapy; its expression is positively correlated with chemosensitivity and survival of cancer patients. Using computational programs, we predicted that the coding region of AP-2α gene contains a potential miRNA response element (MRE) of miR-193a-5p, and the single nucleotide polymorphism (SNP) site (c.497A>G, rs111681798) resides within the predicted MRE. The results of luciferase assays and Western blot analysis demonstrated that miR-193a-5p negatively regulated the expression of AP-2α proteins, but have no influence on the mutant AP-2α (c.497A>G). Infection with lentiviral AP-2α gene or miR-193a-5p inhibitor in the bladder cancer cells decreased migration and cisplatin resistance, while knockdown of AP-2α gene or overexpression of miR-193a-5p in the urothelial cell line SV-HUC-1 increased migration and cisplatin resistances. We concluded that miR-193a-5p induced cisplatin resistance by repressing AP-2α expression in bladder cancer cells.
Collapse
Affiliation(s)
- Ji Zhou
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Huaxin Duan
- Hunan Provincial People's Hospital, Changsha 410005, Hunan, China
| | - Yu Xie
- Hunan Cancer Hospital, Changsha 410013, Hunan, China
| | - Yichong Ning
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xing Zhang
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Na Hui
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Chunqing Wang
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jian Zhang
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jianlin Zhou
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
41
|
Tsai KW, Leung CM, Lo YH, Chen TW, Chan WC, Yu SY, Tu YT, Lam HC, Li SC, Ger LP, Liu WS, Chang HT. Arm Selection Preference of MicroRNA-193a Varies in Breast Cancer. Sci Rep 2016; 6:28176. [PMID: 27307030 PMCID: PMC4910092 DOI: 10.1038/srep28176] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/31/2016] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs derived from the 3′ and 5′ ends of the same precursor. However, the biological function and mechanism of miRNA arm expression preference remain unclear in breast cancer. We found significant decreases in the expression levels of miR-193a-5p but no significant differences in those of miR-193a-3p in breast cancer. MiR-193a-3p suppressed breast cancer cell growth and migration and invasion abilities, whereas miR-193a-5p suppressed cell growth but did not influence cell motility. Furthermore, NLN and CCND1, PLAU, and SEPN1 were directly targeted by miR-193a-5p and miR-193a-3p, respectively, in breast cancer cells. The endogenous levels of miR-193a-5p and miR-193a-3p were significantly increased by transfecting breast cancer cells with the 3′UTR of their direct targets. Comprehensive analysis of The Cancer Genome Atlas database revealed significant differences in the arm expression preferences of several miRNAs between breast cancer and adjacent normal tissues. Our results collectively indicate that the arm expression preference phenomenon may be attributable to the target gene amount during breast cancer progression. The miRNA arm expression preference may be a means of modulating miRNA function, further complicating the mRNA regulatory network. Our findings provide a new insight into miRNA regulation and an application for breast cancer therapy.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Chemical Biology, National Pingtung University of Education, Pingtung, Taiwan
| | - Chung-Man Leung
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Bioinformatics Center, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Ching Chan
- Genomics &Proteomics Core Laboratory, Department of medical research, Kaohsiung, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shou-Yu Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ya-Ting Tu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hing-Chung Lam
- Center For Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Genomics &Proteomics Core Laboratory, Department of medical research, Kaohsiung, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wen-Shan Liu
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Radiation Oncology, Tri-Service General Hospital, Taipei, Twiwan
| | - Hong-Tai Chang
- Center For Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
42
|
Enokida H, Yoshino H, Matsushita R, Nakagawa M. The role of microRNAs in bladder cancer. Investig Clin Urol 2016; 57 Suppl 1:S60-76. [PMID: 27326409 PMCID: PMC4910767 DOI: 10.4111/icu.2016.57.s1.s60] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/17/2016] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BC) is the fifth most common cancer worldwide and is associated with significant morbidity and mortality. The prognosis of muscle invasive BC is poor, and recurrence is common after radical surgery or chemotherapy. Therefore, new diagnostic methods and treatment modalities are critical. MicroRNAs (miRNAs), a class of small noncoding RNAs, regulate the expression of protein-coding genes by repressing translation or cleaving RNA transcripts in a sequence-specific manner. miRNAs have important roles in the regulation of genes involved in cancer development, progression, and metastasis. The availability of genomewide miRNA expression profiles by deep sequencing technology has facilitated rapid and precise identification of aberrant miRNA expression in BC. Indeed, several miRNAs that are either upregulated or downregulated have been shown to have associations with significant cancer pathways. Furthermore, many miRNAs, including those that can be detected in urine and blood, have been studied as potential noninvasive tumor markers for diagnostic and prognostic purposes. Here, we searched PubMed for publications describing the role of miRNAs in BC by using the keywords "bladder cancer" and "microRNA" on March 1, 2016. We found 374 papers and selected articles written in English in which the level of scientific detail and reporting were sufficient and in which novel findings were demonstrated. In this review, we summarize these studies from the point of view of miRNA-related molecular networks (specific miRNAs and their targets) and miRNAs as tumor markers in BC. We also discuss future directions of miRNA studies in the context of therapeutic modalities.
Collapse
Affiliation(s)
- Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
43
|
Meng F, Qian L, Lv L, Ding B, Zhou G, Cheng X, Niu S, Liang Y. miR-193a-3p regulation of chemoradiation resistance in oesophageal cancer cells via the PSEN1 gene. Gene 2016; 579:139-45. [DOI: 10.1016/j.gene.2015.12.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022]
|
44
|
Li Y, Deng H, Lv L, Zhang C, Qian L, Xiao J, Zhao W, Liu Q, Zhang D, Wang Y, Yan J, Zhang H, He Y, Zhu J. The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer. Oncotarget 2016; 6:10195-206. [PMID: 25991669 PMCID: PMC4496349 DOI: 10.18632/oncotarget.3555] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
As the major barrier to curative cancer chemotherapy, chemoresistance presents a formidable challenge to both cancer researchers and clinicians. We have previously shown that the bladder cancer (BCa) cell line 5637 is significantly more sensitive to the cytoxicity of five chemotherapeutic agents than H-bc cells. Using an RNA-seq-based omic analysis and validation at both the mRNA and protein levels, we found that the inhibitor of growth 5 (ING5) gene was upregulated in 5637 cells compared with H-bc cells, indicating that it has an inhibitory role in BCa chemoresistance. siRNA-mediated inhibition of ING5 increased the chemoresistance and inhibited the DNA damage response pathway in 5637 cells. Conversely, forced expression of EGFP-ING5 decreased the chemoresistance of and activated the DNA damage response pathway in H-bc cells. We also showed that ING5 gene expression is inhibited by miR-193a-3p and is instrumental in miR-193a-3p's role in activating BCa chemoresistance. Our results demonstrate both the role and mechanism of inhibition of BCa chemoresistance by ING5.
Collapse
Affiliation(s)
- Yang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Hui Deng
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Lei Lv
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liting Qian
- Department of Radiotherapy, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Jun Xiao
- Department of Urology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Weidong Zhao
- Department of Gynecologic Cancer, Anhui Cancer Hospital, Hefei, Anhui, China
| | - Qi Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingwei Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jun Yan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hongyu Zhang
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yinghua He
- Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jingde Zhu
- Cancer Epigenetics Program, Anhui Cancer Hospital, Hefei, Anhui, China.,Cancer Epigenetics Program, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
45
|
Lichti CF, Wildburger NC, Shavkunov AS, Mostovenko E, Liu H, Sulman EP, Nilsson CL. The proteomic landscape of glioma stem-like cells. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Ren F, Ding H, Huang S, Wang H, Wu M, Luo D, Dang Y, Yang L, Chen G. Expression and clinicopathological significance of miR-193a-3p and its potential target astrocyte elevated gene-1 in non-small lung cancer tissues. Cancer Cell Int 2015; 15:80. [PMID: 26257582 PMCID: PMC4528689 DOI: 10.1186/s12935-015-0227-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/14/2015] [Indexed: 12/31/2022] Open
Abstract
Background Aberrant expression of miR-193a-3p and astrocyte elevated gene-1 (AEG-1) have been revealed to be related to the tumorigenesis of various cancers, including non-small cell lung cancer (NSCLC). However, the significance of miR-193a-3p and its correlation with AEG-1 in NSCLC has not been explored. The purpose of this study was to evaluate the association between miR-193a-3p and AEG-1 and their relationship with the clinicopathological features in NSCLC patients. Methods Via online in silico prediction, complementary sequences were found between miR-193a-3p and the 3′-untranslated region of AEG-1. Three independent cohorts were applied in the current study. Firstly, miR-193a-3p level was detected in 125 cases of NSCLC with quantitative real-time PCR (qRT-PCR). Secondly, AEG-1 protein level was evaluated in 339 cases of lung cancers with immunohistochemistry. Finally, the relationship between miR-193a-3p and AEG-1 protein expression was verified in another group with 65 cases of NSCLC. Results The results showed that miR-193a-3p level was decreased in NSCLC tissues and significantly negatively related to tumor size (r = −0.277, P = 0.002), clinical TNM stage (r = −0.226, P = 0.011), lymph node metastasis (r = −0.186, P = 0.038), epidermal growth factor receptor (EGFR) protein level (r = −0.272, P = 0.041). On the contrary, AEG-1 protein expression was up-regulated in NSCLC and positively relative to tumor size (r = 0.240, P < 0.001), TNM stages (r = 0.164, P = 0.002) and lymph node metastasis (r = 0.232, P < 0.001) in NSCLC patients. In addition, miR-193a-3p was found to be inversely associated with AEG-1 protein expression in the third cohort (r = −0.564, P < 0.001). Conclusion In conclusion, miR-193a-3p and AEG-1 might be responsible for the carcinogenesis and aggressiveness of NSCLC. AEG-1 has the potential to be one of the targeted genes of miR-193a-3p. However, future in vitro and in vivo experiments are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Fanghui Ren
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Hua Ding
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Suning Huang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Hanlin Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Mei Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Dianzhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Lihua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi Zhuang Autonomous Region People's Republic of China
| |
Collapse
|
47
|
Oh JH, Deasy JO. A literature mining-based approach for identification of cellular pathways associated with chemoresistance in cancer. Brief Bioinform 2015. [PMID: 26220932 DOI: 10.1093/bib/bbv053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance is a major obstacle to the successful treatment of many human cancer types. Increasing evidence has revealed that chemoresistance involves many genes and multiple complex biological mechanisms including cancer stem cells, drug efflux mechanism, autophagy and epithelial-mesenchymal transition. Many studies have been conducted to investigate the possible molecular mechanisms of chemoresistance. However, understanding of the biological mechanisms in chemoresistance still remains limited. We surveyed the literature on chemoresistance-related genes and pathways of multiple cancer types. We then used a curated pathway database to investigate significant chemoresistance-related biological pathways. In addition, to investigate the importance of chemoresistance-related markers in protein-protein interaction networks identified using the curated database, we used a gene-ranking algorithm designed based on a graph-based scoring function in our previous study. Our comprehensive survey and analysis provide a systems biology-based overview of the underlying mechanisms of chemoresistance.
Collapse
|
48
|
MicroRNA expression profiles in muscle-invasive bladder cancer: identification of a four-microRNA signature associated with patient survival. Tumour Biol 2015; 36:8159-66. [PMID: 25990459 DOI: 10.1007/s13277-015-3559-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer ranks the second most common genitourinary tract cancer, and muscle-invasive bladder cancer (MIBC) accounts for approximately 25 % of all bladder cancer cases with high mortality. In the current study, with a total of 202 treatment-naïve primary MIBC patients identified from The Cancer Genome Atlas dataset, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in MIBC, with the aim to investigate the relationship of miRNA expression with the progression and prognosis of MIBC, and generate a miRNA signature of prognostic capabilities. In the progression-related miRNA profiles, a total of 47, 16, 3, and 84 miRNAs were selected for pathologic T, N, M, and histologic grade, respectively. Of the eight most important progression-related miRNAs, four (let-7c, mir-125b-1, mir-193a, and mir-99a) were significantly associated with survival of patients with MIBC. Finally, a four-miRNA signature was generated and proven as a promising prognostic parameter. In summary, this study identified the specific miRNAs associated with the progression and aggressiveness of MIBC and a four-miRNA signature as a promising prognostic parameter of MIBC.
Collapse
|