1
|
Yu M, Peng J, Lu Y, Li S, Ding K. Silencing immune-infiltrating biomarker CCDC80 inhibits malignant characterization and tumor formation in gastric cancer. BMC Cancer 2024; 24:724. [PMID: 38872096 PMCID: PMC11170897 DOI: 10.1186/s12885-024-12451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVE Tumor immune infiltration leads to poor prognosis of gastric cancer patients and seriously affects the life quality of gastric cancer patients. This study was based on bioinformatics to screen prognostic biomarkers in patients with high degree of immune invasion of gastric cancer. Meanwhile, the action of biomarker CCDC80 was explored in gastric cancer by cell and tumorigenesis experiments, to provide reference for the cure of gastric cancer patients. METHODS Data sets and clinical massage on gastric cancer were collected from TCGA database and GEO database. ConsensusClusterPlus was used to cluster gastric cancer patients based on the 28 immune cells infiltration in ssGSEA. R "Limma" package was applied to analyze differential mRNAs between Cluster 1 and Cluster 2. Differential expression genes were screened by single factor analysis. Stemness markers (SERPINF1, DCN, CCDC80, FBLN5, SPARCL1, CCL14, DPYSL3) were identified for differential expression genes. Prognostic value of CCDC80 was evaluated in gastric cancer. Differences in genomic mutation and tumor microenvironment immune infiltration were assessed between high or low CCDC80. Finally, gastric cancer cells (HGC-27 and MKN-45) were selected to evaluate the action of silencing CCDC80 on malignant characterization, macrophage polarization, and tumor formation. RESULTS Bioinformatics analysis showed that CCDC80, as a stemness marker, was significantly overexpressed in gastric cancer. CCDC80 was also related to the degree of gastric cancer immune invasion. CCDC80 was up-expressed in cells of gastric cancer. Silencing CCDC80 inhibited malignant characterization and subcutaneous tumor formation of gastric cancer cells. High expression of CCDC80 was positive correspondence with immune invasion. Silencing CCDC80 inhibited M2 polarization and promoted M1 polarization in tumor tissues. In addition, gastric cancer patients were likely to have mutations in CDH1, ACTRT1, GANAB, and CDH10 genes in the High-CCDC80 group. CONCLUSION Silencing CCDC80, a prognostic biomarker in patients with immune invasion of gastric cancer, could effectively inhibit the malignant characterization, M2 polarization, and tumor formation of gastric cancer.
Collapse
Affiliation(s)
- MeiHong Yu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Jingxuan Peng
- Department of Urology, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Yanxu Lu
- Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, China
| | - Sha Li
- Department of Burns and Reconstructive Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Ke Ding
- Department of General Surgery Thyroid Specialty, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
2
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
3
|
Yu Z, Ouyang L. Identification Of key prognostic genes in ovarian cancer using WGCNA and LASSO analysis. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2087107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Zhong Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, People’s Republic of China
| | - Ling Ouyang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, People’s Republic of China
| |
Collapse
|
4
|
Lengyel E, Li Y, Weigert M, Zhu L, Eckart H, Javellana M, Ackroyd S, Xiao J, Olalekan S, Glass D, Iyer S, Krishnan R, Bilecz AJ, Lastra R, Chen M, Basu A. A molecular atlas of the human postmenopausal fallopian tube and ovary from single-cell RNA and ATAC sequencing. Cell Rep 2022; 41:111838. [PMID: 36543131 PMCID: PMC11295111 DOI: 10.1016/j.celrep.2022.111838] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
As part of the Human Cell Atlas Initiative, our goal is to generate single-cell transcriptomics (single-cell RNA sequencing [scRNA-seq], 86,708 cells) and regulatory (single-cell assay on transposase accessible chromatin sequencing [scATAC-seq], 59,830 cells) profiles of the normal postmenopausal ovary and fallopian tube (FT). The FT contains 11 major cell types, and the ovary contains 6. The dominating cell type in the FT and ovary is the stromal cell, which expresses aging-associated genes. FT epithelial cells express multiple ovarian cancer risk-associated genes (CCDC170, RND3, TACC2, STK33, and ADGB) and show active communication between fimbrial epithelial cells and ovarian stromal cells. Integrated single-cell transcriptomics and chromatin accessibility data show that the regulatory landscape of the fimbriae is different from other anatomic regions. Cell types with similar gene expression in the FT display transcriptional profiles. These findings allow us to disentangle the cellular makeup of the postmenopausal FT and ovary, advancing our knowledge of gynecologic diseases in menopause.
Collapse
Affiliation(s)
- Ernst Lengyel
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA.
| | - Yan Li
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Melanie Weigert
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Lisha Zhu
- Center for Research Informatics, The University of Chicago, Chicago, IL 60637, USA
| | - Heather Eckart
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Melissa Javellana
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Ackroyd
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Jason Xiao
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Susan Olalekan
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Dianne Glass
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Shilpa Iyer
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Rahul Krishnan
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Agnes Julia Bilecz
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Ricardo Lastra
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Christian JI, Pastula A, Herbst A, Neumann J, Marschall MK, Ofner A, Zierahn H, Schneider MR, Wolf E, Quante M, Kolligs FT. Loss of DRO1/CCDC80 in the tumor microenvironment promotes carcinogenesis. Oncotarget 2022; 13:615-627. [PMID: 35422964 PMCID: PMC9004603 DOI: 10.18632/oncotarget.28084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/04/2021] [Indexed: 12/02/2022] Open
Abstract
Tumors are composed of the tumor cells and the surrounding microenvironment. Both are closely interwoven and interact by a complex and multifaceted cross-talk which plays an integral part in tumor initiation, growth, and progression. Dro1/Ccdc80 has been shown to be a potent suppressor of colorectal cancer and ubiquitous inactivation of Dro1/Ccdc80 strongly promoted colorectal carcinogenesis in ApcMin/+ mice and in a chemically-induced colorectal cancer model. The aim of the present study was to investigate whether Dro1/Ccdc80’s tumor suppressive function is tumor-cell-autonomous. Expression of Dro1/Ccdc80 in cancer cells had no effect on both colon tumor development in ApcMin/+ mice and formation of xenograft tumors. In contrast, DRO1/CCDC80 loss in the microenvironment strongly increased tumor growth in xenograft models, inhibited cancer cell apoptosis, and promoted intestinal epithelial cell migration. Moreover, stromal Dro1/Ccdc80 inactivation facilitated formation of intestinal epithelial organoids. Expression analyses showed Dro1/Ccdc80 to be significantly down-regulated in murine gastric cancer associated fibroblasts, in ApcMin/+ colon tumor primary stromal cells and in microdissected stroma from human colorectal cancer compared to normal, non-tumor stroma. Our results demonstrate epithelial derived DRO1/CCDC80 to be dispensable for intestinal tissue homeostasis and identify Dro1/Ccdc80 as tumor suppressor in the tumor microenvironment.
Collapse
Affiliation(s)
- Jessica I. Christian
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- These authors contributed equally to this work
| | - Agnieszka Pastula
- Gastroenterologie II, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- These authors contributed equally to this work
| | - Andreas Herbst
- Department of Medicine II, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Institute of Laboratory Medicine, University Hospital, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig Maximilian University of Munich, 80337 Munich, Germany
| | - Maximilian K. Marschall
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Andrea Ofner
- Department of Medicine II, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Heike Zierahn
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Michael Quante
- Gastroenterologie II, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Frank T. Kolligs
- Department of Medicine II, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Internal Medicine and Gastroenterology, HELIOS Klinikum Berlin-Buch, 13125 Berlin, Germany
| |
Collapse
|
6
|
Liang ZQ, Gao L, Chen JH, Dai WB, Su YS, Chen G. Downregulation of the Coiled-Coil Domain Containing 80 and Its Perspective Mechanisms in Ovarian Carcinoma: A Comprehensive Study. Int J Genomics 2021; 2021:3752871. [PMID: 34820451 PMCID: PMC8608537 DOI: 10.1155/2021/3752871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/21/2021] [Accepted: 10/23/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION We aimed to explore the downregulation of the coiled-coil domain containing 80 (CCDC80) and its underlying molecular mechanisms in ovarian carcinoma (OVCA). Materials/Methods. Immunohistochemical staining was performed to confirm the expression status of CCDC80 protein. Combining the data from in-house tissue microarrays and high-throughput datasets, we identified the expression level of CCDC80 in OVCA. We utilized cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm and single-sample gene set enrichment analysis (ssGSEA) to explore the relationship between CCDC80 and the tumor microenvironment (TME) landscape in OVCA. Pathway enrichment, function annotation, and transcription factor (TFs) exploration were conducted to study the latent molecular mechanisms. Moreover, the cell line data in the Genomics of Drug Sensitivity in Cancer (GDSC) database was used to discover the relationship between CCDC80 and drug sensitivity. RESULTS An integrated standard mean difference (SMD) of -0.919 (95% CI: -1.515-0.324, P = 0.002) identified the downregulation of CCDC80 in OVCA based on 1048 samples, and the sROC (AUC = 0.76) showed a moderate discriminatory ability of CCDC80 in OVCA. The fraction of infiltrating naive B cells showed significant differences between the high- and low-CCDC80 expression groups. Also, CCDC80-related genes are enriched in the Ras signaling pathway and metabolic of lipid. Nuclear receptor subfamily three group C member 1 (NR3C1) may be an upstream TF of CCDC80, and CCDC80 may be related to the sensitivity of mitocycin C and nilotinib. CONCLUSION CCDC80 was downregulated in OVCA and may play a role as a tumor suppressor in OVCA.
Collapse
Affiliation(s)
- Zi-Qian Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Jun-Hong Chen
- Department of Pathology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59. Xiangzhu Rd, Nanning, Guangxi Zhuang Autonomous Region 530003, China
| | - Wen-Bin Dai
- Department of Pathology, Liuzhou People's Hospital, NO.8, Wenchang Road, Chengzhong District, Liuzhou, Guangxi Zhuang Autonomous Region 545006, China
| | - Ya-Si Su
- Department of Pathology, Liuzhou People's Hospital, NO.8, Wenchang Road, Chengzhong District, Liuzhou, Guangxi Zhuang Autonomous Region 545006, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| |
Collapse
|
7
|
Construction of a novel prognostic-predicting model correlated to ovarian cancer. Biosci Rep 2021; 40:225895. [PMID: 32716025 PMCID: PMC7414523 DOI: 10.1042/bsr20201261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Ovarian cancer (OC) is one of the most lethal gynecological cancers worldwide. The pathogenesis of the disease and outcomes prediction of OC patients remain largely unclear. The present study aimed to explore the key genes and biological pathways in ovarian carcinoma development, as well as construct a prognostic model to predict patients’ overall survival (OS). Results: We identified 164 up-regulated and 80 down-regulated differentially expressed genes (DEGs) associated with OC. Gene Ontology (GO) term enrichment showed DEGs mainly correlated with spindle microtubes. For Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, cell cycle was mostly enriched for the DEGs. The protein–protein interaction (PPI) network yielded 238 nodes and 1284 edges. Top three modules and ten hub genes were further filtered and analyzed. Three candidiate drugs targeting for therapy were also selected. Thirteen OS-related genes were selected and an eight-mRNA model was present to stratify patients into high- and low-risk groups with significantly different survival. Conclusions: The identified DEGs and biological pathways may provide new perspective on the pathogenesis and treatments of OC. The identified eight-mRNA signature has significant clinical implication for outcome prediction and tailored therapy guidance for OC patients.
Collapse
|
8
|
Grill JI, Neumann J, Ofner A, Marschall MK, Zierahn H, Herbst A, Wolf E, Kolligs FT. Dro1/Ccdc80 inactivation promotes AOM/DSS-induced colorectal carcinogenesis and aggravates colitis by DSS in mice. Carcinogenesis 2019; 39:1176-1184. [PMID: 29901779 DOI: 10.1093/carcin/bgy077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Colorectal carcinogenesis is a progressive multistep process involving the sequential accumulation of genetic alterations in tumor suppressor genes and oncogenes. Downregulated by oncogenes 1 (Dro1/Ccdc80) has been shown to be a potent tumor suppressor of colorectal carcinogenesis in the genetic ApcMin/+ mouse model. In ApcMin/+ mice, loss of DRO1 strongly increases colonic tumor multiplicity and leads to the regular formation of adenocarcinoma in the colon. To investigate DRO1's role in chemically induced as well as inflammation-associated colorectal carcinogenesis, the effect of Dro1 inactivation was studied in mice subjected to the carcinogen azoxymethane (AOM) and upon combined treatment with AOM and the proinflammatory agent dextran sodium sulfate (DSS), respectively. Loss of DRO1 increases multiplicity of preneoplastic aberrant crypt foci and colonic tumors upon administration of AOM. Combined treatment with AOM and DSS leads to increased colonic tumor number and promotes formation of adenocarcinoma in the colon. Moreover, Dro1 inactivation aggravates histological signs of acute and chronic DSS-induced colitis, strongly enlarges the size of ulcerative lesions in the intestinal lining, and exacerbates clinical signs and morbidity by DSS. Our results demonstrate DRO1 to be a strong tumor suppressor in the chemically induced colon carcinogenic mouse model. Additionally, we demonstrate DRO1 to inhibit colitis-associated colon cancer formation and uncover a novel putative role for DRO1 in inflammatory bowel disease.
Collapse
Affiliation(s)
- Jessica I Grill
- Department of Medicine II, University of Munich, Munich, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, University of Munich, Munich, Germany
| | - Andrea Ofner
- Department of Medicine II, University of Munich, Munich, Germany
| | | | - Heike Zierahn
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Munich, Germany
| | - Andreas Herbst
- Department of Medicine II, University of Munich, Munich, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Munich, Germany
| | - Frank T Kolligs
- Department of Medicine II, University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine and Gastroenterology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| |
Collapse
|
9
|
Zheng Y, Li B, Wang J, Xiong Y, Wang K, Qi Y, Sun H, Wu L, Yang L. Identification of SUV39H2 as a potential oncogene in lung adenocarcinoma. Clin Epigenetics 2018; 10:129. [PMID: 30348215 PMCID: PMC6198372 DOI: 10.1186/s13148-018-0562-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND SUV39H2 (suppressor of variegation 3-9 homolog 2), which introduces H3K9me3 to induce transcriptional repression, has been reported to play critical roles in heterochromatin maintenance, DNA repair, and recently, carcinogenesis. Dysregulation of SUV39H2 expression has been observed in several types of cancers. However, neither the genomic landscape nor the clinical significance of SUV39H2 in lung adenocarcinoma has been probed comprehensively. METHODS In this research, we conducted bioinformatics analysis to primarily sort out potential genes with dysregulated expressions. After we identified SUV39H2, RNA-seq was performed for a high-throughput evaluation of altered gene expression and dysregulated pathways, followed by a series of validations via RT-qPCR and bioinformatics analyses. Finally, to assess the potential oncogenic role of SUV39H2, we employed the invasion assay and clone formation assay in vitro and tumorigenesis assays in mouse models in vivo. RESULTS Through bioinformatics analyses, we found that SUV39H2 underwent a severe upregulation in the tumor tissue, which was also confirmed in the surgically removed tissues. Overexpression of SUV39H2 was mainly associated with its amplification and with shorter patient overall survival. Then, the RNA-seq demonstrated that TPM4, STOM, and OPTN might be affected by the loss of function of SUV39H2. Finally, in vitro and in vivo experiments with SUV39H2 knockdown all suggested a potential role of SUV39H2 in both carcinogenesis and metastasis. CONCLUSIONS SUV39H2 expression was elevated in lung adenocarcinoma. TPM4, OPTN, and STOM were potentially regulated by SUV39H2. SUV39H2 might be a potential oncogene in lung adenocarcinoma, mediating tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Baihui Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yanjuan Xiong
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Kaiyuan Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ying Qi
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Houfang Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China. .,National Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China. .,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
10
|
Loss of One or Two PATZ1 Alleles Has a Critical Role in the Progression of Thyroid Carcinomas Induced by the RET/PTC1 Oncogene. Cancers (Basel) 2018; 10:cancers10040092. [PMID: 29584698 PMCID: PMC5923347 DOI: 10.3390/cancers10040092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022] Open
Abstract
POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) is an emerging cancer-related gene that is downregulated in different human malignancies, including thyroid cancer, where its levels gradually decrease going from papillary thyroid carcinomas (PTC) to poorly differentiated and undifferentiated highly aggressive anaplastic carcinomas (ATC). The restoration of PATZ1 expression in thyroid cancer cells reverted their malignant phenotype by inducing mesenchymal-to-epithelial transition, thus validating a tumor suppressor role for PATZ1 and suggesting its involvement in thyroid cancer progression. Here, we investigated the consequences of the homozygous and heterozygous loss of PATZ1 in the context of a mouse modeling of PTC, represented by mice carrying the RET/PTC1 oncogene under the thyroid specific control of the thyroglobulin promoter RET/PTC1 (RET/PTC1TG). The phenotypic analysis of RET/PTC1TG mice intercrossed with Patz1-knockout mice revealed that deficiency of both Patz1 alleles enhanced thyroid cancer incidence in RET/PTC1TG mice, but not the heterozygous knockout of the Patz1 gene. However, both RET/PTC1TG;Patz1+/− and RET/PTC1TG;Patz1−/− mice developed a more aggressive thyroid cancer phenotype—characterized by higher Ki-67 expression, presence of ATCs, and increased incidence of solid variants of PTC—than that shown by RET/PTC1TG; Patz1+/+ compound mice. These results confirm that PATZ1 downregulation has a critical role in thyroid carcinogenesis, showing that it cooperates with RET/PTC1 in thyroid cancer progression.
Collapse
|
11
|
Spheroid growth in ovarian cancer alters transcriptome responses for stress pathways and epigenetic responses. PLoS One 2017; 12:e0182930. [PMID: 28793334 PMCID: PMC5549971 DOI: 10.1371/journal.pone.0182930] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, with over 200,000 women diagnosed each year and over half of those cases leading to death. These poor statistics are related to a lack of early symptoms and inadequate screening techniques. This results in the cancer going undetected until later stages when the tumor has metastasized through a process that requires the epithelial to mesenchymal transition (EMT). In lieu of traditional monolayer cell culture, EMT and cancer progression in general is best characterized through the use of 3D spheroid models. In this study, we examine gene expression changes through microarray analysis in spheroid versus monolayer ovarian cancer cells treated with TGFβ to induce EMT. Transcripts that included Coiled-Coil Domain Containing 80 (CCDC80), Solute Carrier Family 6 (Neutral Amino Acid Transporter), Member 15 (SLC6A15), Semaphorin 3E (SEMA3E) and PIF1 5'-To-3' DNA Helicase (PIF1) were downregulated more than 10-fold in the 3D cells while Inhibitor Of DNA Binding 2, HLH Protein (ID2), Regulator Of Cell Cycle (RGCC), Protease, Serine 35 (PRSS35), and Aldo-Keto Reductase Family 1, Member C1 (AKR1C1) were increased more than 50-fold. Interestingly, EMT factors, stress responses and epigenetic processes were significantly affected by 3D growth. The heat shock response and the oxidative stress response were also identified as transcriptome responses that showed significant changes upon 3D growth. Subnetwork enrichment analysis revealed that DNA integrity (e.g. DNA damage, genetic instability, nucleotide excision repair, and the DNA damage checkpoint pathway) were altered in the 3D spheroid model. In addition, two epigenetic processes, DNA methylation and histone acetylation, were increased with 3D growth. These findings support the hypothesis that three dimensional ovarian cell culturing is physiologically different from its monolayer counterpart.
Collapse
|
12
|
Kradolfer D, Flöter VL, Bick JT, Fürst RW, Rode K, Brehm R, Henning H, Waberski D, Bauersachs S, Ulbrich SE. Epigenetic effects of prenatal estradiol-17β exposure on the reproductive system of pigs. Mol Cell Endocrinol 2016; 430:125-37. [PMID: 27062901 DOI: 10.1016/j.mce.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 11/17/2022]
Abstract
There is growing evidence that early life exposure to endocrine disrupting chemicals might increase the risk for certain adult onset diseases, in particular reproductive health problems and hormone dependent cancers. Studies in rodents suggest that perinatal exposure to even low doses of estrogenic substances can cause adverse effects, including epigenetic reprogramming of the prostate and increased formation of precancerous lesions. We analyzed the effects of an in utero exposure to the strongest natural estrogen, estradiol-17β, in a pig model. Two different low and one high dose of estradiol-17β (0.05, 10 and 1000 μg/kg body weight/day) were orally applied to gilts during pregnancy and potential effects on the reproductive system of the offspring were analyzed. No significant effects on sperm vitality parameters and testes size were observed in adult boars. However, prenatal exposure to the high dose decreased absolute, but not relative weight of the testes in prepubertal piglets. RNA sequencing revealed significantly regulated genes of the prepubertal prostate, while testes and uteri were not affected. Notably, we found an increased prostate expression of CCDC80 and a decreased ADH1C expression in the low dose treatment groups. BGN and SPARC, two genes associated with prostate tumor progression, were as well more abundant in exposed animals. Strikingly, the gene body DNA methylation level of BGN was accordingly increased in the high dose group. Thus, while only prenatal exposure to a high dose of estrogen altered testes development and local DNA methylation of the prostate, even low dose exposure had significant effects on gene expression in the prostate of prepubertal piglet offspring. The relevance of these distinct, but subtle transcriptional changes following low dose treatment lacking a clear phenotype calls for further long-term investigations. An epigenetic reprogramming of the pig prostate due to prenatal estrogen cannot be neglected.
Collapse
Affiliation(s)
- David Kradolfer
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.
| | - Veronika L Flöter
- Technische Universität München, Physiology Weihenstephan, Freising, Germany
| | - Jochen T Bick
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Rainer W Fürst
- Technische Universität München, Physiology Weihenstephan, Freising, Germany
| | - Kristina Rode
- University of Veterinary Medicine Hannover, Institute of Anatomy, Hannover, Germany
| | - Ralph Brehm
- University of Veterinary Medicine Hannover, Institute of Anatomy, Hannover, Germany
| | - Heiko Henning
- University of Veterinary Medicine Hannover, Unit for Reproductive Medicine, Hannover, Germany; Utrecht University, Dep. of Equine Sciences, Faculty of Vet. Med., Utrecht, The Netherlands
| | - Dagmar Waberski
- University of Veterinary Medicine Hannover, Unit for Reproductive Medicine, Hannover, Germany
| | - Stefan Bauersachs
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland; Technische Universität München, Physiology Weihenstephan, Freising, Germany.
| |
Collapse
|
13
|
|