1
|
Pereira F, Fernández-Barral A, Larriba MJ, Barbáchano A, González-Sancho JM. From molecular basis to clinical insights: a challenging future for the vitamin D endocrine system in colorectal cancer. FEBS J 2024; 291:2485-2518. [PMID: 37699548 DOI: 10.1111/febs.16955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Colorectal cancer (CRC) is one of the most life-threatening neoplasias in terms of incidence and mortality worldwide. Vitamin D deficiency has been associated with an increased risk of CRC. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the most active vitamin D metabolite, is a pleiotropic hormone that, through its binding to a transcription factor of the nuclear receptor superfamily, is a major regulator of the human genome. 1,25(OH)2D3 acts on colon carcinoma and stromal cells and displays tumor protective actions. Here, we review the variety of molecular mechanisms underlying the effects of 1,25(OH)2D3 in CRC, which affect multiple processes that are dysregulated during tumor initiation and progression. Additionally, we discuss the epidemiological data that associate vitamin D deficiency and CRC, and the most relevant randomized controlled trials of vitamin D3 supplementation conducted in both healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Fábio Pereira
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Ourense, Spain
| | - Asunción Fernández-Barral
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
2
|
Koushki M, Farrokhi Yekta R, Amiri-Dashatan N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
3
|
Parsa L, Motafakkerazad R, Soheyli ST, Haratian A, Kosari-Nasab M, Mahdavi M. Silymarin in combination with ATRA enhances apoptosis induction in human acute promyelocytic NB4 cells. Toxicon 2023; 228:107127. [PMID: 37085055 DOI: 10.1016/j.toxicon.2023.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Although all-trans retinoic acid (ATRA) is an efficient pattern in acute promyelocytic leukemia (APL) therapy, further studies are required due to the extant clinical limitations of ATRA. It has been reported that Silymarin, an anti-cancer herbal substance extracted from milk thistle (Silybum marianum), is able to regulate apoptosis in various types of cancer cells through different mechanisms of action. This study investigated the apoptosis-inducing effect of Silymarin (SM) alone and in combination with ATRA on human acute promyelocytic NB4 cells. Examination using MTT assay indicated that SM treatment leads to growth inhibition in NB4 cells in a dose-dependent manner. The IC50 values of SM and ATRA were calculated 90 μM and 2 μM, respectively. Cell cycle analysis by flow cytometry revealed that a more increase in the sub-G1 phase (a sign of apoptosis) when cells were exposed to SM in combination with ATRA. The incidence of apoptosis was confirmed through Hoechst 33258 staining and Annexin V-FITC analysis. The results showed that Silymarin enhances ATRA-induced apoptosis. The flow cytometric analysis also indicated an enhancement in levels of ROS in the treated cells with both compounds. The real-time PCR illustrated that SM targets apoptosis by down-regulation in Survivin and Bcl-2 while up-regulation in Bax. The findings showed that the combination of the two compounds is more effective in the induction of apoptosis in NB4 cells. Molecular docking studies indicated that Sylibin, as a primary compound of the SM, binds to the BH3 domain of Bcl-2 and the BIR domain of Survivin with various affinities. Based on the findings, it seems that SM used alone and in combination with ATRA may be beneficial for inducing apoptosis in APL cells.
Collapse
Affiliation(s)
- Leila Parsa
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Sarvin Taleb Soheyli
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amin Haratian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Morteza Kosari-Nasab
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
5
|
Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M, Rashidian A, Hamblin MR, Chamanara M, Naghsh N, Mirzaei H. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed Pharmacother 2021; 142:112024. [PMID: 34399200 PMCID: PMC8458260 DOI: 10.1016/j.biopha.2021.112024] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Silymarin contains a group of closely-related flavonolignan compounds including silibinin, and is extracted from Silybum marianum species, also called milk thistle. Silymarin has been shown to protect the liver in both experimental models and clinical studies. The chemopreventive activity of silymarin has shown some efficacy against cancer both in vitro and in vivo. Silymarin can modulate apoptosis in vitro and survival in vivo, by interfering with the expression of cell cycle regulators and apoptosis-associated proteins. In addition to its anti-metastatic activity, silymarin has also been reported to exhibit anti-inflammatory activity. The chemoprotective effects of silymarin and silibinin (its major constituent) suggest they could be applied to reduce the side effects and increase the anti-cancer effects of chemotherapy and radiotherapy in various cancer types, especially in gastrointestinal cancers. This review examines the recent studies and summarizes the mechanistic pathways and down-stream targets of silymarin in the therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahin Nikmanzar
- Department of Neurosurgery, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA
| | - Amir Rashidian
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Aja University of Medical Sciences, Tehran, Iran; Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran.
| | - Navid Naghsh
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
He L, Li H, Pan C, Hua Y, Peng J, Zhou Z, Zhao Y, Lin M. Squalene epoxidase promotes colorectal cancer cell proliferation through accumulating calcitriol and activating CYP24A1-mediated MAPK signaling. Cancer Commun (Lond) 2021; 41:726-746. [PMID: 34268906 PMCID: PMC8360641 DOI: 10.1002/cac2.12187] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most malignant tumors with high incidence, yet its molecular mechanism is not fully understood, hindering the development of targeted therapy. Metabolic abnormalities are a hallmark of cancer. Targeting dysregulated metabolic features has become an important direction for modern anticancer therapy. In this study, we aimed to identify a new metabolic enzyme that promotes proliferation of CRC and to examine the related molecular mechanisms. Methods We performed RNA sequencing and tissue microarray analyses of human CRC samples to identify new genes involved in CRC. Squalene epoxidase (SQLE) was identified to be highly upregulated in CRC patients. The regulatory function of SQLE in CRC progression and the therapeutic effect of SQLE inhibitors were determined by measuring CRC cell viability, colony and organoid formation, intracellular cholesterol concentration and xenograft tumor growth. The molecular mechanism of SQLE function was explored by combining transcriptome and untargeted metabolomics analysis. Western blotting and real‐time PCR were used to assess MAPK signaling activation by SQLE. Results SQLE‐related control of cholesterol biosynthesis was highly upregulated in CRC patients and associated with poor prognosis. SQLE promoted CRC growth in vitro and in vivo. Inhibition of SQLE reduced the levels of calcitriol (active form of vitamin D3) and CYP24A1, followed by an increase in intracellular Ca2+ concentration. Subsequently, MAPK signaling was suppressed, resulting in the inhibition of CRC cell growth. Consistently, terbinafine, an SQLE inhibitor, suppressed CRC cell proliferation and organoid and xenograft tumor growth. Conclusions Our findings demonstrate that SQLE promotes CRC through the accumulation of calcitriol and stimulation of CYP24A1‐mediated MAPK signaling, highlighting SQLE as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Luwei He
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Huaguang Li
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Chenyu Pan
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Yutong Hua
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Jiayin Peng
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Yun Zhao
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| |
Collapse
|
7
|
Differential Response of Lung Cancer Cells, with Various Driver Mutations, to Plant Polyphenol Resveratrol and Vitamin D Active Metabolite PRI-2191. Int J Mol Sci 2021; 22:ijms22052354. [PMID: 33652978 PMCID: PMC7956761 DOI: 10.3390/ijms22052354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Plant polyphenols and vitamins D exhibit chemopreventive and therapeutic anticancer effects. We first evaluated the biological effects of the plant polyphenol resveratrol (RESV) and vitamin D active metabolite PRI-2191 on lung cancer cells having different genetic backgrounds. RESV and PRI-2191 showed divergent responses depending on the genetic profile of cells. Antiproliferative activity of PRI-2191 was noticeable in EGFRmut cells, while RESV showed the highest antiproliferative and caspase-3-inducing activity in KRASmut cells. RESV upregulated p53 expression in wtp53 cells, while downregulated it in mutp53 cells with simultaneous upregulation of p21 expression in both cases. The effect of PRI-2191 on the induction of CYP24A1 expression was enhanced by RESV in two KRASmut cell lines. The effect of RESV combined with PRI-2191 on cytokine production was pronounced and modulated. RESV cooperated with PRI-2191 in regulating the expression of IL-8 in EGFRmut cells, while OPN in KRASmut cells and PD-L1 in both cell subtypes. We hypothesize that the differences in response to RESV and PRI-2191 between EGFRmut and KRASmut cell lines result from the differences in epigenetic modifications since both cell subtypes are associated with the divergent smoking history that can induce epigenetic alterations.
Collapse
|
8
|
Liu W, Ji Y, Sun Y, Si L, Fu J, Hayashi T, Onodera S, Ikejima T. Estrogen receptors participate in silibinin-caused nuclear translocation of apoptosis-inducing factor in human breast cancer MCF-7 cells. Arch Biochem Biophys 2020; 689:108458. [DOI: 10.1016/j.abb.2020.108458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
|
9
|
Negri M, Gentile A, de Angelis C, Montò T, Patalano R, Colao A, Pivonello R, Pivonello C. Vitamin D-Induced Molecular Mechanisms to Potentiate Cancer Therapy and to Reverse Drug-Resistance in Cancer Cells. Nutrients 2020; 12:nu12061798. [PMID: 32560347 PMCID: PMC7353389 DOI: 10.3390/nu12061798] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing interest in studying the role of vitamin D in cancer has been provided by the scientific literature during the last years, although mixed results have been reported. Vitamin D deficiency has been largely associated with various types of solid and non-solid human cancers, and the almost ubiquitous expression of vitamin D receptor (VDR) has always led to suppose a crucial role of vitamin D in cancer. However, the association between vitamin D levels and the risk of solid cancers, such as colorectal, prostate and breast cancer, shows several conflicting results that raise questions about the use of vitamin D supplements in cancer patients. Moreover, studies on vitamin D supplementation do not always show improvements in tumor progression and mortality risk, particularly for prostate and breast cancer. Conversely, several molecular studies are in agreement about the role of vitamin D in inhibiting tumor cell proliferation, growth and invasiveness, cell cycle arrest and inflammatory signaling, through which vitamin D may also regulate cancer microenvironment through the activation of different molecular pathways. More recently, a role in the regulation of cancer stem cells proliferation and short non-coding microRNA (miRNAs) expression has emerged, conferring to vitamin D a more crucial role in cancer development and progression. Interestingly, it has been shown that vitamin D is able not only to potentiate the effects of traditional cancer therapy but can even contribute to overcome the molecular mechanisms of drug resistance—often triggering tumor-spreading. At this regard, vitamin D can act at various levels through the regulation of growth of cancer stem cells and the epithelial–mesenchymal transition (EMT), as well as through the modulation of miRNA gene expression. The current review reconsiders epidemiological and molecular literature concerning the role of vitamin D in cancer risk and tumor development and progression, as well as the action of vitamin D supplementation in potentiating the effects of drug therapy and overcoming the mechanisms of resistance often triggered during cancer therapies, by critically addressing strengths and weaknesses of available data from 2010 to 2020.
Collapse
Affiliation(s)
- Mariarosaria Negri
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Annalisa Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Cristina de Angelis
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Tatiana Montò
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Dipartimento di Sanità Pubblica, Università Federico II di Napoli, 80131 Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università Federico II di Napoli, 80131 Naples, Italy; (M.N.); (A.G.); (C.d.A.); (T.M.); (R.P.); (A.C.); (R.P.)
- Correspondence:
| |
Collapse
|
10
|
A molecular sub-cluster of colon cancer cells with low VDR expression is sensitive to chemotherapy, BRAF inhibitors and PI3K-mTOR inhibitors treatment. Aging (Albany NY) 2019; 11:8587-8603. [PMID: 31596728 PMCID: PMC6814605 DOI: 10.18632/aging.102349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
Gene expression based consensus molecular subtypes (CMS) and non-negative matrix factorization (NMF) sub-clusters are robust colon cancer classification systems. Although, the molecular features are clear, colon cancer subgroups based interventions are limited. To address this problem, we analyze the CMS and NMF subgroup guided drug sensitivity in colon cancer cell lines. CMS3 subtype cells are sensitive to 5-Fluorouracil, while, CMS4 subtype cells are sensitive to cisplatin treatment. In NMF classification, a sub-cluster is specifically sensitive to chemotherapy, BRAF inhibitors, PI3K-mTOR inhibitors and NOTCH inhibitor treatment. This sub-cluster has low frequency of TP53, POLE, PIK3CA and BRAF mutation. Transcriptional analysis demonstrates low NOTCH signaling activity, low CDX2 and VDR expression in this sub-cluster. CDX2 and VDR are significantly associated with the sensitivity of chemotherapy, BRAF inhibitors and PI3K-mTOR inhibitors. Moreover, a positive correlation between VDR and CDX2 is identified. VDR and CDX2 mediated regulatory networks are constructed. At last, three or four sub-clusters classification is validated in colon cancer patients. Overall, our results suggest a molecular sub-cluster of colon cancer cells with low CDX2 and VDR expression is sensitive to chemotherapy, BRAF inhibitors and PI3K-mTOR inhibitors treatment and provide an example of translation of cancer classification to subgroup guided therapies.
Collapse
|
11
|
Zhang X, Jiang J, Chen Z, Cao M. Silibinin inhibited autophagy and mitochondrial apoptosis in pancreatic carcinoma by activating JNK/SAPK signaling. Pathol Res Pract 2019; 215:152530. [PMID: 31351801 DOI: 10.1016/j.prp.2019.152530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous investigation have indicated Silibinin induces apoptosis and JNK/SAPK in human pancreatic cancer cells. This study aims to evaluate the further mechanism of Silibinin in pancreatic cancer treatment. MATERIALS AND METHODS Human pancreatic cancer cell lines SW1990 was treated with Silibinin and/or JNK/SAPK inhibitor SP600125 followed by measurement of cell viability, apoptosis, autophagy, ROS and ATP, and western blotting. RESULTS Silibinin promoted cell viability and promoted cell apoptosis. The expression of ROS and ATP associated with mitochondrial function was also promoted by the treatment of silibinin. Silibinin also promoted autophagy in pancreatic cancer cells. All these biological effects of Silibinin can be reversed by JNK/SAPK inhibitor. CONCLUSIONS The biological effects regulated by Silibinin can be mediated by JNK/SAPK signaling. This provides a solid theoretical basis for the role of Silibinin in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of General Surgery, The First People's Hospital of Nanyang City, Nanyang, Henan 473000, China.
| | - Jianwei Jiang
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhiwei Chen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Mingrong Cao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
12
|
Mishra S, Verma SS, Rai V, Awasthee N, Chava S, Hui KM, Kumar AP, Challagundla KB, Sethi G, Gupta SC. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci 2019; 76:1947-1966. [PMID: 30879091 PMCID: PMC7775409 DOI: 10.1007/s00018-019-03053-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/01/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
Abstract
The long non-coding RNAs (lncRNAs) are the crucial regulators of human chronic diseases. Therefore, approaches such as antisense oligonucleotides, RNAi technology, and small molecule inhibitors have been used for the therapeutic targeting of lncRNAs. During the last decade, phytochemicals and nutraceuticals have been explored for their potential against lncRNAs. The common lncRNAs known to be modulated by phytochemicals include ROR, PVT1, HOTAIR, MALAT1, H19, MEG3, PCAT29, PANDAR, NEAT1, and GAS5. The phytochemicals such as curcumin, resveratrol, sulforaphane, berberine, EGCG, and gambogic acid have been examined against lncRNAs. In some cases, formulation of phytochemicals has also been used. The disease models where phytochemicals have been demonstrated to modulate lncRNAs expression include cancer, rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty liver disease. The regulation of lncRNAs by phytochemicals can affect multi-steps of tumor development. When administered in combination with the conventional drugs, phytochemicals can also produce synergistic effects on lncRNAs leading to the sensitization of cancer cells. Phytochemicals target lncRNAs either directly or indirectly by affecting a wide variety of upstream molecules. However, the potential of phytochemicals against lncRNAs has been demonstrated mostly by preclinical studies in cancer models. How the modulation of lncRNAs by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.
Collapse
Affiliation(s)
- Shruti Mishra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sumit S Verma
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vipin Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
13
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
14
|
Marques da Costa P, Martins I, Neves J, Cortez-Pinto H, Velosa J. Serum vitamin D levels correlate with the presence and histological grading of colorectal adenomas in peri and postmenopausal women. Clin Nutr 2018; 38:1390-1397. [PMID: 29961649 DOI: 10.1016/j.clnu.2018.06.959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Vitamin D is known to modulate immune function and proliferation. Higher vitamin D [25(OH)D3] serum levels have been reported to have protective effects on adenoma detection and colorectal cancer (CRC) development and survival. METHODS This retrospective cohort study included 315 peri and post-menopausal women submitted to opportunistic colorectal and osteoporosis screening at the gynaecology outpatient clinic of a tertiary medical centre between 2004 and 2015. Colonoscopy findings were correlated with 25(OH)D3 and PTH serum levels, and subsequently adjusted in a multivariate logistic regression model. Confounding factors included demographic and colorectal risk factors, pharmacological therapies and bone densitometry metrics. RESULTS A total of 77 lesions were identified in 66 patients. Vitamin D insufficiency (<30 ng/mL) and deficiency (<20 ng/mL) were identified in 79.4% and 35.2% of patients, respectively. In univariate analysis, lower levels of 25(OH)D3 were associated with polyp, adenoma and advanced adenoma detection. After adjusting for confounders, an association with polyps could not be observed, but a trend towards a negative correlation with adenoma detection was found (adjusted OR: 0.96; 95% CI 0.92-1.00; p = 0.083). Regarding advanced adenoma detection, 25(OH)D3 (adjusted OR: 0.86; 95% CI 0.77-0.97; p = 0.013) proved to be an independent predictive factor. No association was found between 25(OH)D3 levels and lesion detection site. CONCLUSION The association of 25(OH)D3 serum levels with colorectal lesions seems to be restricted to adenomatous lesions and is influenced by histological grading. Vitamin D may be a valuable biomarker for optimization of risk stratification in group-specific CRC screening protocols.
Collapse
Affiliation(s)
- Pedro Marques da Costa
- Serviço de Gastrenterologia e Hepatologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa 1649-035, Portugal.
| | - Inês Martins
- Departamento/Clínica Universitária de Obstetrícia, Ginecologia e Medicina da Reprodução, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, Lisboa 1649-035, Portugal.
| | - Joaquim Neves
- Departamento/Clínica Universitária de Obstetrícia, Ginecologia e Medicina da Reprodução, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, Lisboa 1649-035, Portugal.
| | - Helena Cortez-Pinto
- Serviço de Gastrenterologia e Hepatologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Laboratório de Nutrição, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa 1649-035, Portugal.
| | - José Velosa
- Serviço de Gastrenterologia e Hepatologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa 1649-035, Portugal.
| |
Collapse
|
15
|
Hou X, Du H, Quan X, Shi L, Zhang Q, Wu Y, Liu Y, Xiao J, Li Y, Lu L, Ai X, Zhan M, Yuan S, Sun L. Silibinin Inhibits NSCLC Metastasis by Targeting the EGFR/LOX Pathway. Front Pharmacol 2018; 9:21. [PMID: 29472856 PMCID: PMC5809401 DOI: 10.3389/fphar.2018.00021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Tumor metastasis is the most lethal and debilitating process that threatens cancer patients. Among the regulators involved in tumor metastasis, lysyl oxidase (LOX) is an important contributor for tumor invasion, migration and the formation of the pre-metastatic niche. Although the relationship between LOX and poor prognosis of lung patients has been preliminary reported, the mechanism remains poorly understood. Here, we found that LOX overexpression is closely related to the survival of lung adenocarcinoma patients but not squamous cell carcinoma patients. Moreover, we confirmed that LOX expression is regulated by the activation of epidermal growth factor receptor (EGFR) via the PI3K/AKT, MEK/ERK, and SAPK/JNK signaling pathways in non-small cell lung cancer (NSCLC). Meanwhile, the study also suggested that the traditional anti-fibrosis drug silibinin inhibited NSCLC cell migration in an EGFR/LOX dependent manner. In addition, an orthotopic implantation metastasis model also confirmed that the EGFR inhibitor WZ4002 and silibinin decreased tumor metastasis through the EGFR/LOX pathway. Altogether, this study revealed that LOX expression is regulated by the EGFR pathway and this may account for the anti-cancer metastasis effects of silibinin, indicating LOX as a potentially therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaoying Hou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Hongzhi Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xingping Quan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Lei Shi
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Qianqian Zhang
- School of Pharmaceutical, Lanzhou University, Lanzhou, China
| | - Yao Wu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yang Liu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jing Xiao
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Yong Li
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Ligong Lu
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Xun Ai
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, United States
| | - Meixiao Zhan
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Imai-Sumida M, Chiyomaru T, Majid S, Saini S, Nip H, Dahiya R, Tanaka Y, Yamamura S. Silibinin suppresses bladder cancer through down-regulation of actin cytoskeleton and PI3K/Akt signaling pathways. Oncotarget 2017; 8:92032-92042. [PMID: 29190895 PMCID: PMC5696161 DOI: 10.18632/oncotarget.20734] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 08/07/2017] [Indexed: 01/17/2023] Open
Abstract
Silibinin is the major active constituent of silymarin, an extract of milk thistle seeds. Silibinin has been shown to have significant anti-cancer effects in a variety of malignancies. However, the molecular mechanisms of silibinin action in bladder cancer have not been studied extensively. In the present study, we found that silibinin (10 μM) significantly suppressed proliferation, migration, invasion and induced apoptosis of T24 and UM-UC-3 human bladder cancer cells. Silibinin down-regulated the actin cytoskeleton and phosphatidylinositide 3-kinase (PI3K)/Akt signaling pathways in these cancer cell lines. These pathways were found to crosstalk through RAS cascades. We found that silibinin suppressed levels of trimethylated histone H3 lysine 4 and acetylated H3 at the KRAS promoter. Furthermore, silibinin targets long non-coding RNA: HOTAIR and ZFAS1, which are known to play roles as oncogenic factors in various cancers. This study shows that silibinin exerts anti-cancer effects through down-regulation of actin cytoskeleton and PI3K/Akt pathways and thus suppresses bladder cancer growth and progression.
Collapse
Affiliation(s)
- Mitsuho Imai-Sumida
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Takeshi Chiyomaru
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
- Current address: Department of Urology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Shahana Majid
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Hannah Nip
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Rajvir Dahiya
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Yuichiro Tanaka
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Soichiro Yamamura
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| |
Collapse
|
17
|
Bosch-Barrera J, Queralt B, Menendez JA. Targeting STAT3 with silibinin to improve cancer therapeutics. Cancer Treat Rev 2017; 58:61-69. [DOI: 10.1016/j.ctrv.2017.06.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/15/2017] [Indexed: 02/08/2023]
|
18
|
H19 Overexpression Induces Resistance to 1,25(OH)2D3 by Targeting VDR Through miR-675-5p in Colon Cancer Cells. Neoplasia 2017; 19:226-236. [PMID: 28189050 PMCID: PMC5300698 DOI: 10.1016/j.neo.2016.10.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
The long noncoding (lnc) RNA H19 was involved in the tumorigenesis of many types of cancer. However, the role of H19 in the tumorigenesis of colon cancer has not been fully illustrated. Recent studies suggested a potential relationship between H19 and vitamin D receptor (VDR) signaling. Considering the pivotal role of VDR signaling in the colon epithelium both physiologically and pathologically, the correlation between H19 and VDR signaling may have an important role in the development of colon cancer. In this study, the correlation between H19 and vitamin D receptor (VDR) signaling and the underlying mechanisms in colon cancer were investigated both in vitro and in vivo. The results suggested that VDR signaling was able to inhibit the expression of H19 through regulating C-Myc/Mad-1 network. H19, on the other hand, was able to inhibit the expression of VDR through micro RNA 675-5p (miR-675-5p). Furthermore, H19 overexpression induced resistance to the treatment with 1,25(OH)2D3 both in vitro and in vivo. Together, these results suggested that H19 overexpression might be one of the mechanisms underlying the development of resistance to the treatment with 1,25(OH)2D3 in the advanced stage of colon cancer.
Collapse
|
19
|
Nachliely M, Sharony E, Bolla NR, Kutner A, Danilenko M. Prodifferentiation Activity of Novel Vitamin D₂ Analogs PRI-1916 and PRI-1917 and Their Combinations with a Plant Polyphenol in Acute Myeloid Leukemia Cells. Int J Mol Sci 2016; 17:ijms17071068. [PMID: 27399677 PMCID: PMC4964444 DOI: 10.3390/ijms17071068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/28/2023] Open
Abstract
1α,25-dihydroxyvitamin D3 (1,25D3) is a powerful differentiation inducer for acute myeloid leukemia (AML) cells. However, 1,25D3 doses required for differentiation of AML cells may cause lethal hypercalcemia in vivo. There is evidence that vitamin D2 is less toxic than vitamin D3 in animals. Here, we determined the differentiation effects of novel analogs of 1α,25-dihydroxyvitamin D2 (1,25D2), PRI-1916 and PRI-1917, in which the extended side chains of their previously reported precursors (PRI-1906 and PRI-1907, respectively) underwent further 24Z (24-cis) modification. Using four human AML cell lines representing different stages of myeloid maturation (KG-1a, HL60, U937, and MOLM-13), we found that the potency of PRI-1916 was slightly higher or equal to that of PRI-1906 while PRI-1917 was significantly less potent than PRI-1907. We also demonstrated that 1,25D2 was a less effective differentiation agent than 1,25D3 in these cell lines. Irrespective of their differentiation potency, all the vitamin D2 derivatives tested were less potent than 1,25D3 in transactivating the DR3-type vitamin D response elements. However, similar to 1,25D3, both 1,25D2 and its analogs could strongly cooperate with the plant polyphenol carnosic acid in inducing cell differentiation and inhibition of G1–S cell cycle transition. These results indicate that the 24Z modification has contrasting effects on the differentiation ability of PRI-1906 and PRI-1907 and that the addition of a plant polyphenol could result in a similar extent of cell differentiation induced by different vitamin D compounds. The enhanced antileukemic effects of the tested combinations may constitute the basis for the development of novel approaches for differentiation therapy of AML.
Collapse
Affiliation(s)
- Matan Nachliely
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 841051, Israel.
| | - Ehud Sharony
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 841051, Israel.
| | - Narasimha Rao Bolla
- Department of Chemistry and Department of Pharmacology, Pharmaceutical Research Institute, Warsaw 01-793, Poland.
| | - Andrzej Kutner
- Department of Chemistry and Department of Pharmacology, Pharmaceutical Research Institute, Warsaw 01-793, Poland.
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 841051, Israel.
| |
Collapse
|
20
|
Abreu-Delgado Y, Isidro RA, Torres EA, González A, Cruz ML, Isidro AA, González-Keelan CI, Medero P, Appleyard CB. Serum vitamin D and colonic vitamin D receptor in inflammatory bowel disease. World J Gastroenterol 2016; 22:3581-3591. [PMID: 27053850 PMCID: PMC4814644 DOI: 10.3748/wjg.v22.i13.3581] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/05/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine serum vitamin D levels and colonic vitamin D receptor (VDR) expression in inflammatory bowel disease (IBD) and non-IBD patients and correlate these with histopathology.
METHODS: Puerto Rican IBD (n = 10) and non-IBD (n = 10) patients ≥ 21 years old scheduled for colonoscopy were recruited. Each patient completed a questionnaire and provided a serum sample and a colonic biopsy of normal-appearing mucosa. For IBD patients, an additional biopsy was collected from visually diseased mucosa. Serum vitamin D levels were measured by ultra-performance liquid chromatography and mass spectrometry. Hematoxylin and eosin stained tissue sections from colonic biopsies were classified histologically as normal or colitis (active/inactive), and scored for the degree of inflammation present (0-3, inactive/absent to severe). Tissue sections from colonic biopsies were also stained by immunohistochemistry for VDR, for which representative diagnostic areas were photographed and scored for staining intensity using a 4-point scale.
RESULTS: The IBD cohort was significantly younger (40.40 ± 5.27, P < 0.05) than the non-IBD cohort (56.70 ± 1.64) with a higher prevalence of vitamin D deficiency (40% vs 20%, respectively) and insufficiency (70% vs 50%, respectively). Histologic inflammation was significantly higher in visually diseased mucosa from IBD patients (1.95 ± 0.25) than in normal-appearing mucosa from control patients (0.25 ± 0.08, P < 0.01) and from IBD patients (0.65 ± 0.36, P < 0.05) and correlated inversely with VDR expression in visually diseased colonic tissue from IBD patients (r = -0.44, P < 0.05) and from IBD patients with Crohn’s disease (r = -0.69, P < 0.05), but not in normal-appearing colonic tissue from control patients or IBD patients. Control and IBD patient serum vitamin D levels correlated positively with VDR expression in normal colon from control and IBD patients (r = 0.38, P < 0.05) and with patient age (r = 0.54, P < 0.01).
CONCLUSION: Levels of serum vitamin D correlate positively with colonic VDR expression in visually normal mucosa whereas inflammation correlates negatively with colonic VDR expression in visually diseased mucosa in Puerto Rican patients.
Collapse
|
21
|
von Maltzan K, Li Y, Rundhaug JE, Hudson LG, Fischer SM, Kusewitt DF. Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer. J Clin Med 2016; 5:jcm5020021. [PMID: 26848699 PMCID: PMC4773777 DOI: 10.3390/jcm5020021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
The Slug transcription factor plays an important role in ultraviolet radiation (UVR)-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT) occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2) pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results.
Collapse
Affiliation(s)
- Kristine von Maltzan
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA.
| | - Yafan Li
- Program in Toxicology and Pharmacology, College of Pharmacy, University of New Mexico Health Sciences Center, MSC 09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Joyce E Rundhaug
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA.
| | - Laurie G Hudson
- Program in Toxicology and Pharmacology, College of Pharmacy, University of New Mexico Health Sciences Center, MSC 09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Susan M Fischer
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA.
| | - Donna F Kusewitt
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, P.O. Box 389, Smithville, TX 78957, USA.
| |
Collapse
|