1
|
Fujiwara N, Tsunedomi R, Kimura Y, Nakajima M, Tomochika S, Enjoji S, Ohama T, Sato K, Nagano H. Protein phosphatase 6 promotes stemness of colorectal cancer cells. Cancer Sci 2024; 115:3067-3078. [PMID: 39014521 PMCID: PMC11462953 DOI: 10.1111/cas.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health concern, demanding a more profound comprehension of its molecular foundations for the development of improved therapeutic strategies. This study aimed to elucidate the role of protein phosphatase 6 (PP6), a member of the type 2A protein phosphatase family, in CRC. Protein phosphatase 6 functions as a heterotrimer with a catalytic subunit (PP6c), regulatory subunits (PP6Rs; PP6R1, PP6R2, and PP6R3), and scaffold subunits (ANKRD28, ANKRD44, and ANKRD52). Elevated PP6c expression has been identified in CRC tissues compared to normal mucosa, aligning with its potential involvement in CRC pathogenesis. PP6c knockdown resulted in decreased colony-forming ability and in vivo proliferation of various CRC cell lines. Transcriptome analysis revealed that PP6c knockdown resulted in altered expression of genes associated with cancer stemness. Notably, the PP6c-PP6R3 complex is a key player in regulating cancer stem cell (CSC) markers. Additionally, increased PP6c expression was observed in CSC-like cells induced by sphere formation, implicating the role of PP6c in CSC maintenance. This study highlights the role of PP6c in CRC and suggests that it is a potential therapeutic target disrupting a pathway critical for CRC progression and stem cell maintenance.
Collapse
Affiliation(s)
- Nobuyuki Fujiwara
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of MedicineYamaguchi UniversityUbeJapan
- Laboratory of Drug Discovery and Pharmacology, Faculty of Veterinary MedicineOkayama University of ScienceImabariJapan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of MedicineYamaguchi UniversityUbeJapan
- Research Institute for Cell Design Medical ScienceYamaguchi UniversityUbeJapan
| | - Yuta Kimura
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of MedicineYamaguchi UniversityUbeJapan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of MedicineYamaguchi UniversityUbeJapan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of MedicineYamaguchi UniversityUbeJapan
| | - Shuhei Enjoji
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| | - Takashi Ohama
- Research Institute for Cell Design Medical ScienceYamaguchi UniversityUbeJapan
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| | - Koichi Sato
- Research Institute for Cell Design Medical ScienceYamaguchi UniversityUbeJapan
- Laboratory of Veterinary Pharmacology, Faculty of Veterinary MedicineYamaguchi UniversityYamaguchiJapan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Graduate School of MedicineYamaguchi UniversityUbeJapan
- Research Institute for Cell Design Medical ScienceYamaguchi UniversityUbeJapan
| |
Collapse
|
2
|
Zhang H, Read A, Cataisson C, Yang HH, Lee WC, Turk BE, Yuspa SH, Luo J. Protein phosphatase 6 activates NF-κB to confer sensitivity to MAPK pathway inhibitors in KRAS- and BRAF-mutant cancer cells. Sci Signal 2024; 17:eadd5073. [PMID: 38743809 PMCID: PMC11238902 DOI: 10.1126/scisignal.add5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.
Collapse
Affiliation(s)
- Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Current affiliation: Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei-Chun Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Ito M, Tanuma N, Kotani Y, Murai K, Kondo A, Sumiyoshi M, Shima H, Matsuda S, Watanabe T. Oncogenic K-Ras G12V cannot overcome proliferation failure caused by loss of Ppp6c in mouse embryonic fibroblasts. FEBS Open Bio 2024; 14:545-554. [PMID: 38318686 PMCID: PMC10988750 DOI: 10.1002/2211-5463.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Protein phosphatase 6 is a Ser/Thr protein phosphatase and its catalytic subunit is Ppp6c. Ppp6c is thought to be indispensable for proper growth of normal cells. On the other hand, loss of Ppp6c accelerates growth of oncogenic Ras-expressing cells. Although it has been studied in multiple contexts, the role(s) of Ppp6c in cell proliferation remains controversial. It is unclear how oncogenic K-Ras overcomes cell proliferation failure induced by Ppp6c deficiency; therefore, in this study, we attempted to shed light on how oncogenic K-Ras modulates tumor cell growth. Contrary to our expectations, loss of Ppp6c decreased proliferation, anchorage-independent growth in soft agar, and tumor formation of oncogenic Ras-expressing mouse embryonic fibroblasts (MEFs). These findings show that oncogenic K-RasG12V cannot overcome proliferation failure caused by loss of Ppp6c in MEFs.
Collapse
Affiliation(s)
- Mai Ito
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Nobuhiro Tanuma
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Yui Kotani
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Kokoro Murai
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Ayumi Kondo
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| | - Mami Sumiyoshi
- Department of Cell Signaling, Institute of Biomedical ScienceKansai Medical UniversityHirakataJapan
| | - Hiroshi Shima
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Satoshi Matsuda
- Department of Cell Signaling, Institute of Biomedical ScienceKansai Medical UniversityHirakataJapan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women's UniversityJapan
| |
Collapse
|
4
|
YAMAMOTO M, FUJIWARA N. Protein phosphatase 6 regulates trametinib sensitivity, a mitogen-activated protein kinase kinase (MEK) inhibitor, by regulating MEK1/2-ERK1/2 signaling in canine melanoma cells. J Vet Med Sci 2023; 85:977-984. [PMID: 37495516 PMCID: PMC10539826 DOI: 10.1292/jvms.23-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Melanoma is a highly aggressive and metastatic cancer occurring in both humans and dogs. Canine melanoma accounts for a significant proportion of neoplastic diseases in dogs, and despite standard treatments, overall survival rates remain low. Protein phosphatase 6 (PP6), an evolutionarily conserved serine/threonine protein phosphatase, regulates various biological processes. Additionally, the loss of PP6 function reportedly leads to the development of melanoma in humans. However, there are no reports regarding the role of PP6 in canine cancer cells. We, therefore, conducted a study investigating the role of PP6 in canine melanoma by using four canine melanoma cell lines: CMec1, CMM, KMeC and LMeC. PP6 knockdown increased phosphorylation levels of mitogen-activated protein kinase kinase 1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2) but not Akt. Furthermore, PP6 knockdown decreased sensitivity to trametinib, a MEK inhibitor, but did not alter sensitivity to Akt inhibitor. These findings suggest that PP6 may function as a tumor suppressor in canine melanoma and modulate the response to trametinib treatment. Understanding the role of PP6 in canine melanoma could lead to the development of more effective treatment strategies for this aggressive disease.
Collapse
Affiliation(s)
- Miu YAMAMOTO
- Laboratory of Drug Discovery and Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Nobuyuki FUJIWARA
- Laboratory of Drug Discovery and Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| |
Collapse
|
5
|
Targeting the transcription factor HES1 by L-menthol restores protein phosphatase 6 in keratinocytes in models of psoriasis. Nat Commun 2022; 13:7815. [PMID: 36535970 PMCID: PMC9763329 DOI: 10.1038/s41467-022-35565-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Protein Phosphatase 6 down-regulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis, indicating that restoration of protein phosphatase 6 can be a rational strategy for psoriasis treatment. Through the phenotypic screen, we here identify L-menthol that ameliorates psoriasis-like skin inflammation by increasing protein phosphatase 6 in keratinocytes. Target identification approaches reveal an indispensable role for the transcription factor hairy and enhancer of split 1 in governing the protein phosphatase 6-upregulating function of L-menthol in keratinocytes. The transcription factor hairy and enhancer of split 1 is diminished in the epidermis of psoriasis patients and imiquimod-induced mouse model, while L-menthol upregulates the transcription factor hairy and enhancer of split 1 by preventing its proteasomal degradation. Mechanistically, the transcription factor hairy and enhancer of split 1 transcriptionally activates the expression of immunoglobulin-binding protein 1 which promotes protein phosphatase 6 expression and inhibits its ubiquitination. Collectively, we discover a therapeutic compound, L-menthol, for psoriasis, and uncover the dysfunctional the transcription factor hairy and enhancer of split 1- immunoglobulin-binding protein 1- protein phosphatase 6 axis that contributes to psoriasis pathology by using L-menthol as a probe.
Collapse
|
6
|
Jaiswal A, Singh R. Homeostases of epidermis and hair follicle, and development of basal cell carcinoma. Biochim Biophys Acta Rev Cancer 2022; 1877:188795. [PMID: 36089203 DOI: 10.1016/j.bbcan.2022.188795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/10/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
Hedgehog signaling (Hh) plays a critical role in embryogenesis. On the other hand, its overactivity may cause basal cell carcinoma (BCC), the most common human cancer. Further, epidermal and hair follicle homeostases may have a key role in the development of BCC. This article describes the importance of different signaling pathways in the different stages of the two processes. The description of the homeostases brought up the importance of the Notch signaling along with the sonic hedgehog (Shh) and the Wnt pathways. Loss of the Notch signaling adversely affects the late stages of hair follicle formation and allows the bulge cells in the hair follicles to take the fate of the keratinocytes in the interfollicular epidermis. Further, the loss of Notch activity upregulates the Shh and Wnt activities, adversely affecting the homeostases. Notably, the Notch signaling is suppressed in BCC, and the peripheral BCC cells, which have low Notch activity, show drug resistance in comparison to the interior suprabasal BCC cells, which have high Notch activity.
Collapse
Affiliation(s)
- Alok Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Raghvendra Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
7
|
Wu G, Li D, Liang W, Sun W, Xie X, Tong Y, Shan B, Zhang M, Lu X, Yuan J, Li Y. PP6 negatively modulates LUBAC-mediated M1-ubiquitination of RIPK1 and c-FLIP L to promote TNFα-mediated cell death. Cell Death Dis 2022; 13:773. [PMID: 36071040 PMCID: PMC9452587 DOI: 10.1038/s41419-022-05206-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
Activation of TNFR1 by TNFα induces the formation of a membrane-associated, intracellular complex termed complex I. Complex I orchestrates a complex pattern of modifications on key regulators of TNF signaling that collectively determines the cell fate by activating pro-survival or executing cell death programs. However, the regulatory mechanism of complex I in cell-fate decision is not fully understood. Here we identify protein phosphatase-6 (PP6) as a previously unidentified component of complex I. Loss of PP6 protects cells from TNFα-mediated cell death. The role of PP6 in regulating cell death requires its phosphatase activity and regulatory subunits. Further mechanistic studies show that PP6 modulates LUBAC-mediated M1-ubiquitination of RIPK1 and c-FLIPL to promote RIPK1 activation and c-FLIPL degradation. We also show that melanoma-associated PP6 inactivating mutants offer resistance to cell death due to the loss of sensitivity to TNFα. Thus, our study provides a potential mechanism by which melanoma-related PP6 inactivating mutations promote cancer progression.
Collapse
Affiliation(s)
- Guowei Wu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Dekang Li
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Liang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Weimin Sun
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xingxing Xie
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yilun Tong
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Bing Shan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China
| | - Mengmeng Zhang
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China
| | - Xiaojuan Lu
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China
| | - Junying Yuan
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China
| | - Ying Li
- grid.9227.e0000000119573309Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, PuDong District, 201210 Shanghai, China
| |
Collapse
|
8
|
Fukui K, Nomura M, Kishimoto K, Tanuma N, Kurosawa K, Kanazawa K, Kato H, Sato T, Miura S, Miura K, Sato I, Tsuji H, Yamashita Y, Tamai K, Watanabe T, Yasuda J, Tanaka T, Satoh K, Furukawa T, Jingu K, Shima H. PP6 deficiency in mice with KRAS mutation and Trp53 loss promotes early death by PDAC with cachexia-like features. Cancer Sci 2022; 113:1613-1624. [PMID: 35247012 PMCID: PMC9128171 DOI: 10.1111/cas.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
To examine effects of PP6 gene (Ppp6c) deficiency on pancreatic tumor development, we developed pancreas-specific, tamoxifen-inducible Cre-mediated KP (KRAS(G12D) plus Trp53-deficient) mice (cKP mice) and crossed them with Ppp6cflox / flox mice. cKP mice with the homozygous Ppp6c deletion developed pancreatic tumors, became emaciated and required euthanasia within 150 days of mutation induction, phenotypes that were not seen in heterozygous or wild-type (WT) mice. At 30 days, a comparative analysis of genes commonly altered in homozygous versus WT Ppp6c cKP mice revealed enhanced activation of Erk and NFκB pathways in homozygotes. By 80 days, the number and size of tumors and number of precancerous lesions had significantly increased in the pancreas of Ppp6c homozygous relative to heterozygous or WT cKP mice. Ppp6c-/- tumors were pathologically diagnosed as pancreatic ductal adenocarcinoma (PDAC) undergoing the epithelial-mesenchymal transition (EMT), and cancer cells had invaded surrounding tissues in three out of six cases. Transcriptome and metabolome analyses indicated an enhanced cancer-specific glycolytic metabolism in Ppp6c-deficient cKP mice and the increased expression of inflammatory cytokines. Individual Ppp6c-/- cKP mice showed weight loss, decreased skeletal muscle and adipose tissue, and increased circulating tumor necrosis factor (TNF)-α and IL-6 levels, suggestive of systemic inflammation. Overall, Ppp6c deficiency in the presence of K-ras mutations and Trp53 gene deficiency promoted pancreatic tumorigenesis with generalized cachexia and early death. This study provided the first evidence that Ppp6c suppresses mouse pancreatic carcinogenesis and supports the use of Ppp6c-deficient cKP mice as a model for developing treatments for cachexia associated with pancreatic cancer.
Collapse
Affiliation(s)
- Katsuya Fukui
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Miyuki Nomura
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kazuhiro Kishimoto
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
- Department of Head and Neck SurgeryKanazawa Medical UniversityKanazawaJapan
| | - Nobuhiro Tanuma
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Koreyuki Kurosawa
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
- Department of Plastic and Reconstructive SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Kosuke Kanazawa
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
- Division of SurgeryMiyagi Cancer CenterNatoriJapan
| | - Hiroyuki Kato
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Tomoki Sato
- Laboratory of Nutritional BiochemistryGraduate School of Nutritional and Environmental SciencesUniversity of ShizuokaShizuokaJapan
| | - Shinji Miura
- Laboratory of Nutritional BiochemistryGraduate School of Nutritional and Environmental SciencesUniversity of ShizuokaShizuokaJapan
| | - Koh Miura
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of SurgeryMiyagi Cancer CenterNatoriJapan
| | - Ikuro Sato
- Division of PathologyMiyagi Cancer CenterNatoriJapan
| | - Hiroyuki Tsuji
- Department of Head and Neck SurgeryKanazawa Medical UniversityKanazawaJapan
| | - Yoji Yamashita
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Keiichi Tamai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteNatoriJapan
| | - Toshio Watanabe
- Department of Biological ScienceGraduate School of Humanities and SciencesNara Women’s UniversityNaraJapan
| | - Jun Yasuda
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
- Division of Molecular Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Takuji Tanaka
- Research Center of Diagnostic PathologyGifu Municipal HospitalGifuJapan
| | - Kennichi Satoh
- Division of GastroenterologyTohoku Medical Pharmaceutical UniversitySendaiJapan
| | - Toru Furukawa
- Department of Investigative PathologyTohoku University Graduate School of MedicineSendaiJapan
| | - Keiichi Jingu
- Department of Radiation OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroshi Shima
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteNatoriJapan
- Division of Cancer Molecular BiologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
9
|
MiR-20a-5p functions as a potent tumor suppressor by targeting PPP6C in acute myeloid leukemia. PLoS One 2021; 16:e0256995. [PMID: 34587164 PMCID: PMC8480815 DOI: 10.1371/journal.pone.0256995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is as a highly aggressive and heterogeneous hematological malignancy. MiR-20a-5p has been reported to function as an oncogene or tumor suppressor in several tumors, but the clinical significance and regulatory mechanisms of miR-20a-5p in AML cells have not been fully understood. In this study, we found miR-20a-5p was significantly decreased in bone marrow from AML patients, compared with that in healthy controls. Moreover, decreased miR-20a-5p expression was correlated with risk status and poor survival prognosis in AML patients. Overexpression of miR-20a-5p suppressed cell proliferation, induced cell cycle G0/G1 phase arrest and apoptosis in two AML cell lines (THP-1 and U937) using CCK-8 assay and flow cytometry analysis. Moreover, miR-20a-5p overexpression attenuated tumor growth in vivo by performing tumor xenograft experiments. Luciferase reporter assay and western blot demonstrated that protein phosphatase 6 catalytic subunit (PPP6C) as a target gene of miR-20a-5p was negatively regulated by miR-20a-5p in AML cells. Furthermore, PPP6C knockdown imitated, while overexpression reversed the effects of miR-20a-5p overexpression on AML cell proliferation, cell cycle G1/S transition and apoptosis. Taken together, our findings demonstrate that miR-20a-5p/PPP6C represent a new therapeutic target for AML and a potential diagnostic marker for AML therapy.
Collapse
|
10
|
Kishimoto K, Kanazawa K, Nomura M, Tanaka T, Shigemoto‐Kuroda T, Fukui K, Miura K, Kurosawa K, Kawai M, Kato H, Terasaki K, Sakamoto Y, Yamashita Y, Sato I, Tanuma N, Tamai K, Kitabayashi I, Matsuura K, Watanabe T, Yasuda J, Tsuji H, Shima H. Ppp6c deficiency accelerates K-ras G12D -induced tongue carcinogenesis. Cancer Med 2021; 10:4451-4464. [PMID: 34145991 PMCID: PMC8267137 DOI: 10.1002/cam4.3962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Effective treatments for cancer harboring mutant RAS are lacking. In Drosophila, it was reported that PP6 suppresses tumorigenicity of mutant RAS. However, the information how PP6 regulates oncogenic RAS in mammals is limited. METHODS We examined the effects of PP6 gene (Ppp6c) deficiency on tongue tumor development in K (K-rasG12D)- and KP (K-rasG12D + Trp53-deficient)-inducible mice. RESULTS Mice of K and KP genotypes developed squamous cell carcinoma in situ in the tongue approximately 2 weeks after the induction of Ppp6c deficiency and was euthanized due to 20% loss of body weight. Transcriptome analysis revealed significantly different gene expressions between tissues of Ppp6c-deficient tongues and those of Ppp6c wild type, while Trp53 deficiency had a relatively smaller effect. We then analyzed genes commonly altered by Ppp6c deficiency, with or without Trp53 deficiency, and identified a group concentrated in KEGG database pathways defined as 'Pathways in Cancer' and 'Cytokine-cytokine receptor interaction'. We then evaluated signals downstream of oncogenic RAS and those regulated by PP6 substrates and found that in the presence of K-rasG12D, Ppp6c deletion enhanced the activation of the ERK-ELK1-FOS, AKT-4EBP1, and AKT-FOXO-CyclinD1 axes. Ppp6c deletion combined with K-rasG12D also enhanced DNA double-strand break (DSB) accumulation and activated NFκB signaling, upregulating IL-1β, COX2, and TNF.
Collapse
Affiliation(s)
- Kazuhiro Kishimoto
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of Cancer Molecular BiologyTohoku University School of MedicineMiyagiJapan
- Department of Head and Neck SurgeryKanazawa Medical UniversityKanazawaJapan
- Department of Head and Neck SurgeryMiyagi Cancer CenterMiyagiJapan
| | - Kosuke Kanazawa
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of Cancer Molecular BiologyTohoku University School of MedicineMiyagiJapan
- Division of SurgeryMiyagi Cancer CenterMiyagiJapan
| | - Miyuki Nomura
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Takuji Tanaka
- Research Center of Diagnostic PathologyGifu Municipal HospitalGifuJapan
| | | | - Katsuya Fukui
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of Cancer Molecular BiologyTohoku University School of MedicineMiyagiJapan
| | - Koh Miura
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of SurgeryMiyagi Cancer CenterMiyagiJapan
| | - Koreyuki Kurosawa
- Department of Plastic and Reconstructive SurgeryTohoku University School of MedicineMiyagiJapan
| | - Masaaki Kawai
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of SurgeryMiyagi Cancer CenterMiyagiJapan
| | - Hiroyuki Kato
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Keiko Terasaki
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Yoshimi Sakamoto
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Yoji Yamashita
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Ikuro Sato
- Division of PathologyMiyagi Cancer CenterMiyagiJapan
| | - Nobuhiro Tanuma
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of Cancer Molecular BiologyTohoku University School of MedicineMiyagiJapan
| | - Keiichi Tamai
- Division of Cancer Stem CellMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Issay Kitabayashi
- Division of Hematological MalignancyNational Cancer Center Research InstituteTokyoJapan
| | - Kazuto Matsuura
- Department of Head and Neck SurgeryNational Cancer Center Hospital EastChibaJapan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and SciencesNara Women’s UniversityNaraJapan
| | - Jun Yasuda
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteMiyagiJapan
| | - Hiroyuki Tsuji
- Department of Head and Neck SurgeryKanazawa Medical UniversityKanazawaJapan
| | - Hiroshi Shima
- Division of Cancer ChemotherapyMiyagi Cancer Center Research InstituteMiyagiJapan
- Division of Cancer Molecular BiologyTohoku University School of MedicineMiyagiJapan
| |
Collapse
|
11
|
Kanazawa K, Kishimoto K, Nomura M, Kurosawa K, Kato H, Inoue Y, Miura K, Fukui K, Yamashita Y, Sato I, Tsuji H, Watanabe T, Tanaka T, Yasuda J, Tanuma N, Shima H. Ppp6c haploinsufficiency accelerates UV-induced BRAF(V600E)-initiated melanomagenesis. Cancer Sci 2021; 112:2233-2244. [PMID: 33743547 PMCID: PMC8177767 DOI: 10.1111/cas.14895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
According to TCGA database, mutations in PPP6C (encoding phosphatase PP6) are found in c. 10% of tumors from melanoma patients, in which they coexist with BRAF and NRAS mutations. To assess PP6 function in melanoma carcinogenesis, we generated mice in which we could specifically induce BRAF(V600E) expression and delete Ppp6c in melanocytes. In these mice, melanoma susceptibility following UVB irradiation exhibited the following pattern: Ppp6c semi‐deficient (heterozygous) > Ppp6c wild‐type > Ppp6c‐deficient (homozygous) tumor types. Next‐generation sequencing of Ppp6c heterozygous and wild‐type melanoma tumors revealed that all harbored Trp53 mutations. However, Ppp6c heterozygous tumors showed a higher Signature 1 (mitotic/mitotic clock) mutation index compared with Ppp6c wild‐type tumors, suggesting increased cell division. Analysis of cell lines derived from either Ppp6c heterozygous or wild‐type melanoma tissues showed that both formed tumors in nude mice, but Ppp6c heterozygous tumors grew faster compared with those from the wild‐type line. Ppp6c knockdown via siRNA in the Ppp6c heterozygous line promoted the accumulation of genomic damage and enhanced apoptosis relative to siRNA controls. We conclude that in the presence of BRAF(V600E) expression and UV‐induced Trp53 mutation, Ppp6c haploinsufficiency promotes tumorigenesis.
Collapse
Affiliation(s)
- Kosuke Kanazawa
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Surgery, Miyagi Cancer Center, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| | - Kazuhiro Kishimoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan.,Department of Head and Neck Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Koreyuki Kurosawa
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Department of Plastic and Reconstructive Surgery, Tohoku University School of Medicine, Miyagi, Japan
| | - Hiroyuki Kato
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Yui Inoue
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Koh Miura
- Division of Surgery, Miyagi Cancer Center, Miyagi, Japan
| | - Katsuya Fukui
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center, Miyagi, Japan
| | - Hiroyuki Tsuji
- Department of Head and Neck Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences Nara Women's University, Nara, Japan
| | - Takuji Tanaka
- Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Jun Yasuda
- Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan.,Cancer Genome Center, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
12
|
Rivard RS, Morris JM, Youngman MJ. The PP2A/4/6 subfamily of phosphoprotein phosphatases regulates DAF-16 and confers resistance to environmental stress in postreproductive adult C. elegans. PLoS One 2020; 15:e0229812. [PMID: 33315870 PMCID: PMC7735605 DOI: 10.1371/journal.pone.0229812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022] Open
Abstract
Insulin and insulin-like growth factors are longevity determinants that negatively regulate Forkhead box class O (FoxO) transcription factors. In C. elegans mutations that constitutively activate DAF-16, the ortholog of mammalian FoxO3a, extend lifespan by two-fold. While environmental insults induce DAF-16 activity in younger animals, it also becomes activated in an age-dependent manner in the absence of stress, modulating gene expression well into late adulthood. The mechanism by which DAF-16 activity is regulated during aging has not been defined. Since phosphorylation of DAF-16 generally leads to its inhibition, we asked whether phosphatases might be necessary for its increased transcriptional activity in adult C. elegans. We focused on the PP2A/4/6 subfamily of phosphoprotein phosphatases, members of which had been implicated to regulate DAF-16 under low insulin signaling conditions but had not been investigated during aging in wildtype animals. Using reverse genetics, we functionally characterized all C. elegans orthologs of human catalytic, regulatory, and scaffolding subunits of PP2A/4/6 holoenzymes in postreproductive adults. We found that PP2A complex constituents PAA-1 and PPTR-1 regulate DAF-16 transcriptional activity during aging and that they cooperate with the catalytic subunit LET-92 to protect adult animals from ultraviolet radiation. PP4 complex members PPH-4.1/4.2, and SMK-1 also appear to regulate DAF-16 in an age-dependent manner, and together with PPFR-2 they contribute to innate immunity. Interestingly, SUR-6 but no other subunit of the PP2A complex was necessary for the survival of pathogen-infected animals. Finally, we found that PP6 complex constituents PPH-6 and SAPS-1 contribute to host defense during aging, apparently without affecting DAF-16 transcriptional activity. Our studies indicate that a set of PP2A/4/6 complexes protect adult C. elegans from environmental stress, thus preserving healthspan. Therefore, along with their functions in cell division and development, the PP2A/4/6 phosphatases also appear to play critical roles later in life.
Collapse
Affiliation(s)
- Rebecca S. Rivard
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Julia M. Morris
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Matthew J. Youngman
- Department of Biology, Villanova University, Villanova, PA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Brandes N, Mitkovska SH, Botermann DS, Maurer W, Müllen A, Scheile H, Zabel S, Frommhold A, Heß I, Hahn H, Uhmann A. Spreading of Isolated Ptch Mutant Basal Cell Carcinoma Precursors Is Physiologically Suppressed and Counteracts Tumor Formation in Mice. Int J Mol Sci 2020; 21:ijms21239295. [PMID: 33291515 PMCID: PMC7730243 DOI: 10.3390/ijms21239295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Basal cell carcinoma (BCC) originate from Hedgehog/Patched signaling-activated epidermal stem cells. However, the chemically induced tumorigenesis of mice with a CD4Cre-mediated biallelic loss of the Hedgehog signaling repressor Patched also induces BCC formation. Here, we identified the cellular origin of CD4Cre-targeted BCC progenitors as rare Keratin 5+ epidermal cells and show that wildtype Patched offspring of these cells spread over the hair follicle/skin complex with increasing mouse age. Intriguingly, Patched mutant counterparts are undetectable in age-matched untreated skin but are getting traceable upon applying the chemical tumorigenesis protocol. Together, our data show that biallelic Patched depletion in rare Keratin 5+ epidermal cells is not sufficient to drive BCC development, because the spread of these cells is physiologically suppressed. However, bypassing the repression of Patched mutant cells, e.g., by exogenous stimuli, leads to an accumulation of BCC precursor cells and, finally, to tumor development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anja Uhmann
- Correspondence: ; Tel.: +49-551-3914-100; Fax: +49-551-396-580
| |
Collapse
|
14
|
Fujiwara N, Shibutani S, Sakai Y, Watanabe T, Kitabayashi I, Oshima H, Oshima M, Hoshida H, Akada R, Usui T, Ohama T, Sato K. Autophagy regulates levels of tumor suppressor enzyme protein phosphatase 6. Cancer Sci 2020; 111:4371-4380. [PMID: 32969571 PMCID: PMC7734157 DOI: 10.1111/cas.14662] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein phosphatase 6 (PP6) is an essential serine/threonine protein phosphatase that acts as an important tumor suppressor. However, increased protein levels of PP6 have been observed in some cancer types, and they correlate with poor prognosis in glioblastoma. This raises a question about how PP6 protein levels are regulated in normal and transformed cells. In this study, we show that PP6 protein levels increase in response to pharmacologic and genetic inhibition of autophagy. PP6 associates with autophagic adaptor protein p62/SQSTM1 and is degraded in a p62-dependent manner. Accordingly, protein levels of PP6 and p62 fluctuate in concert under different physiological and pathophysiological conditions. Our data reveal that PP6 is regulated by p62-dependent autophagy and suggest that accumulation of PP6 protein in tumor tissues is caused at least partially by deficiency in autophagy.
Collapse
Affiliation(s)
- Nobuyuki Fujiwara
- Laboratory of Veterinary Pharmacology, Yamaguchi University, Yamaguchi, Japan.,Laboratory of Drug Discovery and Pharmacology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Yamaguchi University, Yamaguchi, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Issay Kitabayashi
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hisashi Hoshida
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Rinji Akada
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takashi Ohama
- Laboratory of Veterinary Pharmacology, Yamaguchi University, Yamaguchi, Japan
| | - Koichi Sato
- Laboratory of Veterinary Pharmacology, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
15
|
Ohama T. The multiple functions of protein phosphatase 6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:74-82. [DOI: 10.1016/j.bbamcr.2018.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
|
16
|
PpV, acting via the JNK pathway, represses apoptosis during normal development of Drosophila wing. Apoptosis 2018; 23:554-562. [DOI: 10.1007/s10495-018-1479-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Kurosawa K, Inoue Y, Kakugawa Y, Yamashita Y, Kanazawa K, Kishimoto K, Nomura M, Momoi Y, Sato I, Chiba N, Suzuki M, Ogoh H, Yamada H, Miura K, Watanabe T, Tanuma N, Tachi M, Shima H. Loss of protein phosphatase 6 in mouse keratinocytes enhances K-ras G12D -driven tumor promotion. Cancer Sci 2018; 109:2178-2187. [PMID: 29758119 PMCID: PMC6029815 DOI: 10.1111/cas.13638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 01/17/2023] Open
Abstract
Here, we address the function of protein phosphatase 6 (PP6) loss on K‐ras‐initiated tumorigenesis in keratinocytes. To do so, we developed tamoxifen‐inducible double mutant (K‐rasG12D‐expressing and Ppp6c‐deficient) mice in which K‐rasG12D expression is driven by the cytokeratin 14 (K14) promoter. Doubly‐mutant mice showed early onset tumor formation in lips, nipples, external genitalia, anus and palms, and had to be killed by 3 weeks after induction by tamoxifen, while comparably‐treated K‐rasG12D‐expressing mice did not. H&E‐staining of lip tumors before euthanasia revealed that all were papillomas, some containing focal squamous cell carcinomas. Immunohistochemical analysis of lips of doubly‐mutant vs K‐rasG12D mice revealed that cell proliferation and cell size increased approximately 2‐fold relative to K‐rasG12D‐expressing mutants, and epidermal thickness of lip tissue greatly increased relative to that seen in K‐rasG12D‐only mice. Moreover, AKT phosphorylation increased in K‐rasG12D‐expressing/Ppp6c‐deficient cells, as did phosphorylation of the downstream effectors 4EBP1, S6 and GSK3, suggesting that protein synthesis and survival signals are enhanced in lip tissues of doubly‐mutant mice. Finally, increased numbers of K14‐positive cells were present in the suprabasal layer of doubly‐mutant mice, indicating abnormal keratinocyte differentiation, and γH2AX‐positive cells accumulated, indicating perturbed DNA repair. Taken together, Ppp6c deficiency enhances K‐rasG12D‐dependent tumor promotion.
Collapse
Affiliation(s)
- Koreyuki Kurosawa
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Department of Plastic and Reconstructive Surgery, Tohoku University Hospital, Miyagi, Japan
| | - Yui Inoue
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Yoichiro Kakugawa
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Yoji Yamashita
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Kosuke Kanazawa
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Kazuhiro Kishimoto
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Miyuki Nomura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Yuki Momoi
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Ikuro Sato
- Division of Pathology, Miyagi Cancer Center, Miyagi, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | - Mai Suzuki
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Honami Ogoh
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Hidekazu Yamada
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Koh Miura
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Toshio Watanabe
- Department of Biological Science, Graduate School of Humanities and Sciences, Nara Women's University, Nara, Japan
| | - Nobuhiro Tanuma
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Hospital, Miyagi, Japan
| | - Hiroshi Shima
- Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Miyagi, Japan.,Division of Cancer Molecular Biology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
18
|
Hu MW, Meng TG, Jiang ZZ, Dong MZ, Schatten H, Xu X, Wang ZB, Sun QY. Protein Phosphatase 6 Protects Prophase I-Arrested Oocytes by Safeguarding Genomic Integrity. PLoS Genet 2016; 12:e1006513. [PMID: 27930667 PMCID: PMC5179128 DOI: 10.1371/journal.pgen.1006513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 12/22/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Mammalian oocytes are arrested at prophase of the first meiotic division in the primordial follicle pool for months, even years, after birth depending on species, and only a limited number of oocytes resume meiosis, complete maturation, and ovulate with each reproductive cycle. We recently reported that protein phosphatase 6 (PP6), a member of the PP2A-like subfamily, which accounts for cellular serine/threonine phosphatase activity, functions in completing the second meiosis. Here, we generated mutant mice with a specific deletion of Ppp6c in oocytes from the primordial follicle stage by crossing Ppp6cF/F mice with Gdf9-Cre mice and found that Ppp6cF/F; GCre+ mice are infertile. Depletion of PP6c caused folliculogenesis defects and germ cell loss independent of the traditional AKT/mTOR pathway, but due to persistent phosphorylation of H2AX (a marker of double strand breaks), increased susceptibility to DNA damage and defective DNA repair, which led to massive oocyte elimination and eventually premature ovarian failure (POF). Our findings uncover an important role for PP6 as an indispensable guardian of genomic integrity of the lengthy prophase I oocyte arrest, maintenance of primordial follicle pool, and thus female fertility. Formation of haploid gametes from diploid germ cells requires a specialized reductive cell division known as meiosis. In contrast to male meiosis that takes place continuously, a unique feature of female meiosis in mammals is the long arrest in meiosis I, which lasts up to 50 years in humans. Because the size of the germ cell pool determines the reproductive lifespan of females, it is important to discover mechanisms preserving the germ cell pool during the lengthy meiotic arrest. In this study, we examined the physiological role of a member of the PP2A-like serine/threonine phosphatase subfamily, protein phosphatase 6, in mouse oocytes during ovarian follicular development. This is the first study linking PP6 to the maintenance of the female germ cell pool and fertility. We find PP6 is an indispensable protector of arrested oocytes by safeguarding genomic integrity during their dormancy in the mouse ovary.
Collapse
Affiliation(s)
- Meng-Wen Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zong-Zhe Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ming-Zhe Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States of America
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Guo R, Wang X, Chou MM, Asmann Y, Wenger DE, Al-Ibraheemi A, Molavi DW, Aboulafia A, Jin L, Fritchie K, Oliveira JL, Jenkins RB, Westendorf JJ, Dong J, Oliveira AM. PPP6R3-USP6amplification: Novel oncogenic mechanism in malignant nodular fasciitis. Genes Chromosomes Cancer 2016; 55:640-9. [DOI: 10.1002/gcc.22366] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ruifeng Guo
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
- Department of Dermatology; Mayo Clinic; Rochester MN
| | - Xiaoke Wang
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| | - Margaret M Chou
- Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia PA
| | - Yan Asmann
- Department of Bioinformatics; Mayo Clinic; Rochester MN
| | - Doris E. Wenger
- Department of Diagnostic Radiology; Mayo Clinic; Rochester MN
| | - Alyaa Al-Ibraheemi
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| | - Diana W Molavi
- Department of Pathology; Sinai Hospital of Baltimore; Baltimore MD
| | - Albert Aboulafia
- Department of Orthopaedic; Onology Medstar Franklin Square Hospital; Baltimore MD
| | - Long Jin
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| | - Karen Fritchie
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| | | | - Robert B. Jenkins
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| | | | - Jie Dong
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| | - Andre M. Oliveira
- Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| |
Collapse
|