1
|
Gohlke L, Alahdab A, Oberhofer A, Worf K, Holdenrieder S, Michaelis M, Cinatl J, Ritter CA. Loss of Key EMT-Regulating miRNAs Highlight the Role of ZEB1 in EGFR Tyrosine Kinase Inhibitor-Resistant NSCLC. Int J Mol Sci 2023; 24:14742. [PMID: 37834189 PMCID: PMC10573279 DOI: 10.3390/ijms241914742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), acquired drug resistance to targeted therapy remains a major obstacle. Epithelial-mesenchymal transition (EMT) has been identified as a key resistance mechanism in NSCLC. Here, we investigated the mechanistic role of key EMT-regulating small non-coding microRNAs (miRNAs) in sublines of the NSCLC cell line HCC4006 adapted to afatinib, erlotinib, gefitinib, or osimertinib. The most differentially expressed miRNAs derived from extracellular vesicles were associated with EMT, and their predicted target ZEB1 was significantly overexpressed in all resistant cell lines. Transfection of a miR-205-5p mimic partially reversed EMT by inhibiting ZEB1, restoring CDH1 expression, and inhibiting migration in erlotinib-resistant cells. Gene expression of EMT-markers, transcription factors, and miRNAs were correlated during stepwise osimertinib adaptation of HCC4006 cells. Temporally relieving cells of osimertinib reversed transition trends, suggesting that the implementation of treatment pauses could provide prolonged benefits for patients. Our results provide new insights into the contribution of miRNAs to drug-resistant NSCLC harboring EGFR-activating mutations and highlight their role as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Linus Gohlke
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| | - Ahmad Alahdab
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| | - Angela Oberhofer
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Karolina Worf
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Martin Michaelis
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent CT2 7NJ, UK;
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany;
| | - Christoph A Ritter
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| |
Collapse
|
2
|
Dioguardi M, Cantore S, Sovereto D, La Femina L, Spirito F, Caloro GA, Caroprese M, Maci M, Scacco S, Lo Muzio L, Di Cosola M, Troiano G, Ballini A. Does miR-197 Represent a Valid Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma (HNSCC)? A Systematic Review and Trial Sequential Analysis. J Pers Med 2022; 12:jpm12091436. [PMID: 36143221 PMCID: PMC9501311 DOI: 10.3390/jpm12091436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: Between tumors of the head and neck region, the squamous cell variant (HNSCC) is the most common and represents one of the main neoplasms affecting humans. At the base of carcinogenesis processes, there are genetic alterations whose regulation can be influenced by changes in the expression of microRNA (miR). Consequently, despite recent studies indicating miR-197 as a potential prognostic biomarker of survival for many varieties of cancer, there are currently no systematic reviews and trial sequential/bioinformatics/meta-analysis regarding the role of miR-197 in HNSCC. Our hypothesis was that with the existing literature, it is possible to clarify whether the different expressions of miR-197 in neoplastic tissues can represent a prognostic biomarker of survival in head and neck tumors. (2) Methods: The systematic review was reported following the indications of PRISMA and by consulting six electronic databases (including one register). Moreover, this review was carried out using the Kaplan–Meier plotter database portal, and hazard ratio (HR) data were extracted. Finally, a trial sequential analysis (TSA) was conducted to test the robustness of the proposed meta-analysis. (3) Results: This search identified 1119 articles and outcomes of the meta-analysis, reporting an aggregate HR for overall survival (OS) between the highest and lowest miR-197 expression of 1.01, 95% CI: [1.00, 1.02]. (4) Conclusions: We can state that, from the literature data included in the present meta-analysis, and from the TSA and bioinformatics analysis data, miR-197 does not currently represent a valid prognostic biomarker for HNSCC, although the data provided by the Kaplan–Meier plotter suggest that miR-197 can serve as a putative biomarker in short-term (5 years) survival.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
- Correspondence: (M.D.); (S.C.); (S.S.)
| | - Stefania Cantore
- Independent Researcher, 70129 Bari, Italy
- Correspondence: (M.D.); (S.C.); (S.S.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Lucia La Femina
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Giorgia Apollonia Caloro
- Unità Operativa Nefrologia e Dialisi, Presidio Ospedaliero Scorrano, ASL (Azienda Sanitaria Locale) Lecce, Via Giuseppina Delli Ponti, 73020 Scorrano, Italy
| | - Marino Caroprese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Marta Maci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (M.D.); (S.C.); (S.S.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
3
|
Yang X, Qin C, Zhao B, Li T, Wang Y, Li Z, Li T, Wang W. Long Noncoding RNA and Circular RNA: Two Rising Stars in Regulating Epithelial-Mesenchymal Transition of Pancreatic Cancer. Front Oncol 2022; 12:910678. [PMID: 35719940 PMCID: PMC9204003 DOI: 10.3389/fonc.2022.910678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with especially poor prognosis. However, the molecular mechanisms of pancreatic oncogenesis and malignant progression are not fully elucidated. Epithelial-mesenchymal transition (EMT) process is important to drive pancreatic carcinogenesis. Recently, long noncoding RNAs (lncRNAs) and circular RNAs(circRNAs) have been characterized to participate in EMT in PDAC, which can affect the migration and invasion of tumor cells by playing important roles in epigenetic processes, transcription, and post-transcriptional regulation. LncRNAs can act as competing endogenous RNAs (ceRNA) to sequester target microRNAs(miRNAs), bind to the genes which localize physically nearby, and directly interact with EMT-related proteins. Currently known circRNAs mostly regulate the EMT process in PDAC also by acting as a miRNA sponge, directly affecting the protein degradation process. Therefore, exploring the functions of lncRNAs and circRNAs in EMT during pancreatic cancer might help pancreatic cancer treatments.
Collapse
Affiliation(s)
- Xiaoying Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bangbo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianhao Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weibin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Xie H, Zhao Q, Yu L, Lu J, Peng K, Xie N, Ni J, Li B. Circular RNA circ_0047744 suppresses the metastasis of pancreatic ductal adenocarcinoma by regulating the miR-21/SOCS5 axis. Biochem Biophys Res Commun 2022; 605:154-161. [PMID: 35334414 DOI: 10.1016/j.bbrc.2022.03.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
Abstract
There is increasing evidence that circular RNAs (circRNAs) can serve as microRNA (miRNA) sponges to regulate metastasis of multiple tumors, including pancreatic ductal adenocarcinoma (PDAC). However, the role of the circRNA/miRNA regulatory network in metastasis of PDAC has not been elucidated. The purpose of this study is to explore the role of circ_0047744/miR-21/SOCS5 in the metastasis of PDAC. We found that circRNA_0047744 was weakly expressed in PDAC tissues and cell lines. The expression of circ_0047744 was negatively correlated with lymph node metastasis and positively correlated with overall survival in PDAC patients. Functionally, the overexpression of circ_0047744 suppressed cell migration and invasion in vitro and in vivo. Mechanistically, circ_0047744 could regulate SOCS5 expression by acting as a sponge of miR-21 to inhibit migration and invasion of PDAC cells. Our study demonstrates that circ_0047744 acts as an anti-oncogene to inhibit PDAC metastasis by regulating the miR-21/SOCS5 axis, indicating that circ_0047744 may be a potential novel therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Haoran Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Lanting Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Jiawei Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Kui Peng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Ni Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China.
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, New Songjiang Road No. 650, 201620, Shanghai, China.
| |
Collapse
|
5
|
Sugita BM, Rodriguez Y, Fonseca AS, Nunes Souza E, Kallakury B, Cavalli IJ, Ribeiro EMSF, Aneja R, Cavalli LR. MiR-150-5p Overexpression in Triple-Negative Breast Cancer Contributes to the In Vitro Aggressiveness of This Breast Cancer Subtype. Cancers (Basel) 2022; 14:cancers14092156. [PMID: 35565284 PMCID: PMC9104497 DOI: 10.3390/cancers14092156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is a clinically aggressive type of breast cancer. MicroRNAs (miRNAs) are small molecules that regulate the expression of genes involved in tumor cell signaling. The miR-150-5p is frequently deregulated in cancer, with expression and mode of action varying according to the cancer type. In this study, we investigated the expression levels of miR-150-5p in TNBC, its association with clinical and pathological features of patients, and its role in modulating TNBC cell proliferation, migration, and drug resistance. Our results suggest that miR-150-5p is highly expressed in TNBC and that miR-150-5p expression levels are associated with tumor grade, patient survival, and ethnicity. Our findings also indicate that miR-150-5p contributes to the aggressive phenotypes of TNBC cells in vitro. Abstract MiR-150-5p is frequently deregulated in cancer, with expression and mode of action varying according to the tumor type. Here, we investigated the expression levels and role of miR-150-5p in the aggressive breast cancer subtype triple-negative breast cancer (TNBC). MiR-150-5p expression levels were analyzed in tissue samples from 113 patients with invasive breast cancer (56 TNBC and 57 non-TNBC) and 41 adjacent non-tumor tissues (ANT). Overexpression of miR-150-5p was observed in tumor tissues compared with ANT tissues and in TNBC compared with non-TNBC tissues. MiR-150-5p expression levels were significantly associated with high tumor grades and the Caucasian ethnicity. Interestingly, high miR-150-5p levels were associated with prolonged overall survival. Manipulation of miR-150-5p expression in TNBC cells modulated cell proliferation, clonogenicity, migration, and drug resistance. Manipulation of miR-150-5p expression also resulted in altered expression of its mRNA targets, including epithelial-to-mesenchymal transition markers, MYB, and members of the SRC pathway. These findings suggest that miR-150-5p is overexpressed in TNBC and contributes to the aggressiveness of TNBC cells in vitro.
Collapse
Affiliation(s)
- Bruna M. Sugita
- Research Institute Pele Pequeno Príncipe, Faculdades Pequeno Príncipe Curitiba, Curitiba 80250-060, Brazil; (B.M.S.); (A.S.F.); (E.N.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA;
- Genetics Post-Graduation Program, Department of Genetics, Federal University of Paraná, Curitiba 81530-000, Brazil; (I.J.C.); (E.M.S.F.R.)
| | - Yara Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Aline S. Fonseca
- Research Institute Pele Pequeno Príncipe, Faculdades Pequeno Príncipe Curitiba, Curitiba 80250-060, Brazil; (B.M.S.); (A.S.F.); (E.N.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Emanuelle Nunes Souza
- Research Institute Pele Pequeno Príncipe, Faculdades Pequeno Príncipe Curitiba, Curitiba 80250-060, Brazil; (B.M.S.); (A.S.F.); (E.N.S.)
| | - Bhaskar Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Iglenir J. Cavalli
- Genetics Post-Graduation Program, Department of Genetics, Federal University of Paraná, Curitiba 81530-000, Brazil; (I.J.C.); (E.M.S.F.R.)
| | - Enilze M. S. F. Ribeiro
- Genetics Post-Graduation Program, Department of Genetics, Federal University of Paraná, Curitiba 81530-000, Brazil; (I.J.C.); (E.M.S.F.R.)
| | - Ritu Aneja
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Luciane R. Cavalli
- Research Institute Pele Pequeno Príncipe, Faculdades Pequeno Príncipe Curitiba, Curitiba 80250-060, Brazil; (B.M.S.); (A.S.F.); (E.N.S.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA;
- Correspondence:
| |
Collapse
|
6
|
Yuan LQ, Zhang T, Xu L, Han H, Liu SH. miR-30c-5p inhibits glioma proliferation and invasion via targeting Bcl2. Transl Cancer Res 2022; 10:337-348. [PMID: 35116264 PMCID: PMC8798180 DOI: 10.21037/tcr-19-2957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 09/17/2020] [Indexed: 12/02/2022]
Abstract
Background Glioma is a highly malignant brain tumor, characterized by the poor prognosis and high recurrence rates. Previous studies have confirmed that miRNA-30c-5p is closely associated with tumor cell biological properties. The present study explored the biological role of miR-30c-5p in human glioma malignant behavior and underlying mechanisms. Methods Levels of miR-30c-5p were detected in glioma tissues and adjacent normal tissues. Two glioma cell lines including U87 and U251 were transfected with miR-30c-5p mimic or inhibitors. Cell proliferation was evaluated by MTT assay and colony formation assay. Cell apoptosis and invasive potential of glioma cells were assessed by flow cytometry and transwell assays, respectively. Luciferase reporter assay was performed to validate the target gene of miR-30c-5p. Results Levels of miR-30c-5p were dramatically decreased in glioma tissues as compared to the adjacent normal tissues. Upregulation of miR-30c-5p significantly suppressed cell growth and colony formation, and induced apoptosis in glioma cells. In contrast, inhibition of miR-30c-5p promoted the proliferation and inhibited apoptosis in tumor cells. Furthermore, miR-30c-5p strongly suppresses the invasion of glioma cells. Western blot showed that Bcl-2 was significantly decreased following treatment with miR-30c-5p mimics and increased after miR-30c-5p inhibitor treatment. Moreover, luciferase reporter assays indicated that transfection of miR-30c-5p led to a marked reduction of luciferase activity, but had no effect on Bcl-2 3'-UTR mutated fragment. Mechanically, miR-30c-5p promoted the activation of caspase 3 and caspase 9 in glioma cells. Furthermore, miR-30c-5p promoted apoptosis and inhibited colony formation and migration, and knockdown of Bcl2 further increased the number of apoptotic cells and suppressed colony formation and migration of glioma cells. By contrast, miR-30c-5p inhibitors decreased apoptosis and increased colony formation and migration, and restored Bcl2 expression further suppressed glioma cell apoptosis and enhanced colony formation and migration. Conclusions These results demonstrated that miR-30c-5p regulated growth, apoptosis and migration in glioma cells by targeting Bcl2, suggesting that miR-30c-5p might serve as a novel target for glioma therapy.
Collapse
Affiliation(s)
- Li-Qun Yuan
- Neurosurgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tan Zhang
- Neurosurgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Xu
- Neurosurgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Han
- Neurosurgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shi-Hai Liu
- Neurosurgery Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Mortoglou M, Buha Djordjevic A, Djordjevic V, Collins H, York L, Mani K, Valle E, Wallace D, Uysal-Onganer P. Role of microRNAs in response to cadmium chloride in pancreatic ductal adenocarcinoma. Arch Toxicol 2022; 96:467-485. [PMID: 34905088 PMCID: PMC8837568 DOI: 10.1007/s00204-021-03196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal and aggressive malignancies with a 5-year survival rate less than 9%. Early detection is particularly difficult due to the lack of symptoms even in advanced stages. microRNAs (miRs/miRNAs) are small (~ 18-24 nucleotides), endogenous, non-coding RNAs, which are involved in the pathogenesis of several malignancies including PDAC. Alterations of miR expressions can lead to apoptosis, angiogenesis, and metastasis. The role of environmental pollutants such as cadmium (Cd) in PDAC has been suggested but not fully understood. This study underlines the role of miRs (miR-221, miR-155, miR-126) in response to cadmium chloride (CdCl2) in vitro. Lethal concentration (LC50) values for CdCl2 resulted in a toxicity series of AsPC-1 > HPNE > BxPC-3 > Panc-1 = Panc-10.5. Following the treatment with CdCl2, miR-221 and miR-155 were significantly overexpressed, whereas miR-126 was downregulated. An increase in epithelial-mesenchymal transition (EMT) via the dysregulation of mesenchymal markers such as Wnt-11, E-cadherin, Snail, and Zeb1 was also observed. Hence, this study has provided evidence to suggest that the environmental pollutant Cd can have a significant role in the development of PDAC, suggesting a significant correlation between miRs and Cd exposure during PDAC progression. Further studies are needed to investigate the precise role of miRs in PDAC progression as well as the role of Cd and other environmental pollutants.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| | | | | | - Hunter Collins
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Lauren York
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Katherine Mani
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Elizabeth Valle
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - David Wallace
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| |
Collapse
|
8
|
Kim SH, Choi S, Lee WS. Bevacizumab and anexelekto inhibitor, TP-0903 inhibits TGF-β1-induced epithelial-mesenchymal transition of colon cancer cells. Anticancer Drugs 2022; 33:e453-e461. [PMID: 34538864 DOI: 10.1097/cad.0000000000001239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence of colorectal cancer (CRC) is reported to be increasing nowadays, with a large proportion of newly diagnosed CRC patients being affected by metastasis. Epithelial-mesenchymal transition (EMT) is an important event in the development of metastasis of CRC. In this study, we investigated whether the anticancer drug bevacizumab and anexelekto inhibitor, TP-0903, regulate EMT of colon cancer cells induced by transforming growth factor-beta 1 (TGF-β1). Using quantitative real-time PCR and western blot analysis, we found that bevacizumab and TP-0903 decreased the expression levels of fibronectin, alpha-smooth muscle actin, and vimentin, whereas they restored E-cadherin expression in TGF-β1-exposed SW480 and HCT116 cells. In addition, we elucidated that bevacizumab and TP-0903 inhibited the migration and invasion of TGF-β1-exposed colon cancer cells using scratched wound healing, transwell migration, and Matrigel-coated invasion assays. Finally, we discovered that bevacizumab and TP-0903 inactivated the Smad 2/3 signaling pathway in TGF-β1-exposed SW480 and HCT116 cells. Therefore, we suggest that treatment of bevacizumab and TP-0903 inhibits TGF-β1-induced EMT of colon cancer cells through inactivation of the Smad 2/3 signaling pathway.
Collapse
Affiliation(s)
- Se-Hee Kim
- Gachon Medical Research Institute, Gil Medical Center, Gachon University
| | - Sangtae Choi
- Department of Surgery and Peritoneal Surface Malignancy Clinic, Gil Medical Center, Colloege of Medicine, Gachon University, Incheon, Korea
| | - Won-Suk Lee
- Department of Surgery and Peritoneal Surface Malignancy Clinic, Gil Medical Center, Colloege of Medicine, Gachon University, Incheon, Korea
| |
Collapse
|
9
|
SPTBN2 regulated by miR-424-5p promotes endometrial cancer progression via CLDN4/PI3K/AKT axis. Cell Death Dis 2021; 7:382. [PMID: 34887379 PMCID: PMC8660803 DOI: 10.1038/s41420-021-00776-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Endometrioid Endometrial Cancer (EEC) is the main subtype of endometrial cancer. In our study, we demonstrated that SPTBN2 was significantly overexpressed in EEC tissues. Upregulated SPTBN2 expression was positively associated with poor prognosis. In addition, we testified that SPTBN2 knockdown significantly inhibited the proliferation, migration, and invasion of EEC cells. Moreover, we found SPTBN2 could interact with CLDN4 to promote endometrial cancer metastasis via PI3K/AKT pathway. Then we further demonstrated that CLDN4 is upregulated in EEC and promotes EEC metastasis. CLDN4 overexpression could partially reversed the decrease in cell migration and invasion caused by SPTBN2 downregulation. In addition, we confirmed that SPTBN2 was a target of miR-424-5p, which plays a tumor suppressor in endometrial cancer. Rescue experiments showed that inhibition of SPTBN2 could partially reverse the effect of miR-424-5p in EEC. In conclusion, we demonstrated that by acting as a significant target of miR-424-5p, SPTBN2 could interact with CLDN4 to promote endometrial cancer metastasis via PI3K/AKT pathway in EEC. Our study revealed the prognostic and metastatic effects of SPTBN2 in EEC, suggesting that SPTBN2 could serve as a prognostic biomarker and a target for metastasis therapy.
Collapse
|
10
|
Knockdown of microRNA-214-3p Promotes Tumor Growth and Epithelial-Mesenchymal Transition in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13235875. [PMID: 34884984 PMCID: PMC8656576 DOI: 10.3390/cancers13235875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Prostate Cancer is the second leading cause of cancer-related deaths in the United States. In this study, we analyzed a molecule known as a microRNA, which regulates the expression of genes. microRNAs are involved in processes related to cancer onset and progression. Abnormal expression of microRNAs can promote prostate cancer. This study showed that knockdown of microRNA miR-214-3p enhanced the progression and of prostate cancer. In addition, miR-214 regulated the expression of many genes. These results are useful to better understand the function of miR-214-3p in prostate cancer and can be a useful target in the treatment of the disease. Abstract Abnormal expression of microRNA miR-214-3p (miR-214) is associated with multiple cancers. In this study, we assessed the effects of CRISPR/Cas9 mediated miR-214 depletion in prostate cancer (PCa) cells and the underlying mechanisms. Knockdown of miR-214 promoted PCa cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and increased resistance to anoikis, a key feature of PCa cells that undergo metastasis. The reintroduction of miR-214 in miR-214 knockdown cells reversed these effects and significantly suppressed cell proliferation, migration, and invasion. These in vitro studies are consistent with the role of miR-214 as a tumor suppressor. Moreover, miR-214 knockout increased tumor growth in PCa xenografts in nude mice supporting its anti-oncogenic role in PCa. Knockdown of miR-214 increased the expression of its target protein, Protein Tyrosine Kinase 6 (PTK6), a kinase shown to promote oncogenic signaling and tumorigenesis in PCa. In addition, miR-214 modulated EMT as exhibited by differential regulation of E-Cadherin, N-Cadherin, and Vimentin both in vitro and in vivo. RNA-seq analysis of miR-214 knockdown cells revealed altered gene expression related to PCa tumor growth pathways, including EMT and metastasis. Collectively, our findings reveal that miR-214 is a key regulator of PCa oncogenesis and is a potential novel therapeutic target for the treatment of the disease.
Collapse
|
11
|
Interplay of Immunometabolism and Epithelial-Mesenchymal Transition in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22189878. [PMID: 34576042 PMCID: PMC8466075 DOI: 10.3390/ijms22189878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) and metabolic reprogramming in cancer cells are the key hallmarks of tumor metastasis. Since the relationship between the two has been well studied, researchers have gained increasing interest in the interplay of cancer cell EMT and immune metabolic changes. Whether the mutual influences between them could provide novel explanations for immune surveillance during metastasis is worth understanding. Here, we review the role of immunometabolism in the regulatory loop between tumor-infiltrating immune cells and EMT. We also discuss the challenges and perspectives of targeting immunometabolism in cancer treatment.
Collapse
|
12
|
Turkistani S, Sugita BM, Fadda P, Marchi R, Afsari A, Naab T, Apprey V, Copeland RL, Campbell MC, Cavalli LR, Kanaan Y. A panel of miRNAs as prognostic markers for African-American patients with triple negative breast cancer. BMC Cancer 2021; 21:861. [PMID: 34315420 PMCID: PMC8317413 DOI: 10.1186/s12885-021-08573-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To investigate the global expression profile of miRNAs, their impact on cellular signaling pathways, and their association with poor prognostic parameters in African-American (AA) patients with triple negative breast cancer (TNBC). METHODS Twenty-five samples of AA TNBC patients were profiled for global miRNA expression and stratified considering three clinical-pathological parameters: tumor size, lymph node (LN), and recurrence (REC) status. Differential miRNA expression analysis was performed for each parameter, and their discriminatory power was determined by Receiver Operating Characteristic (ROC) curve analysis. KMplotter was assessed to determine the association of the miRNAs with survival, and functional enrichment analysis to determine the main affected pathways and miRNA/mRNA target interactions. RESULTS A panel of eight, 23 and 27 miRNAs were associated with tumor size, LN, and REC status, respectively. Combined ROC analysis of two (miR-2117, and miR-378c), seven (let-7f-5p, miR-1255b-5p, miR-1268b, miR-200c-3p, miR-520d, miR-527, and miR-518a-5p), and three (miR-1200, miR-1249-3p, and miR-1271-3p) miRNAs showed a robust discriminatory power based on tumor size (AUC = 0.917), LN (AUC = 0.945) and REC (AUC = 0.981) status, respectively. Enrichment pathway analysis revealed their involvement in proteoglycans and glycan and cancer-associated pathways. Eight miRNAs with deregulated expressions in patients with large tumor size, positive LN metastasis, and recurrence were significantly associated with lower survival rates. Finally, the construction of miRNA/mRNA networks based in experimentally validated mRNA targets, revealed nodes of critical cancer genes, such as AKT1, BCL2, CDKN1A, EZR and PTEN. CONCLUSIONS Altogether, our data indicate that miRNA deregulated expression is a relevant biological factor that can be associated with the poor prognosis in TNBC of AA patients, by conferring to their TNBC cells aggressive phenotypes that are reflected in the clinical characteristics evaluated in this study.
Collapse
Affiliation(s)
- Safaa Turkistani
- Department of Microbiology, Howard University Cancer Center, Howard University, Washington DC, USA
| | - Bruna M Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rafael Marchi
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Ali Afsari
- Department of Pathology, Howard University Hospital, Washington DC, USA
| | - Tammey Naab
- Department of Pathology, Howard University Hospital, Washington DC, USA
| | - Victor Apprey
- Department of Community and Family Medicine, Howard University, Washington DC, USA
| | - Robert L Copeland
- Department of Pharmacology, College of Medicine and Cancer Center, Howard University, Washington DC, USA
| | | | - Luciane R Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA.
| | - Yasmine Kanaan
- Department of Microbiology, Howard University Cancer Center, Howard University, Washington DC, USA
| |
Collapse
|
13
|
MicroRNAs in Epithelial-Mesenchymal Transition Process of Cancer: Potential Targets for Chemotherapy. Int J Mol Sci 2021; 22:ijms22147526. [PMID: 34299149 PMCID: PMC8305963 DOI: 10.3390/ijms22147526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decades, a kind of small non-coding RNA molecules, called as microRNAs, has been applied as negative regulators in various types of cancer treatment through down-regulation of their targets. More recent studies exert that microRNAs play a critical role in the EMT process of cancer, promoting or inhibiting EMT progression. Interestingly, accumulating evidence suggests that pure compounds from natural plants could modulate deregulated microRNAs to inhibit EMT, resulting in the inhibition of cancer development. This small essay is on the purpose of demonstrating the significance and function of microRNAs in the EMT process as oncogenes and tumor suppressor genes according to studies mainly conducted in the last four years, providing evidence of efficient target therapy. The review also summarizes the drug candidates with the ability to restrain EMT in cancer through microRNA regulation.
Collapse
|
14
|
Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, Hamanishi J, Baba T, Matsumura N, Mandai M. Tumor Immune Microenvironment during Epithelial-Mesenchymal Transition. Clin Cancer Res 2021; 27:4669-4679. [PMID: 33827891 DOI: 10.1158/1078-0432.ccr-20-4459] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been shown to play a critical role in tumor development from initiation to metastasis. EMT could be regarded as a continuum, with intermediate hybrid epithelial and mesenchymal phenotypes having high plasticity. Classical EMT is characterized by the phenotype change of epithelial cells to cells with mesenchymal properties, but EMT is also associated with multiple other molecular processes, including tumor immune evasion. Some previous studies have shown that EMT is associated with the cell number of immunosuppressive cells, such as myeloid-derived suppressor cells, and the expression of immune checkpoints, such as programmed cell death-ligand 1, in several cancer types. At the molecular level, EMT transcriptional factors, including Snail, Zeb1, and Twist1, produce or attract immunosuppressive cells or promote the expression of immunosuppressive checkpoint molecules via chemokine production, leading to a tumor immunosuppressive microenvironment. In turn, immunosuppressive factors induce EMT in tumor cells. This feedback loop between EMT and immunosuppression promotes tumor progression. For therapy directly targeting EMT has been challenging, the elucidation of the interactive regulation of EMT and immunosuppression is desirable for developing new therapeutic approaches in cancer. The combination of immune checkpoint inhibitors and immunotherapy targeting immunosuppressive cells could be a promising therapy for EMT.
Collapse
Affiliation(s)
- Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan.
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Fushimi-ku, Kyoto, Japan
| | - Masayo Ukita
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Morioka, Iwate, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medicine, Kindai University, Osaka-sayama, Osaka, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
15
|
Bier A, Hong X, Cazacu S, Goldstein H, Rand D, Xiang C, Jiang W, Ben-Asher HW, Attia M, Brodie A, She R, Poisson LM, Brodie C. miR-504 modulates the stemness and mesenchymal transition of glioma stem cells and their interaction with microglia via delivery by extracellular vesicles. Cell Death Dis 2020; 11:899. [PMID: 33093452 PMCID: PMC7581800 DOI: 10.1038/s41419-020-03088-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is a highly aggressive tumor with poor prognosis. A small subpopulation of glioma stem cells (GSCs) has been implicated in radiation resistance and tumor recurrence. In this study we analyzed the expression of miRNAs associated with the functions of GSCs using miRNA microarray analysis of these cells compared with human neural stem cells. These analyses identified gene clusters associated with glioma cell invasiveness, axonal guidance, and TGF-β signaling. miR-504 was significantly downregulated in GSCs compared with NSCs, its expression was lower in GBM compared with normal brain specimens and further decreased in the mesenchymal glioma subtype. Overexpression of miR-504 in GSCs inhibited their self-renewal, migration and the expression of mesenchymal markers. The inhibitory effect of miR-504 was mediated by targeting Grb10 expression which acts as an oncogene in GSCs and GBM. Overexpression of exogenous miR-504 resulted also in its delivery to cocultured microglia by GSC-secreted extracellular vesicles (EVs) and in the abrogation of the GSC-induced polarization of microglia to M2 subtype. Finally, miR-504 overexpression prolonged the survival of mice harboring GSC-derived xenografts and decreased tumor growth. In summary, we identified miRNAs and potential target networks that play a role in the stemness and mesenchymal transition of GSCs and the miR-504/Grb10 pathway as an important regulator of this process. Overexpression of miR-504 exerted antitumor effects in GSCs as well as bystander effects on the polarization of microglia via delivery by EVs.
Collapse
Affiliation(s)
- Ariel Bier
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xin Hong
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Simona Cazacu
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Hodaya Goldstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Daniel Rand
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Cunli Xiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Wei Jiang
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Moshe Attia
- Department of Neurosurgery, Sheba Medical Center, Henry Ford Hospital, Detroit, MI, USA
| | - Aharon Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ruicong She
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Laila M Poisson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Chaya Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
- Davidson Laboratory of Cell Signaling and Tumorigenesis, Hermelin Brain Tumor Center, Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
16
|
Song XZ, Xu XJ, Ren XN, Ruan XX, Wang YL, Yao TT. LncRNA ANCR Suppresses the Progression of Hepatocellular Carcinoma Through the Inhibition of Wnt/β-Catenin Signaling Pathway. Onco Targets Ther 2020; 13:8907-8917. [PMID: 32982283 PMCID: PMC7490438 DOI: 10.2147/ott.s260556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Our study aimed to investigate the effect of anti-differentiation noncoding RNA (ANCR) on hepatocellular carcinoma (HCC) and its potential molecular mechanisms. Methods The expression of ANCR was detected by qRT-RCR in both HCC tissues and HCC cells. Moreover, the relationship between ANCR expression and clinical parameters in HCC patients was investigated. The proliferation, cell clones, migration, invasion and apoptosis of MHCC97H and HCCLM3 cells were measured by MTT assay, colony formation assay, transwell assay and flow cytometry, respectively. The expressions of N-cadherin, vimentin, E-cadherin, cleaved caspase-3, Bax, Bcl-2, Wnt1, β-catenin and GSK-3β in MHCC97H and HCCLM3 cells were measured by Western blot. Results Our results showed that ANCR was lowly expressed in both HCC tissues and HCC cells. ANCR expression was closely associated with tumor size, tumor-node-metastasis (TNM) stages and vascular invasion in HCC. ANCR could dramatically inhibit cell proliferation, migration and invasion, as well as promote apoptosis in MHCC97H and HCCLM3 cells. ANCR could significantly increase the expression of cleaved caspase-3, Bax, E-cadherin and GSK-3β but reduce the expression of Bcl-2, N-cadherin, vimentin, Wnt1 and β-catenin in MHCC97H and HCCLM3 cells. In addition, Wnt/β-catenin pathway inhibitor (IWP-2) partially reversed the effects of silencing ANCR on the proliferation, migration, invasion and apoptosis of HCCLM3 cells. Conclusion Our study demonstrated that ANCR can suppress cell proliferation, migration and invasion, as well as promote apoptosis of HCC cells via modulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xue-Zhen Song
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Xiao-Jun Xu
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Xiao-Ning Ren
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Xiao-Xuan Ruan
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Yi-Li Wang
- Department of Hematology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| | - Ting-Ting Yao
- Department of Blood Transfusion, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, People's Republic of China
| |
Collapse
|
17
|
Lu J, Zhao Z, Ma Y. miR-186 Represses Proliferation, Migration, Invasion, and EMT of Hepatocellular Carcinoma via Directly Targeting CDK6. Oncol Res 2020; 28:509-518. [PMID: 32698940 PMCID: PMC7751224 DOI: 10.3727/096504020x15954139263808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the effect of miR-186 on proliferation, migration, invasion, and epithelialmesenchymal transition (EMT) of hepatocellular carcinoma (HCC). In this work, miR-186 was downregulated in HCC tissues and cells, and low miR-186 level helped predict the occurrence of vascular invasion and poor prognosis in patients with HCC. miR-186 overexpression inhibited cell proliferation and tumor growth in nude mice, repressed migration and invasion abilities, and enhanced apoptosis in HCC cells. miR-186 also retarded progression of EMT. miR-186 directly bound to the 3-untranslated regions of cyclin-dependent kinase 6 (CDK6) to inhibit its expression. Overexpression of CDK6 markedly reversed inhibitory effects of miR-186 on proliferation, apoptosis, migration, and invasion of HCC cells. Conversely, inhibition of CDK6 exerted synergic effect on the biological functions of miR-186. In conclusion, miR-186 represses proliferation, migration, invasion, and EMT, and induces apoptosis through targeting CDK6 in HCC, which may provide a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Junfeng Lu
- Department of Vascular Surgery, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong UniversityJinanP.R. China
| | - Zhongsong Zhao
- Department of Gastroenterology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong UniversityJinanP.R. China
| | - Yanhong Ma
- Department of Ultrasound, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong UniversityJinanP.R. China
| |
Collapse
|
18
|
Kim TW, Lee YS, Yun NH, Shin CH, Hong HK, Kim HH, Cho YB. MicroRNA-17-5p regulates EMT by targeting vimentin in colorectal cancer. Br J Cancer 2020; 123:1123-1130. [PMID: 32546833 PMCID: PMC7524803 DOI: 10.1038/s41416-020-0940-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 01/29/2023] Open
Abstract
Background Epithelial–mesenchymal transition (EMT) is the most common cause of death in colorectal cancer (CRC). In this study, we investigated the functional roles of miRNA-17-5p in EMT of CRC cells. Methods In order to determine if miRNA-17-5p regulated EMT, the precursors and inhibitors of miR-17-5p were transduced into four CRC cells. To evaluate the regulatory mechanism, we performed argonaute 2 (Ago2) immunoprecipitation (IP) and luciferase assay. In addition, we used an intra-splenic injection mouse model of BALB/c nude mice to investigate the metastatic potential of miRNA-17-5p in vivo. Results The miRNA-17-5p expression was lower in primary CRC tissues with metastasis than in primary CRC tissues without metastasis in our RNA sequencing data of patient tissue. Real-time quantitative PCR revealed that miRNA-17-5p was inversely correlated with that of vimentin in five CRC cell lines. Over-expression of miRNA-17-5p decreased vimentin expression and inhibited cell migration and invasion in both LoVo and HT29 cells. However, inhibition of miRNA-17-5p showed the opposite effect. Ago2 IP and luciferase assay revealed that miRNA-17-5p directly bound to the 3′UTR of VIM mRNA. Furthermore, miRNA-17-5p inhibited the metastasis of CRC into liver in vivo. Conclusions Our results demonstrated that miRNA-17-5p regulates vimentin expression, thereby regulating metastasis of CRC.
Collapse
Affiliation(s)
- Tae Won Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yeo Song Lee
- Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Nak Hyeon Yun
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Chang Hoon Shin
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hye Kyung Hong
- Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. .,Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.
| | - Yong Beom Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. .,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Deji QZ, Yan F, Zhaba WD, Liu YJ, Yin J, Huang ZP. Cross-talk between microRNA-let7c and transforming growth factor-β2 during epithelial-to-mesenchymal transition of retinal pigment epithelial cells. Int J Ophthalmol 2020; 13:693-700. [PMID: 32420214 DOI: 10.18240/ijo.2020.05.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
AIM To explore the roles of microRNA-let7c (miR-let7c) and transforming growth factor-β2 (TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelial cells. METHODS Retinal pigment epithelial (ARPE-19) cells were cultured with no serum for 12h, and then with recombinant human TGF-β2 for different lengths of time. ARPE-19 cells were transfected with 1×106 TU/mL miR-let7c mimcs (miR-let7cM), miR-let7c mimcs negative control (miR-let7cMNC) and miR-let7c inhibitor (miR-let7cI) using the transfection reagent. The expression of keratin-18, vimentin, N-cadherin, IKB alpha, p65 were detected by Western blot, quantitative polymerase chain reaction and immunofluorescence. RESULTS The expression of miR-let7c was dramatically reduced and the nuclear factor-kappa B (NF-κB) signaling pathway was activated after induction by TGF-β2 (P<0.05). In turn, overexpressed miR-let7c significantly inhibited TGF-β2-induced EMT (P<0.05). However, miR-let7c was unable to inhibit TGF-β2-induced EMT when the NF-κB signaling pathway was inhibited by BAY11-7082 (P<0.01). CONCLUSION The miR-let7c regulates TGF-β2-induced EMT through the NF-κB signaling pathway in ARPE-19 cells.
Collapse
Affiliation(s)
- Qu-Zhen Deji
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Feng Yan
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wang-Dui Zhaba
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Ya-Jun Liu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Jie Yin
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhen-Ping Huang
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
20
|
Zhou C, Guo Z, Xu L, Jiang H, Sun P, Zhu X, Mu X. PFND1 Predicts Poor Prognosis of Gastric Cancer and Promotes Cell Metastasis by Activating the Wnt/β-Catenin Pathway. Onco Targets Ther 2020; 13:3177-3186. [PMID: 32368077 PMCID: PMC7170631 DOI: 10.2147/ott.s236929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background Prefoldin (PFDN) subunits have recently been found to function importantly in various tumor types, while the role of PFDN subunit 1 (PFDN1) in gastric cancer (GC) remains largely unknown. Herein, we aimed to investigate the clinical significance, the biological role and the underlying mechanism of PFDN1 in GC development. Materials and Methods PFDN1 expression levels were measured in human GC specimens by quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry. Furthermore, the effects of aberrant PFDN1 expression on GC cells behavior were assessed by wound-healing assay and transwell assay in vitro, and metastasis assay in nude mice, as well as Wnt/β-catenin signaling-induced epithelial-mesenchymal transition (EMT)-related markers by qRT-PCR and Western blot. Results PFDN1 levels were significantly upregulated in GC tissues compared with those in matched adjacent normal tissues. PFDN1 upregulation correlated strongly with clinical metastasis and unfavorable prognosis for GC patients. In vitro and in vivo studies revealed that PFDN1 facilitated GC cell migration, invasion and metastasis. Mechanically, PFDN1 modulated GC cell behavior by activating Wnt/β-catenin signaling-mediated EMT. Conclusion These results suggested a central role of PFDN1 in GC metastatic development via the Wnt/β-catenin pathway, thus providing a potential therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| | - Zhiyuan Guo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| | - Liqun Xu
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| | - Haohai Jiang
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| | - Pengfei Sun
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiangming Mu
- Department of General Surgery, Yancheng City No.1 People's Hospital, Yancheng, People's Republic of China
| |
Collapse
|
21
|
Dong Y, Zheng Q, Wang Z, Lin X, You Y, Wu S, Wang Y, Hu C, Xie X, Chen J, Gao D, Zhao Y, Wu W, Liu Y, Ren Z, Chen R, Cui J. Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis. J Hematol Oncol 2019; 12:112. [PMID: 31703598 PMCID: PMC6839087 DOI: 10.1186/s13045-019-0795-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Increased liver stiffness exerts a detrimental role in driving hepatocellular carcinoma (HCC) malignancy and progression, and indicates a high risk of unfavorable outcomes. However, it remains largely unknown how liver matrix stiffness as an independent cue triggers epithelial-mesenchymal transition (EMT) and facilitates HCC metastasis. Methods Buffalo rat HCC models with different liver stiffness backgrounds and an in vitro Col I-coated cell culture system with tunable stiffness were used in the study to explore the effects of matrix stiffness on EMT occurrence and its underlying molecular mechanism. Clinical significance of liver stiffness and key molecules required for stiffness-induced EMT were validated in HCC cohorts with different liver stiffness. Results HCC xenografts grown in higher stiffness liver exhibited worse malignant phenotypes and higher lung metastasis rate, suggesting that higher liver stiffness promotes HCC invasion and metastasis. Cell tests in vitro showed that higher matrix stiffness was able to strikingly strengthen malignant phenotypes and independently induce EMT occurrence in HCC cells, and three signaling pathways converging on Snail expression participated in stiffness-mediated effect on EMT including integrin-mediated S100A11 membrane translocation, eIF4E phosphorylation, and TGF β1 autocrine. Additionally, the key molecules required for stiffness-induced EMT were highly expressed in tumor tissues of HCC patients with higher liver stiffness and correlated with poor tumor differentiation and higher recurrence. Conclusions Higher matrix stiffness as an initiator triggers epithelial-mesenchymal transition (EMT) in HCC cells independently, and three signaling pathways converging on Snail expression contribute to this pathological process. This work highlights a significant role of biomechanical signal in triggering EMT and facilitating HCC invasion and metastasis.
Collapse
Affiliation(s)
- Yinying Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiahui Lin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yang You
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaoying Xie
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China.
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
22
|
Zhu X, Chen L, Liu L, Niu X. EMT-Mediated Acquired EGFR-TKI Resistance in NSCLC: Mechanisms and Strategies. Front Oncol 2019; 9:1044. [PMID: 31681582 PMCID: PMC6798878 DOI: 10.3389/fonc.2019.01044] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Acquired resistance inevitably limits the curative effects of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which represent the classical paradigm of molecular-targeted therapies in non-small-cell lung cancer (NSCLC). How to break such a bottleneck becomes a pressing problem in cancer treatment. The epithelial-mesenchymal transition (EMT) is a dynamic process that governs biological changes in various aspects of malignancies, notably drug resistance. Progress in delineating the nature of this process offers an opportunity to develop clinical therapeutics to tackle resistance toward anticancer agents. Herein, we seek to provide a framework for the mechanistic underpinnings on the EMT-mediated acquisition of EGFR-TKI resistance, with a focus on NSCLC, and raise the question of what therapeutic strategies along this line should be pursued to optimize the efficacy in clinical practice.
Collapse
Affiliation(s)
- Xuan Zhu
- Institute of Translational Medicine, China Medical University, Shenyang, China.,Department of Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lijie Chen
- Department of Third Clinical College, China Medical University, Shenyang, China
| | - Ling Liu
- Department of College of Stomatology, China Medical University, Shenyang, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| |
Collapse
|
23
|
Li C, Zheng H, Hou W, Bao H, Xiong J, Che W, Gu Y, Sun H, Liang P. Long non-coding RNA linc00645 promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-205-3p-ZEB1 axis in glioma. Cell Death Dis 2019; 10:717. [PMID: 31558707 PMCID: PMC6763487 DOI: 10.1038/s41419-019-1948-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/06/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates long noncoding RNAs (lncRNA) play a vital role in tumor progression. However, the role of linc00645-induced accelerated malignant behavior in glioblastoma (GBM) remains unknown. In the present study, linc00645 expression was significantly upregulated in GBM tissues and cell lines. High level of linc00645 was associated with poor overall survival in GBM patients. Knockdown of linc00645 suppressed the proliferation, stemness, migration, invasion, and reversed transforming growth factor (TGF)-β-induced motility of glioma cell lines. Furthermore, linc00645 directly interacted with miR-205-3p and upregulated of miR-205-3p impeded efficiently the increase of ZEB1 induced by linc00645 overexpression. Moreover, knockdown of linc00645 significantly suppressed the progression of glioma cells in vivo. miR-205-3p was a target of linc00645 and linc00645 modulates TGF-β-induced glioma cell migration and invasion via miR-205-3p. Taken together, our findings identified the linc00645/miR-205-3p/ZEB1 signaling axis as a key player in EMT of glioma cells triggered by TGF-β. These data elucidated that linc00645 plays an oncogenic role in glioma and it may serve as a prognostic biomarker and a potential therapeutic target for the treatment of glioma in humans.
Collapse
Affiliation(s)
- Chenlong Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Hongshan Zheng
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Weiliang Hou
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Jinsheng Xiong
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Wanli Che
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Yifei Gu
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China
| | - Haiming Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, 150001, P.R. China.
- Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, Heilongjiang, 150001, P.R. China.
| | - Peng Liang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150001, P.R. China.
| |
Collapse
|
24
|
Ma X, Liu J, Li J, Li Y, Le VM, Li S, Liang X, Liu L, Liu J. miR-139-5p reverses stemness maintenance and metastasis of colon cancer stem-like cells by targeting E2-2. J Cell Physiol 2019; 234:22703-22718. [PMID: 31120140 DOI: 10.1002/jcp.28836] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022]
Abstract
Colon cancer stem cells (CCSCs) stand for a critical subpopulation of colon cancer cells that possess self-renewal and multilineage differentiation potentials and drive tumorigenicity. Due to their impact on treatment tolerance, CCSCs have been a hot research topic in the past few years. We have previously reported that miR-139-5p is a vital tumor repressive noncoding RNA whose level decreases in the clinical colon cancer samples with the increase of tumor malignancy. This research discovered that miR-139-5p targets the Wnt/β-catenin/TCF7L2 downstream effector E2-2 in CCSCs. E2-2 is a pivot molecule in the negative feedback loop of miR-139-5p/Wnt/β-catenin/TCF7L2. Its small interfering RNA reverses the stemness maintenance and epithelial-mesenchymal transition of colon cancer CSCs. This study provides a theoretical foundation for the clinical diagnosis and medical treatment of recurrent or metastatic colon cancer with miR-139-5p and its target E2-2.
Collapse
Affiliation(s)
- Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yueqi Li
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Van Minh Le
- Research Center of Ginseng and Medicinal Materials, National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Shaoyu Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lingshuang Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Shih JC, Lin HH, Hsiao AC, Su YT, Tsai S, Chien CL, Kung HN. Unveiling the role of microRNA-7 in linking TGF-β-Smad-mediated epithelial-mesenchymal transition with negative regulation of trophoblast invasion. FASEB J 2019; 33:6281-6295. [PMID: 30789794 DOI: 10.1096/fj.201801898rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Several pregnancy complications result from abnormal trophoblast invasion. The dichotomous effect of TGF-β on epithelial-mesenchymal transition (EMT) between trophoblast invasion and cancer progression remains unknown and a critical concern. We attenuated the expression of TGF-β type 1 receptor (coding by TGFBR1) with RNA interference in trophoblastic cells and significantly enhanced the trophoblastic invasion. Analysis of microRNA profiles in trophoblasts indicated microRNA-7 as a key molecule linking TGF-β with the negative regulation of trophoblast invasion. We then attenuated TGFBR1 and miR-7 transcription by transducing either short hairpin RNA targeting TGFBR1 or anti-miR-7-locked nucleonic acid, and we observed an up-regulation of EMT-related transcription factors (TFs) and their downstream effectors, causing a mesenchymal transition of trophoblasts. Conversely, overexpression of TGFBR1 or miR-7 led to the epithelial transition of trophoblasts. Our results showed that TGF-β-induced miR-7 expression negatively modulated the TGF-β-SMAD family member 2-mediated EMT pathway via targeting EMT-related TFs and down-regulating their mesenchymal markers. These findings possibly explain, at least in part, why TGF-β exerts an opposite effect on EMT during trophoblast invasion and cancer progression.-Shih, J.-C., Lin, H.-H., Hsiao, A.-C., Su, Y.-T., Tsai, S., Chien, C.-L., Kung, H.-N. Unveiling the role of microRNA-7 in linking TGF-β-Smad-mediated epithelial-mesenchymal transition with negative regulation of trophoblast invasion.
Collapse
Affiliation(s)
- Jin-Chung Shih
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hua-Heng Lin
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - An-Che Hsiao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Su
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shawn Tsai
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Liang Chien
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Pang K, Zhang Z, Hao L, Shi Z, Chen B, Zang G, Dong Y, Li R, Liu Y, Wang J, Zhang J, Cai L, Han X, Han C. The ERH gene regulates migration and invasion in 5637 and T24 bladder cancer cells. BMC Cancer 2019; 19:225. [PMID: 30866868 PMCID: PMC6417071 DOI: 10.1186/s12885-019-5423-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background This study aimed to determine whether the enhancer of the rudimentary homolog (ERH) gene regulates cell migration and invasion in human bladder urothelial carcinoma (BUC) T24 cells and the underlying mechanism. Methods First, we knocked down ERH in BUC T24 and 5637 cells by shRNA and then used wound healing cell scratch migration assays, transwell cell migration assays, transwell cell invasion chamber experiments and nude mouse tail vein transfer assays to determine the migration and invasion ability after ERH was knocked down. Moreover, we used gene expression profiling chip analysis and further functional experiments to explore the possible mechanism through which ERH knockdown downregulated metastasis ability in T24 cells. Results Wound healing cell scratch migration assays, transwell cell migration assays, transwell cell invasion chamber experiments and nude mouse tail vein transfer assays all showed that the metastasis ability was significantly inhibited in human BUC T24 and 5637 cells with ERH knockdown. A gene expression profiling chip analysis in T24 cells showed that the MYC gene may be an important downstream target of the ERH gene, and the functional experiments showed that MYC is a functional target of ERH in BUC T24 cells. Conclusion ERH knockdown could inhibit the metastasis of BUC T24 cells in vitro and in vivo. This study further explored the mechanism of the ERH gene in the metastasis of the T24 human bladder cancer cell line and found that ERH may regulate MYC gene expression. The results of this research provide a basis for the clinical application of ERH as a potential target for BUC treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5423-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China.,Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China.,College of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Tongshan New District, Xuzhou City, Jiangsu Province, China
| | - Zhiguo Zhang
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China.,Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China.,College of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Tongshan New District, Xuzhou City, Jiangsu Province, China
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Bo Chen
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Guanghui Zang
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Yang Dong
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China
| | - Rui Li
- Department of Central laboratory, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No, Jiangsu, 199, China
| | - Ying Liu
- Department of Central laboratory, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No, Jiangsu, 199, China
| | - Jie Wang
- Department of Central laboratory, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No, Jiangsu, 199, China
| | - Jianjun Zhang
- Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China
| | - Longjun Cai
- Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China
| | - Xiaoxiao Han
- Department of Reproductive Medicine, Shanghai First Maternity and Infant Hospital, No. 2699 Gaoke West Road, Pudong District, Shanghai, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Jiangsu Xuzhou Jiefang South Road, No.199, Jiangsu, China. .,Department of Urology, The third affiliated hospital of Soochow University, No.185, Juqian Street, Changzhou City, Jiangsu Province, China. .,College of Life Sciences, Jiangsu Normal University, 101 Shanghai Road, Tongshan New District, Xuzhou City, Jiangsu Province, China.
| |
Collapse
|
27
|
Zhu L, Yang N, Du G, Li C, Liu G, Liu S, Xu Y, Di Y, Pan W, Li X. LncRNA CRNDE promotes the epithelial-mesenchymal transition of hepatocellular carcinoma cells via enhancing the Wnt/β-catenin signaling pathway. J Cell Biochem 2019; 120:1156-1164. [PMID: 30430650 PMCID: PMC6587876 DOI: 10.1002/jcb.26762] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 01/31/2018] [Indexed: 01/24/2023]
Abstract
Colorectal neoplasia differentially expressed (CRNDE) is a significantly upregulated long noncoding RNA in hepatocellular carcinoma (HCC). CRNDE could promote cell proliferation, migration, and invasion, while its molecular mechanisms were still largely unclear. In this study, we investigated the expression and function of CRNDE. CRNDE was significantly upregulated in tumor tissues compared with adjacent normal tissues. In vitro, we revealed that knockdown of CRNDE inhibited cell proliferation, migration, and cell invasion capacities in HCC. Animal studies indicated that CRNDE knockdown represses both growth and metastasis of HCC tumors in vivo. Moreover, knockdown of CRNDE suppressed the cell epithelial-mesenchymal transition (EMT) process by increasing the expression of E-cadherin and ZO-1, whereas, decreasing the expression of N-cadherin, slug, twist, and vimentin in HCC cells. We also revealed that knockdown of CRNDE suppressed the Wnt/β-catenin signaling in HCC. Thus, CRNDE could modulate EMT of HCC cells and knockdown of CRNDE impaired the mesenchymal properties. CRNDE increased invasion of HCC cells might be through activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liying Zhu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Nenghong Yang
- Department of Hepatobiliary SurgerySurgery, Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Guiqin Du
- The First People's Hospital of GuiyangGuiyangGuizhouChina
| | - Chengcheng Li
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Guoqi Liu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Shengju Liu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yongjie Xu
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yanan Di
- Department of Clinical Laboratory MedicineBeifang Hospital of China North Industries Group CorporationBeijingChina
| | - Wei Pan
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Xing Li
- Department of Medical LaboratoryAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
28
|
Wu L, Wang T, He D, Li X, Jiang Y. miR-1 inhibits the proliferation of breast cancer stem cells by targeting EVI-1. Onco Targets Ther 2018; 11:8773-8781. [PMID: 30584335 PMCID: PMC6287527 DOI: 10.2147/ott.s188836] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Breast cancer stem cells (BCSCs) have been regarded as the key factor for treatment failure in breast cancer. The abnormal expression of miRNAs plays a significant role in different tumor types. However, the role of miR-1 in breast cancer remains poorly understood. The purpose of this study was to evaluate the effects of miR-1 on the proliferation and apoptosis of BCSCs. Materials and methods CD44+/CD24−/low/epithelial-specific antigen+ BCSCs were isolated by flow cytometry. Real-time PCR and Western blotting were used to determine the expression of miRNAs, mRNAs, and epithelial–mesenchymal transition (EMT)-related genes. Cell proliferation and apoptosis were measured using the Cell Counting Kit-8 assay and Annexin V-fluorescein isothiocyanate flow cytometry, respectively. Luciferase reporter assay was used to verify whether miR-1 targeted ecotropic virus integration-1 (EVI-1). The role of miR-1 in breast cancer in vivo was evaluated using BCSCs xenograft mouse models. Results In this study, we demonstrated that miR-1 was significantly downregulated in breast cancer tissues compared to the adjacent non-tumor tissues. The luciferase reporter assay verified that EVI-1 was a direct target of miR-1, and upregulation of miR-1 negatively correlated with the expression of EVI-1 in BCSCs at both the transcriptional and posttranslational levels. Furthermore, overexpression of miR-1 inhibited BCSCs proliferation and promoted apoptosis, which was reversed by the overexpression of EVI-1. In addition, we demonstrated that aberrant expression of miR-1 could regulate EMT-related genes in BCSCs. Finally, immunohistochemical staining demonstrated that EVI-1 expression was decreased in BCSCs tumors following intra-tumoral miR-1 agomir treatment compared to the control group. Conclusion miR-1 can negatively regulate the expression of EVI-1 and, thus, affect BCSCs proliferation, apoptosis, and EMT-related markers. Taken together, these findings demonstrate that miR-1 could be employed as a therapeutic strategy in the treatment of breast cancer.
Collapse
Affiliation(s)
- Lei Wu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang 110001, China,
| | - Tianyi Wang
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Dongning He
- Department of Medical Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaoxi Li
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang 110001, China,
| | - Youhong Jiang
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang 110001, China,
| |
Collapse
|
29
|
Kong P, Chen L, Yu M, Tao J, Liu J, Wang Y, Pan H, Zhou W, Wang S. miR-3178 inhibits cell proliferation and metastasis by targeting Notch1 in triple-negative breast cancer. Cell Death Dis 2018; 9:1059. [PMID: 30333478 PMCID: PMC6192997 DOI: 10.1038/s41419-018-1091-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) has a poorer outcome than other subtypes of breast cancer, and the discovery of dysregulated microRNA (miRNA) and their role in tumor progression has provided a new avenue for elucidating the mechanism involved in TNBC. In this study, we identified that miR-3178 was significantly reduced in TNBC, and the low miR-3178 expression correlated with poor overall survival in TNBC but not in non-TNBC. The ectopic overexpression of miR-3178 suppressed TNBC cell proliferation, invasion, and migration by inhibiting the epithelial-to-mesenchymal (EMT) transition. Notch1 was validated as the direct target gene of miR-3178, which was confirmed by the dual-luciferase reporter assay. miR-3178 decreased the expression of Notch1 and restoration of Notch1 expression attenuated the inhibitory effects of miR-3178 on cell proliferation, metastasis, and the EMT in TNBC. miR-3178 inhibited cell proliferation and metastasis by targeting Notch1 in TNBC, and the restoration of miR-3178 might be a potential therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Peng Kong
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Lie Chen
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Muxin Yu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Jing Tao
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Jiawei Liu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Yue Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, Jiangsu, China
| | - Hong Pan
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, Jiangsu, China.
| | - Wenbin Zhou
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, Jiangsu, China.
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, 210029, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Clinical Impact of Epithelial-to-Mesenchymal Transition Regulating MicroRNAs in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2018; 10:cancers10090328. [PMID: 30217058 PMCID: PMC6162771 DOI: 10.3390/cancers10090328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/30/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive carcinoma entities worldwide with early and rapid dissemination. Recently, we discussed the role of microRNAs as epigenetic regulators of Epithelial-to-Mesenchymal Transition (EMT) in PDAC. In this study, we investigated their value as diagnostic and prognostic markers in tissue and blood samples of 185 patients including PDAC, non-malignant pancreatic disorders, and age-matched healthy controls. Expression of the microRNA-200-family (microRNAs -141, -200a, -200b, -200c, -429) and microRNA-148a was significantly downregulated in tissue of PDAC Union internationale contre le cancer (UICC) Stage II. Correspondingly, stromal PDAC tissue showed strong expression of Fibronectin, Vimentin, and ZEB-1 (Zinc finger E-box-binding homeobox) versus low expression of E-cadherin. Transient transfection of microRNA-200b and microRNA-200c mimics resulted in the downregulation of their key target ZEB-1. Inversely, blood serum analyses of patients with PDAC UICC Stages II, III, and IV showed a significant over-expression of microRNA-200-family members, microRNA-148a, microRNA-10b, and microRNA-34a. Correspondingly, Enzyme-linked Immunosorbent Assay (ELISA) analyses revealed a significant over-expression of soluble E-cadherin in serum samples of PDAC patients versus healthy controls. The best diagnostic accuracy to distinguish between PDAC and non-PDAC in this patient collective could be achieved in tissue by microRNA-148a with an area under the receiver-operating-characteristic (ROC) curve (AUC) of 0.885 and in blood serum by a panel of microRNA-141, -200b, -200c, and CA.19-9 with an AUC of 0.890. Both diagnostic tools outreach the diagnostic performance of the currently most common diagnostic biomarker CA.19-9 (AUC of 0.834). Kaplan Meier survival analysis of this patient collective revealed an improved overall survival in PDAC patients with high expression of tissue-related microRNA-34a, -141, -200b, -200c, and -429. In conclusion, EMT-regulating microRNAs have great potential as liquid and solid biopsy markers in PDAC patients. Their prognostic and therapeutic benefits remain important tasks for future studies.
Collapse
|
31
|
Yu S, Li L, Tian W, Nie D, Mu W, Qiu F, Liu Y, Liu X, Wang X, Du Z, Chu W, Yang B. PEP06 polypeptide 30 exerts antitumour effect in colorectal carcinoma via inhibiting epithelial-mesenchymal transition. Br J Pharmacol 2018; 175:3111-3130. [PMID: 29722931 PMCID: PMC6031886 DOI: 10.1111/bph.14352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE PEP06, a polypeptide modified from endostatin, was investigated for its antitumour effects on colorectal cancer (CRC) and the possible mechanisms of this antitumour activity were examined in in vitro and in vivo models. EXPERIMENTAL APPROACH After PEP06 treatment, cell proliferation and migration assays were performed in CRC cells. Epithelial-mesenchymal transition (EMT) progression was determined by Western blotting, immunofluorescent staining and immunohistochemistry in vitro and in a residual xenograft model. MiRNAs regulated by PEP06 were identified by miRNA microarray and verified by in situ hybridization and quantitative real-time PCR. The interactions between PEP06 and integrin αvβ3 were determined with Biacore SA biochips. The cellular function of miR-146b-5p was validated by gain-of-function and loss-of-function approaches. A mouse model of lung metastasis was used to determine the effect of PEP06 on metastatic growth. KEY RESULTS PEP06 did not affect cell viability but reduced migration and EMT in SW620 and HCT116 cells. PEP06 significantly repressed the expression of miR-146b-5p in these two cell lines through binding to integrin αvβ3. MiR-146b-5p was shown to increase EMT by targeting Smad4, and the miR-146b-5p-Smad4 cascade regulated EMT in CRC. PEP06 also suppressed CRC pulmonary metastasis, increased survival of mice and hampered residual tumour growth by inhibiting EMT through down-regulating miR-146b-5p. CONCLUSIONS AND IMPLICATIONS PEP06 is a polypeptide that inhibits the growth and metastasis of colon cancer through its RGD motif binding to integrin αvβ3, thereby down-regulating miR-146b-5p to inhibit EMT in vitro and in vivo. It might have potential as a therapeutic for CRC.
Collapse
Affiliation(s)
- Siming Yu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Linna Li
- Department of Pharmacology and ToxicologyBeijing Institute of Radiation MedicineBeijingChina
| | - Wei Tian
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Dan Nie
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Wei Mu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Fang Qiu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yu Liu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Xinghan Liu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Xiaofeng Wang
- Department of Oral and Maxillofacial SurgeryThe 2nd Affiliated Hospital, Harbin Medical UniversityHarbinHeilongjiangChina
| | - Zhimin Du
- Department of Pharmacythe Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, the Heilongjiang Key Laboratory of Drug Research, Harbin Medical University)Harbin150086China
| | - Wen‐Feng Chu
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Baofeng Yang
- Department of Pharmacology (The State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
32
|
Roles of tRNA-derived fragments in human cancers. Cancer Lett 2018; 414:16-25. [DOI: 10.1016/j.canlet.2017.10.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022]
|
33
|
Shen S, Huang K, Wu Y, Ma Y, Wang J, Qin F, Ma J. A miR-135b-TAZ positive feedback loop promotes epithelial–mesenchymal transition (EMT) and tumorigenesis in osteosarcoma. Cancer Lett 2017; 407:32-44. [DOI: 10.1016/j.canlet.2017.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022]
|
34
|
Zangari J, Ilie M, Rouaud F, Signetti L, Ohanna M, Didier R, Roméo B, Goldoni D, Nottet N, Staedel C, Gal J, Mari B, Mograbi B, Hofman P, Brest P. Rapid decay of engulfed extracellular miRNA by XRN1 exonuclease promotes transient epithelial-mesenchymal transition. Nucleic Acids Res 2017; 45:4131-4141. [PMID: 27994032 PMCID: PMC5397191 DOI: 10.1093/nar/gkw1284] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/13/2016] [Indexed: 11/14/2022] Open
Abstract
Extracellular vesicles (EVs) have been shown to play an important role in intercellular communication as carriers of DNA, RNA and proteins. While the intercellular transfer of miRNA through EVs has been extensively studied, the stability of extracellular miRNA (ex-miRNA) once engulfed by a recipient cell remains to be determined. Here, we identify the ex-miRNA-directed phenotype to be transient due to the rapid decay of ex-miRNA. We demonstrate that the ex-miR-223-3p transferred from polymorphonuclear leukocytes to cancer cells were functional, as demonstrated by the decreased expression of its target FOXO1 and the occurrence of epithelial-mesenchymal transition reprogramming. We showed that the engulfed ex-miRNA, unlike endogenous miRNA, was unstable, enabling dynamic regulation and a return to a non-invasive phenotype within 8 h. This transient phenotype could be modulated by targeting XRN1/PACMAN exonuclease. Indeed, its silencing was associated with slower decay of ex-miR-223-3p and subsequently prolonged the invasive properties. In conclusion, we showed that the 'steady step' level of engulfed miRNA and its subsequent activity was dependent on the presence of a donor cell in the surroundings to constantly fuel the recipient cell with ex-miRNAs and of XRN1 exonuclease, which is involved in the decay of these imported miRNA.
Collapse
Affiliation(s)
- Joséphine Zangari
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, 06107 Nice France
| | - Marius Ilie
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, 06107 Nice France.,Université Côte d'Azur, CHU-Nice, Hospital-related Biobank (BB-0033-00025), FHU-OncoAge, 06000 Nice, France
| | | | - Laurie Signetti
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, 06107 Nice France
| | | | - Robin Didier
- Université Côte d'Azur, INSERM, C3M, 06200 Nice, France
| | - Barnabé Roméo
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, 06107 Nice France
| | - Dana Goldoni
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, 06107 Nice France
| | - Nicolas Nottet
- Université Côte d'Azur, CNRS, INSERM, IPMC, FHU-OncoAge, 06560 Valbonne, France
| | - Cathy Staedel
- Université de Bordeaux, INSERM, ARNA, 33076 Bordeaux, France
| | - Jocelyn Gal
- Antoine Lacassagne Cancer Center, Epidemiology and Biostatistics Unit, 06189 Nice, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS, INSERM, IPMC, FHU-OncoAge, 06560 Valbonne, France
| | - Baharia Mograbi
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, 06107 Nice France
| | - Paul Hofman
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, 06107 Nice France.,Université Côte d'Azur, CHU-Nice, Hospital-related Biobank (BB-0033-00025), FHU-OncoAge, 06000 Nice, France
| | - Patrick Brest
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, 06107 Nice France
| |
Collapse
|
35
|
Jiang ZS, Sun YZ, Wang SM, Ruan JS. Epithelial-mesenchymal transition: potential regulator of ABC transporters in tumor progression. J Cancer 2017; 8:2319-2327. [PMID: 28819436 PMCID: PMC5560151 DOI: 10.7150/jca.19079] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/06/2017] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) can directly contribute to some malignant phenotypes of tumor cells including invasion, metastasis and resistance to chemotherapy. Although EMT is widely demonstrated to play a critical role in chemoresistance and metastasis, the potential signaling network between EMT and drug resistance is still unclear. The distribution of drugs in the internal and external environment of the tumor cells is tightly linked with ATP-binding cassette (ABC) transporters. Recent studies have shown that ABC transporters expression changed continuously during EMT. We believe that EMT is an important regulator of ABC transporters. In this review, we discuss how EMT regulates ABC transporters and their potential linkages. And we hope the knowledge of EMT and ABC transporters will offer more effective targets to experimental research.
Collapse
Affiliation(s)
| | - Yan-Zi Sun
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shao-Ming Wang
- Molecular Biology Laboratory of Traditional Chinese Medicine, Fujian Provincial Hospital, Clinical College of Fujian Medical University, Fuzhou, China
| | - Jun-Shan Ruan
- Molecular Biology Laboratory of Traditional Chinese Medicine, Fujian Provincial Hospital, Clinical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
36
|
Lu W, Zhang H, Niu Y, Wu Y, Sun W, Li H, Kong J, Ding K, Shen HM, Wu H, Xia D, Wu Y. Long non-coding RNA linc00673 regulated non-small cell lung cancer proliferation, migration, invasion and epithelial mesenchymal transition by sponging miR-150-5p. Mol Cancer 2017; 16:118. [PMID: 28697764 PMCID: PMC5504775 DOI: 10.1186/s12943-017-0685-9] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Background The function of a new long non-coding RNA linc00673 remains unclear. While identified as an oncogenic player in non-small cell lung cancer (NSCLC), linc00673 was found to be anti-oncogenic in pancreatic ductal adenocarcinoma (PDAC). However whether linc00673 regulated malignancy and epithelial mesenchymal transition (EMT) has not been characterized. Methods Cell proliferation was assessed using CCK-8 and EdU assays, and cell migration and invasion were assessed using scratch assays and transwell invasion assays. Epithelial mesenchymal transition was examined using western blot, qRT-PCR and immunofluorescence staining. Interaction between miRNA and linc00673 was determined using luciferase reporter assays. In vivo experiments were performed to assess tumor formation. In addition, the expression data of NSCLC specimens of TCGA and patient survival data were utilized to explore the prognostic significance of linc00673. Results In the present study, we found high linc00673 expression was associated with poor prognosis of NSCLC patients. In vitro experiments showed linc00673 knockdown reversed TGF-β induced EMT, and miR-150-5p was predicted to target linc00673 through bioinformatics tools. Overexpression of miR-150-5p suppressed lin00673’s expression while inhibition of miR-150-5p led to significant upregulation of lin00673, suggesting that linc00673 could be negatively regulated by miR-150-5p, which was further confirmed by the inverse correlation between linc00673 and miR-150-5p in NSCLC patients’ specimen. Furthermore, we proved that miR-150-5p could directly target linc00673 through luciferase assay, so linc00673 could sponge miR-150-5p and modulate the expression of a key EMT regulator ZEB1 indirectly. In addition, miR-150-5p inhibition abrogated linc00673 silence mediated proliferation, migration, invasion and EMT suppressing effect. Moreover, the inhibition of linc00673 significantly attenuated the tumorigenesis ability of A549 cells in vivo. Conclusions We validated linc00673 as a novel oncogenic lncRNA and demonstrated the molecular mechanism by which it promotes NSCLC, which will advance our understanding of its clinical significance. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0685-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Lu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China.,Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yuequn Niu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China
| | - Yongfeng Wu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China
| | - Wenjie Sun
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hongyi Li
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China
| | - Jianlu Kong
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Kefeng Ding
- Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Han Wu
- Department of Ophthalmology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dajing Xia
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China.
| | - Yihua Wu
- Department of Toxicology, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou, People's Republic of China.
| |
Collapse
|
37
|
Lourenço AR, Coffer PJ. SOX4: Joining the Master Regulators of Epithelial-to-Mesenchymal Transition? Trends Cancer 2017; 3:571-582. [PMID: 28780934 DOI: 10.1016/j.trecan.2017.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/03/2023]
Abstract
The epithelial-to-mesenchymal transition (EMT) is an important developmental program exploited by cancer cells to gain mesenchymal features. Transcription factors globally regulating processes during EMT are often referred as 'master regulators' of EMT, and include members of the Snail and ZEB transcription factor families. The SRY-related HMG box (SOX) 4 transcription factor can promote tumorigenesis by endowing cells with migratory and invasive properties, stemness, and resistance to apoptosis, thereby regulating key aspects of the EMT program. We propose here that SOX4 should also be considered as a master regulator of EMT, and we review the molecular mechanisms underlying its function.
Collapse
Affiliation(s)
- Ana Rita Lourenço
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, The Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, The Netherlands.
| |
Collapse
|
38
|
Chao CC, Wu PH, Huang HC, Chung HY, Chou YC, Cai BH, Kannagi R. Downregulation of miR-199a/b-5p is associated with GCNT2 induction upon epithelial-mesenchymal transition in colon cancer. FEBS Lett 2017; 591:1902-1917. [PMID: 28542779 DOI: 10.1002/1873-3468.12685] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 11/08/2022]
Abstract
β-1,6-N-acetylglucosaminyltransferase 2 (GCNT2), which encodes a key glycosyltransferase for blood group I antigen synthesis, is induced upon epithelial-mesenchymal transition (EMT). Our results indicate that GCNT2 is upregulated upon EMT induced with epidermal growth factor and basic FGF in cultured human colon cancer cells. GCNT2 knockdown or overexpression decreases or increases, respectively, malignancy-related characteristics of colon cancer cells and I antigen levels. MiR-199a/b-5p is markedly downregulated upon EMT in colon cancer cells. Here, we find that miR-199a/b-5p consistently regulates GCNT2 expression in reporter assays and that it binds directly to the GCNT2 3' untranslated region intracellularly in RNA-induced silencing complex-trap assays. Overexpression of miR-199a/b-5p decreases GCNT2 expression and suppresses I antigen production. Based on these findings, we propose that miR-199a/b-5p regulates GCNT2 and I antigen expression in colon cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Chia-Chun Chao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Han Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Chi Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Hsiao-Yu Chung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,National RNAi Core Facility, Academia Sinica, Taipei, Taiwan
| | - Bi-He Cai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Reiji Kannagi
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
39
|
Gandellini P, Doldi V, Zaffaroni N. microRNAs as players and signals in the metastatic cascade: Implications for the development of novel anti-metastatic therapies. Semin Cancer Biol 2017; 44:132-140. [PMID: 28344166 DOI: 10.1016/j.semcancer.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 01/28/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. Increasing evidence emerging from human tumor preclinical models clearly indicates that specific miRNAs, collectively termed "metastamirs," play a functional role in different steps of the metastatic cascade, by exerting either pro- or anti-metastatic functions, and behave as signaling mediators to enable tumor cell to colonize a specific organ. miRNAs also actively participate in the proficient interaction of cancer cells with tumor microenvironment, either at the primary or at the metastatic site. Circulating miRNAs, released by multiple cell types, following binding to proteins or encapsulation in extracellular vesicles, play a main role in this cross-talk by acting as transferrable messages. The documented involvement of specific miRNAs in the dissemination process has aroused interest in the development of miRNA-based strategies for the treatment of metastasis. Preclinical research carried out in tumor experimental models, using both miRNA replacement and miRNA inhibitory approaches, is encouraging towards translating miRNA-based strategies into human cancer therapy, based on the observed therapeutic activity in the absence of main toxicity. However, to accelerate their adoption in the clinic, further improvements in terms of efficacy and targeted delivery to the tumor are still necessary.
Collapse
Affiliation(s)
- Paolo Gandellini
- Molecular Pharmacology, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Valentina Doldi
- Molecular Pharmacology, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Nadia Zaffaroni
- Molecular Pharmacology, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
40
|
Träger MM, Dhayat SA. Epigenetics of epithelial-to-mesenchymal transition in pancreatic carcinoma. Int J Cancer 2017; 141:24-32. [DOI: 10.1002/ijc.30626] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Max M. Träger
- Department of General and Visceral Surgery; University Hospital of Muenster; Muenster Germany
| | - Sameer A. Dhayat
- Department of General and Visceral Surgery; University Hospital of Muenster; Muenster Germany
| |
Collapse
|
41
|
Ibrahim AA, Schmithals C, Kowarz E, Köberle V, Kakoschky B, Pleli T, Kollmar O, Nitsch S, Waidmann O, Finkelmeier F, Zeuzem S, Korf HW, Schmid T, Weigert A, Kronenberger B, Marschalek R, Piiper A. Hypoxia Causes Downregulation of Dicer in Hepatocellular Carcinoma, Which Is Required for Upregulation of Hypoxia-Inducible Factor 1α and Epithelial-Mesenchymal Transition. Clin Cancer Res 2017; 23:3896-3905. [PMID: 28167508 DOI: 10.1158/1078-0432.ccr-16-1762] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/16/2022]
Abstract
Purpose: A role of Dicer, which converts precursor miRNAs to mature miRNAs, in the tumor-promoting effect of hypoxia is currently emerging in some tumor entities. Its role in hepatocellular carcinoma (HCC) is unknown.Experimental Design: HepG2 and Huh-7 cells were stably transfected with an inducible Dicer expression vector and were exposed to hypoxia/normoxia. HepG2-Dicer xenografts were established in nude mice; hypoxic areas and Dicer were detected in HCC xenografts and HCCs from mice with endogenous hepatocarcinogenesis; and epithelial-mesenchymal transition (EMT) markers were analyzed by immunohistochemistry or by immunoblotting. The correlation between Dicer and carbonic anhydrase 9 (CA9), a marker of hypoxia, was investigated in resected human HCCs.Results: Hypoxia increased EMT markers in vitro and in vivo and led to a downregulation of Dicer in HCC cells. The levels of Dicer were downregulated in hypoxic tumor regions in mice with endogenous hepatocarcinogenesis and in HepG2 xenografts. In human HCCs, the levels of Dicer correlated inversely with those of CA9, indicating that the negative regulation of Dicer by hypoxia also applies to HCC patients. Forced expression of Dicer prevented the hypoxia-induced increase in hypoxia-inducible factor 1α (HIF1α), HIF2α, hypoxia-inducible genes (CA9, glucose transporter 1), EMT markers, and cell migration.Conclusions: We here identify downmodulation of Dicer as novel essential process in hypoxia-induced EMT in HCC and demonstrate that induced expression of Dicer counteracted hypoxia-induced EMT. Thus, targeting hypoxia-induced downmodulation of Dicer is a promising novel strategy to reduce HCC progression. Clin Cancer Res; 23(14); 3896-905. ©2017 AACR.
Collapse
Affiliation(s)
- Ahmed Atef Ibrahim
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany.,The Immunology and Infectious Diseases Laboratory, Therapeutic Chemistry Department, The National Research Center, Dokki, Cairo, Egypt
| | | | - Erik Kowarz
- Institute of Pharmaceutical Biology, Goethe-University of Frankfurt Biocenter, Frankfurt/Main, Germany
| | - Verena Köberle
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Bianca Kakoschky
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas Pleli
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Otto Kollmar
- Department of General and Visceral Surgery, HELIOS Dr. Horst Schmidt-Kliniken, Wiesbaden, Germany
| | - Scarlett Nitsch
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany.,Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Oliver Waidmann
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Fabian Finkelmeier
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Horst-Werner Korf
- Institute of Anatomy 2, University Hospital Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Bernd Kronenberger
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University of Frankfurt Biocenter, Frankfurt/Main, Germany
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
42
|
Li H, Lin Z, Bai Y, Chi X, Fu H, Sun R, Liu M, Liu X, Chen L, Shao S. Sinomenine inhibits ovarian cancer cell growth and metastasis by mediating the Wnt/β-catenin pathway via targeting MCM2. RSC Adv 2017. [DOI: 10.1039/c7ra10057d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sinomenine (SIN), an isoquinoline isolated from the Chinese medicinal plantSinomenium acutum, is well known for its curative effect on rheumatic and arthritic diseases.
Collapse
Affiliation(s)
- Huimin Li
- Department of Histology and Embryology
- Dalian Medical University
- Dalian
- China
| | - Zhikun Lin
- The First Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Yuxin Bai
- Department of Histology and Embryology
- Dalian Medical University
- Dalian
- China
| | - Xinming Chi
- Key Laboratory of Proteomics
- Dalian Medical University
- Dalian
- China
| | - Hailu Fu
- Department of Histology and Embryology
- Dalian Medical University
- Dalian
- China
| | - Rui Sun
- The Second Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Meizi Liu
- The First Affiliated Hospital of Dalian Medical University
- Dalian
- China
| | - Xuan Liu
- Department of Histology and Embryology
- Dalian Medical University
- Dalian
- China
| | - Liying Chen
- Department of Histology and Embryology
- Dalian Medical University
- Dalian
- China
| | - Shujuan Shao
- Key Laboratory of Proteomics
- Dalian Medical University
- Dalian
- China
| |
Collapse
|
43
|
Wang J, Li Y, Ding M, Zhang H, Xu X, Tang J. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer (Review). Int J Oncol 2016; 50:345-355. [PMID: 28000852 PMCID: PMC5238783 DOI: 10.3892/ijo.2016.3811] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
miRNAs (microRNAs) have been validated to play fateful roles in the occurrence and development of cancers by post-transcriptionally targeting 3′-untranslated regions of the downstream gene mRNAs to repress mRNA expression. Mounting investigations forcefully document that not only does miR-22 biologically impinge on the processes of senescence, energy supply, angiogenesis, EMT (epithelial-mesenchymal transition), proliferation, migration, invasion, metastasis and apoptosis, but also it genetically or epigenetically exerts dual (inhibitory/promoting cancer) effects in various cancers via CNAs (copy number alterations), SNPs (single nucleotide polymorphisms), methylation, acetylation and even more momentously hydroxymethylation. Additionally, miR-22 expression may fluctuate with cancer progression in the body fluids of cancer patients and miR-22 could amplify its inhibitory or promoting effects through partaking in positive or negative feedback loops and interplaying with many other related miRNAs in the cascade of events, making it possible for miR-22 to be a promising and complementary or even independent cancer biomarker in some cancers and engendering profound influences on the early diagnosis, therapeutics, supervising curative effects and prognosis.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Pathology, The First Hospital of Jiaxing, Zhejiang, P.R. China
| | - Yuan Li
- Department of Pediatrics, The Affiliated Children's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Meiman Ding
- The Criminal Investigation Detachment of Jiaxing Public Security Bureau, Hangzhou, Zhejiang, P.R. China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaoming Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jinlong Tang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
44
|
Pardo-Reoyo S, Roig-Lopez JL, Yang ES. Potential biomarkers for radiosensitivity in head and neck cancers. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:524. [PMID: 28149885 DOI: 10.21037/atm.2016.12.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Radiotherapy is a mainstay of treatment for head and neck cancer. However, the morbidity of treatment remains a clinical challenge. Molecular profiling has provided further insight into tumor biology and tumor sensitivity to radiation, and this information could be used to personalize treatment. In this review, we discuss published signatures of radiosensitivity and discuss the pathways that may be important in dictating radiation sensitivity. Applications of these signatures could result in less morbidity if dose de-escalation efforts are successful.
Collapse
Affiliation(s)
- Sherly Pardo-Reoyo
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Alabama, USA; ; Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - J L Roig-Lopez
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Alabama, USA
| | - Eddy S Yang
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Alabama, USA
| |
Collapse
|
45
|
Liu MH, Yang L, Liu XJ, Nie ZY, Luo JM. [Targeted suppression of miRNA-21 inhibit K562 cells growth through PTEN-PI3K/AKT signaling pathway]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:982-986. [PMID: 27995885 PMCID: PMC7348512 DOI: 10.3760/cma.j.issn.0253-2727.2016.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 12/22/2022]
Abstract
Objective: To investigate the K562 cells biological function and related molecular changes in PTEN-PI3K/AKT signaling pathway of leukemia K562 cells by inhibiting the miRNA-21 expression to explore its pathogenesis of leukemia. Methods: The chemical synthetic miRNA-21 inhibitor was transfered into K562 cells by electrotransfection. RT-PCR was used to detect the miRNA-21 expression changes. Cell proliferation and apoptosis were determined by using MTT and flow cytometry. Western-blot were used to detect the protein expression changes of PTEN, PI3K and p-AKT respectively. Results: The relative expression of miRNA-21 in experimental group was (8.070 ± 5.138)% at 24 hours, which was lower than control groups (P<0.05). The apoptotic rate of (13.370±0.250)% at 24 hours in experimental group was obviously higher than control groups. The cellular proliferation were significantly different at 24 hours. The proliferation inhibition rate was (8.1±0.9)% at 24 hours, which was up to (43.1±2.1)% at 60 hours, but the control groups showed no difference. K562 cell proliferation significantly decreased, while cell apoptosis markedly increased by inhibiting miRNA-21 expression (P<0.01). Western-blot analysis revealed up-regulation of PTEN and down-regulation of PI3K and p-AKT protein expressions after successfully suppressed miRNA-21 expression (P<0.01). Conclusion: Inhibiting miRNA-21 expression in K562 cell could suppress the PI3K/AKT pathway by up-regulation of PTEN expression and promote cell antiproliferative and pro-apoptosis effects.
Collapse
Affiliation(s)
- M H Liu
- Department of Hematology, The Second Affiliated Hospital, Hebei Midical University, Shijiazhuang 050000, China
| | | | | | | | | |
Collapse
|
46
|
Peng F, Xiong L, Tang H, Peng C, Chen J. Regulation of epithelial-mesenchymal transition through microRNAs: clinical and biological significance of microRNAs in breast cancer. Tumour Biol 2016; 37:14463-14477. [DOI: 10.1007/s13277-016-5334-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/06/2016] [Indexed: 12/16/2022] Open
|
47
|
Zhang MX, Zhang J, Zhang H, Tang H. miR-24-3p Suppresses Malignant Behavior of Lacrimal Adenoid Cystic Carcinoma by Targeting PRKCH to Regulate p53/p21 Pathway. PLoS One 2016; 11:e0158433. [PMID: 27351203 PMCID: PMC4924841 DOI: 10.1371/journal.pone.0158433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) may function as an oncogene or a tumor suppressor in tumorigenesis. However, the mechanism of miRNAs in adenoid cystic carcinoma (ACC) is unclear. Here, we provide evidence that miR-24-3p was downreglated and functions as a tumor suppressor in human lacrimal adenoid cystic carcinoma by suppressing proliferation and migration/invasion while promoting apoptosis. miR-24-3p down-regulated protein kinase C eta (PRKCH) by binding to its untranslated region (3’UTR). PRKCH increased the of the cell growth and migration/invasion in ACC cells and suppressed the expression of p53 and p21 in both mRNA and protein level. The overexpression of miR-24-3p decreased its malignant phenotype. Ectopic expression of PRKCH counteracted the suppression of malignancy induced by miR-24-3p, as well as ectopic expression of miR-24-3p rescued the suppression of PRKCH in the p53/p21 pathway. These results suggest that miR-24-3p promotes the p53/p21 pathway by down-regulating PRKCH expression in lacrimal adenoid cystic carcinoma cells.
Collapse
Affiliation(s)
- Ming-xue Zhang
- Department of Ophthalmology, The Second Hospital of TianJin Medical University, Tianjin, China
| | - Jie Zhang
- Department of Ophthalmology, The Second Hospital of TianJin Medical University, Tianjin, China
| | - Hong Zhang
- Department of Ophthalmology, The Second Hospital of TianJin Medical University, Tianjin, China
- * E-mail: (HZ); (HT)
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- * E-mail: (HZ); (HT)
| |
Collapse
|
48
|
Yao S. MicroRNA biogenesis and their functions in regulating stem cell potency and differentiation. Biol Proced Online 2016; 18:8. [PMID: 26966421 PMCID: PMC4785656 DOI: 10.1186/s12575-016-0037-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 01/07/2023] Open
Abstract
Stem cells are unspecialized/undifferentiated cells that exist in embryos and adult tissues or can be converted from somatic differentiated cells. Use of stem cells for tissue regeneration and tissue engineering has been a cornerstone of the regenerative medicine. Stem cells are also believed to exist in cancer tissues, namely cancer stem cells (CSCs). Growing evidence suggests that CSCs are the culprit of cancer dormancy, progression and recurrence, and thus have recently received great attention. MicroRNAs (miRNAs) are a group of short, non-coding RNAs that regulate expression of a wide range of genes at a post-transcriptional manner. They are emerging as key regulators of stem cell behaviors. This mini review summarizes the basic biogenesis and mode of actions of miRNAs, recent progress and discoveries of miRNAs in cellular reprogramming, stem cell differentiation and cellular communication, as well as miRNAs in CSCs. Some potential of miRNAs in future biomedical applications and research pertaining to stem cells are briefly discussed.
Collapse
Affiliation(s)
- Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803 USA
| |
Collapse
|