1
|
Kingreen T, Kewitz-Hempel S, Rohde C, Hause G, Sunderkötter C, Gerloff D. Extracellular vesicles from highly invasive melanoma subpopulations increase the invasive capacity of less invasive melanoma cells through mir-1246-mediated inhibition of CCNG2. Cell Commun Signal 2024; 22:442. [PMID: 39285403 PMCID: PMC11403849 DOI: 10.1186/s12964-024-01820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
Invasive growth is a critical process in tumor progression, requiring the activation of various molecular processes in tumor cells at the invasive front. Intercellular communication between heterogeneous tumor cells enhances cellular activation and adaptation to specific microenvironments. One mechanism of intercellular communication is the delivery of miRNAs through tumor cell-derived extracellular vesicles (EVs). In this context we have observed that conditioned media from a highly invasive cell subpopulation (BLM-HI) enhances the invasive capacity of the parental cell line (BLM). Therefore, we hypothesized that this complex change of cellular behavior is influenced by EV-transported miRNAs. The treatment of BLM cells with EVs derived from BLM-HI cells resulted in a significantly enhanced invasive capacity, as observed in Matrigel-embedded spheroids and in 2D Boyden chamber assays, with a dose-dependent effect. Conversely, the invasive capacity of BLM cells was reduced when secretion of EVs was inhibited by a sphingomyelinase inhibitor. To investigate the molecular mechanisms behind this effect, we performed next-generation sequencing and identified an enrichment of miR-1246 in these EVs. In functional analyses we demonstrated that both the EV mediated delivery of miR-1246 as well as overexpression contributes to the enhanced invasiveness of BLM cells. We identified a binding site of miR-1246 in the 3'UTR of cyclin G2 (CCNG2) and demonstrated direct binding by a luciferase reporter assay.Increased expression of CCNG2 has been associated with cancer metastasis and poor patient outcomes in other malignancies. Our study demonstrates that intercellular communication contributes to the transfer of properties, such as increased invasive capacity, between heterogeneous melanoma cells via EV-transported miRNAs.
Collapse
Affiliation(s)
- Tim Kingreen
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Stefanie Kewitz-Hempel
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Rohde
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerd Hause
- Biocenter, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Cord Sunderkötter
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Dennis Gerloff
- Department of Dermatology and Venereology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
2
|
Zheng L, Li J, Li Y, Sun W, Ma L, Qu F, Tan W. Empowering Exosomes with Aptamers for Precision Theranostics. SMALL METHODS 2024:e2400551. [PMID: 38967170 DOI: 10.1002/smtd.202400551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Indexed: 07/06/2024]
Abstract
As information messengers for cell-to-cell communication, exosomes, typically small membrane vesicles (30-150 nm), play an imperative role in the physiological and pathological processes of living systems. Accumulating studies have demonstrated that exosomes are potential biological candidates for theranostics, including liquid biopsy-based diagnosis and drug delivery. However, their clinical applications are hindered by several issues, especially their unspecific detection and insufficient targeting ability. How to upgrade the accuracy of exosome-based theranostics is being widely explored. Aptamers, benefitting from their admirable characteristics, are used as excellent molecular recognition elements to empower exosomes for precision theranostics. With high affinity against targets and easy site-specific modification, aptamers can be incorporated with platforms for the specific detection of exosomes, thus providing opportunities for advancing disease diagnostics. Furthermore, aptamers can be tailored and functionalized on exosomes to enable targeted therapeutics. Herein, this review emphasizes the empowering of exosomes by aptamers for precision theranostics. A brief introduction of exosomes and aptamers is provided, followed by a discussion of recent progress in aptamer-based exosome detection for disease diagnosis, and the emerging applications of aptamer-functionalized exosomes for targeted therapeutics. Finally, current challenges and opportunities in this research field are presented.
Collapse
Affiliation(s)
- Liyan Zheng
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Jin Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/ Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - LeLe Ma
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Fengli Qu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Weihong Tan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Wu T, Du X, Liu HH, Liu LY, Yang YK, Wang SJ, Duan CL. Bioactive solanidane steroidal alkaloids from Solanum lyratum. Fitoterapia 2024; 175:105916. [PMID: 38527590 DOI: 10.1016/j.fitote.2024.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 03/27/2024]
Abstract
Six previously unreported solanidane steroidal alkaloids, namely lyrasolanosides A-F, were isolated from Solanum lyratum. In addition, five known steroidal alkaloids were also identified. The structures of these compounds were determined through the use of NMR, HRESIMS,UV, IR and ECD analysis. To assess their bioactivities, the cytotoxic effects of the six previously unreported compounds were evaluated on A549 cells. The results revealed that lyrasolanoside B (2) exhibited the highest potency among them. Lyrasolanoside B (2) exhibited significant inhibition of cell migration, invasion, and adhesion dramatically. Mechanistically, it was found to suppress the activity of JAK2/STAT3 signaling pathway by downregulating the expression of phosphorylated JAK2/STAT3 in an exosome-dependent manner. In addition, lyrasolanoside B (2) was found to significantly upregulate the expression of E-cadherin and downregulate the expression of N-cadherin and vimentin. These findings indicate that lyrasolanoside B (2) inhibits the metastasis of A549 cells by suppressing exosome-mediated EMT. These findings suggest that lyrasolanoside B (2) may inhibit the metastasis of lung cancer by regulating A549-derived exosomes.
Collapse
Affiliation(s)
- Tong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao Du
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hai-Hui Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang-Yu Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu-Ke Yang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Su-Juan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Chang-Ling Duan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
4
|
Zhan Y, Yang Z, Zeng H, Yu J, Chen X, Wu Y. Extracellular vesicle-derived non-coding RNAs in remodeling melanoma. Biomed Pharmacother 2024; 172:116213. [PMID: 38306847 DOI: 10.1016/j.biopha.2024.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Melanoma is one of the most lethal cutaneous malignancies. Despite great advances in radiotherapy, chemotherapy, and immunotherapy, the survival rate and prognosis of patients with melanoma remain poor. The abundant and sophisticated reciprocal communication network between melanoma cells and non-tumor cells contributes to the high heterogeneity of the melanoma microenvironment and is intimately related to varying treatment responses and clinical courses. Extracellular vesicles (EVs) are membrane structures generated by nearly all cell types. EVs contain biologically active molecules, mainly comprising proteins, lipids, and RNAs, and undoubtedly play multifaceted roles in numerous diseases, represented by melanoma. Non-coding RNAs (ncRNAs) mainly encompass long non-coding RNAs, microRNAs, and circular RNAs and constitute the majority of the human transcriptome. Multiple ncRNAs encapsulated in EVs coordinate various pathophysiological processes in melanoma. This review summarizes the mechanisms by which EV-ncRNAs modulate biological behaviors and immunity, and their potential diagnostic and therapeutic applications in melanoma. Undoubtedly, further insight into EV-ncRNAs and their functions in melanoma will contribute to the clinical treatment of melanoma and the implementation of precision medicine.
Collapse
Affiliation(s)
- Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihui Yang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xue Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Flemming JP, Wermuth PJ, Mahoney MG. Extracellular Vesicles in the Skin Microenvironment: Emerging Roles as Biomarkers and Therapeutic Tools in Dermatologic Health and Disease. J Invest Dermatol 2024; 144:225-233. [PMID: 37877931 DOI: 10.1016/j.jid.2023.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/26/2023]
Abstract
The recent discovery of extracellular vesicles (EVs) carrying cargo consisting of various bioactive macromolecules that can modulate the phenotype of recipient target cells has revealed an important new mechanism through which cells can signal their neighbors and regulate their microenvironment. Because EV cargo and composition correlate with the physiologic state of their cell of origin, investigations into the role of EVs in disease pathogenesis and progression have become an area of intense study. The physiologic and pathologic effects of EVs on their microenvironment are incredibly diverse and include the modulation of molecular pathways involved in angiogenesis, inflammation, wound healing, epithelial-mesenchymal transition, proliferation, and immune escape. This review examines recent studies on the role of EVs in diseases of the skin and on how differences in EV composition and cargo can alter cell states and the surrounding microenvironment. We also discuss the potential clinical applications of EVs in skin disease diagnosis and management. We examine their value as an easily isolated source of biomarkers to predict disease prognosis or to monitor patient response to treatment. Given the ability of EVs to modulate disease-specific signaling pathways, we also assess their potential to serve as novel personalized precision therapeutic tools for dermatological diseases.
Collapse
Affiliation(s)
- Joseph P Flemming
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Peter J Wermuth
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Mỹ G Mahoney
- Department of Dermatology & Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Zhou Q, Wang J, Zhang Z, Wuethrich A, Lobb RJ, Trau M. Tracking the EMT-like phenotype switching during targeted therapy in melanoma by analyzing extracellular vesicle phenotypes. Biosens Bioelectron 2024; 244:115819. [PMID: 37952322 DOI: 10.1016/j.bios.2023.115819] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Melanoma continues to be a leading cause of mortality among skin cancers. Despite advancements in targeted therapy, patients frequently develop resistance, leading to disease progression within a year. This resistance may result from the epithelial-to-mesenchymal transition (EMT)-like phenotype switching of melanoma cells. Tracking EMT-related phenotypic changes on extracellular vesicles (EVs) has potential to inform early about response to targeted therapy and melanoma progression. However, the knowledge on protein biomarkers carried by melanoma EVs involved in the EMT-like process remains unexplored. Herein, we present a biosensor integrating surface-enhanced Raman scattering and alternating current electrohydrodynamics-induced nanomixing enhancement, for sensitive detection of EMT-associated biomarkers on EV surfaces during targeted therapy. This biosensor successfully tracks the EMT-like phenotype switching in melanoma cell lines treated with mitogen-activated protein kinase inhibitor (MAPKi). Longitudinal monitoring of patients who receive MAPKi therapy and develop resistance, our biosensor shows its ability to identify the EMT-like phenotype switching on circulating EVs. This ability potentially can be leveraged to predict the development of resistance to targeted therapy, allowing for timely intervention and personalized treatment strategies.
Collapse
Affiliation(s)
- Quan Zhou
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| | - Zhen Zhang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Richard J Lobb
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Rismanbaf A. Improving targeted small molecule drugs to overcome chemotherapy resistance. Cancer Rep (Hoboken) 2024; 7:e1945. [PMID: 37994401 PMCID: PMC10809209 DOI: 10.1002/cnr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Conventional cancer treatments face the challenge of therapeutic resistance, which causes poor treatment outcomes. The use of combination therapies can improve treatment results in patients and is one of the solutions to overcome this challenge. Chemotherapy is one of the conventional treatments that, due to the non-targeted and lack of specificity in targeting cancer cells, can cause serious complications in the short and long-term for patients by damaging healthy cells. Also, the employment of a wide range of strategies for chemotherapy resistance by cancer cells, metastasis, and cancer recurrence create serious problems to achieve the desired results of chemotherapy. Accordingly, targeted therapies can be used as a combination treatment with chemotherapy to both cause less damage to healthy cells, which as a result, they reduce the side effects of chemotherapy, and by targeting the factors that cause therapeutic challenges, can improve the results of chemotherapy in patients. RECENT FINDINGS Small molecules are one of the main targeted therapies that can be used for diverse targets in cancer treatment due to their penetration ability and characteristics. However, small molecules in cancer treatment are facing obstacles that a better understanding of cancer biology, as well as the mechanisms and factors involved in chemotherapy resistance, can lead to the improvement of this type of major targeted therapy. CONCLUSION In this review article, at first, the challenges that lead to not achieving the desired results in chemotherapy and how cancer cells can be resistant to chemotherapy are examined, and at the end, research areas are suggested that more focusing on them, can lead to the improvement of the results of using targeted small molecules as an adjunctive treatment for chemotherapy in the conditions of chemotherapy resistance and metastasis of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Rismanbaf
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
8
|
Yıldırım MR, Kırbaş OK, Abdik H, Şahin F, Avşar Abdik E. The emerging role of breast cancer derived extracellular vesicles-mediated intercellular communication in ovarian cancer progression and metastasis. Med Oncol 2023; 41:30. [PMID: 38148465 DOI: 10.1007/s12032-023-02285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Breast cancer is one of the most occurring cancer types in women worldwide and metastasizes to several organs such as bone, lungs, liver, brain, and ovaries. Extracellular vesicles (EVs) mediate intercellular signaling which has a profound effect on tumor development and metastasis. Recent developments in the field of EVs provide an opportunity to investigate the roles of EVs released from tumor cells in metastasis. In this study, we compared the effects of metastatic breast cancer-derived EVs on both nonluteinized granulosa HGrC1 and ovarian cancer OVCAR-3 cells in terms of proliferation, invasion, apoptosis, and gene expression levels. EVs were isolated from the culture medium of metastatic breast cancer cell line MDA-MB-231 by ultracentrifugation. Cell proliferation, apoptosis, cell cycle, invasion, and cellular uptake analysis were performed to clarify the roles of tumor-derived EVs in both cells. 6.85 × 108 nanoparticles of BCD-EVs were markedly increased cell proliferation as well as invasion capacity. Exposing the cells with BCD-EVs for 24 h, resulted in an accumulation of both cells in G2/M phase as determined by flow cytometry. The apoptosis assay results were consistent with cell proliferation and cell cycle results. The uptake of the BCD-EVs was efficiently internalized by both cells. In addition, marked variations in fatty acid composition between cells were observed. BCD-EVs appeared new fatty acids in HGrC1. Besides, BCD-EVs upregulated epithelial-mesenchymal transition (EMT) and proliferation-related genes. In conclusion, an environment of tumor-derived EVs changes the cellular phenotype of cancer and noncancerous cells and may lead to tumor progression and metastasis.
Collapse
Affiliation(s)
- Melis Rahime Yıldırım
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim University, 34303, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 34755, Istanbul, Turkey
| | - Ezgi Avşar Abdik
- Department of Genomics, Faculty of Aquatic Sciences, Istanbul University, 34134, Istanbul, Turkey.
| |
Collapse
|
9
|
Karimivaselabadi A, Osanloo M, Ghanbariasad A, Zarenezhad E, Hosseini H. Comparison of chitosan nanoparticles containing Lippia citriodora essential oil and citral on the induction of apoptosis in A375 melanoma cells. BMC Complement Med Ther 2023; 23:435. [PMID: 38041055 PMCID: PMC10691079 DOI: 10.1186/s12906-023-04268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Using nanoparticles containing L. citriodora EO and citral has shown potential in treating skin disorders such as melanoma. METHODS In this study, GC‒MS was used to analyze the chemical composition of L. citriodora essential oil (EO). The ion gelation method prepared free chitosan nanoparticles and chitosan nanoparticles containing L. citriodora EO and citral. The successful loading of the EO and citral was evaluated using ATR-FTIR. The DPPH assay measured the antioxidant effect of citral, L. citriodora EO, Citral-ChiNPs, L. citriodora-ChiNPs, and Free-ChiNPs. A375 melanoma cell viability was assessed using the MTT assay. The qPCR technique was employed to evaluate the expression of apoptotic genes, and flow cytometry was used to detect apoptosis. RESULTS This study showed that in equal concentrations, the antioxidant properties of chitosan nanoparticles containing citral were greater than those of chitosan nanoparticles containing L. citriodora. The IC50 values of chitosan nanoparticles containing citral, L. citriodora EO, and their nonformulated states were 105.6, 199.9, 136.9, and 240 µg/ml, respectively. The gene expression results showed that the ratio of the expression of the apoptosis gene to the inhibitory gene was higher than 1 in all the samples, indicating that the conditions for apoptosis were present. Flow cytometry confirmed cell apoptosis, with 93.5 ± 0.3% in chitosan nanoparticles containing citral, 80 ± 0.2% in chitosan nanoparticles containing L. citriodora EO, 63 ± 0.3 in citral, and 42.03% in L. citriodora EO-treated cells. CONCLUSION The results showed that using the Nano form of L. citriodora and citral increased their efficiency in apoptosis pathways and their toxicity against 375 melanoma cancer cells.
Collapse
Affiliation(s)
- Abolfazl Karimivaselabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Desai N, Katare P, Makwana V, Salave S, Vora LK, Giri J. Tumor-derived systems as novel biomedical tools-turning the enemy into an ally. Biomater Res 2023; 27:113. [PMID: 37946275 PMCID: PMC10633998 DOI: 10.1186/s40824-023-00445-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023] Open
Abstract
Cancer is a complex illness that presents significant challenges in its understanding and treatment. The classic definition, "a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body," fails to convey the intricate interaction between the many entities involved in cancer. Recent advancements in the field of cancer research have shed light on the role played by individual cancer cells and the tumor microenvironment as a whole in tumor development and progression. This breakthrough enables the utilization of the tumor and its components as biological tools, opening new possibilities. This article delves deeply into the concept of "tumor-derived systems", an umbrella term for tools sourced from the tumor that aid in combatting it. It includes cancer cell membrane-coated nanoparticles (for tumor theranostics), extracellular vesicles (for tumor diagnosis/therapy), tumor cell lysates (for cancer vaccine development), and engineered cancer cells/organoids (for cancer research). This review seeks to offer a complete overview of the tumor-derived materials that are utilized in cancer research, as well as their current stages of development and implementation. It is aimed primarily at researchers working at the interface of cancer biology and biomedical engineering, and it provides vital insights into this fast-growing topic.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Pratik Katare
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vaishali Makwana
- Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
11
|
Gosman LM, Țăpoi DA, Costache M. Cutaneous Melanoma: A Review of Multifactorial Pathogenesis, Immunohistochemistry, and Emerging Biomarkers for Early Detection and Management. Int J Mol Sci 2023; 24:15881. [PMID: 37958863 PMCID: PMC10650804 DOI: 10.3390/ijms242115881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Cutaneous melanoma (CM) is an increasingly significant public health concern. Due to alarming mortality rates and escalating incidence, it is crucial to understand its etiology and identify emerging biomarkers for improved diagnosis and treatment strategies. This review aims to provide a comprehensive overview of the multifactorial etiology of CM, underscore the importance of early detection, discuss the molecular mechanisms behind melanoma development and progression, and shed light on the role of the potential biomarkers in diagnosis and treatment. The pathogenesis of CM involves a complex interplay of genetic predispositions and environmental exposures, ultraviolet radiation exposure being the predominant environmental risk factor. The emergence of new biomarkers, such as novel immunohistochemical markers, gene mutation analysis, microRNA, and exosome protein expressions, holds promise for improved early detection, and prognostic and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Laura Maria Gosman
- Doctoral School, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, Saint Pantelimon Clinical Emergency Hospital, 021659 Bucharest, Romania
| | - Dana-Antonia Țăpoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
12
|
Zhou J, Xiang H, Cao Z. Dual mechanism of Let-7i in tumor progression. Front Oncol 2023; 13:1253191. [PMID: 37829341 PMCID: PMC10565035 DOI: 10.3389/fonc.2023.1253191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Let-7i regulates tumors primarily by binding to the 3' untranslated region (3' UTR) of mRNA, which indirectly regulates post-transcriptional gene expression. Let-7i also has an epigenetic function via modulating DNA methylation to directly regulate gene expression. Let-7i performs a dual role by inducing both the promotion and inhibition of various malignancies, depending on its target. The mechanism of Let-7i action involves cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition, EV transmission, angiogenesis, autophagy, and drug resistance sensitization. Let-7i is closely related to cancer, and hence, is a potential biomarker for the diagnosis and prognosis of various cancers. Therapeutically, it can be used to promote an anti-cancer immune response by modifying exosomes, thus exerting a tumor-suppressive effect.
Collapse
Affiliation(s)
- Jiapei Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongjie Xiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhiqun Cao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Sepúlveda F, Mayorga-Lobos C, Guzmán K, Durán-Jara E, Lobos-González L. EV-miRNA-Mediated Intercellular Communication in the Breast Tumor Microenvironment. Int J Mol Sci 2023; 24:13085. [PMID: 37685891 PMCID: PMC10487525 DOI: 10.3390/ijms241713085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer research has prioritized the study of the tumor microenvironment (TME) as a crucial area of investigation. Understanding the communication between tumor cells and the various cell types within the TME has become a focal point. Bidirectional communication processes between these cells support cellular transformation, as well as the survival, invasion, and metastatic dissemination of tumor cells. Extracellular vesicles are lipid bilayer structures secreted by cells that emerge as important mediators of this cell-to-cell communication. EVs transfer their molecular cargo, including proteins and nucleic acids, and particularly microRNAs, which play critical roles in intercellular communication. Tumor-derived EVs, for example, can promote angiogenesis and enhance endothelial permeability by delivering specific miRNAs. Moreover, adipocytes, a significant component of the breast stroma, exhibit high EV secretory activity, which can then modulate metabolic processes, promoting the growth, proliferation, and migration of tumor cells. Comprehensive studies investigating the involvement of EVs and their miRNA cargo in the TME, as well as their underlying mechanisms driving tumoral capacities, are necessary for a deeper understanding of these complex interactions. Such knowledge holds promise for the development of novel diagnostic and therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Francisca Sepúlveda
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610615, Chile; (F.S.); (C.M.-L.); (K.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile
| | - Cristina Mayorga-Lobos
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610615, Chile; (F.S.); (C.M.-L.); (K.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Kevin Guzmán
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610615, Chile; (F.S.); (C.M.-L.); (K.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Eduardo Durán-Jara
- Subdepartamento de Genética Molecular, Instituto de Salud Pública de Chile, Santiago 7780050, Chile;
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610615, Chile; (F.S.); (C.M.-L.); (K.G.)
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile
| |
Collapse
|
14
|
Jain DP, Dinakar YH, Kumar H, Jain R, Jain V. The multifaceted role of extracellular vesicles in prostate cancer-a review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:481-498. [PMID: 37842237 PMCID: PMC10571058 DOI: 10.20517/cdr.2023.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 10/17/2023]
Abstract
Prostate cancer is the second most prominent form of cancer in men and confers the highest mortality after lung cancer. The term "extracellular vesicles" refers to minute endosomal-derived membrane microvesicles and it was demonstrated that extracellular vesicles affect the environment in which tumors originate. Extracellular vesicles' involvement is also established in the development of drug resistance, angiogenesis, stemness, and radioresistance in various cancers including prostate cancer. Extracellular vesicles influence the general environment, processes, and growth of prostate cancer and can be a potential area that offers a significant lead in prostate cancer therapy. In this review, we have elaborated on the multifaceted role of extracellular vesicles in various processes involved in the development of prostate cancer, and their multitude of applications in the diagnosis and treatment of prostate cancer through the encapsulation of various bioactives.
Collapse
Affiliation(s)
- Divya Prakash Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| |
Collapse
|
15
|
Giusti I, Poppa G, Di Fazio G, D'Ascenzo S, Dolo V. Metastatic Dissemination: Role of Tumor-Derived Extracellular Vesicles and Their Use as Clinical Biomarkers. Int J Mol Sci 2023; 24:ijms24119590. [PMID: 37298540 DOI: 10.3390/ijms24119590] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a major cause of mortality in humans; often, rather than the primary tumor, it is the presence of metastases that are the cause of death. Extracellular vesicles (EVs) are small structures released by both normal and cancer cells; regarding the latter, they have been demonstrated to modulate almost all cancer-related processes, such as invasion, angiogenesis induction, drug resistance, and immune evasion. In the last years, it has become clear how EVs are widely involved in metastatic dissemination as well as in pre-metastatic niche (PMN) formation. Indeed, in order to achieve a successful metastatic process, i.e., penetration by cancer cells into distant tissues, the shaping of a favorable environment into those distant tissue, i.e., PMN formation, is mandatory. This process consists of an alteration that takes place in a distant organ and paves the way for the engraftment and growth of circulating tumor cells derived from the tumor primary site. This review focuses on the role of EVs in pre-metastatic niche formation and metastatic dissemination, also reporting the last studies suggesting the EVs role as biomarkers of metastatic diseases, possibly in a liquid biopsy approach.
Collapse
Affiliation(s)
- Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Giuseppina Poppa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Giulia Di Fazio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Sandra D'Ascenzo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio-Coppito 2, 67100 L'Aquila, Italy
| |
Collapse
|
16
|
Cabello P, Torres-Ruiz S, Adam-Artigues A, Forés-Martos J, Martínez MT, Hernando C, Zazo S, Madoz-Gúrpide J, Rovira A, Burgués O, Rojo F, Albanell J, Lluch A, Bermejo B, Cejalvo JM, Eroles P. miR-146a-5p Promotes Angiogenesis and Confers Trastuzumab Resistance in HER2+ Breast Cancer. Cancers (Basel) 2023; 15:cancers15072138. [PMID: 37046799 PMCID: PMC10093389 DOI: 10.3390/cancers15072138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Trastuzumab treatment has significantly improved the prognosis of HER2-positive breast cancer patients. Despite this, resistance to therapy still remains the main clinical challenge. In order to evaluate the implication of microRNAs in the trastuzumab response, we performed a microRNA array in parental and acquired trastuzumab-resistant HER2-positive breast cancer cell lines. Our results identified miR-146a-5p as the main dysregulated microRNA. Interestingly, high miR-146a-5p expression in primary tumor tissue significantly correlated with shorter disease-free survival in HER2-positive breast cancer patients. The gain- and loss-of-function of miR-146a-5p modulated the response to trastuzumab. Furthermore, the overexpression of miR-146a-5p increased migration and angiogenesis, and promoted cell cycle progression by reducing CDKN1A expression. Exosomes from trastuzumab-resistant cells showed a high level of miR-146a-5p expression compared with the parental cells. In addition, the co-culture with resistant cells’ exosomes was able to decrease in sensitivity and increase the migration capacities in trastuzumab-sensitive cells, as well as angiogenesis in HUVEC-2 cells. Collectively, these data support the role of miR-146a-5p in resistance to trastuzumab, and demonstrate that it can be transferred by exosomes conferring resistance properties to other cells.
Collapse
Affiliation(s)
- Paula Cabello
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- International University of Valencia—VIU, 46002 Valencia, Spain
| | | | | | | | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Sandra Zazo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
| | | | - Ana Rovira
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Octavio Burgués
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Pathology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
| | - Federico Rojo
- Department of Pathology, Jiménez Díaz Foundation, 28040 Madrid, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Joan Albanell
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Ana Lluch
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, University Clinical Hospital of Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28040 Madrid, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Department of Biotechnology, Polytechnic University of Valencia, 46022 Valencia, Spain
| |
Collapse
|
17
|
Xie L, Zhang K, You B, Yin H, Zhang P, Shan Y, Gu Z, Zhang Q. Hypoxic nasopharyngeal carcinoma-derived exosomal miR-455 increases vascular permeability by targeting ZO-1 to promote metastasis. Mol Carcinog 2023; 62:803-819. [PMID: 36929868 DOI: 10.1002/mc.23525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Nasopharyngeal carcinoma (NPC), the most frequent reason for treatment failure in head and neck tumors, has the greatest incidence of distant metastases. Increased vascular permeability facilitates metastasis. Exosomal microRNAs (miRNAs) have been implicated in the development of the premetastatic niche and are emerging as prospective biomarkers in cancer patients. We discovered that a higher level of miR-455 was connected to a larger propensity for NPC metastasis based on deep sequencing and RT-qPCR. We found that hypoxia promoted NPC exosomes release and increased miR-455 expression in a way that was hypoxia-inducible factor 1-alpha (HIF-1α) dependent. Exosomes from NPC cells with high levels of miR-455 were found to specifically target zonula occludens 1 (ZO-1), increasing the permeability of endothelial monolayers in vitro vascular permeability and transendothelial invasion experiments. Additional in vivo studies showed that zebrafish with sustained miR-455-overexpressing NPC cell xenografts displayed increased tumor cell mass throughout the body. In vivo, zebrafish vascular tight junction integrity was disrupted by exosomes produced by NPC cells with elevated miR-455 expression. Mice-bearing xenografts further supported the finding that exosomes containing miR-455 might reduce ZO-1 expression in addition to promote NPC cell growth. These findings suggest that in a hypoxic microenvironment, exosomal miR-455 released by NPC cells enhances vascular permeability and promotes metastasis by targeting ZO-1. The HIF-1α-miR-455-ZO-1 signaling pathway may be a promising predictor and potential therapeutic target for NPC with metastasis.
Collapse
Affiliation(s)
- Lixiao Xie
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Bo You
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Haimeng Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Panpan Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ying Shan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qicheng Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Otolaryngology Research Institute and Clinical Research Center, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, China.,Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
18
|
Malgundkar SH, Tamimi Y. Exosomes as crucial emerging tools for intercellular communication with therapeutic potential in ovarian cancer. Future Sci OA 2023; 9:FSO833. [PMID: 37006229 PMCID: PMC10051132 DOI: 10.2144/fsoa-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
More than two-thirds of epithelial ovarian cancer (EOC) patients are diagnosed at advanced stages due to the lack of sensitive biomarkers. Currently, exosomes are intensively investigated as non-invasive cancer diagnostic markers. Exosomes are nanovesicles released in the extracellular milieu with the potential to modulate recipient cells' behavior. EOC cells release many altered exosomal cargoes that exhibit clinical relevance to tumor progression. Exosomes represent powerful therapeutic tools (drug carriers or vaccines), posing a promising option in clinical practice for curing EOC in the near future. In this review, we highlight the importance of exosomes in cell–cell communication, epithelial–mesenchymal transition (EMT), and their potential to serve as diagnostic and prognostic factors, particularly in EOC.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Department of Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| |
Collapse
|
19
|
Robado de Lope L, Sánchez‐Herrero E, Serna‐Blasco R, Provencio M, Romero A. Cancer as an infective disease: the role of EVs in tumorigenesis. Mol Oncol 2023; 17:390-406. [PMID: 36168102 PMCID: PMC9980310 DOI: 10.1002/1878-0261.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer is conventionally considered an evolutionary disease where tumor cells adapt to the environment and evolve eventually leading to the formation of metastasis through the seeding and growth of metastasis-initiating cells in distant organs. Tumor cell and tumor-stroma communication via soluble factors and extracellular vesicles (EVs) are essential for the success of the metastatic process. As the field of EVs advances, growing data support the role of tumor-derived EVs not only in modifying the microenvironment to facilitate tumor progression but also in inducing changes in cells outside the primary tumor that may lead to a malignant transformation. Thus, an alternative hypothesis has emerged suggesting the conceptualization of cancer as an 'infective' disease. Still, tackling EVs as a possible cancer treatment has not been widely explored. A major understanding is needed to unveil possible additional contributions of EVs in progression and metastasis, which may be essential for the development of novel approaches to treat cancer patients. Here, we review the contribution of EVs to cancer progression and the possible implication of these factors in the oncogenic transformation of indolent cells.
Collapse
Affiliation(s)
- Lucia Robado de Lope
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Estela Sánchez‐Herrero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Atrys HealthBarcelonaSpain
| | - Roberto Serna‐Blasco
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Mariano Provencio
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Atocha Romero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| |
Collapse
|
20
|
Surman M, Jankowska U, Wilczak M, Przybyło M. Similarities and Differences in the Protein Composition of Cutaneous Melanoma Cells and Their Exosomes Identified by Mass Spectrometry. Cancers (Basel) 2023; 15:cancers15041097. [PMID: 36831440 PMCID: PMC9954195 DOI: 10.3390/cancers15041097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Intercellular transport of proteins mediated by extracellular vesicles (EVs)-exosomes and ectosomes-is one of the factors facilitating carcinogenesis. Therefore, the research on protein cargo of melanoma-derived EVs may provide a better understanding of the mechanisms involved in melanoma progression and contribute to the development of alternative biomarkers. Proteomic data on melanoma-derived EVs are very limited. The shotgun nanoLC-MS/MS approach was applied to analyze the protein composition of primary (WM115, WM793) and metastatic (WM266-4, WM1205Lu) cutaneous melanoma cells and exosomes released by them. All cells secreted homogeneous populations of exosomes that shared a characteristic set of proteins. In total, 3514 and 1234 unique proteins were identified in melanoma cells and exosomes, respectively. Gene ontology analysis showed enrichment in several cancer-related categories, including cell proliferation, migration, negative regulation of apoptosis, and angiogenesis. The obtained results broaden our knowledge on the role of selected proteins in exosome biology, as well as their functional role in the development and progression of cutaneous melanoma. The results may also inspire future studies on the clinical potential of exosomes.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Magdalena Wilczak
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
- Correspondence: ; Tel.: +48-12-664-6462
| |
Collapse
|
21
|
Musi A, Bongiovanni L. Extracellular Vesicles in Cancer Drug Resistance: Implications on Melanoma Therapy. Cancers (Basel) 2023; 15:1074. [PMID: 36831417 PMCID: PMC9954626 DOI: 10.3390/cancers15041074] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in the pathogenesis of neoplastic diseases. Their role in mediating drug resistance has been widely described in several types of cancers, including melanoma. EVs can mediate drug resistance through several different mechanisms, such as drug-sequestration, transfer of pro-survival proteins and RNA, induction of cancer stem cell-like features and interaction with cells of the tumor microenvironment and immune-system. Melanoma is a highly immunogenic tumor originating from the malignant transformation of melanocytes. Several therapeutic strategies currently used in the treatment of melanoma and the combination of BRAF and MEK-inhibitors, as well as immune check-point inhibitors (ICI), have consistently improved the overall survival time of melanoma patients. However, the development of resistance is one of the biggest problems leading to a poor clinical outcome, and EVs can contribute to this. EVs isolated from melanoma cells can contain "sequestered" chemotherapeutic drugs in order to eliminate them, or bioactive molecules (such as miRNA or proteins) that have been proven to play a crucial role in the transmission of resistance to sensitive neoplastic cells. This leads to the hypothesis that EVs could be considered as resistance-mediators in sensitive melanoma cells. These findings are a pivotal starting point for further investigations to better understand EVs' role in drug resistance mechanisms and how to target them. The purpose of this review is to summarize knowledge about EVs in order to develop a deeper understanding of their underlying mechanisms. This could lead to the development of new therapeutic strategies able to bypass EV-mediated drug-resistance in melanoma, such as by the use of combination therapy, including EV release inhibitors.
Collapse
Affiliation(s)
- Alice Musi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Laura Bongiovanni
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CT Utrecht, The Netherlands
| |
Collapse
|
22
|
Wang J, Guo W, Wang X, Tang X, Sun X, Ren T. Circulating Exosomal PD-L1 at Initial Diagnosis Predicts Outcome and Survival of Patients with Osteosarcoma. Clin Cancer Res 2023; 29:659-666. [PMID: 36374561 DOI: 10.1158/1078-0432.ccr-22-2682] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE It is difficult to predict prognosis of patients with osteosarcoma at initial diagnosis due to lack of efficient prognostic parameters. We evaluated the relationship between level of circulating serum exosomal PD-L1 (Sr-exosomal PD-L1) at initial diagnosis and oncologic outcome during the follow-up. EXPERIMENTAL DESIGN Sixty-seven patients with newly diagnosed osteosarcoma were prospectively recruited. Fasting blood was collected and exosome isolation was performed using ultracentrifugation method. Evaluation of Sr-exosomal PD-L1 was performed respectively by immunogold labeling and ELISA method. Correlation between level of Sr-exosomal PD-L1 at initial diagnosis and clinical risk factors was assessed. RESULTS Mean follow-up was 46.7 months. Two-year and 5-year overall survival (OS) rates were respectively 96.9% and 62.5%. Two-year and 5-year disease-free survival (DFS) rates were respectively 85.0% and 31.4%. Results revealed a significantly positive association between high PD-L1 cargo of circulating exosomes and clinicopathologic disease markers such as pulmonary metastasis, multiple metastasis, and death. Patients who died of disease at final follow-up had higher level of Sr-exosomal PD-L1 at initial diagnosis, which compared with patients who were still alive at last follow-up. Patients in group of ≥14.23 pg/mL Sr-exosomal PD-L1 at initial diagnosis had inferior DFS compared with patients in group of <14.23 pg/mL at initial diagnosis. Patients in group of ≥25.96 pg/mL at initial diagnosis had poor OS compared with patients in group of <25.96 pg/mL at initial diagnosis. CONCLUSIONS Use of liquid biopsy of circulating exosomal PD-L1 at initial diagnosis provides a robust means of predicting prognosis for patients with a newly diagnosed osteosarcoma.
Collapse
Affiliation(s)
- Jun Wang
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, P.R. China
| | - Wei Guo
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, P.R. China
| | - Xiaofang Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, P.R. China
| | - Xiaodong Tang
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, P.R. China
| | - Xin Sun
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, P.R. China
| | - Tingting Ren
- Peking University People's Hospital, Musculoskeletal Tumor Center, Beijing, P.R. China
| |
Collapse
|
23
|
Benito-Martín A, Jasiulionis MG, García-Silva S. Extracellular vesicles and melanoma: New perspectives on tumor microenvironment and metastasis. Front Cell Dev Biol 2023; 10:1061982. [PMID: 36704194 PMCID: PMC9871288 DOI: 10.3389/fcell.2022.1061982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Secreted extracellular vesicles (EVs) are lipid bilayer particles without functional nucleus naturally released from cells which constitute an intercellular communication system. There is a broad spectrum of vesicles shed by cells based on their physical properties such as size (small EVs and large EVs), biogenesis, cargo and functions, which provide an increasingly heterogenous landscape. In addition, they are involved in multiple physiological and pathological processes. In cancer, EV release is opted by tumor cells as a beneficial process for tumor progression. Cutaneous melanoma is a cancer that originates from the melanocyte lineage and shows a favorable prognosis at early stages. However, when melanoma cells acquire invasive capacity, it constitutes the most aggressive and deadly skin cancer. In this context, extracellular vesicles have been shown their relevance in facilitating melanoma progression through the modulation of the microenvironment and metastatic spreading. In agreement with the melanosome secretory capacity of melanocytes, melanoma cells display an enhanced EV shedding activity that has contributed to the utility of melanoma models for unravelling EV cargo and functions within a cancer scenario. In this review, we provide an in-depth overview of the characteristics of melanoma-derived EVs and their role in melanoma progression highlighting key advances and remaining open questions in the field.
Collapse
Affiliation(s)
- Alberto Benito-Martín
- Facultad de Medicina, Unidad de Investigación Biomédica, Universidad Alfonso X El Sabio (UAX), Villanueva de la Cañada, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Miriam Galvonas Jasiulionis
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain,*Correspondence: Alberto Benito-Martín, ; Miriam Galvonas Jasiulionis, ; Susana García-Silva,
| |
Collapse
|
24
|
Wang X, Cheng Q. Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma. J Cancer Res Clin Oncol 2023:10.1007/s00432-022-04434-y. [PMID: 36598578 DOI: 10.1007/s00432-022-04434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/18/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES More and more evidences show that circular RNAs (circRNAs) can be used as miRNA sponge to regulate the drug resistance of malignancies, including melanoma. However, how exosomal circRNAs participate in the therapeutic resistance of melanoma remains ambiguous. METHODS Vemurafenib-resistant A375 cells were cultured and then the circRNA profile of exosomes from the parental A375 and A375-resistant cells were sequenced. Transmission electron microscopy (TEM), exogenous nanoparticle tracking analysis (NTA) and Western Blot assays were leveraged to confirm the successful collection of exosomes from A375 and A375R cells. Another five published RNA-seq data and microRNA-seq data, and seven miRNA databases were collected to construct a competing endogenous RNA (ceRNA) network. Comprehensive bioinformatic analysis was adopted to identify key molecules related to the drug resistance, including multiscale embedded gene co-expression network analysis (MEGENA). Then, qRT-PCR, cell viability and colony formation were used to estimate the function of hub circRNAs. The role of has_circ_0001005 in vivo was verified via xenograft assay. The Tumor online Prognostic analyses Platform (ToPP) was leveraged to develop the has_circ_0001005-related prognostic models for melanoma patients based on TCGA data. RESULTS Compared with parental cells, hsa_circ_0001005 expression was significantly increased in resistant cells and their exosomes. The elevated level of hsa_circ_0001005 was related to the poor clinical prognosis of melanoma patients. Hsa_circ_0001005 found in melanoma was mainly secreted by drug-resistant cells as exosomes. Exosomal hsa_circ_0001005 activated multiple canonical pathways related to drug resistance through sponging four miRNAs, thus suppressing the drug sensitivity of melanoma. Knocking down hsa_circ_0001005 in vitro, we found that the inhibition of hsa_circ_0001005 could hinder the clone formation of melanoma. Further in vivo animal experiments suggested that suppression of hsa_circ_0001005 can increase the sensitivity to Vemurafenib of melanoma cells. Finally, we also constructed the functional regulatory ceRNA network and prognostic risk models for hsa_circ_0001005, and further survival analysis reveals that the regulatory network and prognostic risk models obviously affected the prognosis of melanoma patients. CONCLUSIONS This study confirmed that the level of hsa_circ_0001005 in exosomes is the key factor affecting drug resistance of melanoma, which provides a new potential therapeutic target for melanoma patients.
Collapse
Affiliation(s)
- Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qiong Cheng
- Department of Dermatology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
25
|
Kluszczynska K, Czyz M. Extracellular Vesicles-Based Cell-Cell Communication in Melanoma: New Perspectives in Diagnostics and Therapy. Int J Mol Sci 2023; 24:ijms24020965. [PMID: 36674479 PMCID: PMC9865538 DOI: 10.3390/ijms24020965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-secreted particles that carry cargo of functional biomolecules crucial for cell-to-cell communication with both physiological and pathophysiological consequences. In this review, we focus on evidence demonstrating that the EV-mediated crosstalk between melanoma cells within tumor, between melanoma cells and immune and stromal cells, promotes immune evasion and influences all steps of melanoma development from local progression, pre-metastatic niche formation, to metastatic colonization of distant organs. We also discuss the role of EVs in the development of resistance to immunotherapy and therapy with BRAFV600/MEK inhibitors, and shortly summarize the recent advances on the potential applications of EVs in melanoma diagnostics and therapy.
Collapse
|
26
|
Yilmaz G, Tavsan Z, Cagatay E, Kursunluoglu G, Kayali HA. Exosomes released from cisplatin-resistant ovarian cancer cells modulate the reprogramming of cells in tumor microenvironments toward the cancerous cells. Biomed Pharmacother 2023; 157:113973. [PMID: 36413836 DOI: 10.1016/j.biopha.2022.113973] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Exosomes released from cancer cells are involved in the reorganization of the tumor microenvironment which is the essential aspect of cancer pathogenesis. The intercommunications between cancer cells and diverse cell types in the microenvironment are accomplished by exosomes in ovarian cancer. Internalization pathway, intracellular fate, and biological functions in recipient cells mediated by exosomes released from cisplatin-resistant A2780cis have been studied. Also, histopathological evaluation of tumor, ovary, liver tissues and lymph nodes in vivo studies have been performed. The recipient cells internalized the exosomes via active uptake mechanisms, as shown by confocal microscopy. However, inhibitor studies and flow cytometry analysis showed that each recipient cell line used different uptake pathways. Also, confocal microscopy imaging indicated that the internalized exosomes trapped in the endosomes or phagosomes were distributed to the different cellular compartments including ER, Golgi, and lysosome. The transfer of exosomal oncogenic cargo into the cells modified the intracellular signaling of recipient cells including invasion and metastasis by Boyden-Chamber assay, proliferation by ATP analysis, epithelial-mesenchymal transition (EMT) markers at protein and mRNA levels by western blotting and real-time PCR, and protein kinases in the phospho-kinase array. This remodeling contributed to the initiation of carcinogenesis in ovarian epithelial and peritoneal mesothelial cells, and the progression of carcinogenesis in ovarian cancer cells. In addition, intraperitoneal tumor model studies show that exosomes released from cisplatin-resistant A2780cis cells may play role in the enlargement of lymph nodes, and tumor formations integrated with the liver, attached to the stomach and in the ovarian tissues.
Collapse
Affiliation(s)
- Gizem Yilmaz
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 İzmir, Turkey
| | - Zehra Tavsan
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey
| | - Elcin Cagatay
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 İzmir, Turkey
| | - Gizem Kursunluoglu
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey; ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280 Turkey
| | - Hulya Ayar Kayali
- Izmir Biomedicine and Genome Center, 35340 İzmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 İzmir, Turkey; Department of Chemistry, Division of Biochemistry, Faculty of Science, Dokuz Eylul University, 35390 İzmir, Turkey.
| |
Collapse
|
27
|
Ye Q, Li Z, Li Y, Li Y, Zhang Y, Gui R, Cui Y, Zhang Q, Qian L, Xiong Y, Yu Y. Exosome-Derived microRNA: Implications in Melanoma Progression, Diagnosis and Treatment. Cancers (Basel) 2022; 15:cancers15010080. [PMID: 36612077 PMCID: PMC9818028 DOI: 10.3390/cancers15010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a malignant and aggressive cancer, and its progression is greatly affected by interactions between melanoma cells and their surroundings. Exploration on mechanism of melanoma and improved diagnostic and therapeutic strategies are becoming increasingly important. Unlike extracellular messengers that mainly work on targeted cells through corresponding receptors, exosomes are essential intercellular messengers that deliver biologically active substances such as nucleic acids and proteins to target cells for cell-cell communication. Of them, microRNAs (miRNAs) are common and important exosomal components that can regulate the expression of a wide range of target genes. Accordingly, exosome-derived miRNAs play a significant role in melanoma progression, including invasion and metastasis, microenvironment establishment, angiogenesis, and immune escape. MiRNA signatures of exosomes are specific in melanoma patients compared to healthy controls, thus circulating miRNAs, especially exosomal miRNAs, become potential diagnostic markers and therapeutic targets for melanoma. This review aims to summarize recent studies on the role of exosomal miRNAs in melanoma as well as ongoing efforts in melanoma treatment.
Collapse
Affiliation(s)
- Qiang Ye
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Zi Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yang Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yirong Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yan Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Runlin Gui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Yue Cui
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Qi Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Lu Qian
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Department of Endocrinology, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi’an 710069, China
| | - Yuyan Xiong
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| | - Yi Yu
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No. 3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi’an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
- Correspondence: (Y.X.); (Y.Y.)
| |
Collapse
|
28
|
Alia Moosavian S, Hashemi M, Etemad L, Daneshmand S, Salmasi Z. Melanoma-derived exosomes: Versatile extracellular vesicles for diagnosis, metastasis, immune modulation, and treatment of melanoma. Int Immunopharmacol 2022; 113:109320. [DOI: 10.1016/j.intimp.2022.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
29
|
Hou C, Wu Q, Xu L, Cui R, Ou R, Li D, Xu Y. Exploiting the potential of extracellular vesicles as delivery vehicles for the treatment of melanoma. Front Bioeng Biotechnol 2022; 10:1054324. [DOI: 10.3389/fbioe.2022.1054324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Melanoma, the most aggressive skin cancer that originated from genetic mutations in the melanocytes, is still a troublesome medical problem under the current therapeutic approaches, which include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy and targeted therapy. Nanotechnology has significantly contributed to the development of cancer treatment in the past few years, among which extracellular vesicles (EVs) are nanosized lipid bilayer vesicles secreted from almost all cells that play essential roles in many physiological and pathological processes. In terms of melanoma therapy, the unique physicochemical properties of EVs make them promising nanocarriers for drug transportation compared to other synthetic nanocarriers. Moreover, EVs can be further engineered to maximize their drug delivery potential. Herein, in this minireview, we gave a brief overview of EV-based drug delivery strategies for melanoma therapy, in which different therapeutics delivered via EVs were summarized. We also highlighted the current progress of the EV-based delivery platform for melanoma therapy in clinical trials. The obstacles to applying exosomes in clinical practice toward further translation of EVs melanoma therapy were also discussed at the end. In summary, EVs offer promising prospects for melanoma therapy, whilst the ways for unlocking EVs’ full potential in melanoma therapies should be further investigated by solving relevant issues which hamper EVs-based melanoma therapy translation in the future.
Collapse
|
30
|
Li X, Liu D, Chen H, Zeng B, Zhao Q, Zhang Y, Chen Y, Wang J, Xing HR. Melanoma stem cells promote metastasis via exosomal miR-1268a inactivation of autophagy. Biol Res 2022; 55:29. [PMID: 36182945 PMCID: PMC9526915 DOI: 10.1186/s40659-022-00397-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Background Metastatic melanoma has a high mortality rate and poor survival. This is associated with efficient metastatic colonization, but the underlying mechanisms remain elusive. Communication between cancer stem cells (CSCs) and cancer cells plays an important role in metastatic dissemination. Whether cancer stem cells can alter the metastatic properties of non-CSC cells; and whether exosomal crosstalk can mediate such interaction, have not been demonstrated in melanoma prior to this report. Results The results revealed that exosomes secreted by highly metastatic melanoma CSCs (OL-SCs) promoted the invasiveness of the low metastatic melanoma cells (OL) and accelerated metastatic progression. miR-1268a was up-regulated in cells and exosomes of OL-SCs. Moreover, OL-SCs-derived exosomal miR-1268a, upon taking up by OL cells, promoted the metastatic colonization ability of OL cells in vitro and in vivo. In addition, the pro-metastatic activity of exosomal miR-1268a is achieved through inhibition of autophagy. Conclusion Our study demonstrates that OL cells can acquire the “metastatic ability” from OL-SCs cells. OL-SCs cells achieves this goal by utilizing its exosomes to deliver functional miRNAs, such as miR-1268a, to the targeted OL cells which in turn augments metastatic colonization by inactivating the autophagy pathway in OL cells. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00397-z.
Collapse
Affiliation(s)
- Xiaoshuang Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Doudou Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Zeng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Qiting Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yuhan Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuting Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jianyu Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - H Rosie Xing
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
31
|
Zhang Y, Chen J, Yang H, Yin W, Li C, Xu Y, Liu SY, Dai Z, Zou X. Light-Controlled Recruitable Hybridization Chain Reaction on Exosome Vehicles for Highly Sensitive MicroRNA Imaging in Living Cells. Anal Chem 2022; 94:9665-9673. [PMID: 35758600 DOI: 10.1021/acs.analchem.2c00974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sensitive imaging of intracellular microRNA (miRNA) in living cells is of great significance. Isothermal hybridization chain reaction (HCR)-based methods, although have been widely used to monitor intracellular low-abundance miRNA, are still subjected to the challenges of limited signal amplification efficiency and compromised imaging resolution. In this work, we design a light-controlled recruitable HCR (LCR-HCR) strategy that enables us to well overcome these limitations. Exosomes as delivery and recruitment vehicles are modified with three cholesterol-modified hairpins (H1, H2, and H3), in which H1 is for anchoring target miRNA and H2 and H3 with photocleavable linkers (PC-linkers) are designed for spatiotemporal HCR. By controllably releasing probes with high local concentrations to efficiently trigger HCR and further recruiting the generated double-stranded DNA (dsDNA) polymers instead of dispersion in the cytoplasm, the LCR-HCR method can significantly improve the imaging contrast by confining all of the reactants on exosome vehicles. For a proof-of-concept demonstration, the miR-21 was analyzed by LCR-HCR with a limit of detection (LOD) down to 3.3 pM (corresponding to 165 amol per 50 μL) in vitro and four times higher response than traditional HCR in vivo. In general, the LCR-HCR method provides a powerful tool for sensitive miRNA imaging in living cells and cancer diagnosis.
Collapse
Affiliation(s)
- Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huihui Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wen Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chunrong Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuzhi Xu
- Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
32
|
The Role of Extracellular Vesicles in Melanoma Progression. Cancers (Basel) 2022; 14:cancers14133086. [PMID: 35804857 PMCID: PMC9264817 DOI: 10.3390/cancers14133086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma arises from a malignant transformation of the melanocytes in the skin. It is the deadliest form of skin cancer owing to its potential to metastasize. While recent advances in immuno-oncology have been successful in melanoma treatment, not all the patients respond to the treatment equally, thus individual pre-screening and personalized combination therapies are essential to stratify and monitor patients. Extracellular vesicles (EVs) have emerged as promising biomarker candidates to tackle these challenges. EVs are ~50-1000-nm-sized, lipid bilayer-enclosed spheres, which are secreted by almost all cell types, including cancer cells. Their cargo, such as nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred to target cells. Thanks to these properties, EVs can both provide a multiplexed molecular fingerprint of the cell of origin and thus serve as potential biomarkers, or reveal pathways important for cancer progression that can be targeted pharmaceutically. In this review we give a general overview of EVs and focus on their impact on melanoma progression. In particular, we shed light on the role of EVs in shaping the tumor-stroma interactions that facilitate metastasis and summarize the latest findings on molecular profiling of EV-derived miRNAs and proteins that can serve as potential biomarkers for melanoma progression.
Collapse
|
33
|
Gustafson CM, Roffers-Agarwal J, Gammill LS. Chick cranial neural crest cells release extracellular vesicles that are critical for their migration. J Cell Sci 2022; 135:jcs260272. [PMID: 35635292 PMCID: PMC9270958 DOI: 10.1242/jcs.260272] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The content and activity of extracellular vesicles purified from cell culture media or bodily fluids have been studied extensively; however, the physiological relevance of exosomes within normal biological systems is poorly characterized, particularly during development. Although exosomes released by invasive metastatic cells alter migration of neighboring cells in culture, it is unclear whether cancer cells misappropriate exosomes released by healthy differentiated cells or reactivate dormant developmental programs that include exosome cell-cell communication. Using chick cranial neural fold cultures, we show that migratory neural crest cells, a developmentally critical cell type and model for metastasis, release and deposit CD63-positive 30-100 nm particles into the extracellular environment. Neural crest cells contain ceramide-rich multivesicular bodies and produce larger vesicles positive for migrasome markers as well. We conclude that neural crest cells produce extracellular vesicles including exosomes and migrasomes. When Rab27a plasma membrane docking is inhibited, neural crest cells become less polarized and rounded, leading to a loss of directional migration and reduced speed. These results indicate that neural crest cell exosome release is critical for migration.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Julaine Roffers-Agarwal
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
34
|
Suwei D, Yanbin X, Jianqiang W, Xiang M, Zhuohui P, Jianping K, Yunqing W, Zhen L. Metformin inhibits melanoma cell metastasis by suppressing the miR-5100/SPINK5/STAT3 axis. Cell Mol Biol Lett 2022; 27:48. [PMID: 35705923 PMCID: PMC9199130 DOI: 10.1186/s11658-022-00353-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most lethal skin cancer characterized by its high metastatic potential. It is urgent to find novel therapy strategies to overcome this feature. Metformin has been confirmed to suppress invasion and migration of various types of cancer. However, additional mechanisms underlying the antimetastatic effect of metformin on melanoma require further investigation. Here, we performed microarray analysis and uncovered an altered mRNA and miRNA expression profile between melanoma and nevus. Luciferase reporter assay confirmed that miR-5100 targets SPINK5 to activate STAT3 phosphorylation. Migration and wound healing assays showed that the miR-5100/SPINK5/STAT3 axis promotes melanoma cell metastasis; the mechanism was proven by initiation of epithelial–mesenchymal transition. Co-immunoprecipitation (Co-IP) further confirmed an indirect interaction between SPINK5 and STAT3. Furthermore, metformin dramatically inhibited miR-5100/SPINK5/STAT3 pathway, and decreased B16-F10 cell metastasis to lung in C57 mouse module. Intriguingly, pretreatment of metformin before melanoma cell injection improved this effect further. These findings exposed the underlying mechanisms of action of metformin and update the use of this drug to prevent metastasis in melanoma.
Collapse
Affiliation(s)
- Dong Suwei
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Xiao Yanbin
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Wang Jianqiang
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China
| | - Ma Xiang
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Peng Zhuohui
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Kang Jianping
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Wang Yunqing
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Li Zhen
- Department of Medical Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| |
Collapse
|
35
|
Li X, Li X, Zhang B, He B. The Role of Cancer Stem Cell-Derived Exosomes in Cancer Progression. Stem Cells Int 2022; 2022:9133658. [PMID: 35571530 PMCID: PMC9095362 DOI: 10.1155/2022/9133658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) represent a small portion of tumor cells with self-renewal ability in tumor tissues and are a key factor in tumor resistance, recurrence, and metastasis. CSCs produce a large number of exosomes through various mechanisms, such as paracrine and autocrine signaling. Studies have shown that CSC-derived exosomes (CSC-Exos) carry a variety of gene mutations and specific epigenetic modifications indicative of unique cell phenotypes and metabolic pathways, enabling exchange of information in the tumor microenvironment (TME) to promote tumor invasion and metastasis. In addition, CSC-Exos carry a variety of metabolites, especially proteins and miRNAs, which can activate signaling pathways to further promote tumor development. CSC-Exos have dual effects on cancer development. Due to advances in liquid biopsy technology for early cancer detection, CSCs-Exos may become an important tool for early cancer diagnosis and therapeutic drug delivery. In this article, we will review how CSC-Exos exert the above effects based on the above two aspects and explore their mechanism of action.
Collapse
Affiliation(s)
- Xueting Li
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xinjian Li
- Department of Nephrology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Bin Zhang
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Baoyu He
- Department of Clinical Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
36
|
Tan Y, Tang F, Li J, Yu H, Wu M, Wu Y, Zeng H, Hou K, Zhang Q. Tumor-derived exosomes: the emerging orchestrators in melanoma. Biomed Pharmacother 2022; 149:112832. [PMID: 35325853 DOI: 10.1016/j.biopha.2022.112832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022] Open
Abstract
Cutaneous melanoma is an aggressive cancer type derived from melanocytes and its incidence has rapidly increased worldwide. Despite the vast improvement in therapy, melanoma is still confronted with high invasion, metastasis, and recurrence rate. Recent studies have confirmed that the exosomes are naturally occurring membranous extracellular vesicles with nano-sized lipid bilayers, performing as information messagers within cellular reciprocal action. Exosomes are unquestionably endowed with multifaceted roles in various diseases, including melanoma. Notably, tumor-derived exosomes play a pivotal role in conditioning the tumor microenvironment to promote the growth, metastasis, immune escape, and even drug-resistance of melanoma by transferring carcinogenic nucleic acids and proteins. Clinically, the dynamic expressions of exosomal components and loadings in melanoma patients with different tumor stages confer the clinical application of melanoma exosomes as diagnostic biomarkers. Hence, this review highlights the recent complicated roles and mechanisms of melanoma exosomes, as well as their potential as diagnostic and therapeutic targets in melanoma. The in-depth insights into the properties and behaviors of melanoma exosomes are of great potential to yield attractive therapeutic methods for melanoma.
Collapse
Affiliation(s)
- Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jieming Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Kai Hou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
37
|
Wang J, Peng C, Dai W, Chen X, Meng J, Jiang T. Exploring Tumor Immune Microenvironment and Its Associations With Molecular Characteristics in Melanoma. Front Oncol 2022; 12:821578. [PMID: 35530341 PMCID: PMC9069107 DOI: 10.3389/fonc.2022.821578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe tumor microenvironment (TME), which involves infiltration of multiple immune cells into the tumor tissues, plays an essential role in clinical benefit to therapy. The chemokines and their receptors influence migration and functions of both tumor and immune cells. Also, molecular characteristics are associated with the efficacy of melanoma therapy. However, there lacked exploration of immune characteristics and the association with molecular characteristics.MethodsWe collected the currently available 569 melanoma samples that had both the genomic and transcriptional data from TCGA and SRA databases. We first identified TME subtypes based on the developed immune signatures, and then divided the samples into two immune cohorts based on the immune score. Next, we estimated the compositions of the immune cells of the two cohorts, and performed differential expression genes (DEGs) and functional enrichments. In addition, we investigated the interactions of chemokines and their receptors under immune cells. Finally, we explored the genomic characteristics under different immune subtypes.ResultsTME type D had a better prognosis among the four subtypes. The high-immunity cohort had significantly high 16 immune cells. The 63 upregulated and 384 downregulated genes in the high-immunity cohort were enriched in immune-related biological processes, and keratin, pigmentation and epithelial cells, respectively. The correlations of chemokines and their receptors with immune cell infiltration, such as CCR5-CCL4/CCL5 and CXCR3-CXCL9/CXCL10/CXCL11/CXCL13 axis, showed that the recruitments of 11 immune cells, such as CD4T cells and CD8T cells, were modulated by chemokines and their receptors. The proportions of the four TME subtypes in each molecular subtype were comparable. The two driver genes, CDKN2A and PRB2, had significantly different MAFs between the high-immunity and low-immunity.ConclusionWe dissected the characteristics of immune infiltration, the interactions of chemokines and their receptors under immune cells, and the correlation of molecular and immune characteristics. Our work will enable the reasonable selection of anti-melanoma treatments and accelerate the development of new therapeutic strategies for melanoma.
Collapse
Affiliation(s)
- Jiangyuan Wang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
| | - Wentao Dai
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies) & Shanghai Engineering Research Center of Pharmaceutical Translation, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Gastric Neoplasms, Department of General Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiang Chen, ; Jing Meng, ; Taijiao Jiang,
| | - Jing Meng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- *Correspondence: Xiang Chen, ; Jing Meng, ; Taijiao Jiang,
| | - Taijiao Jiang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Guangzhou Laboratory, Guangzhou, China
- *Correspondence: Xiang Chen, ; Jing Meng, ; Taijiao Jiang,
| |
Collapse
|
38
|
Bai S, Wang Z, Wang M, Li J, Wei Y, Xu R, Du J. Tumor-Derived Exosomes Modulate Primary Site Tumor Metastasis. Front Cell Dev Biol 2022; 10:752818. [PMID: 35309949 PMCID: PMC8924426 DOI: 10.3389/fcell.2022.752818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-derived exosomes (TDEs) are actively produced and released by tumor cells and carry messages from tumor cells to healthy cells or abnormal cells, and they participate in tumor metastasis. In this review, we explore the underlying mechanism of action of TDEs in tumor metastasis. TDEs transport tumor-derived proteins and non-coding RNA to tumor cells and promote migration. Transport to normal cells, such as vascular endothelial cells and immune cells, promotes angiogenesis, inhibits immune cell activation, and improves chances of tumor implantation. Thus, TDEs contribute to tumor metastasis. We summarize the function of TDEs and their components in tumor metastasis and illuminate shortcomings for advancing research on TDEs in tumor metastasis.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zunyun Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Minghua Wang
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Junai Li
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Yuan Wei
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Ruihuan Xu
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| | - Juan Du
- Longgang District People´s Hospital of Shenzhen, The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
39
|
Amalinei C, Grigoraș A, Lozneanu L, Căruntu ID, Giușcă SE, Balan RA. The Interplay between Tumour Microenvironment Components in Malignant Melanoma. Medicina (B Aires) 2022; 58:medicina58030365. [PMID: 35334544 PMCID: PMC8953474 DOI: 10.3390/medicina58030365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma has shown an increasing incidence during the last two decades, exhibiting a large spectrum of locations and clinicopathological characteristics. Although current histopathological, biochemical, immunohistochemical, and molecular methods provide a deep insight into its biological behaviour and outcome, melanoma is still an unpredictable disease, with poor outcome. This review of the literature is aimed at updating the knowledge regarding melanoma’s clinicopathological and molecular hallmarks, including its heterogeneity and plasticity, involving cancer stem cells population. A special focus is given on the interplay between different cellular components and their secretion products in melanoma, considering its contribution to tumour progression, invasion, metastasis, recurrences, and resistance to classical therapy. Furthermore, the influences of the specific tumour microenvironment or “inflammasome”, its association with adipose tissue products, including the release of “extracellular vesicles”, and distinct microbiota are currently studied, considering their influences on diagnosis and prognosis. An insight into melanoma’s particular features may reveal new molecular pathways which may be exploited in order to develop innovative therapeutic approaches or tailored therapy.
Collapse
|
40
|
Tămaș F, Bălașa R, Manu D, Gyorki G, Chinezu R, Tămaș C, Bălașa A. The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022; 23:1449. [PMID: 35163368 PMCID: PMC8835738 DOI: 10.3390/ijms23031449&set/a 886656060+812772520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood-brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
Affiliation(s)
- Flaviu Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rodica Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mures, Romania;
| | - Gabriel Gyorki
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rareș Chinezu
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Corina Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Correspondence: ; Tel.: +40-749-867-513
| | - Adrian Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| |
Collapse
|
41
|
The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022. [DOI: 10.3390/ijms23031449
expr 878511370 + 954121262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood–brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
|
42
|
Tămaș F, Bălașa R, Manu D, Gyorki G, Chinezu R, Tămaș C, Bălașa A. The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022; 23:ijms23031449. [PMID: 35163368 PMCID: PMC8835738 DOI: 10.3390/ijms23031449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood–brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
Affiliation(s)
- Flaviu Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rodica Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mures, Romania;
| | - Gabriel Gyorki
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rareș Chinezu
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Corina Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Correspondence: ; Tel.: +40-749-867-513
| | - Adrian Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| |
Collapse
|
43
|
Gallbladder Cancer Cell-Derived Exosome-Mediated Transfer of Leptin Promotes Cell Invasion and Migration by Modulating STAT3-Mediated M2 Macrophage Polarization. Anal Cell Pathol 2022; 2022:9994906. [PMID: 35111566 PMCID: PMC8803447 DOI: 10.1155/2022/9994906] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/02/2022] Open
Abstract
Tumor-associated macrophage (TAM) is a major component of tumor microenvironment (TME) and plays critical role in the progression of cancer metastasis. However, TAM-mediated regulation in gallbladder cancer (GBC) has not been fully characterized. Here, we found that exosomes derived from GBC cell polarized macrophage to M2 phenotype, which then facilitated the invasion and migration of GBC cells. We discovered that leptin was enriched in GBC cell-derived exosomes. Exosomal leptin levels promoted invasion and migration of GBC-SD cells. The inhibition of leptin not only attenuated M2 macrophage of polarization but also inhibited the invasive and migratory ability of GBC cell. In addition, GBC-SD cell-derived exosomal leptin induced M2 polarization of macrophage via activation of STAT3 signal pathway. Taken together, our results suggested that GBC cells secrete exosome-enclosed leptin facilitated cell invasion and migration via polarizing TAM.
Collapse
|
44
|
Zhou XH, Xu H, Xu C, Yan YC, Zhang LS, Sun Q, Wang WL, Shi YJ. Hepatocellular carcinoma-derived exosomal miRNA-761 regulates the tumor microenvironment by targeting the SOCS2/JAK2/STAT3 pathway. World J Emerg Med 2022; 13:379-385. [PMID: 36119773 PMCID: PMC9420661 DOI: 10.5847/wjem.j.1920-8642.2022.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/21/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Exosomes and exosomal microRNAs have been implicated in tumor occurrence and metastasis. Our previous study showed that microRNA-761 (miR-761) is overexpressed in hepatocellular carcinoma (HCC) tissues and that its inhibition affects mitochondrial function and inhibits HCC metastasis. The mechanism by which exosomal miR-761 modulates the tumor microenvironment has not been elucidated. METHODS Exosomal miR-761 was detected in six cell lines. Cell counting kit-8 (CCK-8) and transwell migration assays were performed to determine the function of exosomal miR-761 in HCC cells. The luciferase reporter assay was used to analyze miR-761 target genes in normal fibroblasts (NFs). The inhibitors AZD1480 and C188-9 were employed to determine the role of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway in the transformation of cancer-associated fibroblasts (CAFs). RESULTS In this study, we characterized the mechanism by which miR-761 reprogrammed the tumor microenvironment. We found that HCC-derived exosomal miR-761 was taken up by NFs. Moreover, HCC exosomes affected the tumor microenvironment by activating NFs via suppressor of cytokine signaling 2 (SOCS2) and the JAK2/STAT3 signaling pathway. CONCLUSIONS These results demonstrated that exosomal miR-761 modulated the tumor microenvironment via SOCS2/JAK2/STAT3 pathway-dependent activation of CAFs. Our findings may inspire new strategies for HCC prevention and therapy.
Collapse
Affiliation(s)
- Xiao-hu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hao Xu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chang Xu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying-cai Yan
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lin-shi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qiang Sun
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei-lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan-jun Shi
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
45
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
46
|
Study on differential gene expression profile of serum exosomes in patients with acute cerebral infarction. DIGITAL CHINESE MEDICINE 2021. [DOI: 10.1016/j.dcmed.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
47
|
Boussadia Z, Gambardella AR, Mattei F, Parolini I. Acidic and Hypoxic Microenvironment in Melanoma: Impact of Tumour Exosomes on Disease Progression. Cells 2021; 10:3311. [PMID: 34943819 PMCID: PMC8699343 DOI: 10.3390/cells10123311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of melanoma progression have been extensively studied in the last decade, and despite the diagnostic and therapeutic advancements pursued, malignant melanoma still accounts for 60% of skin cancer deaths. Therefore, research efforts are required to better define the intercellular molecular steps underlying the melanoma development. In an attempt to represent the complexity of the tumour microenvironment (TME), here we analysed the studies on melanoma in acidic and hypoxic microenvironments and the interactions with stromal and immune cells. Within TME, acidity and hypoxia force melanoma cells to adapt and to evolve into a malignant phenotype, through the cooperation of the tumour-surrounding stromal cells and the escape from the immune surveillance. The role of tumour exosomes in the intercellular crosstalk has been generally addressed, but less studied in acidic and hypoxic conditions. Thus, this review aims to summarize the role of acidic and hypoxic microenvironment in melanoma biology, as well as the role played by melanoma-derived exosomes (Mexo) under these conditions. We also present a perspective on the characteristics of acidic and hypoxic exosomes to disclose molecules, to be further considered as promising biomarkers for an early detection of the disease. An update on the use of exosomes in melanoma diagnosis, prognosis and response to treatment will be also provided and discussed.
Collapse
Affiliation(s)
- Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Adriana Rosa Gambardella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
48
|
Gu WJ, Shen YW, Zhang LJ, Zhang H, Nagle DG, Luan X, Liu SH. The multifaceted involvement of exosomes in tumor progression: Induction and inhibition. MedComm (Beijing) 2021; 2:297-314. [PMID: 34766148 PMCID: PMC8554660 DOI: 10.1002/mco2.49] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
As key performers in intercellular communication, exosomes released by tumor cells play an important role in cancer development, including angiogenesis, cancer‐associated fibroblasts activation, epithelial‐mesenchymal transformation (EMT), immune escape, and pre‐metastatic niche formation. Meanwhile, other cells in tumor microenvironment (TME) can secrete exosomes and facilitate tumor progression. Elucidating mechanisms regarding these processes may offer perspectives for exosome‐based antitumor strategies. In this review, we mainly introduce the versatile roles of tumor or stromal cell derived exosomes in cancer development, with a particular focus on the biological capabilities and functionalities of their diverse contents, such as miRNAs, lncRNAs, and circRNAs. The potential clinical application of exosomes as biomarkers in cancer diagnosis and prognosis is also discussed. Finally, the current antitumor strategies based on exosomes in immunotherapy and targeted delivery for chemotherapeutic or biological agents are summarized.
Collapse
Affiliation(s)
- Wen-Jie Gu
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Yi-Wen Shen
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Dale G Nagle
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences School of Pharmacy University of Mississippi University Mississippi USA
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| | - San-Hong Liu
- Institute of Interdisciplinary Integrative Medicine Research Shanghai University of Traditional Chinese Medicine Shanghai China
| |
Collapse
|
49
|
Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater 2021; 6:3705-3743. [PMID: 33898874 PMCID: PMC8056276 DOI: 10.1016/j.bioactmat.2021.03.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are lipid-bilayer enclosed vesicles in submicron size that are released from cells. A variety of molecules, including proteins, DNA fragments, RNAs, lipids, and metabolites can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells. In tumors, through such intercellular communication, EVs can regulate initiation, growth, metastasis and invasion of tumors. Recent studies have found that EVs exhibit specific expression patterns which mimic the parental cell, providing a fingerprint for early cancer diagnosis and prognosis as well as monitoring responses to treatment. Accordingly, various EV isolation and detection technologies have been developed for research and diagnostic purposes. Moreover, natural and engineered EVs have also been used as drug delivery nanocarriers, cancer vaccines, cell surface modulators, therapeutic agents and therapeutic targets. Overall, EVs are under intense investigation as they hold promise for pathophysiological and translational discoveries. This comprehensive review examines the latest EV research trends over the last five years, encompassing their roles in cancer pathophysiology, diagnostics and therapeutics. This review aims to examine the full spectrum of tumor-EV studies and provide a comprehensive foundation to enhance the field. The topics which are discussed and scrutinized in this review encompass isolation techniques and how these issues need to be overcome for EV-based diagnostics, EVs and their roles in cancer biology, biomarkers for diagnosis and monitoring, EVs as vaccines, therapeutic targets, and EVs as drug delivery systems. We will also examine the challenges involved in EV research and promote a framework for catalyzing scientific discovery and innovation for tumor-EV-focused research.
Collapse
Affiliation(s)
- Komal Abhange
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Amy Makler
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yi Wen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Natasha Ramnauth
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| |
Collapse
|
50
|
Heterogeneity of Melanoma Cell Responses to Sleep Apnea-Derived Plasma Exosomes and to Intermittent Hypoxia. Cancers (Basel) 2021; 13:cancers13194781. [PMID: 34638272 PMCID: PMC8508428 DOI: 10.3390/cancers13194781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) is associated with increased cutaneous melanoma incidence and adverse outcomes. Exosomes are secreted by most cells, and play a role in OSA-associated tumor progression and metastasis. We aimed to study the effects of plasma exosomes from OSA patients before and after adherent treatment with continuous positive airway pressure (CPAP) on melanoma cells lines, and also to identify exosomal miRNAs from melanoma cells exposed to intermittent hypoxia (IH) or normoxia. Plasma-derived exosomes were isolated from moderate-to-severe OSA patients before (V1) and after (V2) adherent CPAP treatment for one year. Exosomes were co-incubated with three3 different melanoma cell lines (CRL 1424; CRL 1619; CRL 1675) that are characterized by genotypes involving different mutations in BRAF, STK11, CDKN2A, and PTEN genes to assess the effect of exosomes on cell proliferation and migration, as well as on pAMK activity in the presence or absence of a chemical activator. Subsequently, CRL-1424 and CRL-1675 cells were exposed to intermittent hypoxia (IH) and normoxia, and exosomal miRNAs were identified followed by GO and KEG pathways and gene networks. The exosomes from these IH-exposed melanoma cells were also administered to THP1 macrophages to examine changes in M1 and M2 polarity markers. Plasma exosomes from V1 increased CRL-1424 melanoma cell proliferation and migration compared to V2, but not the other two cell lines. Exposure to CRL-1424 exosomes reduced pAMPK/tAMPK in V1 compared to V2, and treatment with AMPK activator reversed the effects. Unique exosomal miRNAs profiles were identified for CRL-1424 and CRL-1675 in IH compared to normoxia, with six miRNAs being regulated and several KEGG pathways were identified. Two M1 markers (CXCL10 and IL6) were significantly increased in monocytes when treated with exosomes from IH-exposed CRL-1424 and CRL-1625 cells. Our findings suggest that exosomes from untreated OSA patients increase CRL-1424 melanoma malignant properties, an effect that is not observed in two other melanoma cell lines. Exosomal cargo from CRL-1424 cells showed a unique miRNA signature compared to CRL-1675 cells after IH exposures, suggesting that melanoma cells are differentially susceptible to IH, even if they retain similar effects on immune cell polarity. It is postulated that mutations in STK-11 gene encoding for the serine/threonine kinase family that acts as a tumor suppressor may underlie susceptibility to IH-induced metabolic dysfunction, as illustrated by CRL-1424 cells.
Collapse
|