1
|
Liu K, Fu XW, Wang ZM. Msx1-Modified Rat Bone Marrow Mesenchymal Stem Cell Therapy for Rotator Cuff Repair: A Comprehensive Analysis of Tendon-Bone Healing and Cellular Mechanisms. J Orthop Res 2024. [PMID: 39739627 DOI: 10.1002/jor.26039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/01/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
This study investigates the therapeutic potential of Msx1-overexpressing bone marrow mesenchymal stem cells (BMSCs) in enhancing tendon-bone healing in rotator cuff injuries. BMSCs were genetically modified to overexpress Msx1 and were evaluated in vitro for their proliferation, migration, and differentiation potential. Results demonstrated that Msx1 overexpression significantly increased BMSC proliferation and migration while inhibiting osteogenic and chondrogenic differentiation. In a rat model of acute rotator cuff injury, Msx1-BMSCs embedded in a hydrogel scaffold were implanted at the tendon-bone junction. Micro-CT analysis revealed substantial new bone formation in the Msx1-BMSC group, and histological evaluation showed organized collagen and cartilage structures at the repair site. Biomechanical testing further confirmed enhanced structural strength in the Msx1-BMSC-treated group. These findings suggest that Msx1 modification enhances BMSC-mediated repair by promoting cell proliferation and migration, facilitating tendon-bone integration. This Msx1-based approach presents a promising strategy for advancing regenerative therapies for rotator cuff injuries.
Collapse
Affiliation(s)
- Kang Liu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia-Wei Fu
- Department of Orthopaedic Surgery, First Affiliated Hospital of Navy Medical University (Changhai Hospital), Shanghai, China
| | - Zi-Min Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Li J, Zhang W, Chen L, Wang X, Liu J, Huang Y, Qi H, Chen L, Wang T, Li Q. Targeting extracellular matrix interaction in gastrointestinal cancer: Immune modulation, metabolic reprogramming, and therapeutic strategies. Biochim Biophys Acta Rev Cancer 2024; 1879:189225. [PMID: 39603565 DOI: 10.1016/j.bbcan.2024.189225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The extracellular matrix (ECM) is a major constituent of the tumor microenvironment, acting as a mediator that supports the progression of gastrointestinal (GI) cancers, particularly in mesenchymal subtypes. Beyond providing structural support, the ECM actively shapes the tumor microenvironment (TME) through complex biochemical and biomechanical remodeling. Dysregulation of ECM composition and signaling is closely linked to increased cancer aggressiveness, poor prognosis, and resistance to therapy. ECM components, such as collagen, fibronectin, laminin, and periostin, influence tumor growth, metastasis, immune modulation, and metabolic reprogramming by interacting with tumor cells, immune cells, and cancer-associated fibroblasts. In this review, we highlight the heterogeneous nature of the ECM and the dualistic roles of its components across GI cancers, with a focus on their contributions to immune evasion and metabolic remodeling via intercellular interactions. Additionally, we explore therapeutic strategies targeting ECM remodeling and ECM-centered interactions, emphasizing their potential in enhancing existing anti-tumor therapies.
Collapse
Affiliation(s)
- Jiyifan Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiafeng Liu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Huang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Huijie Qi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Sharma A, Becker F, Tao X, Baddela VS, Koczan D, Ludwig C, Vanselow J. Hyperplastic ovarian stromal cells express genes associated to tumor progression: a case study. BMC Vet Res 2024; 20:439. [PMID: 39342193 PMCID: PMC11438404 DOI: 10.1186/s12917-024-04275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The current study presents the analysis of stromal cells obtained from an hyperplastic left-ovary of a Holstein cow. Cultured hyperplastic stromal cells displayed a fibroblast-like morphology and ceased proliferation after the 8th passage. The non-cancerous nature of stromal cells was confirmed by in vitro cell proliferation and migration assays. Negligible amounts of E2 were detected in the spent media of cultured stromal cells, which suggests that stromal cells were non-estradiol synthesizing cells. As revealed in immunofluorescence and gene expression analysis, the hyperplastic stromal cells explicitly expressed vimentin in their cytoskeleton. Upon hematoxylin staining, a highly dense population of stromal cells was observed in the stromal tissue of the hyperplastic ovary. To explore genome-wide alterations, mRNA microarray analysis was performed using Affymetrix Bovine Gene 1.0ST Arrays compared to normal ovarian derived stromal cells. The microarray identified 1396 differentially expressed genes, of which 733 were up- and 663 down-regulated in hyperplastic stromal cells. Importantly, asporin (ASPN) and vascular cell adhesion molecule 1 (VCAM1) were among the highly up-regulated genes. Higher expression of ASPN was also confirmed by immunohistochemistry and RT-qPCR analysis. Ingenuity pathway analysis (IPA) identified about 98 significantly enriched (-log (p value ≥ 1.3) canonical pathways, importantly of which the "Sirutin Signaling Pathway" and "Mitochondrial Dysfunction" were highly activated while "Oxidative phosphorylation" was inhibited. Additionally, higher proportion of hyperplastic stromal cells in the S-phase of cell cycle, could be attributed to higher expression levels of cell proliferation genes such as CCND2 and CDK6.
Collapse
Affiliation(s)
- Arpna Sharma
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, USA.
| | - Frank Becker
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Xuelian Tao
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Vijay Simha Baddela
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dirk Koczan
- Institut für Immunologie, Universität Rostock, 18055, Rostock, Germany
| | - Carolin Ludwig
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Jens Vanselow
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| |
Collapse
|
4
|
Hosen S, Ikeda-Yorifuji I, Yamashita T. Asporin and CD109, expressed in the injured neonatal spinal cord, attenuate axonal re-growth in vitro. Neurosci Lett 2024; 833:137832. [PMID: 38796094 DOI: 10.1016/j.neulet.2024.137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Axonal regeneration is restricted in adults and causes irreversible motor dysfunction following spinal cord injury (SCI). In contrast, neonates have prominent regenerative potential and can restore their neural function. Although the distinct cellular responses in neonates have been studied, how they contribute to neural recovery remains unclear. To assess whether the secreted molecules in neonatal SCI can enhance neural regeneration, we re-analyzed the previously performed single-nucleus RNA-seq (snRNA-seq) and focused on Asporin and Cd109, the highly expressed genes in the injured neonatal spinal cord. In the present study, we showed that both these molecules were expressed in the injured spinal cords of adults and neonates. We treated the cortical neurons with recombinant Asporin or CD109 to observe their direct effects on neurons in vitro. We demonstrated that these molecules enhance neurite outgrowth in neurons. However, these molecules did not enhance re-growth of severed axons. Our results suggest that Asporin and CD109 influence neurites at the lesion site, rather than promoting axon regeneration, to restore neural function in neonates after SCI.
Collapse
Affiliation(s)
- Sakura Hosen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iyo Ikeda-Yorifuji
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
5
|
Hartupee C, Nagalo BM, Chabu CY, Tesfay MZ, Coleman-Barnett J, West JT, Moaven O. Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target. Front Immunol 2024; 15:1287459. [PMID: 38361931 PMCID: PMC10867137 DOI: 10.3389/fimmu.2024.1287459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is projected to become the 2nd leading cause of cancer-related deaths in the United States. Limitations in early detection and treatment barriers contribute to the lack of substantial success in the treatment of this challenging-to-treat malignancy. Desmoplasia is the hallmark of PDAC microenvironment that creates a physical and immunologic barrier. Stromal support cells and immunomodulatory cells face aberrant signaling by pancreatic cancer cells that shifts the complex balance of proper repair mechanisms into a state of dysregulation. The product of this dysregulation is the desmoplastic environment that encases the malignant cells leading to a dense, hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance, and suppresses anti-tumor immune invasion. This desmoplastic environment combined with the immunoregulatory events that allow it to persist serve as the primary focus of this review. The physical barrier and immune counterbalance in the tumor microenvironment (TME) make PDAC an immunologically cold tumor. To convert PDAC into an immunologically hot tumor, tumor microenvironment could be considered alongside the tumor cells. We discuss the complex network of microenvironment molecular and cellular composition and explore how they can be targeted to overcome immuno-therapeutic challenges.
Collapse
Affiliation(s)
- Conner Hartupee
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Chiswili Y. Chabu
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Siteman Cancer Center, Washington University, St. Louis, MO, United States
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Joycelynn Coleman-Barnett
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Louisiana State University - Louisiana Children's Medical Center (LSU - LCMC) Cancer Center, New Orleans, LA, United States
| |
Collapse
|
6
|
Lall SP, Alsafwani ZW, Batra SK, Seshacharyulu P. ASPORIN: A root of the matter in tumors and their host environment. Biochim Biophys Acta Rev Cancer 2024; 1879:189029. [PMID: 38008263 PMCID: PMC10872503 DOI: 10.1016/j.bbcan.2023.189029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Asporin (ASPN) has been identified as one of the members of the class I small leucine-rich proteoglycans (SLRPs) family in the extracellular matrix (ECM). It is involved in classic ensigns of cancers such as self-dependent growth, resistance to growth inhibitors, restricting apoptosis, cancer metastasis, and bone-related disorders. ASPN is different from other members of SLRPs, such as decorin (DCN) and biglycan (BGN), in a way that it contains a distinctive length of aspartate (D) residues in the amino (N) -terminal region. These D-repeats residues possess germline polymorphisms and are identified to be linked with cancer progression and osteoarthritis (OA). The polyaspartate stretch in the N-terminal region of the protein and its resemblance to DCN are the reasons it is called asporin. In this review, we comprehensively summarized and updated the dual role of ASPN in various malignancies, its structure in mice and humans, variants, mutations, cancer-associated signalings and functions, the relationship between ASPN and cancer-epithelial, stromal fibroblast crosstalk, immune cells and immunosuppression in cancer and other diseases. In cancer and other bone-related diseases, ASPN is identified to be regulating various signaling pathways such as TGFβ, Wnt/β-catenin, notch, hedgehog, EGFR, HER2, and CD44-mediated Rac1. These pathways promote cancer cell invasion, proliferation, and migration by mediating the epithelial-to-mesenchymal transition (EMT) process. Finally, we discussed mouse models mimicking ASPN in vivo function in cancers and the probability of therapeutic targeting of ASPN in cancer cells, fibrosis, and other bone-related diseases.
Collapse
Affiliation(s)
- Shobhit P Lall
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Zahraa W Alsafwani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
7
|
Park MN. Therapeutic Strategies for Pancreatic-Cancer-Related Type 2 Diabetes Centered around Natural Products. Int J Mol Sci 2023; 24:15906. [PMID: 37958889 PMCID: PMC10648679 DOI: 10.3390/ijms242115906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a highly malignant neoplasm, is classified as one of the most severe and devastating types of cancer. PDAC is a notable malignancy that exhibits a discouraging prognosis and a rising occurrence. The interplay between diabetes and pancreatic cancer exhibits a reciprocal causation. The identified metabolic disorder has been observed to possess noteworthy consequences on health outcomes, resulting in elevated rates of morbidity. The principal mechanisms involve the suppression of the immune system, the activation of pancreatic stellate cells (PSCs), and the onset of systemic metabolic disease caused by dysfunction of the islets. From this point forward, it is important to recognize that pancreatic-cancer-related diabetes (PCRD) has the ability to increase the likelihood of developing pancreatic cancer. This highlights the complex relationship that exists between these two physiological states. Therefore, we investigated into the complex domain of PSCs, elucidating their intricate signaling pathways and the profound influence of chemokines on their behavior and final outcome. In order to surmount the obstacle of drug resistance and eliminate PDAC, researchers have undertaken extensive efforts to explore and cultivate novel natural compounds of the next generation. Additional investigation is necessary in order to comprehensively comprehend the effect of PCRD-mediated apoptosis on the progression and onset of PDAC through the utilization of natural compounds. This study aims to examine the potential anticancer properties of natural compounds in individuals with diabetes who are undergoing chemotherapy, targeted therapy, or immunotherapy. It is anticipated that these compounds will exhibit increased potency and possess enhanced pharmacological benefits. According to our research findings, it is indicated that naturally derived chemical compounds hold potential in the development of PDAC therapies that are both safe and efficacious.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
8
|
Abdollahi S, Izadi P, Azizi-Tabesh G. Bioinformatics Analysis Reveals Novel Differentially Expressed Genes Between Ectopic and Eutopic Endometrium in Women with Endometriosis. J Obstet Gynaecol India 2023; 73:115-123. [PMID: 37916013 PMCID: PMC10616016 DOI: 10.1007/s13224-023-01749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/10/2023] [Indexed: 11/03/2023] Open
Abstract
Background Endometriosis is one of the chronic and prevalent diseases among women. There is limited knowledge about its pathophysiology at the cellular and molecular levels, causing a lack of a definite cure for this disease. In this study, differentially expressed genes (DEGs) between ectopic and paired eutopic endometrium in women with endometriosis were analyzed through bioinformatics analysis for better understanding of the molecular pathogenesis of endometriosis. Methods Gene expression data of ectopic and paired eutopic endometrium were taken from the Gene Expression Omnibus database. DEGs were screened by the Limma package in R with considering specific criteria. Then, the protein-protein interaction network was reconstructed between DEGs. The fast unfolding clustering algorithm was used to find sub-networks (modules). Finally, the three most relevant modules were selected and the functional and pathway enrichment analyses were performed for the selected modules. Results A total of 380 DEGs (245 up-regulated and 135 down-regulated) were identified in the ectopic endometrium and compared with paired eutopic endometrium. The DEGs were predominantly enriched in an ensemble of genes encoding the extracellular matrix and associated proteins, metabolic pathways, cell adhesions and the innate immune system. Importantly, DPT, ASPN, CHRDL1, CSTA, HGD, MPZ, PED1A, and CLEC10A were identified as novel DEGs between the human ectopic tissue of endometrium and its paired eutopic endometrium. Conclusion The results of this study can open up a new window to better understanding of the molecular pathogenesis of endometriosis and can be considered for designing new treatment modalities.
Collapse
Affiliation(s)
- Sepideh Abdollahi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Azizi-Tabesh
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Wei F, Li T, Li J, Zhang Y, Liu T, Zhao Z, Zhu W, Guo H, Yang R. Prognostic and Immunological Role of Asporin across Cancers and Exploration in Bladder Cancer. Gene 2023:147573. [PMID: 37336272 DOI: 10.1016/j.gene.2023.147573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Asporin (ASPN) has been identified as a player in tumorigenesis, but its precise roles and modulatory function are largely unknown. METHODS In the present study, ASPN expression was first explored, followed by a prognostic evaluation of ASPN and a comprehensive investigation of the connections between ASPN and immunomodulation, immune cell infiltration and potential compounds on a pancancer level. Finally, ASPN expression was validated in bladder urothelial carcinoma (BLCA) tissues, and the potential function of ASPN, including its effects on migration and invasion capabilities, was investigated in tumor cells. RESULTS The expression of ASPN exhibited significant variation across cancers and was found to be associated with patient prognosis. In addition, the expression level of APSN was markedly correlated with the abundances of infiltrating immune cells and cancer-associated fibroblasts and the expression levels of immunomodulatory genes based on the results of pancancer analysis. Metastasis and immune-associated signaling pathways were identified in enrichment analysis based on ASPN expression. Finally, we confirmed that ASPN expression increased with the degree of malignancy in BLCA tissues and cell lines and that low expression of ASPN hindered the migration and invasion of cells. CONCLUSIONS ASPN has the potential to be a biomarker of cancer prognosis and a therapeutic target, and it also has predictive capability for the progression of BLCA.
Collapse
Affiliation(s)
- Fayun Wei
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tianhang Li
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiazheng Li
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulin Zhang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tianyao Liu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenjie Zhu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Rong Yang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Aghamir SMK, Roudgari H, Heidari H, Salimi Asl M, Jafari Abarghan Y, Soleimani V, Mashhadi R, Khatami F. Whole Exome Sequencing to Find Candidate Variants for the Prediction of Kidney Transplantation Efficacy. Genes (Basel) 2023; 14:1251. [PMID: 37372431 PMCID: PMC10298443 DOI: 10.3390/genes14061251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION Kidney transplantation is the optimal treatment strategy for some end-stage renal disease (ESRD); however, graft survival and the success of the transplantation depend on several elements, including the genetics of recipients. In this study, we evaluated exon loci variants based on a high-resolution Next Generation Sequencing (NGS) method. METHODS We evaluated whole-exome sequencing (WES) of transplanted kidney recipients in a prospective study. The study involved a total of 10 patients (5 without a history of rejection and 5 with). About five milliliters of blood were collected for DNA extraction, followed by whole-exome sequencing based on molecular inversion probes (MIPs). RESULTS Sequencing and variant filtering identified nine pathogenic variants in rejecting patients (low survival). Interestingly, in five patients with successful kidney transplantation, we found 86 SNPs in 63 genes 61 were variants of uncertain significance (VUS), 5 were likely pathogenic, and five were likely benign/benign. The only overlap between rejecting and non-rejecting patients was SNPs rs529922492 in rejecting and rs773542127 in non-rejecting patients' MUC4 gene. CONCLUSIONS Nine variants of rs779232502, rs3831942, rs564955632, rs529922492, rs762675930, rs569593251, rs192347509, rs548514380, and rs72648913 have roles in short graft survival.
Collapse
Affiliation(s)
| | - Hassan Roudgari
- Genomic Research Centre (GRC), Shahid Beheshti University of Medical Sciences (SBMU), Tehran 1416634793, Iran
- Department of Applied Medicine, Medical School, Aberdeen University, Aberdeen AB24 3FX, UK
| | - Hassan Heidari
- Urology Research Center, Tehran University of Medical Sciences, Tehran P94V+8MF, Iran
| | - Mohammad Salimi Asl
- Urology Research Center, Tehran University of Medical Sciences, Tehran P94V+8MF, Iran
| | - Yousef Jafari Abarghan
- Deparment of Molecular Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 1696700, Iran
| | - Venous Soleimani
- Urology Research Center, Tehran University of Medical Sciences, Tehran P94V+8MF, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran P94V+8MF, Iran
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran P94V+8MF, Iran
| |
Collapse
|
11
|
Rebelo R, Xavier CPR, Giovannetti E, Vasconcelos MH. Fibroblasts in pancreatic cancer: molecular and clinical perspectives. Trends Mol Med 2023; 29:439-453. [PMID: 37100646 DOI: 10.1016/j.molmed.2023.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2023]
Abstract
Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.
Collapse
Affiliation(s)
- Rita Rebelo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - M Helena Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal.
| |
Collapse
|
12
|
Zhang K, Yue B, Duan X, Chen W, Dai X, Chen Y, Li X, Lu J. Joint analysis identified FAP as a prognostic and diagnostic biomarker correlated immune infiltration in gastric cancer. Pathol Res Pract 2023; 245:154462. [PMID: 37068372 DOI: 10.1016/j.prp.2023.154462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Gastric cancer is one of the most malignant types of cancer in the digestive system because of its high incidence and mortality. There is a notable association between gastric cancer progression and the level and sort of immune cells infiltrating the tumor microenvironment. First, 41 up-regulated differentially expressed genes (DEGs) and 91 down-regulated DEGs were identified from the Gene Expression Omnibus (GEO) database. Among the 21 core genes, prognosis biomarkers FAP, ASPN and CTHRC1 were identified for further study via Kaplan-Meier Plotter, with FAP having the highest prognostic value among them. In addition, the ROC curves of FAP (AUC=0.992), ASPN (AUC=0.955) and CTHRC1 (AUC=0.983) also showed high diagnostic value. Then the expression and mutation levels of the biomarkers were verified by GEPIA and cBioPortal. Their high expression levels were closely correlated to the clinical stages and metastasis status of gastric cancer. Furthermore, their expression was strongly relevant to immune infiltration and macrophage marker levels. In drug response analysis, gastric cancer cell lines with overexpression of FAP and ASPN were more sensitive to PI3K and MET inhibitors, respectively. Importantly, the meta-analysis showed that FAP had an overall positive rate of 68 % (63-73 %, 95 % CI; n = 382) and the patients with high expression of FAP showed a poor prognosis in terms of OS (HR=1.82, 1.33-2.48, 95 % CI) in gastric cancer. In short, FAP, ASPN and CTHRC1 were identified as potential prognostic and diagnostic biomarkers related with immunity and might be effective therapeutic targets of gastric cancer, and the significance of FAP for the prognosis was further assessed by meta-analysis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Bingtong Yue
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
13
|
Pancreatic stellate cells exploit Wnt/β-catenin/TCF7-mediated glutamine metabolism to promote pancreatic cancer cells growth. Cancer Lett 2023; 555:216040. [PMID: 36565920 DOI: 10.1016/j.canlet.2022.216040] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic stellate cells (PSCs) are crucial for metabolism and disease progression in pancreatic ductal adenocarcinoma (PDAC). However, detailed mechanisms of PSCs in glutamine (Gln) metabolism and tumor-stromal metabolic interactions have not been well clarified. Here we showed that tumor tissues displayed Gln deficiency in orthotopic PDAC models. Single-cell RNA sequencing analysis revealed metabolic heterogeneity in PDAC, with significantly higher expression of Gln catabolism pathway in stromal cells. Significantly higher glutamine synthetase (GS) protein expression was further validated in human tissues and cells. Elevated GS levels in tumor and stroma were independently prognostic of poorer prognosis in PDAC patients. Gln secreted by PSCs increased basal oxygen consumption rate in PCCs. Depletion of GS in PSCs significantly decreased PCCs proliferation in vitro and in vivo. Mechanistically, activation of Wnt signaling induced directly binding of β-catenin/TCF7 complex to GS promoter region and upregulated GS expression. Rescue experiments testified that GS overexpression recovered β-catenin knockdown-mediated function on Gln synthesis and tumor-promoting ability of PSCs. Overall, these findings identify the Wnt/β-catenin/TCF7/GS-mediated growth-promoting effect of PSCs and provide new insights into stromal Gln metabolism, which may offer novel therapeutic strategies for PDAC.
Collapse
|
14
|
Fan R, Yan X, Zhang W. Relationship between asporin and extracellular matrix behavior: A literature review. Medicine (Baltimore) 2022; 101:e32490. [PMID: 36595867 PMCID: PMC9794316 DOI: 10.1097/md.0000000000032490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asporin (ASPN), as a member of the small leucine-rich repeat proteoglycan family, is a type of protein that is found in the extracellular matrix. Collagen deposition or transformation is involved in a variety of pathological processes. ASPN is identified in cancerous tissue, pathological cardiac tissue, articular cartilage, keloid, and fibrotic lung tissue, and it has a role in the development of cancer, cardiovascular, bone and joint, keloid, and pulmonary fibrosis by interfering with collagen metabolism. This review article summarizes the data on ASPN expressions in mouse and human and highlights that overexpress of ASPN might play a role in a variety of diseases. Although our knowledge of ASPN is currently limited, these instances may help us better understand how it interacts with diseases.
Collapse
Affiliation(s)
- Rui Fan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Xiaoyan Yan
- Department of Geriatrics, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong, China
- * Correspondence: Wei Zhang, Department of Respiratory and Critical Care Medicine, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Shandong 250014, China (e-mail: )
| |
Collapse
|
15
|
Karagiorgou Z, Fountas PN, Manou D, Knutsen E, Theocharis AD. Proteoglycans Determine the Dynamic Landscape of EMT and Cancer Cell Stemness. Cancers (Basel) 2022; 14:5328. [PMID: 36358747 PMCID: PMC9653992 DOI: 10.3390/cancers14215328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 03/15/2024] Open
Abstract
Proteoglycans (PGs) are pivotal components of extracellular matrices, involved in a variety of processes such as migration, invasion, morphogenesis, differentiation, drug resistance, and epithelial-to-mesenchymal transition (EMT). Cellular plasticity is a crucial intermediate phenotypic state acquired by cancer cells, which can modulate EMT and the generation of cancer stem cells (CSCs). PGs affect cell plasticity, stemness, and EMT, altering the cellular shape and functions. PGs control these functions, either by direct activation of signaling cascades, acting as co-receptors, or through regulation of the availability of biological compounds such as growth factors and cytokines. Differential expression of microRNAs is also associated with the expression of PGs and their interplay is implicated in the fine tuning of cancer cell phenotype and potential. This review summarizes the involvement of PGs in the regulation of EMT and stemness of cancer cells and highlights the molecular mechanisms.
Collapse
Affiliation(s)
- Zoi Karagiorgou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Panagiotis N. Fountas
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9010 Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
16
|
Dong Y, Zhang C, Zhang Q, Li Z, Wang Y, Yan J, Wu G, Qiu L, Zhu Z, Wang B, Gu H, Zhang Y. Identification of nanoparticle-mediated siRNA-ASPN as a key gene target in the treatment of keloids. Front Bioeng Biotechnol 2022; 10:1025546. [PMID: 36394011 PMCID: PMC9649824 DOI: 10.3389/fbioe.2022.1025546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Keloid, also known as connective tissue hyperplasia, is a benign proliferative disorder with a global distribution. The available therapeutic interventions are steroid injections, surgical removal of keloids, radiotherapy, compression therapy, the application of cryosurgery, and many other methods. Objectives: Existing treatments or approaches for keloids may lead to similar or even larger lesions at the site of keloid excision, leading to a high recurrence rate. Therefore, this study aims at identifying a new gene-based therapy for the treatment of keloids. Methods: An ASPN-siRNA/nanoparticle combination (si-ASPN) and a negative siRNA/nanoparticle complex (NC) was developed on the basis of bioinformatics studies and used in vitro and in vivo experiments. Results: The results showed a strong correlation between the development of keloids and high expression of ASPN protein. With the expression of ASPN protein greatly reduced in keloid fibroblasts and nude mice allografts after treatment with si-ASPN, the collagen and fibroblasts were also uniform, thinner, parallel and regular. Conclusion: All the above experimental results suggest that keloid and ASPN are closely related and both fibroblast growth and metabolism of keloid are inhibited after silencing ASPN. Therefore, ASPN-siRNA delivered via nanoparticles can serve as a novel intervention therapy for the treatment of keloids.
Collapse
Affiliation(s)
- Yipeng Dong
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Chuwei Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Qingrong Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Institute of Burn Research, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zihan Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Yixiao Wang
- Medical School of Nantong University, Nantong, China
| | - Jun Yan
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Gujie Wu
- Medical School of Nantong University, Nantong, China
| | - Ling Qiu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Zhihan Zhu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Bolin Wang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Haiying Gu
- Institute of Analytical Chemistry for Life Science, Nantong University, Nantong, China
- School of Public Health, Nantong University, Nantong, China
- *Correspondence: Yi Zhang, ; Haiying Gu,
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Yi Zhang, ; Haiying Gu,
| |
Collapse
|
17
|
Chen LJ, Wu L, Wang W, Zhai LL, Xiang F, Li WB, Tang ZG. Long non‑coding RNA 01614 hyperactivates WNT/β‑catenin signaling to promote pancreatic cancer progression by suppressing GSK‑3β. Int J Oncol 2022; 61:116. [PMID: 35929518 PMCID: PMC9387559 DOI: 10.3892/ijo.2022.5406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal type of cancer for which effective therapies are limited. Long non-coding RNAs (lncRNAs) represent a critical type of regulator category, mediating the tumorigenesis and development of various tumor types, including PC. However, the expression patterns and functions of numerous lncRNAs in PC remain poorly understood. In the present study, linc01614 was identified as a PC-related lncRNA. linc01614 was notably upregulated in PC tissues and cell lines and was associated with the poor disease-free survival of patients with PC according to the analysis of The Cancer Genome Atlas-derived datasets. Functionally, linc01614 knockdown suppressed PC cell proliferation, migration and invasion in vitro, and inhibited tumor proliferation in vitro and in vivo. Mechanistically, linc01614 overexpression stabilized the level of β-catenin protein to hyperactivate the WNT/β-catenin signaling pathway in PC cells. Further analyses revealed that linc01614 bound to GSK-3β and perturbed the interaction between GSK-3β and AXIN1, thereby preventing the formation of the β-catenin degradation complex and reducing the degradation of β-catenin. In summary, the present findings reveal that linc01614 may function as an oncogene and promote the progression of PC and may thus be considered as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Long-Jiang Chen
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lun Wu
- Department of Breast and Τhyroid Surgery, Experiment Center of Medicine, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Wei Wang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu-Lu Zhai
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Xiang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Bo Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
18
|
Yu L, Lu J, Xie H, Ni J, Chen S, Zhao Q, Xie N, Lu L, Wang X, Li B. RELA-induced MiR-21 Exerts Oncogenic Effects on PDAC via Targeting of ARHGAP24. J Cancer 2022; 13:2781-2797. [PMID: 35812178 PMCID: PMC9254878 DOI: 10.7150/jca.73690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 11/05/2022] Open
Abstract
Inflammation is one of the inducing factors of pancreatic ductal adenocarcinoma (PDAC), and microRNAs have been confirmed to be involved in the occurrence and development of PDAC. However, whether RELA, an inflammatory regulator, is involved in the regulation of PDAC by miRNA remains to be further studied. In the present study miR-21 was characterized and its upstream regulatory mechanism was investigated, as well as its functional effects and target genes in pancreatic ductal adenocarcinoma (PDAC). In situ hybridization analysis confirmed increased miR-21 expression levels in PDAC tissues. The results of the chromatin immunoprecipitation and dual-luciferase reporter assays demonstrated that transcription factor RELA modulated miR-21 transcription in the PDAC, PANC-1 and MIA PaCa-2 cell lines. Subsequently, a cell viability assay, EdU staining assay and flow cytometry analysis, demonstrated that miR-21 promoted cell proliferation and cell cycle progression, but inhibited cell apoptosis in vitro. Furthermore, a xenograft assay demonstrated that miR-21 accelerated tumor growth in vivo. Mechanistically, miR-21 directly regulated the expression of Rho GTPase activating protein 24 (ARHGAP24), which was indicated to be a tumor suppressor gene. Moreover, both miR-21 and ARHGAP24 were strongly associated with clinical features and may therefore serve as valuable biomarkers in PDAC prognosis.
Collapse
Affiliation(s)
- Lanting Yu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jiawei Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Haoran Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Sumin Chen
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ni Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| |
Collapse
|
19
|
Feliz Morel ÁJ, Hasanovic A, Morin A, Prunier C, Magnone V, Lebrigand K, Aouad A, Cogoluegnes S, Favier J, Pasquier C, Mus-Veteau I. Persistent Properties of a Subpopulation of Cancer Cells Overexpressing the Hedgehog Receptor Patched. Pharmaceutics 2022; 14:pharmaceutics14050988. [PMID: 35631574 PMCID: PMC9146430 DOI: 10.3390/pharmaceutics14050988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the development of new therapeutic strategies, cancer remains one of the leading causes of mortality worldwide. One of the current major challenges is the resistance of cancers to chemotherapy treatments inducing metastases and relapse of the tumor. The Hedgehog receptor Patched (Ptch1) is overexpressed in many types of cancers. We showed that Ptch1 contributes to the efflux of doxorubicin and plays an important role in the resistance to chemotherapy in adrenocortical carcinoma (ACC), a rare cancer which presents strong resistance to the standard of care chemotherapy treatment. In the present study, we isolated and characterized a subpopulation of the ACC cell line H295R in which Ptch1 is overexpressed and more present at the cell surface. This cell subpopulation is more resistant to doxorubicin, grows as spheroids, and has a greater capability of clonogenicity, migration, and invasion than the parental cells. Xenograft experiments performed in mice and in ovo showed that this cell subpopulation is more tumorigenic and metastatic than the parental cells. These results suggest that this cell subpopulation has cancer stem-like or persistent cell properties which were strengthened by RNA-seq. If present in tumors from ACC patients, these cells could be responsible for therapy resistance, relapse, and metastases.
Collapse
Affiliation(s)
- Álvaro Javier Feliz Morel
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Anida Hasanovic
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Aurélie Morin
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue Contre le Cancer, CEDEX 15, 75737 Paris, France; (A.M.); (J.F.)
| | - Chloé Prunier
- INOVOTION, Biopolis-5 Av. du Grand Sablon, 38700 La Tronche, France;
| | - Virginie Magnone
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Kevin Lebrigand
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Amaury Aouad
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Sarah Cogoluegnes
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Judith Favier
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue Contre le Cancer, CEDEX 15, 75737 Paris, France; (A.M.); (J.F.)
| | - Claude Pasquier
- Université Côte d’Azur, CNRS-UMR7271, Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (I3S), 06560 Valbonne, France;
| | - Isabelle Mus-Veteau
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
- Correspondence:
| |
Collapse
|
20
|
Huang C, Sharma A, Thakur R, Rai D, Katiki M, Germano JDF, Song Y, Singh S, Sin J, Sengstock D, Andres AM, Murali R, Mentzer RM, Gottlieb RA, Piplani H. Asporin, an extracellular matrix protein, is a beneficial regulator of cardiac remodeling. Matrix Biol 2022; 110:40-59. [DOI: 10.1016/j.matbio.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 01/15/2023]
|
21
|
Zhou Y, Li C, Wang Z, Tan S, Liu Y, Zhang H, Li X. CircRNAs as Novel Biomarkers and Therapeutic Targets in Renal Cell Carcinoma. Front Mol Biosci 2022; 9:833079. [PMID: 35223991 PMCID: PMC8874010 DOI: 10.3389/fmolb.2022.833079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of long non-coding RNA with covalently closed loops that are naturally resistant to exoribonuclease. With the rapid development of high-throughput sequencing technologies and bioinformatics, increasing data suggest that circRNAs are abnormally expressed in renal cell carcinoma (RCC) and act as important regulators of RCC carcinogenesis and progression. CircRNAs play important biological roles in modulating cell proliferation, migration, invasion, apoptosis, and gemcitabine chemoresistance in RCC. Most of the circRNAs studied in RCC have been reported to be significantly associated with many clinicopathologic characteristics and survival parameters of RCC. The stability and specificity of circRNAs enable them potential molecular markers for RCC diagnosis and prognosis. Moreover, circRNAs have emerged as targets for developing new therapies, because they can regulate various signaling pathways associated with RCC initiation and progression. In this review, we briefly summarize the biogenesis, degradation, and biological functions of circRNAs as well as the potential clinical applications of these molecules for RCC diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Yuxia Zhou
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Cheng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhenping Wang
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuangfeng Tan
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yiqi Liu
- The Second Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuefeng Li
- The First Affiliated Hospital, Department of Medical Oncology, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xuefeng Li,
| |
Collapse
|
22
|
Tanaka M. Crosstalk of tumor stromal cells orchestrates invasion and spreading of gastric cancer. Pathol Int 2022; 72:219-233. [PMID: 35112770 DOI: 10.1111/pin.13211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/18/2022] [Indexed: 01/22/2023]
Abstract
Tumors contain various stromal cells that support cancer progression. Some types of cancer, such as scirrhous gastric cancer, are characterized by large areas of fibrosis accompanied by cancer-associated fibroblasts (CAFs). Asporin (ASPN) is a small leucine-rich proteoglycan highly expressed in CAFs of various tumors. ASPN accelerates CAF migration and invasion, resulting in CAF-led cancer cell invasion. In addition, ASPN further upregulated the expression of genes specific to a characteristic subgroup of fibroblasts in tumors. These cells were preferentially located at the tumor periphery and could be generated by a unique mechanism involving the CAF-mediated education of normal fibroblasts (CEFs). In this review, we at first describe recent findings regarding the function of ASPN in the tumor microenvironment, as well as the mechanism involved in the generation of CEFs. CAFs are derived from heterogeneous origins besides resident normal fibroblasts. Among them, CAFs derived from mesothelial cells (mesothelial cell-derived CAF [MC-CAFs]) play pivotal roles in peritoneal carcinomatosis. We observed that MC-CAFs on the surfaces of organs also participate in tumor formation by infiltrating into the parenchyma, promoting local invasion by gastric cancers. This review also highlights the potential functions of macrophages in the formation of MC-CAFs in gastric cancers, by transfer the contents of cancer cell-derived extracellular vesicles.
Collapse
Affiliation(s)
- Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
23
|
Guo F, Cheng X, Jing B, Wu H, Jin X. FGD3 binds with HSF4 to suppress p65 expression and inhibit pancreatic cancer progression. Oncogene 2022; 41:838-851. [PMID: 34975151 DOI: 10.1038/s41388-021-02140-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/09/2022]
Abstract
Pancreatic cancer is regarded as the most lethal solid tumor worldwide. Deregulated and constitutively activated NF-κB signaling is one of the major characteristics of pancreatic cancer. The total expression level and subcellular localization of RelA/p65 have been shown to determine the activation of canonical NF-κB signaling in pancreatic cancer. FGD3, which is involved in regulating the actin cytoskeleton and cell shape, has been reported to inhibit cancer cell migration and predict a favorable prognosis in multiple types of cancer. However, the specific role of FGD3 in pancreatic cancer is still unknown. In this study, we conducted a systematic investigation of the cancer-related role of FGD3 in pancreatic cancer. We demonstrated that FGD3 was abnormally downregulated in pancreatic cancer tissues and that low expression of FGD3 was associated with unfavorable prognosis in patients with pancreatic cancer. Then, we showed that FGD3 inhibited pancreatic cancer cell proliferation, invasion and metastasis in vivo and in vitro. Moreover, we revealed that FGD3 silencing activated the NF-κB signaling pathway by promoting HSF4 nuclear translocation and increasing p65 expression in pancreatic cancer cells. Therefore, our results identified a novel and targetable FGD3/HSF4/p65 signaling axis in pancreatic cancer cells.
Collapse
Affiliation(s)
- Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Cheng
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Boping Jing
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P.R. China
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
24
|
Seo JH, Jeon YJ. Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions. J Microbiol Biotechnol 2022; 32:126-140. [PMID: 34750284 PMCID: PMC9628825 DOI: 10.4014/jmb.2110.10032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022]
Abstract
Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/β-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/β-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.
Collapse
Affiliation(s)
- Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Young-Joo Jeon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Corresponding author Phone: +82-42-860-4386 Fax: +82-42-860-4608 E-mail:
| |
Collapse
|
25
|
Liu X, Wang W, Liu X, Zhang Z, Yu L, Li R, Guo D, Cai W, Quan X, Wu H, Dai M, Liang Z. Multi-omics analysis of intra-tumoural and inter-tumoural heterogeneity in pancreatic ductal adenocarcinoma. Clin Transl Med 2022; 12:e670. [PMID: 35061935 PMCID: PMC8782496 DOI: 10.1002/ctm2.670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is associated with the tumour heterogeneity. To explore intra- and inter-tumoural heterogeneity in PDAC, we analysed the multi-omics profiles of 61 PDAC lesion samples, along with the matched pancreatic normal tissue samples, from 19 PDAC patients. Haematoxylin and Eosin (H&E) staining revealed that diversely differentiated lesions coexisted both within and across individual tumours. Whole exome sequencing (WES) of samples from multi-region revealed diverse types of mutations in diverse genes between cancer cells within a tumour and between tumours from different individuals. The copy number variation (CNV) analysis also showed that PDAC exhibited intra- and inter-tumoural heterogeneity in CNV and that high average CNV burden was associated poor prognosis of the patients. Phylogenetic tree analysis and clonality/timing analysis of mutations displayed diverse evolutionary pathways and spatiotemporal characteristics of genomic alterations between different lesions from the same or different tumours. Hierarchical clustering analysis illustrated higher inter-tumoural heterogeneity than intra-tumoural heterogeneity of PDAC at the transcriptional levels as lesions from the same patients are grouped into a single cluster. Immune marker genes are differentially expressed in different regions and tumour samples as shown by tumour microenvironment (TME) analysis. TME appeared to be more heterogeneous than tumour cells in the same patient. Lesion-specific differentially methylated regions (DMRs) were identified by methylated DNA immunoprecipitation sequencing (MeDIP-seq). Furthermore, the integration analysis of multi-omics data showed that the mRNA levels of some genes, such as PLCB4, were significantly correlated with the gene copy numbers. The mRNA expressions of potential PDAC biomarkers ZNF521 and KDM6A were correlated with copy number alteration and methylation, respectively. Taken together, our results provide a comprehensive view of molecular heterogeneity and evolutionary trajectories of PDAC and may guide personalised treatment strategies in PDAC therapy.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Department of PathologyQilu Hospital (Qingdao)Cheeloo College of MedicineShandong UniversityQingdaoShandongChina
| | - Wenqian Wang
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoding Liu
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhiwen Zhang
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lianyuan Yu
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ruiyu Li
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dan Guo
- Clinical BiobankMedical Research CentrePeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Weijing Cai
- Shanghai Tongshu Biotechnology Co., LtdShanghaiChina
| | - Xueping Quan
- Shanghai Tongshu Biotechnology Co., LtdShanghaiChina
| | - Huanwen Wu
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Menghua Dai
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhiyong Liang
- Department of PathologyState Key Laboratory of Complex Severe and Rare DiseasesMolecular Pathology Research CenterPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
26
|
Liu X, Tong Y, Xia D, Peng E, Yang X, Liu H, Ye T, Wang X, He Y, Ye Z, Chen Z, Tang K. Circular RNAs in prostate cancer: Biogenesis,biological functions, and clinical significance. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1130-1147. [PMID: 34820150 PMCID: PMC8585584 DOI: 10.1016/j.omtn.2021.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are covalently closed RNA molecules that play important regulatory roles in various tumors. Prostate cancer (PCa) is one of the most common malignant tumors in the world, with high morbidity and mortality. In recent years, more and more circRNAs have been found to be abnormally expressed and involved in the occurrence and development of PCa, including cell proliferation, apoptosis, invasion, migration, metastasis, chemotherapy resistance, and radiotherapy resistance. Most of the circRNAs regulate biological behaviors of cancer through a competitive endogenous RNA (ceRNA) regulatory mechanism, and some can exert their functions by binding to proteins. circRNAs are also associated with many clinicopathological features of PCa, including tumor grade, lymph node metastasis, and distant metastasis. In addition, circRNAs are potential diagnostic and prognostic biomarkers for PCa. Considering their critical regulatory roles in the progression of PCa, circRNAs would be the potential therapeutic targets. In this paper, the current research status of circRNAs in PCa is briefly reviewed.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hailang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinguang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
27
|
Chang J, Hu X, Nan J, Zhang X, Jin X. HOXD9‑induced SCNN1A upregulation promotes pancreatic cancer cell proliferation, migration and predicts prognosis by regulating epithelial‑mesenchymal transformation. Mol Med Rep 2021; 24:819. [PMID: 34558641 PMCID: PMC8477178 DOI: 10.3892/mmr.2021.12459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is a malignant tumor disease, whose molecular mechanism is not fully understood. Sodium channel epithelial 1α subunit (SCNN1A) serves an important role in tumor progression. The current study explored the role of homeobox D9 (HOXD9) and SCNN1A in the progression of PC. The expression of SCNN1A and HOXD9 in PC samples was predicted on online databases and detected in PC cell lines. The association between SCNN1A expression and PC prognosis was examined by the Gene Expression Profiling Interactive Analysis, The Cancer Genome Atlas and Genotype‑Tissue Expression databases and by a Kaplan‑Meier plotter. Subsequently, the biological effects of SCNN1A on PC cell growth, colony formation, migration and invasion were investigated through RNA interference and cell transfection. Next, the expression of E‑cadherin, N‑cadherin, Vimentin and Snail was detected by western blotting to discover whether HOXD9 dysregulation mediated PC metastasis. Binding sites of HOXD9 and SCNN1A promoters were predicted on JASPAR. Reverse transcription‑quantitative PCR and western blotting were used to detect the expression level of SCNN1A following interference and overexpression of HOXD9. Luciferase assay detected luciferase activity following interference with HOXD9 and the transcriptional activity of SCNN1A following binding site deletion. High expression of SCNN1A and HOXD9 in PC was predicted by online databases, signifying poor prognosis. The present study confirmed the above predictions in PC cell lines. Knockdown of SCNN1A and HOXD9 could effectively inhibit the proliferation, migration, invasion and epithelial‑mesenchymal transition of PC cells. Furthermore, HOXD9 activated SCNN1A transcription, forming a feedback regulatory loop. HOXD9 was demonstrated to activate SCNN1A and promote the malignant biological process of PC.
Collapse
Affiliation(s)
- Jinhai Chang
- Department of Internal Medicine, Yanbian Hospital of Traditional Chinese Medicine, Yanbian, Jilin 133000, P.R. China
| | - Xuguang Hu
- Department of Hepatobiliary Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Jinniang Nan
- Department of Clinical Medicine, Jiangxi Health Vocational College of China, Nanchang, Jiangxi 330052, P.R. China
- Correspondence to: Dr Jinniang Nan, Department of Clinical Medicine, Jiangxi Health Vocational College of China, 689 Huiren Avenue, Xiaolan Economic Development Zone, Nanchang, Jiangxi 330052, P.R. China, E-mail:
| | - Xianghua Zhang
- Department of Thoracic Oncology, Jilin Province Cancer Hospital, Changchun, Jilin 130000, P.R. China
| | - Xintian Jin
- Department of Thoracic Surgery, Jilin Province Cancer Hospital, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
28
|
Huang S, Lai X, Yang L, Ye F, Huang C, Qiu Y, Lin S, Pu L, Wang Z, Huang W. Asporin Promotes TGF-β-induced Lung Myofibroblast Differentiation by Facilitating Rab11-dependent Recycling of TβRI. Am J Respir Cell Mol Biol 2021; 66:158-170. [PMID: 34705621 DOI: 10.1165/rcmb.2021-0257oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrotic lung disease with high mortality and morbidity. Asporin (ASPN), a member of the small leucine-rich proteoglycan (SLRP) family, plays crucial roles in tissue injury and regeneration. However, the precise pathophysiological role of ASPN and its molecular mechanisms in IPF remain unknown. We sought to investigate the role of ASPN during the development of pulmonary fibrosis and the therapeutic potential of targeting ASPN-related signaling pathways. In our study, three microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) were screened out by bioinformatic analysis. Hub genes were selected from the protein-protein interaction network. ASPN was examined in lung tissues from pulmonary fibrosis mouse models and the role of ASPN in TGF-β/Smad signaling was determined by transfection with ASPN shRNA vectors in vitro. Biotinylation assays were conducted to measure plasma membrane TβRI and TβRI recycling after ASPN knockdown. The results showed ASPN expression was increased in the lungs of pulmonary fibrosis mouse models, and ASPN was primarily localized in α-SMA+ myofibroblasts. In vitro experiments proved that ASPN knockdown inhibited TGF-β/Smad signaling and myofibroblast differentiation by regulating the stability of TβRI. Further molecular mechanisms revealed that ASPN knockdown inhibited TGF-β/Smad signaling by suppressing recycling of TβRI to the cell surface in a Rab11-dependent manner and facilitated lysosome-mediated degradation of TβRI. In conclusion, our findings provide important evidence for the use of ASPN as a novel pharmacological target for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Shaojie Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Cardiac Surgery, Guangzhou, China
| | - Xiaofan Lai
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Lu Yang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Fang Ye
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Chanyan Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Yuan Qiu
- Sun Yat-Sen University, 26469, Center for stem cell biology and tissue engineering, Guangzhou, China
| | - Sijia Lin
- Sun Yat-Sen University, 26469, Guangzhou, China
| | - Lvya Pu
- Sun Yat-Sen University, 26469, Guangzhou, China
| | - Zhongxing Wang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China
| | - Wenqi Huang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Anesthesiology, Guangzhou, China;
| |
Collapse
|
29
|
Basak D, Jamal Z, Ghosh A, Mondal PK, Dey Talukdar P, Ghosh S, Ghosh Roy B, Ghosh R, Halder A, Chowdhury A, Dhali GK, Chattopadhyay BK, Saha ML, Basu A, Roy S, Mukherjee C, Biswas NK, Chatterji U, Datta S. Reciprocal interplay between asporin and decorin: Implications in gastric cancer prognosis. PLoS One 2021; 16:e0255915. [PMID: 34379688 PMCID: PMC8357146 DOI: 10.1371/journal.pone.0255915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
Effective patient prognosis necessitates identification of novel tumor promoting drivers of gastric cancer (GC) which contribute to worsened conditions by analysing TCGA-gastric adenocarcinoma dataset. Small leucine-rich proteoglycans, asporin (ASPN) and decorin (DCN), play overlapping roles in development and diseases; however, the mechanisms underlying their interplay remain elusive. Here, we investigated the complex interplay of asporin, decorin and their interaction with TGFβ in GC tumor and corresponding normal tissues. The mRNA levels, protein expressions and cellular localizations of ASPN and DCN were analyzed using real-time PCR, western blot and immunohistochemistry, respectively. The protein-protein interaction was predicted by in-silico interaction analysis and validated by co-immunoprecipitation assay. The correlations between ASPN and EMT proteins, VEGF and collagen were achieved using western blot analysis. A significant increase in expression of ASPN in tumor tissue vs. normal tissue was observed in both TCGA and our patient cohort. DCN, an effective inhibitor of the TGFβ pathway, was negatively correlated with stages of GC. Co-immunoprecipitation demonstrated that DCN binds with TGFβ, in normal gastric epithelium, whereas in GC, ASPN preferentially binds TGFβ. Possible activation of the canonical TGFβ pathway by phosphorylation of SMAD2 in tumor tissues suggests its role as an intracellular tumor promoter. Furthermore, tissues expressing ASPN showed unregulated EMT signalling. Our study uncovers ASPN as a GC-promoting gene and DCN as tumor suppressor, suggesting that ASPN can act as a prognostic marker in GC. For the first time, we describe the physical interaction of TGFβ with ASPN in GC and DCN with TGFβ in GC and normal gastric epithelium respectively. This study suggests that prevention of ASPN-TGFβ interaction or overexpression of DCN could serve as promising therapeutic strategies for GC patients.
Collapse
Affiliation(s)
- Dipjit Basak
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Zarqua Jamal
- Cancer Research Lab, Department of Zoology, University of Calcutta, Kolkata, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, India
| | | | | | - Semanti Ghosh
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | - Ranajoy Ghosh
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Aniket Halder
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Gopal Krishna Dhali
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Makhan Lal Saha
- Department of Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhimanyu Basu
- Department of Surgery, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Sukanta Roy
- The School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | | | - Urmi Chatterji
- Cancer Research Lab, Department of Zoology, University of Calcutta, Kolkata, India
| | - Shalini Datta
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
30
|
Itoh G, Takagane K, Fukushi Y, Kuriyama S, Umakoshi M, Goto A, Yanagihara K, Yashiro M, Tanaka M. Cancer-associated fibroblasts educate normal fibroblasts to facilitate cancer cell spreading and T cell suppression. Mol Oncol 2021; 16:166-187. [PMID: 34379869 PMCID: PMC8732346 DOI: 10.1002/1878-0261.13077] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022] Open
Abstract
In some tumors, a small number of cancer cells are scattered in a large fibrotic stroma. Here, we demonstrate a novel mechanism for expansion of pro‐tumor fibroblasts via cancer‐associated fibroblast (CAF)‐mediated education of normal fibroblasts (NFs). When NFs were incubated with conditioned medium from CAFs, the resulting CAF‐educated fibroblasts (CEFs) generated reactive oxygen species, which induced NF‐κB‐mediated expression of inflammatory cytokines and the extracellular matrix protein asporin (ASPN), while expression of a common CAF marker gene, α‐SMA, was not increased. ASPN further increased CEF expression of downstream molecules, including indoleamine 2,3‐dioxygenase 1 (IDO‐1), kynureninase (KYNU), and pregnancy‐associated plasma protein‐A (PAPP‐A). These CEFs induce cytocidal effects against CD8+ T cells and IGF‐I activation in cancer cells. CEFs were generated without cancer cells by the direct mixture of NFs and CAFs in mouse xenografts, and once CEFs were generated, they sequentially educated NFs, leading to continuous generation of CEFs. In diffuse‐type gastric cancers, ASPNhigh/IDO‐1high/KYNUhigh/α‐SMA− CEFs were located at the distal invading front. These CEFs expanded in the fibrotic stroma and caused dissemination of cancer cells. ASPN may therefore be a key molecule in facilitating tumor spreading and T‐cell suppression.
Collapse
Affiliation(s)
- Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yuma Fukushi
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.,Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, 1-1 Tegata Gakuenmachi, Akita, 010-8502, Japan
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Michinobu Umakoshi
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8545, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
31
|
Zhang Z, Qin Y, Ji S, Xu W, Liu M, Hu Q, Ye Z, Fan G, Yu X, Liu W, Xu X. FGFBP1-mediated crosstalk between fibroblasts and pancreatic cancer cells via FGF22/FGFR2 promotes invasion and metastasis of pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2021; 53:997-1008. [PMID: 34117747 DOI: 10.1093/abbs/gmab074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 11/12/2022] Open
Abstract
Fibroblast growth factor-binding protein 1 (FGFBP1) promotes fibroblast growth factor (FGF) activity by releasing FGFs from extracellular matrix storage. We previously reported that the tumor suppressor F-box and WD repeat domain-containing 7 suppresses FGFBP1 by reducing expression of c-Myc, which inhibits the proliferation and migration of pancreatic cancer cells. However, the potential mechanism by which FGFBP1 facilitates pancreatic ductal adenocarcinoma (PDAC) remains unexplored. In this study, we focused on the function of FGFBP1 in the interplay between cancer-associated fibroblasts (CAFs) and pancreatic cancer cells (PCCs). Decreased FGF22 expression was detected in CAFs co-cultured with PCCs with FGFBP1 abrogation, which was verified in the cell culture medium by enzyme-linked immunosorbent assay. Active cytokine FGF22 significantly facilitated the migration and invasion of PANC-1 and Mia PaCa-2 cells. The number of penetrating PCCs cocultured with CAFs with FGF22 abrogation was significantly less than that of the control group. Interestingly, higher expressions of FGF22 and fibroblast growth factor receptor 2 (FGFR2) were associated with worse prognosis of patients with PDAC and FGFR2, an independent prognostic marker of PDAC. The PANC-1 and Mia PaCa-2 cells with silenced FGFR2 showed weaker invasion and metastasis, even if these cells were simultaneously treated with cytokine FGF22. These results revealed that FGFBP1-mediated interaction between CAFs and PCCs via FGF22/FGFR2 facilitates the migration and invasion of PCCs. FGFR2 could act as a prognostic marker for patients with PDAC.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Mengqi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Qiangsheng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200031, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200031, China
| |
Collapse
|
32
|
Liu L, Yu H, Long Y, You Z, Ogawa R, Du Y, Huang C. Asporin inhibits collagen matrix-mediated intercellular mechanocommunications between fibroblasts during keloid progression. FASEB J 2021; 35:e21705. [PMID: 34105826 DOI: 10.1096/fj.202100111r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023]
Abstract
Keloids are fibrotic lesions that grow unceasingly and invasively and are driven by local mechanical stimuli. Unlike other fibrotic diseases and normal wound healing, keloids exhibit little transformation of dermal fibroblasts into α-SMA+ myofibroblasts. This study showed that asporin is the most strongly expressed gene in keloids and its gene-ontology terms relate strongly to ECM metabolism/organization. Experiments with human dermal cells (HDFs) showed that asporin overexpression/treatment abrogated the HDF ability to adopt a perpendicular orientation when subjected to stretching tension. It also induced calcification of the surrounding 3D collagen matrix. Asporin overexpression/treatment also prevented the HDFs from remodeling the surrounding 3D collagen matrix, leading to a disorganized network of thick, wavy collagen fibers that resembled keloid collagen architecture. This in turn impaired the ability of the HDFs to contract the collagen matrix. Asporin treatment also made the fibroblasts impervious to the fibrous collagen contraction of α-SMA+ myofibroblasts, which normally activates fibroblasts. Thus, by calcifying collagen, asporin prevents fibroblasts from linearly rearranging the surrounding collagen; this reduces both their mechanosensitivity and mechanosignaling to each other through the collagen network. This blocks fibroblast activation and differentiation into the mature myofibroblasts that efficiently remodel the extracellular matrix. Consequently, the fibroblasts remain immature, highly proliferative, and continue laying down abundant extracellular matrix, causing keloid growth and invasion. Notably, dermal injection of asporin-overexpressing HDFs into murine wounds recapitulated keloid collagen histopathological characteristics. Thus, disrupted interfibroblast mechanocommunication may promote keloid progression. Asporin may be a new diagnostic biomarker and therapeutic target for keloids.
Collapse
Affiliation(s)
- Longwei Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Hongsheng Yu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yi Long
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhifeng You
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chenyu Huang
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
33
|
Zhang Z, Min L, Li H, Chen L, Zhao Y, Liu S, Guo Q, Zhu S, Li P, Zhang S. Asporin represses gastric cancer apoptosis via activating LEF1-mediated gene transcription independent of β-catenin. Oncogene 2021; 40:4552-4566. [PMID: 34127813 DOI: 10.1038/s41388-021-01858-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 11/09/2022]
Abstract
Asporin (ASPN) presents in the tumor microenvironment and exhibits a cancer-promoting effect as a stroma protein. Even though ASPN has already been observed inside cancer cells, the functions of intracellular ASPN and its underlying mechanisms remain unknown. Here we reported that ASPN was upregulated in different stages of gastric cancer (GC), and associated with a poor prognosis. Moreover, we found that ASPN markedly inhibited GC cell apoptosis and promoted cell growth in vitro and in vivo. Further mechanism investigations revealed that ASPN directly binding to lymphoid enhancer-binding factor 1 (LEF1) and promoted LEF1-mediated gene transcription independent of β-catenin, the classic co-factor in the Wnt/LEF1 pathway. We also demonstrated that ASPN selectively facilitated LEF1 binding to and activating the promoters of PTGS2, IL6, and WISP1 to promote their transcription. The suppression of cell apoptosis by ASPN overexpression could be attenuated by LEF1 knockdown or 100 µM aspirin (PTGS2 inhibitor), and siASPN mediated apoptosis could be rescued by LEF1 ectopic expression or adding recombinant IL6. Therefore, we concluded that ASPN repressed GC cell apoptosis via activating LEF1-mediated gene transcription independent of β-catenin, which could serve as a potential prognostic biomarker in GC patients.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Hengcun Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Lei Chen
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China.
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, P. R. China.
| |
Collapse
|
34
|
Hesterberg AB, Rios BL, Wolf EM, Tubbs C, Wong HY, Schaffer KR, Lotan TL, Giannico GA, Gordetsky JB, Hurley PJ. A distinct repertoire of cancer-associated fibroblasts is enriched in cribriform prostate cancer. J Pathol Clin Res 2021; 7:271-286. [PMID: 33600062 PMCID: PMC8073007 DOI: 10.1002/cjp2.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022]
Abstract
Outcomes for men with localized prostate cancer vary widely, with some men effectively managed without treatment on active surveillance, while other men rapidly progress to metastatic disease despite curative-intent therapies. One of the strongest prognostic indicators of outcome is grade groups based on the Gleason grading system. Gleason grade 4 prostate cancer with cribriform morphology is associated with adverse outcomes and can be utilized clinically to improve risk stratification. The underpinnings of disease aggressiveness associated with cribriform architecture are not fully understood. Most studies have focused on genetic and molecular alterations in cribriform tumor cells; however, less is known about the tumor microenvironment in cribriform prostate cancer. Cancer-associated fibroblasts (CAFs) are a heterogeneous population of fibroblasts in the tumor microenvironment that impact cancer aggressiveness. The overall goal of this study was to determine if cribriform prostate cancers are associated with a unique repertoire of CAFs. Radical prostatectomy whole-tissue sections were analyzed for the expression of fibroblast markers (ASPN in combination with FAP, THY1, ENG, NT5E, TNC, and PDGFRβ) in stroma adjacent to benign glands and in Gleason grade 3, Gleason grade 4 cribriform, and Gleason grade 4 noncribriform prostate cancer by RNAscope®. Halo® Software was used to quantify percent positive stromal cells and expression per positive cell. The fibroblast subtypes enriched in prostate cancer were highly heterogeneous. Both overlapping and distinct populations of low abundant fibroblast subtypes in benign prostate stroma were enriched in Gleason grade 4 prostate cancer with cribriform morphology compared to Gleason grade 4 prostate cancer with noncribriform morphology and Gleason grade 3 prostate cancer. In addition, gene expression was distinctly altered in CAF subtypes adjacent to cribriform prostate cancer. Overall, these studies suggest that cribriform prostate cancer has a unique tumor microenvironment that may distinguish it from other Gleason grade 4 morphologies and lower Gleason grades.
Collapse
Affiliation(s)
| | - Brenda L Rios
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Elysa M Wolf
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Colby Tubbs
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Hong Yuen Wong
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Kerry R Schaffer
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Tamara L Lotan
- Department of PathologyJohns Hopkins School of MedicineBaltimoreMDUSA
| | - Giovanna A Giannico
- Department of PathologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of UrologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Jennifer B Gordetsky
- Department of PathologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of UrologyVanderbilt University Medical CenterNashvilleTNUSA
| | - Paula J Hurley
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of UrologyVanderbilt University Medical CenterNashvilleTNUSA
- Vanderbilt‐Ingram Cancer CenterVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
35
|
Yashiro M, Hasegawa T, Yamamoto Y, Tsujio G, Nishimura S, Sera T, Sugimoto A, Kushiyama S, Kasashima H, Fukuoka T, Sakurai K, Toyokawa T, Kubo N, Ohira M. Asporin Expression on Stromal Cells and/or Cancer Cells Might Be A Useful Prognostic Marker in Patients with Diffuse-Type Gastric Cancer. Eur Surg Res 2021; 62:53-60. [PMID: 33882483 DOI: 10.1159/000515458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Asporin (ASPN), a member of the proteoglycan family, has been shown to have a close correlation with cancer progression. It is not known whether ASPN is an oncogenic driver or a tumor suppressor in human gastric cancer. We sought herein to determine the relationship between ASPN expression and clinicopathological features of gastric cancer. PATIENTS AND METHODS A total of 296 gastric cancer patients (diffuse type, n = 144; intestinal type, n = 152) were enrolled. The ASPN expression level in each case was analyzed by immunohistochemistry. RESULTS ASPN was mainly found on stromal cells, especially on fibroblasts in tumor stroma, i.e., cancer-associated fibroblasts. The ASPN expression on either cancer cells or stromal cells was significantly high in macroscopic scirrhous-type tumors (p < 0.001) and histologically abundant stroma-type tumors (p < 0.001). Interestingly, a Kaplan-Meier survival curve of the 144 cases of diffuse-type gastric cancer revealed a significantly poorer prognosis in patients with ASPN-positive expression (p = 0.043; log rank) compared to those with ASPN-negative expression, but the prognoses were not significantly different in these subgroups of the 152 cases of intestinal-type gastric cancer. A multivariate analysis with respect to overall survival showed that ASPN expression on stromal cells and/or cancer cells was significantly correlated with overall survival in patients with diffuse-type gastric cancer (p = 0.041). CONCLUSION In gastric cancer, ASPN was expressed mainly on stromal cells and partially on cancer cells. ASPN expression on stromal cells and/or cancer cells might be a useful prognostic marker in patients with diffuse-type gastric cancer.
Collapse
Affiliation(s)
- Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Tsuyoshi Hasegawa
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Gen Tsujio
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Sadaaki Nishimura
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Tomohiro Sera
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Atsushi Sugimoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Shuhei Kushiyama
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Hiroaki Kasashima
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Tatsunari Fukuoka
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan.,Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Katsunobu Sakurai
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Takahiro Toyokawa
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Naoshi Kubo
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| |
Collapse
|
36
|
Luu T. Epithelial-Mesenchymal Transition and Its Regulation Mechanisms in Pancreatic Cancer. Front Oncol 2021; 11:646399. [PMID: 33928036 PMCID: PMC8076603 DOI: 10.3389/fonc.2021.646399] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the malignancies with high mortality and high insensitivity to existing therapies, pancreatic cancer and mechanisms underlying its progression have received growing scholarly attention. The role of the epithelial-mesenchymal transition (EMT) in pancreatic cancer genesis and metastasis has been reported albeit controversy has remained. Recent insights into further EMT-regulating mechanisms underlying pancreatic cancer contribute to the nexus between EMT and this cancer type. This review will elucidate the role of EMT as a hallmark for pancreatic cancer as well as summarize EMT-regulating factors recently detected as a key advance in the research stream on EMT in pancreatic cancer.
Collapse
Affiliation(s)
- Tuan Luu
- Management & Marketing Department, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
37
|
Sasaki Y, Takagane K, Konno T, Itoh G, Kuriyama S, Yanagihara K, Yashiro M, Yamada S, Murakami S, Tanaka M. Expression of asporin reprograms cancer cells to acquire resistance to oxidative stress. Cancer Sci 2021; 112:1251-1261. [PMID: 33393151 PMCID: PMC7935789 DOI: 10.1111/cas.14794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Asporin (ASPN), a small leucine‐rich proteoglycan expressed predominantly by cancer associated fibroblasts (CAFs), plays a pivotal role in tumor progression. ASPN is also expressed by some cancer cells, but its biological significance is unclear. Here, we investigated the effects of ASPN expression in gastric cancer cells. Overexpression of ASPN in 2 gastric cancer cell lines, HSC‐43 and 44As3, led to increased migration and invasion capacity, accompanied by induction of CD44 expression and activation of Rac1 and MMP9. ASPN expression increased resistance of HSC‐43 cells to oxidative stress by reducing the amount of mitochondrial reactive oxygen species. ASPN induced expression of the transcription factor HIF1α and upregulated lactate dehydrogenase A (LDHA) and PDH‐E1α, suggesting that ASPN reprograms HSC‐43 cells to undergo anaerobic glycolysis and suppresses ROS generation in mitochondria, which has been observed in another cell line HSC‐44PE. By contrast, 44As3 cells expressed high levels of HIF1α in response to oxidant stress and escaped apoptosis regardless of ASPN expression. Examination of xenografts in the gastric wall of ASPN–/– mice revealed that growth of HSC‐43 tumors with increased micro blood vessel density was significantly accelerated by ASPN; however, ASPN increased the invasion depth of both HSC‐43 and 44As3 tumors. These results suggest that ASPN has 2 distinct effects on cancer cells: HIF1α‐mediated resistance to oxidative stress via reprogramming of glucose metabolism, and activation of CD44‐Rac1 and MMP9 to promote cell migration and invasion. Therefore, ASPN may be a new therapeutic target in tumor fibroblasts and cancer cells in some gastric carcinomas.
Collapse
Affiliation(s)
- Yuto Sasaki
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.,Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, Akita, Japan
| | - Kurara Takagane
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Takumi Konno
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.,Department of Life Science, Faculty and Graduate School of Engineering and Resource Science, Akita University, Akita, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Sei Kuriyama
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
38
|
Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, Jiang K, Lu H, Xia D, Peng E, Chen Z, Tang K, Ye Z. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer 2021; 20:4. [PMID: 33397425 PMCID: PMC7780637 DOI: 10.1186/s12943-020-01300-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), which are single-stranded closed-loop RNA molecules lacking terminal 5′ caps and 3′ poly(A) tails, are attracting increasing scientific attention for their crucial regulatory roles in the occurrence and development of various diseases. With the rapid development of high-throughput sequencing technologies, increasing numbers of differentially expressed circRNAs have been identified in bladder cancer (BCa) via exploration of the expression profiles of BCa and normal tissues and cell lines. CircRNAs are critically involved in BCa biological behaviours, including cell proliferation, tumour growth suppression, cell cycle arrest, apoptosis, invasion, migration, metastasis, angiogenesis, and cisplatin chemoresistance. Most of the studied circRNAs in BCa regulate cancer biological behaviours via miRNA sponging regulatory mechanisms. CircRNAs have been reported to be significantly associated with many clinicopathologic characteristics of BCa, including tumour size, grade, differentiation, and stage; lymph node metastasis; tumour numbers; distant metastasis; invasion; and recurrence. Moreover, circRNA expression levels can be used to predict BCa patients’ survival parameters, such as overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS). The abundance, conservation, stability, specificity and detectability of circRNAs render them potential diagnostic and prognostic biomarkers for BCa. Additionally, circRNAs play crucial regulatory roles upstream of various signalling pathways related to BCa carcinogenesis and progression, reflecting their potential as therapeutic targets for BCa. Herein, we briefly summarize the expression profiles, biological functions and mechanisms of circRNAs and the potential clinical applications of these molecules for BCa diagnosis, prognosis, and targeted therapy.
Collapse
Affiliation(s)
- Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongyan Lu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Zhang Z, Zhang H, Liu T, Chen T, Wang D, Tang D. Heterogeneous Pancreatic Stellate Cells Are Powerful Contributors to the Malignant Progression of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:783617. [PMID: 34988078 PMCID: PMC8722736 DOI: 10.3389/fcell.2021.783617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is associated with highly malignant tumors and poor prognosis due to strong therapeutic resistance. Accumulating evidence shows that activated pancreatic stellate cells (PSC) play an important role in the malignant progression of pancreatic cancer. In recent years, the rapid development of single-cell sequencing technology has facilitated the analysis of PSC population heterogeneity, allowing for the elucidation of the relationship between different subsets of cells with tumor development and therapeutic resistance. Researchers have identified two spatially separated, functionally complementary, and reversible subtypes, namely myofibroblastic and inflammatory PSC. Myofibroblastic PSC produce large amounts of pro-fibroproliferative collagen fibers, whereas inflammatory PSC express large amounts of inflammatory cytokines. These distinct cell subtypes cooperate to create a microenvironment suitable for cancer cell survival. Therefore, further understanding of the differentiation of PSC and their distinct functions will provide insight into more effective treatment options for pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Tian Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Institute of General Surgery, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Institute of General Surgery, Yangzhou University, Yangzhou, China
- *Correspondence: Dong Tang,
| |
Collapse
|
40
|
Liu XD, Zhang ZW, Wu HW, Liang ZY. A new prognosis prediction model combining TNM stage with MAP2K4 and JNK in postoperative pancreatic cancer patients. Pathol Res Pract 2020; 217:153313. [PMID: 33341545 DOI: 10.1016/j.prp.2020.153313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/15/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein kinase kinase 4 (MAP2K4) is a tumor suppressor in many cancers. However, its roles and action mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unclear. Here, we analyzed MAP2K4 and its downstream kinases (c-Jun N-terminal kinase (JNK) and p38) using immunohistochemical staining and their prognostic significances using univariate and multivariate Cox proportional hazards regression analysis in our PDAC cohort. Then, we validated MAP2K4/JNK/p38 mRNA levels and prognostic significances using The Cancer Genome Atlas (TCGA) database. Finally, we evaluated the effects of MAP2K4 on the proliferation and invasion of PDAC cells. MAP2K4, JNK, and p38 proteins were expressed in 97.3 % (72/74), 95.6 % (65/68), and 88.6 % (62/70) of the samples, respectively, and their levels in tumor tissues were significantly higher than those in normal ducts. MAP2K4 protein expression was lower in male patients (p = 0.028). In our PDAC cohort, advanced TNM stage, low MAP2K4, and high JNK protein levels were significant prognostic factors for poor overall survival (OS) based on a univariate survival analysis (p = 0.006, p < 0.001, and p = 0.004, respectively). N stage and MAP2K4 and JNK protein levels were independent prognostic factors for OS based on multivariate analysis. We then built a prognosis prediction nomogram combining the standard TNM staging system with MAP2K4 and JNK expression that had a Harrell's C-index of 0.645. The new prognosis prediction model effectively stratified the resected patients with PDAC, from both our cohort and TCGA database, into low- and high-risk groups. Finally, MAP2K4 overexpression inhibited pancreatic cancer cell proliferation and migration in vitro. This study shows that reduced protein and mRNA levels of MAP2K4 found in PDAC patients, coupled to in vitro effects observed, support the tumor suppressor role of MAP2K4 in PDAC. Importantly, combining MAP2K4 and JNK expression with the TNM staging system results in a better prediction of postoperative survival of patients with PDAC.
Collapse
Affiliation(s)
- Xiao-Ding Liu
- Research Centre for Molecular Pathology, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Wen Zhang
- Research Centre for Molecular Pathology, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan-Wen Wu
- Research Centre for Molecular Pathology, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Yong Liang
- Research Centre for Molecular Pathology, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
41
|
Hussein D, Dallol A, Quintas R, Schulten HJ, Alomari M, Baeesa S, Bangash M, Alghamdi F, Khan I, ElAssouli MZM, Saka M, Carracedo A, Chaudhary A, Abuzenadah A. Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes. Heliyon 2020; 6:e05632. [PMID: 33305042 PMCID: PMC7710648 DOI: 10.1016/j.heliyon.2020.e05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. METHOD Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. RESULTS In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 ± 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. CONCLUSION Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma.
Collapse
Affiliation(s)
- Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ashraf Dallol
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rita Quintas
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Alomari
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - M-Zaki Mustafa ElAssouli
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Mohamad Saka
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Adeel Chaudhary
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
42
|
Geng Y, Zuo P, Li XO, Zhang L. PODNL1 promotes cell proliferation and migration in glioma via regulating Akt/mTOR pathway. J Cancer 2020; 11:6234-6242. [PMID: 33033506 PMCID: PMC7532506 DOI: 10.7150/jca.46901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background and Aims: Emerging studies have determined that the small leucine-rich proteoglycan (SLRP) family can aggravate tumor progression. However, the biological function of podocan-like protein 1 (PODNL1), a novel member of the SLRP family, has not been investigated. Therefore, our study focused on the function and regulatory mechanism of PODNL1 in glioma. Methods: Both the Gene Expression Profiling Interactive Analysis (GEPIA) and the Chinese Glioma Genome Atlas (CGGA) database were used to analyze the expression level and survival risk of PODNL1 in glioma. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were applied to detect the mRNA and protein expression, respectively. Celltiter-Glo and colony formation assays were used to evaluate cell proliferation. Migration capacity was measured by Transwell and wound healing assays. Flow cytometry was utilized to assess the apoptotic rate. Results: The expression of PODNL1 predicted the poor prognosis in glioma patients. Silencing of PODNL1 inhibited cell proliferation, migration, and induced epithelial-like phenotype. In addition, knockdown of PODNL1 also induced cell apoptosis. Moreover, the cell growth and migration inhibited by PODNL1 knockdown could be partially rescued with Akt activator. Conversely, PODNL1 overexpression promoted cell growth and migration, which were suppressed by Akt inhibitor. Conclusions: PODNL1, a promising predictive indicator of poor prognosis, resulted in greater proliferation, migration and epithelial-mesenchymal transition (EMT) process. Moreover, PODNL1 promoted aggressive glioma behavior by activating Akt/mTOR pathway, providing a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Yibo Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pengcheng Zuo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ou Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Disease, Nan Si Huan Xi Lu 119, Fengtai District, Beijing 100070, China
| |
Collapse
|
43
|
Hadden M, Mittal A, Samra J, Zreiqat H, Sahni S, Ramaswamy Y. Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188418. [PMID: 32827581 DOI: 10.1016/j.bbcan.2020.188418] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies in the world due to its insensitivity to current therapies and its propensity to metastases from the primary tumor mass. This is largely attributed to its complex microenvironment composed of unique stromal cell populations and extracellular matrix (ECM). The recruitment and activation of these cell populations cause an increase in deposition of ECM components, which highly influences the behavior of malignant cells through disrupted forms of signaling. As PDAC progresses from premalignant lesion to invasive carcinoma, this dynamic landscape shields the mass from immune defenses and cytotoxic intervention. This microenvironment influences an invasive cell phenotype through altered forms of mechanical signaling, capable of enacting biochemical changes within cells through activated mechanotransduction pathways. The effects of altered mechanical cues on malignant cell mechanotransduction have long remained enigmatic, particularly in PDAC, whose microenvironment significantly changes over time. A more complete and thorough understanding of PDAC's physical surroundings (microenvironment), mechanosensing proteins, and mechanical properties may help in identifying novel mechanisms that influence disease progression, and thus, provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Matthew Hadden
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; ARC Training Centre for Innovative Bioengineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Kolling Institute of Medical Research, University of Sydney, Australia; Australian Pancreatic Centre, St Leonards, Sydney, Australia.
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
44
|
Pancreatic Cancer Associated Fibroblasts (CAF): Under-Explored Target for Pancreatic Cancer Treatment. Cancers (Basel) 2020; 12:cancers12051347. [PMID: 32466266 PMCID: PMC7281461 DOI: 10.3390/cancers12051347] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the 4th leading cause of cancer deaths in the United States. The pancreatic cancer phenotype is primarily a consequence of oncogenes disturbing the resident pancreas parenchymal cell repair program. Many solid tumor types including pancreatic cancer have severe tumor fibrosis called desmoplasia. Desmoplastic stroma is coopted by the tumor as a support structure and CAFs aid in tumor growth, invasion, and metastases. This stroma is caused by cancer associated fibroblasts (CAFs), which lay down extensive connective tissue in and around the tumor cells. CAFs represent a heterogeneous population of cells that produce various paracrine molecules such as transforming growth factor-beta (TGF-beta) and platelet derived growth factors (PDGFs) that aid tumor growth, local invasion, and development of metastases. The hard, fibrotic shell of desmoplasia serves as a barrier to the infiltration of both chemo- and immunotherapy drugs and host immune cells to the tumor. Although there have been recent improvements in chemotherapy and surgical techniques for management of pancreatic cancer, the majority of patients will die from this disease. Therefore, new treatment strategies are clearly needed. CAFs represent an under-explored potential therapeutic target. This paper discusses what we know about the role of CAFs in pancreatic cancer cell growth, invasion, and metastases. Additionally, we present different strategies that are being and could be explored as anti-CAF treatments for pancreatic cancer.
Collapse
|
45
|
Wang Y, Wan G, Wang H, Zhang G, Li Z, Lu L, Wu Y, Yu X, Du J. Mechanism of aberrant long non-coding RNA expression in an adriamycin-resistant liver cancer cell strain. Dig Liver Dis 2020; 52:582-587. [PMID: 31704308 DOI: 10.1016/j.dld.2019.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Aberrant long non-coding RNA (lncRNA) expression in cancer can be used as a potential diagnostic biomarker and therapeutic target. In the present study we determined the potential pathogenic mechanism underlying significant aberrant expression of lncRNAs in HepG2-ADR. METHODS First, we identified different levels of lncRNA expression in liver cancer and adjacent non-tumor tissues obtained from public data (GSE70880) in NCBI. Then, the results were verified in a sensitive liver cancer cell line (HepG2) and a adriamycin-resistant liver cancer cell line (HepG2-ADR). Then, the effects of lncRNAs on the phenotype and some biological characteristics were also determined in HepG2 and HepG2-ADR through overexpression and using siRNA interference methods. RESULTS We showed that lncRNA ENST00000425005 is highly expressed in a liver cancer-resistant cell line when compared with adjacent non-tumor tissues based on bioinformatics analysis and qPCR verification. Compared with the control group, overexpression of lncRNA ENST00000425005 significantly promoted proliferation and adhesiveness, but inhibited apoptosis in HepG2-ADR cells. In contrast, interference of lncRNA in HepG2-ADR cells suppressed proliferation and adhesiveness, and induced apoptosis. CONCLUSION In conclusion, lncRNA ENST00000425005 promotes cell proliferation and invasion in drug-resistant liver cancer cells by regulating epithelial-mesenchymal transition-related gene expression and participating in the regulation of EGF and FGF7.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou, China; Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guohui Wan
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongsheng Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziqian Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linlin Lu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingming Wu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Affiliated Fifth Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jun Du
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Denes BJ, Ait-Lounis A, Wehrle-Haller B, Kiliaridis S. Core Matrisome Protein Signature During Periodontal Ligament Maturation From Pre-occlusal Eruption to Occlusal Function. Front Physiol 2020; 11:174. [PMID: 32194440 PMCID: PMC7066325 DOI: 10.3389/fphys.2020.00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
The pre-occlusal eruption brings the molars into functional occlusion and initiates tensional strains during mastication. We hypothesized that upon establishment of occlusal contact, the periodontal ligament (PDL) undergoes cell and extracellular matrix maturation to adapt to this mechanical function. The PDL of 12 Wistar male rats were laser microdissected to observe the proteomic changes between stages of pre-occlusal eruption, initial occlusal contact and 1-week after occlusion. The proteome was screened by mass spectrometry and confirmed by immunofluorescence. The PDL underwent maturation upon establishment of occlusion. Downregulation of alpha-fetoprotein stem cell marker and protein synthesis markers indicate cell differentiation. Upregulated proteins were components of the extracellular matrix (ECM) and were characterized with the matrisome project database. In particular, periostin, a major protein of the PDL, was induced following occlusal contact and localized around collagen α-1 (III) bundles. This co-localization coincided with organization of collagen fibers in direction of the occlusal forces. Establishment of occlusion coincides with cellular differentiation and the maturation of the PDL. Co-localization of periostin and collagen with subsequent fiber organization may help counteract tensional forces and reinforce the ECM structure. This may be a key mechanism of the PDL to adapt to occlusal forces and maintain structural integrity.
Collapse
Affiliation(s)
- Balazs Jozsef Denes
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland
| | - Aouatef Ait-Lounis
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Stavros Kiliaridis
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Wang L, Wang L, Zhang H, Lu J, Zhang Z, Wu H, Liang Z. AREG mediates the epithelial‑mesenchymal transition in pancreatic cancer cells via the EGFR/ERK/NF‑κB signalling pathway. Oncol Rep 2020; 43:1558-1568. [PMID: 32323797 PMCID: PMC7107775 DOI: 10.3892/or.2020.7523] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Amphiregulin (AREG) is a member of the epidermal growth factor (EGF) family and is expressed in a plethora of cancers. The biological roles of AREG in the regulation of the epithelial‑mesenchymal transition (EMT) in pancreatic cancer remain unclear. To investigate the expression of epidermal growth factor receptor (EGFR) and AREG in pancreatic cancer cell lines, RT‑qPCR, western blot analysis, and ELISA were performed. RNAi and exogenous AREG treatment were used to alter AREG expression. Wound‑healing and Transwell assays were performed to evaluate cell migration and invasion abilities. Western blot analysis and immunofluorescence staining were utilized to detect the expression of EMT markers. The protein expression of potential key factors involved in EMT, as well as those of the ERK, AKT, STAT3 and NF‑κB pathways, were analysed by western blotting. The role of AREG in tumour growth in vivo was further determined using an orthotopic model of pancreatic cancer. Knockdown of AREG inhibited AsPC‑1 cell migration and invasion. AREG knockdown upregulated E‑cadherin but downregulated vimentin, Snail and Slug expression in AsPC‑1 cells. In addition, AREG stimulation increased cell migration, invasion and EMT in PANC‑1 cells, and an NF‑κB inhibitor decreased AREG‑induced cell migration, invasion and EMT in PANC‑1 cells. AREG stimulation increased the nuclear accumulation of NF‑κB through the EGFR/ERK signalling pathway to induce EMT. Tumour growth and metastasis were decreased by AREG silencing in an orthotopic model of pancreatic cancer. AREG may play a critical role in cell migration, invasion, and EMT by activating the EGFR/ERK/NF‑κB signalling pathway in pancreatic cancer cells.
Collapse
Affiliation(s)
- Li Wang
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Lili Wang
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Junliang Lu
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhiwen Zhang
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Research Center for Molecular Pathology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
48
|
Huang Z, Li G, Zhang Z, Gu R, Wang W, Lai X, Cui ZK, Zeng F, Xu S, Deng F. β2AR-HIF-1α-CXCL12 signaling of osteoblasts activated by isoproterenol promotes migration and invasion of prostate cancer cells. BMC Cancer 2019; 19:1142. [PMID: 31771535 PMCID: PMC6878637 DOI: 10.1186/s12885-019-6301-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022] Open
Abstract
Background Chronic stress is well known to promote tumor progression, however, little is known whether chronic stress-mediated regulation of osteoblasts contributes to the migration and invasion of metastatic cancer cells. Methods The proliferation, migration and invasion of prostate cancer cells were assessed by CCK-8 and transwell assay. HIF-1α expression of osteoblasts and epithelial-mesenchymal transition (EMT) markers of prostate cancer cells were examined by Western blot. The mRNA level of cytokines associated with bone metastasis in osteoblasts and EMT markers in PC-3 and DU145 cells were performed by qRT-PCR. Functional rescue experiment of cells were performed by using siRNA, plasmid transfection and inhibitor treatment. Results Isoproterenol (ISO), a pharmacological surrogate of sympathetic nerve activation induced by chronic stress, exhibited no direct effect on migration and invasion of PC-3 and DU145 prostate cancer cells. Whereas, osteoblasts pretreated with ISO promoted EMT, migration and invasion of PC-3 and DU145 cells, which could be inhibited by β2AR inhibitor. Mechanistically, ISO increased the secretion of CXCL12 via the β2AR-HIF-1α signaling in osteoblasts. Moreover, overexpression of HIF-1α osteoblasts promoted migration and invasion of PC-3 and DU145 cells, which was inhibited by addition of recombinant knockdown of CXCR4 in PC-3 and DU145 cells, and inhibiting CXCL12-CXCR4 signaling with LY2510924 blunted the effects of osteoblasts in response to ISO on EMT and migration as well as invasion of PC-3 and DU145 cells. Conclusions These findings demonstrated that β2AR-HIF-1α-CXCL12 signaling in osteoblasts facilitates migration and invasion as well as EMT of prostate cancer cells, and may play a potential role in affecting bone metastasis of prostate cancer.
Collapse
|
49
|
Shi Q, Xu R, Song G, Lu H, Xue D, He X, Xia Y. GATA3 suppresses human fibroblasts-induced metastasis of clear cell renal cell carcinoma via an anti-IL6/STAT3 mechanism. Cancer Gene Ther 2019; 27:726-738. [PMID: 31636361 PMCID: PMC7492134 DOI: 10.1038/s41417-019-0146-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
Tumorigenesis and metastasis depend on intricate interactions between genetically altered tumor cells and their surrounding microenvironment. It is, however, unclear regarding the molecular mechanisms underlying the progress and metastasis of human clear-cell renal cell carcinoma in the microenvironment with fibroblasts. In this work, we investigated the effect of normal fibroblasts on the metastasis of renal cancer and the relevant signaling pathways. We isolated normal fibroblasts from normal renal tissues and used normal fibroblast-conditioned medium culture renal cancer cells. The CCK-8 and transwell assays showed that normal fibroblasts conditioned medium significantly enhanced ccRCC cell migration. IL6 mediated the cross talk between normal fibroblasts and the cancer cells, and promoted tumor cell migration through the STAT3 pathway. In contrast, GATA3 was downregulated at both mRNA and protein levels in the normal fibroblast-conditioned medium treated with renal cancer cells, but upregulated in adjacent normal tissues. GATA3 overexpression significantly reduced STAT3 phosphorylation and attenuated the migration in both renal cancer cell and IL6-stimulated renal cancer cell. Taken together, our findings suggest that the IL6/STAT3 pathway plays a crucial role in the normal fibroblast-enhanced clear-cell renal cell carcinoma metastasis, while GATA3 may mitigate this effect by inhibiting IL6/STAT3 signaling.
Collapse
Affiliation(s)
- Qianqian Shi
- The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Renfang Xu
- The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Guanglai Song
- The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Hao Lu
- The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Dong Xue
- The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Xiaozhou He
- The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
50
|
Zhan S, Li J, Ge W. Multifaceted Roles of Asporin in Cancer: Current Understanding. Front Oncol 2019; 9:948. [PMID: 31608236 PMCID: PMC6771297 DOI: 10.3389/fonc.2019.00948] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
The small leucine-rich proteoglycan (SLRP) family consists of 18 members categorized into five distinct classes, the traditional classes I–III, and the non-canonical classes IV–V. Unlike the other class I SLRPs (decorin and biglycan), asporin contains a unique and conserved stretch of aspartate (D) residues in its N terminus, and germline polymorphisms in the D-repeat-length are associated with osteoarthritis and prostate cancer progression. Since the first discovery of asporin in 2001, previous studies have focused mainly on its roles in bone and joint diseases, including osteoarthritis, intervertebral disc degeneration and periodontal ligament mineralization. Recently, asporin gene expression was also reported to be dysregulated in tumor tissues of different types of cancer, and to act as oncogene in pancreatic, colorectal, gastric, and prostate cancers, and some types of breast cancer, though it is also reported to function as a tumor suppressor gene in triple-negative breast cancer. Furthermore, asporin is also positively or negatively correlated with tumor proliferation, migration, invasion, and patient prognosis through its regulation of different signaling pathways, including the TGF-β, EGFR, and CD44 pathways. In this review, we seek to elucidate the signaling pathways and functions regulated by asporin in different types of cancer and to highlight some important issues that require investigation in future research.
Collapse
Affiliation(s)
- Shaohua Zhan
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|