1
|
Zhu L, Zhang M, Leng J, Zhao B, Ning M, Zhang C, Kong L, Yin Y. Discovery of novel quinazoline derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potential anti-colon cancer effects. Eur J Med Chem 2024; 280:117000. [PMID: 39489984 DOI: 10.1016/j.ejmech.2024.117000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Tubulin is a critical target for cancer therapy, with colchicine binding site inhibitors (CBSIs) being the most extensively researched. A series of quinazoline derivatives designed to target the colchicine binding site of tubulin were synthesized and evaluated for their biological activities. The antiproliferative effects of these compounds were tested against six human cancer cell lines, and compound Q19 demonstrated potent antiproliferative activity against the HT-29 cell line, with an IC50 value of 51 nM. Additionally, further investigation revealed that Q19 effectively inhibited microtubule polymerization by binding to the colchicine binding site on tubulin. Furthermore, compound Q19 arrested the HT-29 cell cycle at the G2/M phase, induced apoptosis in these cells, and disrupted angiogenesis. Finally, compound Q19 exhibited potent inhibitory effects on tumor growth in HT-29 xenografted mice while demonstrating minimal toxic side effects and acceptable pharmacokinetic properties. These findings suggested that Q19 hold promise as a potential candidate for colon cancer therapy targeting tubulin.
Collapse
Affiliation(s)
- Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bo Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengdan Ning
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
2
|
Mercier AE, Joubert AM, Prudent R, Viallet J, Desroches-Castan A, De Koning L, Mabeta P, Helena J, Pepper MS, Lafanechère L. Sulfamoylated Estradiol Analogs Targeting the Actin and Microtubule Cytoskeletons Demonstrate Anti-Cancer Properties In Vitro and In Ovo. Cancers (Basel) 2024; 16:2941. [PMID: 39272798 PMCID: PMC11394244 DOI: 10.3390/cancers16172941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
The microtubule-disrupting agent 2-methoxyestradiol (2-ME) displays anti-tumor and anti-angiogenic properties, but its clinical development is halted due to poor pharmacokinetics. We therefore designed two 2-ME analogs in silico-an ESE-15-one and an ESE-16 one-with improved pharmacological properties. We investigated the effects of these compounds on the cytoskeleton in vitro, and their anti-angiogenic and anti-metastatic properties in ovo. Time-lapse fluorescent microscopy revealed that sub-lethal doses of the compounds disrupted microtubule dynamics. Phalloidin fluorescent staining of treated cervical (HeLa), metastatic breast (MDA-MB-231) cancer, and human umbilical vein endothelial cells (HUVECs) displayed thickened, stabilized actin stress fibers after 2 h, which rearranged into a peripheral radial pattern by 24 h. Cofilin phosphorylation and phosphorylated ezrin/radixin/moesin complexes appeared to regulate this actin response. These signaling pathways overlap with anti-angiogenic, extra-cellular communication and adhesion pathways. Sub-lethal concentrations of the compounds retarded both cellular migration and invasion. Anti-angiogenic and extra-cellular matrix signaling was evident with TIMP2 and P-VEGF receptor-2 upregulation. ESE-15-one and ESE-16 exhibited anti-tumor and anti-metastatic properties in vivo, using the chick chorioallantoic membrane assay. In conclusion, the sulfamoylated 2-ME analogs displayed promising anti-tumor, anti-metastatic, and anti-angiogenic properties. Future studies will assess the compounds for myeloproliferative effects, as seen in clinical applications of other drugs in this class.
Collapse
Affiliation(s)
- Anne Elisabeth Mercier
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Renaud Prudent
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Jean Viallet
- Inovotion SAS France, Biopolis, 38700 La Tronche, France
| | - Agnes Desroches-Castan
- Laboratoire Biosanté U1292, Université Grenoble Alpes, Inserm, CEA, 38000 Grenoble, France
| | - Leanne De Koning
- Institut Curie Centre de Recherche, PSL Research University, 75248 Paris Cedex 05, France
| | - Peace Mabeta
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Jolene Helena
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Laurence Lafanechère
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Team Cytoskeleton Dynamics and Nuclear Functions, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
3
|
Jiang F, Yu M, Liang Y, Ding K, Wang Y. Discovery of Novel Diaryl-Substituted Fused Heterocycles Targeting Katanin and Tubulin with Potent Antitumor and Antimultidrug Resistance Efficacy. J Med Chem 2024; 67:12118-12142. [PMID: 38996194 DOI: 10.1021/acs.jmedchem.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Disrupting microtubule dynamics has emerged as a promising strategy for cancer treatment. However, drug resistance remains a challenge hindering the development of microtubule-targeting agents. In this work, a novel class of diaryl substituted fused heterocycles were designed, synthesized, and evaluated, which were demonstrated as effective dual katanin and tubulin regulators with antitumor activity. Following three rounds of stepwise optimization, compound 21b, featuring a 3H-imidazo[4,5-b]pyridine core, displayed excellent targeting capabilities on katanin and tubulin, along with notable antiproliferative and antimetastatic effects. Mechanistic studies revealed that 21b disrupts the microtubule network in tumor cells, leading to G2/M cell cycle arrest and apoptosis induction. Importantly, 21b exhibited significant inhibition of tumor growth in MDA-MB-231 and A549/T xenograft tumor models without evident toxicity and side effects. In conclusion, compound 21b presents a novel mechanism for disrupting microtubule dynamics, warranting further investigation as a dual-targeted antitumor agent with potential antimultidrug resistance properties.
Collapse
Affiliation(s)
- Fuhao Jiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuru Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Kong Y, Zhang R, Li B, Zhao W, Wang J, Sun XW, Lv H, Liu R, Tang J, Wu B. Applying a Tripodal Hexaurea Receptor for Binding to an Antitumor Drug, Combretastatin-A4 Phosphate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2570. [PMID: 38893834 PMCID: PMC11173554 DOI: 10.3390/ma17112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Phosphates play a crucial role in drug design, but their negative charge and high polarity make the transmembrane transport of phosphate species challenging. This leads to poor bioavailability of phosphate drugs. Combretastatin-A4 phosphate (CA4P) is such an anticancer monoester phosphate compound, but its absorption and clinical applicability are greatly limited. Therefore, developing carrier systems to effectively deliver phosphate drugs like CA4P is essential. Anion receptors have been found to facilitate the transmembrane transport of anions through hydrogen bonding. In this study, we developed a tripodal hexaurea anion receptor (L1) capable of binding anionic CA4P through hydrogen bonding, with a binding constant larger than 104 M-1 in a DMSO/water mixed solvent. L1 demonstrated superior binding ability compared to other common anions, and exhibited negligible cell cytotoxicity, making it a promising candidate for future use as a carrier for drug delivery.
Collapse
Affiliation(s)
- Yu Kong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Rong Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Boyang Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China;
| | - Wei Zhao
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Ji Wang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Xiao-Wen Sun
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Huihui Lv
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Rui Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Juan Tang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China; (Y.K.); (R.Z.); (W.Z.); (J.W.); (X.-W.S.); (H.L.); (R.L.)
| |
Collapse
|
5
|
Tian J, Jin L, Liu H, Hua Z. Stilbenes: a promising small molecule modulator for epigenetic regulation in human diseases. Front Pharmacol 2023; 14:1326682. [PMID: 38155902 PMCID: PMC10754530 DOI: 10.3389/fphar.2023.1326682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023] Open
Abstract
Stilbenes are characterized by a vinyl group connecting two benzene rings to form the basic parent nucleus. Hydrogen atoms on different positions of the benzene rings can be substituted with hydroQxyl groups. These unique structural features confer anti-inflammatory, antibacterial, antiviral, antioxidant, anticancer, cardiovascular protective, and neuroprotective pharmacological effects upon these compounds. Numerous small molecule compounds have demonstrated these pharmacological activities in recent years, including Resveratrol, and Pterostilbene, etc. Tamoxifen and Raloxifene are FDA-approved commonly prescribed synthetic stilbene derivatives. The emphasis is on the potential of these small molecules and their structural derivatives as epigenetic regulators in various diseases. Stilbenes have been shown to modulate epigenetic marks, such as DNA methylation and histone modification, which can alter gene expression patterns and contribute to disease development. This review will discuss the mechanisms by which stilbenes regulate epigenetic marks in various diseases, as well as clinical trials, with a focus on the potential of small molecule and their derivatives such as Resveratrol, Pterostilbene, and Tamoxifen.
Collapse
Affiliation(s)
- Jing Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Li Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hongquan Liu
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
- Nanjing Generecom Biotechnology Co., Ltd., Nanjing, China
| |
Collapse
|
6
|
Deng S, Banerjee S, Chen H, Pochampally S, Wang Y, Yun MK, White SW, Parmar K, Meibohm B, Hartman KL, Wu Z, Miller DD, Li W. SB226, an inhibitor of tubulin polymerization, inhibits paclitaxel-resistant melanoma growth and spontaneous metastasis. Cancer Lett 2023; 555:216046. [PMID: 36596380 PMCID: PMC10321023 DOI: 10.1016/j.canlet.2022.216046] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 01/02/2023]
Abstract
Extensive preclinical studies have shown that colchicine-binding site inhibitors (CBSIs) are promising drug candidates for cancer therapy. Although numerous CBSIs were generated and evaluated, but so far the FDA has not approved any of them due to undesired adverse events or insufficient efficacies. We previously reported two very potent CBSIs, the dihydroquinoxalinone compounds 5 m and 5t. In this study, we further optimized the structures of compounds 5 m and 5t and integrated them to generate a new analog, SB226. X-ray crystal structure studies and a tubulin polymerization assay confirmed that SB226 is a CBSI that could disrupt the microtubule dynamics and interfere with microtubule assembly. Biophysical measurements using surface plasmon resonance (SPR) spectroscopy verified the high binding affinity of SB226 to tubulin dimers. The in vitro studies showed that SB226 possessed sub-nanomolar anti-proliferative activities with an average IC50 of 0.76 nM against a panel of cancer cell lines, some of which are paclitaxel-resistant, including melanoma, breast cancer and prostate cancer cells. SB226 inhibited the colony formation and migration of Taxol-resistant A375/TxR cells, and induced their G2/M phase arrest and apoptosis. Our subsequent in vivo studies confirmed that 4 mg/kg SB226 strongly inhibited the tumor growth of A375/TxR melanoma xenografts in mice and induced necrosis, anti-angiogenesis, and apoptosis in tumors. Moreover, SB226 treatment significantly inhibited spontaneous axillary lymph node, lung, and liver metastases originating from subcutaneous tumors in mice without any obvious toxicity to the animals' major organs, demonstrating the therapeutic potential of SB226 as a novel anticancer agent for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Souvik Banerjee
- Department of Chemistry, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, United States; Molecular Biosciences Program, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Satyanarayana Pochampally
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, United States
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, United States
| | - Keyur Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Kelli L Hartman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Zhongzhi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, United States.
| |
Collapse
|
7
|
Liu ZL, Ren XT, Huang Y, Sun JL, Wang XS, Zheng MF, Cui LJ, Zhang XF, Tang ZH. A Novel CA4P Polymeric Nanoparticle for Murine Hepatoma Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Duan X, Luo M, Li J, Shen Z, Xie K. Overcoming therapeutic resistance to platinum-based drugs by targeting Epithelial–Mesenchymal transition. Front Oncol 2022; 12:1008027. [PMID: 36313710 PMCID: PMC9614084 DOI: 10.3389/fonc.2022.1008027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Platinum-based drugs (PBDs), including cisplatin, carboplatin, and oxaliplatin, have been widely used in clinical practice as mainstay treatments for various types of cancer. Although there is firm evidence of notable achievements with PBDs in the management of cancers, the acquisition of resistance to these agents is still a major challenge to efforts at cure. The introduction of the epithelial-mesenchymal transition (EMT) concept, a critical process during embryonic morphogenesis and carcinoma progression, has offered a mechanistic explanation for the phenotypic switch of cancer cells upon PBD exposure. Accumulating evidence has suggested that carcinoma cells can enter a resistant state via induction of the EMT. In this review, we discussed the underlying mechanism of PBD-induced EMT and the current understanding of its role in cancer drug resistance, with emphasis on how this novel knowledge can be exploited to overcome PBD resistance via EMT-targeted compounds, especially those under clinical trials.
Collapse
Affiliation(s)
- Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- *Correspondence: Ke Xie, ; Zhisen Shen,
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Ke Xie, ; Zhisen Shen,
| |
Collapse
|
9
|
Zhu H, Tan Y, He C, Liu Y, Duan Y, Zhu W, Zheng T, Li D, Xu J, Yang DH, Chen ZS, Xu S. Discovery of a Novel Vascular Disrupting Agent Inhibiting Tubulin Polymerization and HDACs with Potent Antitumor Effects. J Med Chem 2022; 65:11187-11213. [PMID: 35926141 DOI: 10.1021/acs.jmedchem.2c00681] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most vascular disrupting agents (VDAs) fail to prevent the regrowth of blood vessels at the edge of tumors, causing tumor rebound and relapse. Herein, a series of novel multifunctional vascular disrupting agents (VDAs) capable of inhibiting microtubule polymerization and histone deacetylases (HDACs) were designed and synthesized using the tubulin polymerization inhibitor TH-0 as the lead compound. Among them, compound TH-6 exhibited the most potent antiproliferative activity (IC50 = 18-30 nM) against a panel of cancer cell lines. As expected, TH-6 inhibited tubulin assembly and increased the acetylation level of HDAC substrate proteins in HepG2 cells. Further in vivo antitumor assay displayed that TH-6 effectively inhibited tumor growth with no apparent toxicity. More importantly, TH-6 disrupted both the internal and peripheral tumor vasculatures, which contributed to the persistent tumor inhibitory effects after drug withdrawal. Altogether, TH-6 deserves to be further investigated for the new approach to clinical cancer therapy.
Collapse
Affiliation(s)
- Huajian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yuchen Tan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Chen He
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yang Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Yiping Duan
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Wenjian Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Tiandong Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| | - Dong-Hua Yang
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, P. R. China
| |
Collapse
|
10
|
Liu Z, Zhang Y, Shen N, Sun J, Tang Z, Chen X. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Adv Drug Deliv Rev 2022; 183:114138. [PMID: 35143895 DOI: 10.1016/j.addr.2022.114138] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023]
Abstract
Nanomedicine greatly improves the efficiency in the delivery of antitumor drugs into the tumor, but insufficient tumoral penetration impairs the therapeutic efficacy of most nanomedicines. Vascular disrupting agent (VDA) nanomedicines are distributed around the tumor vessels due to the low tissue penetration in solid tumors, and the released drugs can selectively destroy immature tumor vessels and block the supply of oxygen and nutrients, leading to the internal necrosis of the tumors. VDAs can also improve the vascular permeability of the tumor, further increasing the extravasation of VDA nanomedicines in the tumor site, markedly reducing the dependence of nanomedicines on the enhanced permeability and retention effect (EPR effect). This review highlights the progress of VDA nanomedicines in recent years and their application in cancer therapy. First, the mechanisms of different VDAs are introduced. Subsequently, different strategies of delivering VDAs are described. Finally, multiple combination strategies with VDA nanomedicines in cancer therapy are described in detail.
Collapse
|
11
|
Wordeman L, Vicente JJ. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers (Basel) 2021; 13:5650. [PMID: 34830812 PMCID: PMC8616087 DOI: 10.3390/cancers13225650] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Microtubule-targeting agents (MTAs) represent one of the most successful first-line therapies prescribed for cancer treatment. They interfere with microtubule (MT) dynamics by either stabilizing or destabilizing MTs, and in culture, they are believed to kill cells via apoptosis after eliciting mitotic arrest, among other mechanisms. This classical view of MTA therapies persisted for many years. However, the limited success of drugs specifically targeting mitotic proteins, and the slow growing rate of most human tumors forces a reevaluation of the mechanism of action of MTAs. Studies from the last decade suggest that the killing efficiency of MTAs arises from a combination of interphase and mitotic effects. Moreover, MTs have also been implicated in other therapeutically relevant activities, such as decreasing angiogenesis, blocking cell migration, reducing metastasis, and activating innate immunity to promote proinflammatory responses. Two key problems associated with MTA therapy are acquired drug resistance and systemic toxicity. Accordingly, novel and effective MTAs are being designed with an eye toward reducing toxicity without compromising efficacy or promoting resistance. Here, we will review the mechanism of action of MTAs, the signaling pathways they affect, their impact on cancer and other illnesses, and the promising new therapeutic applications of these classic drugs.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|
12
|
Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem 2021; 64:7963-7990. [PMID: 34101463 DOI: 10.1021/acs.jmedchem.1c00100] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
13
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
14
|
Sardaru MC, Craciun AM, Al Matarneh CM, Sandu IA, Amarandi RM, Popovici L, Ciobanu CI, Peptanariu D, Pinteala M, Mangalagiu II, Danac R. Cytotoxic substituted indolizines as new colchicine site tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2020; 35:1581-1595. [PMID: 32752898 PMCID: PMC7470029 DOI: 10.1080/14756366.2020.1801671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/22/2020] [Accepted: 07/19/2020] [Indexed: 12/20/2022] Open
Abstract
A potential microtubule destabilising series of new indolizine derivatives was synthesised and tested for their anticancer activity against a panel of 60 human cancer cell lines. Compounds 11a, 11b, 15a, and 15j showed a broad spectrum of growth inhibitory activity against cancer cell lines representing leukaemia, melanoma and cancer of lung, colon, central nervous system, ovary, kidney, breast, and prostate. Among them, compound 11a was distinguishable by its excellent cytostatic activity, showing GI50 values in the range of 10-100 nM on 43 cell lines. The less potent compounds 15a and 15j in terms of GI50 values showed a high cytotoxic effect against tested colon cancer, CNS cancer, renal cancer and melanoma cell lines and only on few cell lines from other types of cancer. In vitro assaying revealed tubulin polymerisation inhibition by all active compounds. Molecular docking showed good complementarity of active compounds with the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Anda Mihaela Craciun
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Cristina-Maria Al Matarneh
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Isabela Andreea Sandu
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Roxana Maria Amarandi
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
- TRANSCEND Research Center, Regional Institute of Oncology, Iași, Romania
| | - Lacramioara Popovici
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
| | | | - Dragos Peptanariu
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iași, Romania
| | - Ionel I. Mangalagiu
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
| | - Ramona Danac
- Department of Chemistry, Faculty of Chemistry, “Al. I. Cuza” University of Iasi, Iași, Romania
| |
Collapse
|
15
|
Smolarczyk R, Czapla J, Jarosz-Biej M, Czerwinski K, Cichoń T. Vascular disrupting agents in cancer therapy. Eur J Pharmacol 2020; 891:173692. [PMID: 33130277 DOI: 10.1016/j.ejphar.2020.173692] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Tumor blood vessel formation is a key process for tumor expansion. Tumor vessels are abnormal and differ from normal vessels in architecture and components. Besides oxygen and nutrients supply, the tumor vessels system, due to its abnormality, is responsible for: hypoxia formation, and metastatic routes. Tumor blood vessels can be a target of anti-cancer therapies. There are two types of therapies that target tumor vessels. The first one is the inhibition of the angiogenesis process. However, the inhibition is often ineffective because of alternative angiogenesis mechanism activation. The second type is a specific targeting of existing tumor blood vessels by vascular disruptive agents (VDAs). There are three groups of VDAs: microtubule destabilizing drugs, flavonoids with anti-vascular functions, and tumor vascular targeted drugs based on endothelial cell receptors. However, VDAs possess some limitations. They may be cardiotoxic and their application in therapy may leave viable residual, so called, rim cells on the edge of the tumor. However, it seems that a well-designed combination of VDAs with other anti-cancer drugs may bring a significant therapeutic effect. In this article, we describe three groups of vascular disruptive agents with their advantages and disadvantages. We mention VDAs clinical trials. Finally, we present the current possibilities of VDAs combination with other anti-cancer drugs.
Collapse
Affiliation(s)
- Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Kyle Czerwinski
- University of Manitoba, Faculty of Science. 66 Chancellors Cir, Winnipeg, Canada.
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
16
|
Sharma A, Talimarada D, Yadav UP, Singh N, Reddy AS, Bag D, Biswas K, Baidya A, Borale AN, Shinde D, Singh S, Holla H. Design and Synthesis of New Tubulin Polymerization Inhibitors Inspired from Combretastatin A‐4: An Anticancer Agent. ChemistrySelect 2020. [DOI: 10.1002/slct.202003170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akanksha Sharma
- Department of Chemistry Central University of Karnataka Kalaburagi 585367 India
| | | | - Umesh Prasad Yadav
- Department of Human Genetics and Molecular Medicine Central University of Punjab Bathinda 151001 India
| | - Nidhi Singh
- Centre for Chemical and Pharmaceutical Sciences Central University of Punjab Bathinda 151001 India
| | - A. Sudharshan Reddy
- Department of Chemistry Central University of Karnataka Kalaburagi 585367 India
| | - Debojyoti Bag
- Department of Chemistry Central University of Karnataka Kalaburagi 585367 India
| | - Krishna Biswas
- Department of Chemistry Central University of Karnataka Kalaburagi 585367 India
| | - Amit Baidya
- Department of Chemistry Central University of Karnataka Kalaburagi 585367 India
| | - Asha N Borale
- Department of Chemistry Central University of Karnataka Kalaburagi 585367 India
| | | | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine Central University of Punjab Bathinda 151001 India
| | - Harish Holla
- Department of Chemistry Central University of Karnataka Kalaburagi 585367 India
| |
Collapse
|
17
|
Pecyna P, Wargula J, Murias M, Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020; 10:E1111. [PMID: 32726968 PMCID: PMC7465418 DOI: 10.3390/biom10081111] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
Affiliation(s)
- Paulina Pecyna
- Department of Genetics and Pharmaceutical Microbiology, University of Medical Sciences, Swiecickiego 4 Street, 60-781 Poznan, Poland;
| | - Joanna Wargula
- Department of Organic Chemistry, University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland;
| | - Marek Murias
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| | - Malgorzata Kucinska
- Department of Toxicology, University of Medical Sciences, Dojazd 30 Street, 60-631 Poznan, Poland;
| |
Collapse
|
18
|
Abstract
The concept of a scaffold concerns many aspects at different steps on the drug development path. In medicinal chemistry, the choice of relevant "drug-likeness" scaffold is a starting point for the design of the structure dedicated to specific molecular targets. For many years, the chemical uniqueness of the stilbene structure has inspired scientists from different fields such as chemistry, biology, pharmacy, and medicine. In this review, we present the outstanding potential of the stilbene-based derivatives. Naturally occurring stilbenes, together with powerful synthetic chemistry possibilities, may offer an excellent approach for discovering new structures and identifying their therapeutic targets. With the development of scientific tools, sophisticated equipment, and a better understanding of the disease pathogenesis at the molecular level, the stilbene scaffold has moved innovation in science. This paper mainly focuses on the stilbene-based compounds beyond resveratrol, which are particularly attractive due to their biological activity. Given the "fresh outlook" about different stilbene-based compounds starting from stilbenoids with particular regard to isorhapontigenin and methoxy- and hydroxyl- analogues, the update about the combretastatins, and the very often overlooked and underestimated benzanilide analogues, we present a new story about this remarkable structure.
Collapse
|
19
|
Sharifi-Rad J, Rajabi S, Martorell M, López MD, Toro MT, Barollo S, Armanini D, Fokou PVT, Zagotto G, Ribaudo G, Pezzani R. Plant natural products with anti-thyroid cancer activity. Fitoterapia 2020; 146:104640. [PMID: 32474055 DOI: 10.1016/j.fitote.2020.104640] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Thyroid cancer is the most frequent endocrine malignancy, with more than 500,000 cases per year worldwide. Differentiated thyroid cancers are the most common forms with best prognosis, while poorly/undifferentiated ones are rare (2% of all thyroid cancer), aggressive, frequently metastasize and have a worse prognosis. For aggressive, metastatic and advanced thyroid cancer novel antitumor molecules are urgently needed and phytochemical products can be a rational and extensive source, since secondary plant metabolites can guarantee the necessary biochemical variability for therapeutic purpose. Among bioactive molecules that present biological activity on thyroid cancer, resveratrol, curcumin, isoflavones, glucosinolates are the most common and used in experimental model. Most of them have been studied both in vitro and in vivo on this cancer, but rarely in clinical trial. This review summarizes phytochemicals, phytotherapeutics and plant derived compounds used in thyroid cancer.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile; Centre for Healthy Living, University of Concepción, Concepción, Chile; Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile.
| | - Maria Dolores López
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile
| | - María Trinidad Toro
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Avenida Vicente Mendez, 595, Chillán 3812120, Chile.
| | - Susi Barollo
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| | - Decio Armanini
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| | | | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131 Padova, Italy.
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| |
Collapse
|
20
|
Čermák V, Dostál V, Jelínek M, Libusová L, Kovář J, Rösel D, Brábek J. Microtubule-targeting agents and their impact on cancer treatment. Eur J Cell Biol 2020; 99:151075. [PMID: 32414588 DOI: 10.1016/j.ejcb.2020.151075] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/25/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Microtubule-targeting agents (MTAs) constitute a diverse group of chemical compounds that bind to microtubules and affect their properties and function. Disruption of microtubules induces various cellular responses often leading to cell cycle arrest or cell death, the most common effect of MTAs. MTAs have found a plethora of practical applications in weed control, as fungicides and antiparasitics, and particularly in cancer treatment. Here we summarize the current knowledge of MTAs, the mechanisms of action and their role in cancer treatment. We further outline the potential use of MTAs in anti-metastatic therapy based on inhibition of cancer cell migration and invasiveness. The two main problems associated with cancer therapy by MTAs are high systemic toxicity and development of resistance. Toxic side effects of MTAs can be, at least partly, eliminated by conjugation of the drugs with various carriers. Moreover, some of the novel MTAs overcome the resistance mediated by both multidrug resistance transporters as well as overexpression of specific β-tubulin types. In anti-metastatic therapy, MTAs should be combined with other drugs to target all modes of cancer cell invasion.
Collapse
Affiliation(s)
- Vladimír Čermák
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Vojtěch Dostál
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic
| | - Michael Jelínek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Libusová
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic.
| |
Collapse
|
21
|
Popovici L, Amarandi RM, Mangalagiu II, Mangalagiu V, Danac R. Synthesis, molecular modelling and anticancer evaluation of new pyrrolo[1,2-b]pyridazine and pyrrolo[2,1-a]phthalazine derivatives. J Enzyme Inhib Med Chem 2019; 34:230-243. [PMID: 30734610 PMCID: PMC6327994 DOI: 10.1080/14756366.2018.1550085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/02/2022] Open
Abstract
Two new series of heterocyclic derivatives with potential anticancer activity, in which a pyrrolo[1,2-b]pyridazine or a pyrrolo[2,1-a]phthalazine moiety was introduced in place of the 3'-hydroxy-4'-methoxyphenyl ring of phenstatin have been synthesised and their structure-activity relationship (SAR) was studied. Fourteen of the new compounds were evaluated for their in vitro cytotoxic activity by National Cancer Institute (NCI) against 60 human tumour cell lines panel. The best five compounds in terms of in vitro growth inhibition were screened in the second stage five dose-response studies, three of them showing a very good antiproliferative activity with GI50<100 nM on several cell lines including colon, ovarian, renal, prostate, brain and breast cancer, melanoma and leukemia. Docking experiments on the biologically active compounds showed a good compatibility with the colchicine binding site of tubulin.
Collapse
Affiliation(s)
| | | | | | - Violeta Mangalagiu
- CERNESIM Research Centre, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - Ramona Danac
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| |
Collapse
|
22
|
Abstract
The stilbenoid combretastatin and its derivatives are potent inhibitors of angiogenesis and cell proliferation and induce apoptosis. They disrupt cytoskeletal dynamics and modulate cell morphology, motility, and invasion. Hence they have been viewed as potential as anticancer agents. The impediments of poor solubility and bioavailability and the spontaneous geometric isomerisation of combretastatin into an inactive form have led to intensive efforts towards evolving novel analogues to provide more efficacious biological outcome. Importantly, isomerically stable and biologically active cis-restricted analogues have been synthesised and tested. However, very few analogues have been tested in preclinical models to assess their effects on processes relevant to cancer development and progression. Hence the accent here is on the signalling systems operated by the new derivatives and their biological effects with reference to cancer progression. Combretastatins modulate an extensive network of signalling emphasising their varied versatility. Harnessing these systems and accentuating or counteracting aberrant signalling could open potential avenues of approach to the designing of novel derivatives with enhanced performance. The import of mammalian target of rapamycin pathway, which co-ordinates growth factor receptor signalling, epithelial-mesenchymal transition activation and angiogenic signalling, is emphasised. It may be viewed as a prime target for allosteric inhibition in combination with combretastatin analogues to ascertain their potential in cancer control.
Collapse
Affiliation(s)
- Gajanan V Sherbet
- School of Engineering, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK.,The Institute for Molecular Medicine, Huntington Beach, California
| |
Collapse
|
23
|
Kumari A, Srivastava S, Manne RK, Sisodiya S, Santra MK, Guchhait SK, Panda D. C12, a combretastatin-A4 analog, exerts anticancer activity by targeting microtubules. Biochem Pharmacol 2019; 170:113663. [PMID: 31606408 DOI: 10.1016/j.bcp.2019.113663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
Abstract
Combretastatin A4 and its analogs are undergoing various clinical trials for the treatment of different cancers. This study illustrated the molecular mechanism and antitumor activity of C12, (5-Quinolin-3-yl and 4-(3,4,5-trimethoxyphenyl) substituted imidazol-2-amine), a synthetic analog of CA-4. C12 reduced the tumor volume of MCF-7 xenograft in NOD-SCID mice without affecting the bodyweight of the mice. Further, C12 inhibited the proliferation of several types of cancer cells more efficiently than their noncancerous counterparts. Using GFP-EB1 imaging, the effects of C12 on the interphase microtubule dynamics were determined in live HeLa cells. C12 (10 nM, half-maximal proliferation inhibitory concentration) reduced the growth rate of microtubules by 52% and increased the pause time of microtubules by 68%. In addition, fluorescence recovery after photobleaching analysis demonstrated that 10 nM C12 strongly suppressed spindle microtubule dynamics in HeLa cells. C12 treatment reduced the interpolar distance between the two spindle poles, increased the chromosome congression index, inhibited chromosome movement, and increased the level of mitotic checkpoint complex proteins BubR1 and Mad2. The evidence presented here indicated that C12 could induce different modes of cell death, depending on the extent of microtubule depolymerization. Since C12 targets both the mitotic and non-mitotic cells and showed a stronger activity against cancerous cells than non-cancerous cells, it may have an advantage in cancer chemotherapy. The results significantly enhance our understanding of the antitumor mechanism of the microtubule-depolymerizing agents.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shalini Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rajesh K Manne
- National Centre for Cell Science, University of Pune Campus, Pune, Maharashtra 411007, India
| | - Shailendra Sisodiya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab 160062, India
| | - Manas K Santra
- National Centre for Cell Science, University of Pune Campus, Pune, Maharashtra 411007, India.
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab 160062, India.
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
24
|
El Bairi K, Atanasov AG, Amrani M, Afqir S. The arrival of predictive biomarkers for monitoring therapy response to natural compounds in cancer drug discovery. Biomed Pharmacother 2019; 109:2492-2498. [PMID: 30551510 DOI: 10.1016/j.biopha.2018.11.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/14/2018] [Accepted: 11/25/2018] [Indexed: 02/05/2023] Open
Abstract
Intrinsic or acquired drug resistance, adverse drug reactions and tumor heterogeneity between and within cancer patients limit the efficacy of clinical management of advanced cancers. To overcome these barriers, predictive biomarkers have recently emerged to guide medical oncologists in the selection of cancer patients who will respond to various anticancer treatments and to improve the toxicity to benefit ratio. Notably, targeted therapy has significantly benefited from these advances, but the application of predictive biomarkers have been a bit slower with some drugs derived from natural sources such as trabectedin, cabazitaxel and alvocidib. In this paper, we discuss some recent advances regarding the use of cancer biomarkers to predict efficacy of some selected natural compounds with a focus on human clinical studies.
Collapse
Affiliation(s)
- Khalid El Bairi
- Cancer Biomarkers Working Group, Mohamed I(st) University, Oujda, Morocco; Faculty of Medicine and Pharmacy, Mohamed I(st) University, Oujda, Morocco.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; Department of Pharmacognosy, University of Vienna, Vienna, Austria; GLOBE Program Association (GLOBE-PA), Grandville, MI, USA
| | - Mariam Amrani
- Equipe de Recherche en Virologie et Onco-biologie, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| | - Said Afqir
- Faculty of Medicine and Pharmacy, Mohamed I(st) University, Oujda, Morocco; Department of Medical Oncology, Mohamed VI University Hospital, Oujda, Morocco
| |
Collapse
|
25
|
Basic principles of drug delivery systems - the case of paclitaxel. Adv Colloid Interface Sci 2019; 263:95-130. [PMID: 30530177 DOI: 10.1016/j.cis.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems.
Collapse
|
26
|
|
27
|
El Bairi K, Amrani M, Afqir S. Starvation tactics using natural compounds for advanced cancers: pharmacodynamics, clinical efficacy, and predictive biomarkers. Cancer Med 2018; 7:2221-2246. [PMID: 29732738 PMCID: PMC6010871 DOI: 10.1002/cam4.1467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023] Open
Abstract
The high mortality associated with oncological diseases is mostly due to tumors in advanced stages, and their management is a major challenge in modern oncology. Angiogenesis is a defined hallmark of cancer and predisposes to metastatic invasion and dissemination and is therefore an important druggable target for cancer drug discovery. Recently, because of drug resistance and poor prognosis, new anticancer drugs from natural sources targeting tumor vessels have attracted more attention and have been used in several randomized and controlled clinical trials as therapeutic options. Here, we outline and discuss potential natural compounds as salvage treatment for advanced cancers from recent and ongoing clinical trials and real-world studies. We also discuss predictive biomarkers for patients' selection to optimize the use of these potential anticancer drugs.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and PharmacyMohamed Ist UniversityOujdaMorocco
| | - Mariam Amrani
- Equipe de Recherche en Virologie et Onco‐biologieFaculty of MedicinePathology DepartmentNational Institute of OncologyUniversité Mohamed VRabatMorocco
| | - Said Afqir
- Department of Medical OncologyMohamed VI University HospitalOujdaMorocco
| |
Collapse
|
28
|
Riemer D, Mandaviya B, Schilling W, Götz AC, Kühl T, Finger M, Das S. CO2-Catalyzed Oxidation of Benzylic and Allylic Alcohols with DMSO. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04390] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel Riemer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Bhavdip Mandaviya
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Waldemar Schilling
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Anne Charlotte Götz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Torben Kühl
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Markus Finger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Shoubhik Das
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
29
|
Niu F, Liu Y, Jing Z, Han G, Sun L, Yan L, Zhou L, Wu Y, Xu Y, Hu L, Zhao X. Novel carbazole sulfonamide microtubule-destabilizing agents exert potent antitumor activity against esophageal squamous cell carcinoma. Cancer Lett 2018; 420:60-71. [PMID: 29408653 DOI: 10.1016/j.canlet.2018.01.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 01/11/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide due to its chemoresistance and poor prognosis. Currently, there is a lack of effective small molecule drugs for the treatment of ESCC. Microtubules are an attractive target for cancer therapy since they play a central role in various fundamental cell functions. We investigated the anti-ESCC activity and mechanisms of the small molecule tubulin ligands, SL-3-19 and SL-1-73, which are two carbazole sulfonamide derivatives, in vitro and in vivo for the first time. These drugs were previously screened from a small molecule library with over 450 compounds and optimized for high aqueous solubility [1,2]. Here, we reveal the promising activities of these compounds against esophageal cancer. Mechanistically, both SL-3-19 and SL-1-73 inhibited ESCC cell growth by inducing cell apoptosis and arresting the cell cycle at G2/M phase in a dose-dependent manner. These drugs effectively inhibited microtubule assembly, greatly disrupted microtubule maturation by down-regulating acetylated α-tubulin, and significantly disrupted the vascular structure by obstructing the formation of capillary-like tubes in vitro. Consistent with their in vitro activities, SL-3-19 and SL-1-73 inhibited the growth of ESCC xenografts and inhibited the microvessel density in vivo. In summary, SL-3-19 and SL-1-73 are novel microtubule-destabilizing agents that have a potential antitumor effect on ESCC both in vitro and in vivo, and SL-3-19 had a higher activity than SL-1-73, with a low IC50 value and an observable antitumor activity in vivo. These results indicate that SL-3-19 may be a new therapeutic candidate for ESCC treatment.
Collapse
Affiliation(s)
- Fangfei Niu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yonghua Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zongpan Jing
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Gaijing Han
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lianqi Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lu Yan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Yanbin Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yang Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Laixing Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|