1
|
Li X, Jin Y, Xue J. Unveiling Collagen's Role in Breast Cancer: Insights into Expression Patterns, Functions and Clinical Implications. Int J Gen Med 2024; 17:1773-1787. [PMID: 38711825 PMCID: PMC11073151 DOI: 10.2147/ijgm.s463649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Collagen, the predominant protein constituent of the mammalian extracellular matrix (ECM), comprises a diverse family of 28 members (I-XXVIII). Beyond its structural significance, collagen is implicated in various diseases or cancers, notably breast cancer, where it influences crucial cellular processes including proliferation, metastasis, apoptosis, and drug resistance, intricately shaping cancer progression and prognosis. In breast cancer, distinct collagens exhibit differential expression profiles, with some showing heightened or diminished levels in cancerous tissues or cells compared to normal counterparts, suggesting specific and pivotal biological functions. In this review, we meticulously analyze the expression of individual collagen members in breast cancer, utilizing Transcripts Per Million (TPM) data sourced from the GEPIA2 database. Through this analysis, we identify collagens that deviate from normal expression patterns in breast cancer, providing a comprehensive overview of their expression dynamics, functional roles, and underlying mechanisms. Our findings shed light on recent advancements in understanding the intricate interplay between these aberrantly expressed collagens and breast cancer. This exploration aims to offer valuable insights for the identification of potential biomarkers and therapeutic targets, thereby advancing the prospects of more effective interventions in breast cancer treatment.
Collapse
Affiliation(s)
- Xia Li
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Yue Jin
- Department of Molecular Diagnosis, Northern Jiangsu People’s Hospital, Yangzhou, People’s Republic of China
| | - Jian Xue
- Department of Emergency Medicine, Yizheng People’s Hospital, Yangzhou, People’s Republic of China
| |
Collapse
|
2
|
Gao S, Tan H, Li D. Oridonin suppresses gastric cancer SGC-7901 cell proliferation by targeting the TNF-alpha/androgen receptor/TGF-beta signalling pathway axis. J Cell Mol Med 2023; 27:2661-2674. [PMID: 37431884 PMCID: PMC10494293 DOI: 10.1111/jcmm.17841] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
Statistics provided by GLOBOCAN list gastric cancer as the sixth most common, with a mortality ranking of third highest for the year 2020. In China, a herb called Rabdosia rubescens (Hemsl.) H.Hara, has been used by local residents for the treatment of digestive tract cancer for hundreds of years. Oridonin, the main ingredient of the herb, has a curative effect for gastric cancer, but the mechanism has not been previously clarified. This study mainly aimed to investigate the role of TNF-alpha/Androgen receptor/TGF-beta signalling pathway axis in mediating the proliferation inhibition of oridonin on gastric cancer SGC-7901 cells. MTT assay, cell morphology observation assay and fluorescence assay were adopted to study the efficacy of oridonin on cell proliferation. The network pharmacology was used to predict the pathway axis regulated by oridonin. Western blot assay was adopted to verify the TNF-α/Androgen receptor/TGF-β signalling pathway axis regulation on gastric cancer by oridonin. The results showed Oridonin could inhibit the proliferation of gastric cancer cells, change cell morphology and cause cell nuclear fragmentation. A total of 11signaling pathways were annotated by the network pharmacology, among them, Tumour necrosis factor alpha (TNF-α) signalling pathway, androgen receptor (AR) signalling pathway and transforming growth factor (TGF-β) signalling pathway account for the largest proportion. Oridonin can regulate the protein expression of the three signalling pathways, which is consistent with the results predicted by network pharmacology. These findings indicated that oridonin can inhibit the proliferation of gastric cancer SGC-7901 cells by regulating the TNF-α /AR /TGF-β signalling pathway axis.
Collapse
Affiliation(s)
- Shiyong Gao
- Drug Engineering and Technology Research CenterHarbin University of CommerceHarbinChina
- Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor DrugsHarbinChina
| | - Huixin Tan
- Department of PharmacyFourth Affiliated Hospital of Harbin Medicine UniversityHarbinChina
| | - Dan Li
- Drug Engineering and Technology Research CenterHarbin University of CommerceHarbinChina
- Heilongjiang Provincial Key Laboratory of Tumor Prevention and Antitumor DrugsHarbinChina
| |
Collapse
|
3
|
Zhang Y, Dong K, Jia X, Du S, Wang D, Wang L, Qu H, Zhu S, Wang Y, Wang Z, Zhang S, Sun W, Fu S. A novel extrachromosomal circular DNA related genes signature for overall survival prediction in patients with ovarian cancer. BMC Med Genomics 2023; 16:140. [PMID: 37337170 DOI: 10.1186/s12920-023-01576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Ovarian cancer (OV) has a high mortality rate all over the world, and extrachromosomal circular DNA (eccDNA) plays a key role in carcinogenesis. We wish to study more about the molecular structure of eccDNA in the UACC-1598-4 cell line and how its genes are associated with ovarian cancer prognosis. METHODS We sequenced and annotated the eccDNA by Circle_seq of the OV cell line UACC-1598-4. To acquire the amplified genes of OV on eccDNA, the annotated eccDNA genes were intersected with the overexpression genes of OV in TCGA. Univariate Cox regression was used to find the genes on eccDNA that were linked to OV prognosis. The least absolute shrinkage and selection operator (LASSO) and cox regression models were used to create the OV prognostic model, as well as the receiver operating characteristic curve (ROC) curve and nomogram of the prediction model. By applying the median value of the risk score, the samples were separated into high-risk and low-risk groups, and the differences in immune infiltration between the two groups were examined using ssGSEA. RESULTS EccDNA in UACC-1598-4 has a length of 0-2000 bp, and some of them include the whole genes or gene fragments. These eccDNA originated from various parts of chromosomes, especially enriched in repeatmasker, introns, and coding regions. They were annotated with 2188 genes by Circle_seq. Notably, the TCGA database revealed that a total of 198 of these eccDNA genes were overexpressed in OV (p < 0.05). They were mostly enriched in pathways associated with cell adhesion, ECM receptors, and actin cytoskeleton. Univariate Cox analysis showed 13 genes associated with OV prognosis. LASSO and Cox regression analysis were used to create a risk model based on remained 9 genes. In both the training (TCGA database) and validation (International Cancer Genome Consortium, ICGC) cohorts, a 9-gene signature could successfully discriminate high-risk individuals (all p < 0.01). Immune infiltration differed significantly between the high-risk and low-risk groups. The model's area under the ROC curve was 0.67, and a nomograph was created to assist clinician. CONCLUSION EccDNA is found in UACC-1598-4, and part of its genes linked to OV prognosis. Patients with OV may be efficiently evaluated using a prognostic model based on eccDNA genes, including SLC7A1, NTN1, ADORA1, PADI2, SULT2B1, LINC00665, CILP2, EFNA5, TOMM.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Kexian Dong
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Shuomeng Du
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Dong Wang
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Liqiang Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Han Qu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Shihao Zhu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Yang Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Zhao Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shuopeng Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, 150081, China.
| |
Collapse
|
4
|
Necula L, Matei L, Dragu D, Pitica I, Neagu A, Bleotu C, Diaconu CC, Chivu-Economescu M. Collagen Family as Promising Biomarkers and Therapeutic Targets in Cancer. Int J Mol Sci 2022; 23:ijms232012415. [PMID: 36293285 PMCID: PMC9604126 DOI: 10.3390/ijms232012415] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Despite advances in cancer detection and therapy, it has been estimated that the incidence of cancers will increase, while the mortality rate will continue to remain high, a fact explained by the large number of patients diagnosed in advanced stages when therapy is often useless. Therefore, it is necessary to invest knowledge and resources in the development of new non-invasive biomarkers for the early detection of cancer and new therapeutic targets for better health management. In this review, we provided an overview on the collagen family as promising biomarkers and on how they may be exploited as therapeutic targets in cancer. The collagen family tridimensional structure, organization, and functions are very complex, being in a tight relationship with the extracellular matrix, tumor, and immune microenvironment. Moreover, accumulating evidence underlines the role of collagens in promoting tumor growth and creating a permissive tumor microenvironment for metastatic dissemination. Knowledge of the molecular basis of these interactions may help in cancer diagnosis and prognosis, in overcoming chemoresistance, and in providing new targets for cancer therapies.
Collapse
Affiliation(s)
- Laura Necula
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-324-2592
| | - Lilia Matei
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Denisa Dragu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Ioana Pitica
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Ana Neagu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Carmen C. Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| | - Mihaela Chivu-Economescu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
| |
Collapse
|
5
|
Zhu J, Weng Y, Wang F, Zhao J. LINC00665/miRNAs axis-mediated collagen type XI alpha 1 correlates with immune infiltration and malignant phenotypes in lung adenocarcinoma. Open Med (Wars) 2022; 17:1259-1274. [PMID: 35892083 PMCID: PMC9281593 DOI: 10.1515/med-2022-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
Collagen type XI alpha 1 (COL11A1) as an oncogene has been reported in several malignant tumors. Herein, we aimed to explore the function of COL11A1 and its upstream regulators in lung adenocarcinoma (LUAD). COL11A1 expression prognostic significance, gene ontology, Kyoto Encyclopedia of Genes and Genomes, and immune infiltration were explored in LUAD. In vitro experimental measurements were implemented to validate the function of COL11A1 and LINC00665 in LUAD cells. Our study demonstrated that LINC00665-2 and COL11A1 were significantly upregulated in LUAD tissues compared with nontumor tissues. COL11A1 was positively correlated with multiple immune cell enrichment, suggesting that COL11A1 may be a prospective therapeutic target to enhance the efficacy of immunotherapy in LUAD. A regulatory mechanism LINC00665-2/microRNAs (miRNAs)/COL11A1 axis was identified to facilitate the tumorigenesis of LUAD. si-LINC00665 transfection induced the inhibition of growth and migration, and apoptosis was reversed by the overexpression of COL11A1 in LUAD cells. In conclusion, LINC00665 as a competing endogenous RNA sponging multiple miRNAs to modulate COL11A1 expression in LUAD, suggesting that LINC00665/miRNAs/COL11A1 axis may contribute to the pathogenesis of LUAD.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yuan Weng
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Fudong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou 215006, Jiangsu Province, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Gusu District, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
6
|
Wu YH, Chou CY. Collagen XI Alpha 1 Chain, a Novel Therapeutic Target for Cancer Treatment. Front Oncol 2022; 12:925165. [PMID: 35847935 PMCID: PMC9277861 DOI: 10.3389/fonc.2022.925165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
The extracellular matrix (ECM) plays an important role in the progression of cancer. Collagen is the most abundant component in ECM, and is involved in the biological formation of cancer. Although type XI collagen is a minor fibrillar collagen, collagen XI alpha 1 chain (COL11A1) expression has been found to be upregulated in a variety of human cancers including colorectal, esophagus, glioma, gastric, head and neck, lung, ovarian, pancreatic, salivary gland, and renal cancers. High levels of COL11A1 usually predict poor prognosis, owing to its association with angiogenesis, invasion, and drug resistance in cancer. However, little is known about the specific mechanism through which COL11A1 regulates tumor progression. Here, we have organized and summarized recent developments regarding the interactions between COL11A1 and intracellular signaling pathways and selected therapeutic agents targeting COL11A1, as these indicate its potential as a target for treatment of cancers, especially epithelial ovarian cancer.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.,Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Sun Y, Huang H, Zhan Z, Gao H, Zhang C, Lai J, Cao J, Li C, Chen Y, Liu Z. Berberine inhibits glioma cell migration and invasion by suppressing TGF-β1/COL11A1 pathway. Biochem Biophys Res Commun 2022; 625:38-45. [DOI: 10.1016/j.bbrc.2022.07.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
|
8
|
Hanusek K, Rybicka B, Popławski P, Adamiok-Ostrowska A, Głuchowska K, Piekiełko-Witkowska A, Bogusławska J. TGF‑β1 affects the renal cancer miRNome and regulates tumor cells proliferation. Int J Mol Med 2022; 49:52. [PMID: 35179216 PMCID: PMC8904080 DOI: 10.3892/ijmm.2022.5108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
TGF-β1 is a pleiotropic cytokine that can either promote or inhibit cancer development and progression. It was previously found that TGF-β1 can regulate the expression of several microRNAs (miR or miRNA) involved in the progression of renal cell carcinoma (RCC). Therefore, the present study aimed to analyze the effects of TGF-β1 on the global RCC miRNome. It was found that TGF-β1 can regulate a complex network consisting of miRNAs and mRNAs involved in RCC transformation. In particular, TGF-β1 was revealed to regulate the proliferation of RCC cells while concomitantly modifying the expression of oncogenic regulators, including avian erythroblastosis virus E26 (V-Ets) oncogene homolog-1 (ETS1). In addition, TGF-β1 was demonstrated to regulate the expression of a number of miRNAs including miR-30c-5p, miR-155-5p, miR-181a-5p and miR-181b-5p. By contrast, TGF-β1 reciprocally modified the expression of genes encoding TGF-β1 receptors and SMADs, indicating a novel regulatory feedback mechanism mediated through the miRNAs. These data suggested that ETS1 served different roles in different subtypes of RCC tumors, specifically by functioning as an oncogene in clear cell RCC while as a tumor suppressor in papillary RCC.
Collapse
Affiliation(s)
- Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Anna Adamiok-Ostrowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Katarzyna Głuchowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | | | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| |
Collapse
|
9
|
Wu Y, Luan J, Jiao C, Zhang S, Ma C, Zhang Y, Fu J, Lai EY, Kopp JB, Pi J, Zhou H. circHIPK3 Exacerbates Folic Acid-Induced Renal Tubulointerstitial Fibrosis by Sponging miR-30a. Front Physiol 2022; 12:715567. [PMID: 35058790 PMCID: PMC8763699 DOI: 10.3389/fphys.2021.715567] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Renal tubulointerstitial fibrosis is a common pathological feature of progressive chronic kidney disease (CKD), and current treatment has limited efficacy. The circular RNA circHIPK3 is reported to participate in the pathogenesis of various human diseases. However, the role of circHIPK3 in renal fibrosis has not been examined. In this study, we aimed to determine whether and how circHIPK3 might participate in the pathogenesis of renal fibrosis. Mice received a peritoneal injection of folic acid (250 mg/kg). Of note, 30 days later, renal fibrosis was present on periodic acid-Schiff (PAS) and Masson staining, and mRNA and protein of profibrotic genes encoding fibronectin (FN) and collagen 1 (COL1) were increased. Renal circHIPK3 was upregulated, while miR-30a was downregulated, assessed by quantitative PCR (qPCR) and fluorescence in situ hybridization (FISH). The expression of transforming growth factor beta-1 (TGF-β1) was increased by qPCR analysis, immunoblotting, and immunofluorescence. Renal circHIPK3 negatively correlated with miR-30a, and kidney miR-30a negatively correlated with TGF-β1. Target Scan and miRanda algorithms predicted three perfect binding sites between circHIPK3 and miR-30a. We found that circHIPK3, miR-30a, and TGF-β1 colocalized in the cytoplasm of human tubular epithelial cells (HK-2 cells) on FISH and immunofluorescence staining. We transfected circHIPK3 and a scrambled RNA into HK-2 cells; miR-30a was downregulated, and the profibrotic genes such as TGF-β1, FN, and COL1 were upregulated and assessed by qPCR, immunoblotting, and immunofluorescence staining. Third, the upregulation of circHIPK3, downregulation of miR-30a, and overproduction of profibrotic FN and COL1 were also observed in HK-2 cells exposed to TGF-β1. Finally, renal biopsies from patients with chronic tubulointerstitial nephritis manifested similar expression patterns of circHIPK3, miR-30a, and profibrotic proteins, such as TGF-β1, FN, and COL1 as observed in the experimental model. A feed-forward cycle was observed among circHIPK3, miR-30a, and TGF-β1. Our results suggest that circHIPK3 may contribute to progressive renal fibrosis by sponging miR-30a. circHIPK3 may be a novel therapeutic target for slowing CKD progression.
Collapse
Affiliation(s)
- Yan Wu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Congcong Jiao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiwen Zhang
- Department of Critical Care Medicine, Fushun Central Hospital, Fushun, China
| | - Cong Ma
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jeffrey B Kopp
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, United States
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Lai X, Schmitz U, Vera J. The Role of MicroRNAs in Cancer Biology and Therapy from a Systems Biology Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:1-22. [DOI: 10.1007/978-3-031-08356-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Yin X, Ge J, Ge X, Gao J, Su X, Wang X, Zhang Q, Wang Z. MiR-363-5p modulates regulatory T cells through STAT4-HSPB1-Notch1 axis and is associated with the immunological abnormality in Graves' disease. J Cell Mol Med 2021; 25:9364-9377. [PMID: 34431214 PMCID: PMC8500983 DOI: 10.1111/jcmm.16876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
MiRNAs are a class of small non-coding RNAs with ability to regulate function of Treg cells and are involved in many autoimmune diseases. Our previous study found that miR-363-5p expression was significantly upregulated in peripheral Treg cells of GD patients. Herein, we aimed to investigate its effect and mechanism on Treg cell dysfunction in GD patients. The results showed that miR-363-5p upregulation was significantly associated with the Treg cell dysfunction and inflammatory factors levels in GD patients. Transcriptome sequencing revealed that 883 genes were significantly regulated by miR-363-5p in Treg cells. These genes with significant differential expression were primarily involved in lymphocyte differentiation, immunity, as well as Notch1 and various interleukin signalling pathways. Moreover, miR-363-5p can regulate HSPB1 and Notch1 through the target gene STAT4, thereby regulating Notch1 signalling pathway and inhibiting Treg cells. The effects of miR-363-5p on Treg cell function and STAT4-HSPB1-Notch1 axis were also verified in GD patients. In conclusion, our results indicated that miR-363 could inhibit the proliferation, differentiation and function of Treg cells by regulating the STAT4-HSPB1-Notch1 axis through target gene STAT4. MiR-363-5p may play an important role in Treg cell dysfunction and immune tolerance abnormalities in GD patients.
Collapse
Affiliation(s)
- Xianlun Yin
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Junfeng Ge
- Department of AnesthesiologyJinan Second People's HospitalJinanShandongChina
| | - Xiurong Ge
- Division of Endocrinology and MetabolismDivision of GeriatricsShandong Provincial HospitalCheeloo College of MedicineShandong Provincial Key Laboratory of Endocrinology and Lipid MetabolismShandong Institute of Endocrine and Metabolic DiseaseShandong UniversityJinanChina
| | - Jing Gao
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Xinhuan Su
- Division of Endocrinology and MetabolismDivision of GeriatricsShandong Provincial HospitalCheeloo College of MedicineShandong Provincial Key Laboratory of Endocrinology and Lipid MetabolismShandong Institute of Endocrine and Metabolic DiseaseShandong UniversityJinanChina
| | - Xiaowei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Zhe Wang
- Division of Endocrinology and MetabolismDivision of GeriatricsShandong Provincial HospitalCheeloo College of MedicineShandong Provincial Key Laboratory of Endocrinology and Lipid MetabolismShandong Institute of Endocrine and Metabolic DiseaseShandong UniversityJinanChina
| |
Collapse
|
12
|
Liu Z, Lai J, Jiang H, Ma C, Huang H. Collagen XI alpha 1 chain, a potential therapeutic target for cancer. FASEB J 2021; 35:e21603. [PMID: 33999448 DOI: 10.1096/fj.202100054rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/11/2022]
Abstract
Extracellular matrix (ECM) plays an important role in the progression of cancer. Collagen is the most abundant component in ECM, and it is involved in the biological formation of cancer. Although type XI collagen is a minor fibrillar collagen, collagen XI alpha 1 chain (COL11A1) has been found to be upregulated in a variety of cancers including ovarian cancer, breast cancer, thyroid cancer, pancreatic cancer, non-small-cell lung cancer, and transitional cell carcinoma of the bladder. High levels of COL11A1 usually predict poor prognosis, while COL11A1 is related to angiogenesis, invasion, and drug resistance of cancer. However, little is known about the specific mechanism by which COL11A1 regulates tumor progression. Here, we have organized and summarized the recent developments regarding elucidation of the relationship between COL11A1 and various cancers, as well as the interaction between COL11A1 and intracellular signaling pathways. In addition, we have selected therapeutic agents targeting COL11A1. All these indicate the possibility of using COL11A1 as a target for cancer treatment.
Collapse
Affiliation(s)
- Ziqiang Liu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Jiacheng Lai
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Heng Jiang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Chengyuan Ma
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Haiyan Huang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Yang L, Zou X, Zou J, Zhang G. A Review of Recent Research on the Role of MicroRNAs in Renal Cancer. Med Sci Monit 2021; 27:e930639. [PMID: 33963171 PMCID: PMC8114846 DOI: 10.12659/msm.930639] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma (RCC) is a most common type of urologic neoplasms; it accounts for 3% of malignant tumors, with high rates of relapse and mortality. The most common types of renal cancer are clear cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and chromophobe renal carcinoma (chRCC), which account for 90%, 6–15%, and 2–5%, respectively, of all renal malignancies. Although surgical resection, chemotherapy, and radiotherapy are the most common treatment method for those diseases, their effects remain dissatisfactory. Furthermore, recent research shows that the treatment efficacy of checkpoint inhibitors in advanced RCC patients is widely variable. Hence, patients urgently need a new molecular biomarker for early diagnosis and evaluating the prognosis of RCC. MicroRNAs (miRNAs) belong to a family of short, non-coding RNAs that are highly conserved, have long half-life evolution, and post-transcriptionally regulate gene expression; they have been predicted to play crucial roles in tumor metastasis, invasion, angiogenesis, proliferation, apoptosis, epithelial-mesenchymal transition, differentiation, metabolism, cancer occurrence, and treatment resistance. Although some previous papers demonstrated that miRNAs play vital roles in renal cancer, such as pathogenesis, diagnosis, and prognosis, the roles of miRNAs in kidney cancer are still unclear. Therefore, we reviewed studies indexed in PubMed from 2017 to 2020, and found several studies suggesting that there are more than 82 miRNAs involved in renal cancers. The present review describes the current status of miRNAs in RCC and their roles in progression, diagnosis, therapy targeting, and prognosis of RCC.
Collapse
Affiliation(s)
- Longfei Yang
- First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Junrong Zou
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China (mainland)
| |
Collapse
|
14
|
Chen J, Lai W, Deng Y, Liu M, Dong M, Liu Z, Wang T, Li X, Zhao Z, Yin X, Yang J, Yu R, Liu L. MicroRNA-363-3p promotes apoptosis in response to cadmium-induced renal injury by down-regulating phosphoinositide 3-kinase expression. Toxicol Lett 2021; 345:12-23. [PMID: 33857584 DOI: 10.1016/j.toxlet.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/09/2022]
Abstract
We previously determined that specific microRNAs (miRNAs) are involved in renal pathophysiological occurrences induced by cadmium (Cd) in rats. This study expands our studies on miRNAs, determining their role in Cd-induced nephrotoxicity in occupational workers. We performed miRNA microarray analyses of blood and urine samples from patients diagnosed as occupational chronic Cd poisoning (OCCP) with abnormally elevated concentrations of urinary beta-2-microglobulin (U-β2-MG), an indicator of tubular proteinuria. We also performed in vitro bioinformatics-based investigations of apoptosis-related genes targeted by miRNAs involved in the biological response to Cd exposure. We tested five differentially expressed miRNAs and determined a significant increase of sera miR-363-3p. Also, we determined that miR-363-3p increase is associated with phosphoinositide 3-kinase (PI3K) down-regulation and the suppressed proliferation and enhanced apoptosis of renal tubule epithelial cells. The obtained results suggest miR-363-3p involvement in the pathophysiology of Cd-induced renal injury in humans and maybe considered for possible interventional therapeutic strategies for Cd-associated kidney damage.
Collapse
Affiliation(s)
- Jiabin Chen
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Weina Lai
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China; Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong, China
| | - Yaotang Deng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Min Liu
- Dongguan Maternal and Child Healthcare Hospital, Dongguan, 523700, Guangdong, China
| | - Ming Dong
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Zhidong Liu
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516008, Guangdong, China
| | - Ting Wang
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516008, Guangdong, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Zhiqiang Zhao
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Xiao Yin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Jinmei Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Rian Yu
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong, China
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China.
| |
Collapse
|
15
|
Abstract
Hormones are key drivers of cancer development, and alteration of the intratumoral concentration of thyroid hormone (TH) is a common feature of many human neoplasias. Besides the systemic control of TH levels, the expression and activity of deiodinases constitute a major mechanism for the cell-autonomous, prereceptoral control of TH action. The action of deiodinases ensures tight control of TH availability at intracellular level in a time- and tissue-specific manner, and alterations in deiodinase expression are frequent in tumors. Research over the past decades has shown that in cancer cells, a complex and dynamic expression of deiodinases is orchestrated by a network of growth factors, oncogenic proteins, and miRNA. It has become increasingly evident that this fine regulation exposes cancer cells to a dynamic concentration of TH that is functional to stimulate or inhibit various cellular functions. This review summarizes recent advances in the identification of the complex interplay between deiodinases and cancer and how this family of enzymes is relevant in cancer progression. We also discuss whether deiodinase expression could represent a diagnostic tool with which to define tumor staging in cancer treatment or even a therapeutic tool against cancer.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II,” Naples, Italy
- Correspondence: Domenico Salvatore, Department of Public Health, University of Naples “Federico II”, Napoli, Italy.
| |
Collapse
|
16
|
Yang T, Miao X, Bai Z, Tu J, Shen S, Niu H, Xia W, Wang J, Zhang Y. A Novel mRNA-miRNA Regulatory Sub-Network Associated With Prognosis of Metastatic Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 10:593601. [PMID: 33542901 PMCID: PMC7851075 DOI: 10.3389/fonc.2020.593601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 12/01/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a urinary disease with high incidence. The high incidence of metastasis is the leading cause of death in patients with ccRCC. This study was aimed to identify the gene signatures during the metastasis of ccRCC. Methods Two datasets, including one gene expression profile dataset and one microRNA (miRNA) expression profile dataset, were downloaded from Gene Expression Omnibus (GEO) database. The integrated bioinformatics analysis was performed using the (limma) R package, miRWalk, DAVID, STRING, Kaplan-Meier plotter databases. Quantitative real-time polymerase chain reaction (qPCR) was conducted to validate the expression of differentially expressed genes (DEGs) and DE-miRNAs. Results In total, 84 DEGs (68 up-regulated and 16 down-regulated) and 41 DE-miRNAs (24 up-regulated and 17 down-regulated) were screened from GSE22541 and GSE37989 datasets, respectively. Furthermore, 11 hub genes and 3 key miRNAs were identified from the PPI network, including FBLN1, THBS2, SCGB1A1, NKX2-1, COL11A1, DCN, LUM, COL1A1, COL6A3, SFTPC, SFTPB, miR-328, miR-502, and miR-504. The qPCR data showed that most of the selected genes and miRNAs were consistent with that in our integrated analysis. A novel mRNA-miRNA network, SFTPB-miR-328-miR-502-miR-504-NKX2-1 was found in metastatic ccRCC after the combination of data from expression, survival analysis, and experiment validation. Conclusion In conclusion, key candidate genes and miRNAs were identified and a novel mRNA-miRNA network was constructed in ccRCC metastasis using integrated bioinformatics analysis and qPCR validation, which might be utilized as diagnostic biomarkers and molecular targets of metastatic ccRCC.
Collapse
Affiliation(s)
- Tianyu Yang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaofen Miao
- Department of Pathology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhanxiang Bai
- Department of Pathology, The People's hospital of Hainan Tibetan Autonomous Prefecture, Qinghai, China
| | - Jian Tu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shanshan Shen
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hui Niu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xia
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Wang
- Department of Pathology, Wuzhong People's Hospital of Suzhou, Suzhou, China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Zi Y, Zhang Y, Wu Y, Zhang L, Yang R, Huang Y. Downregulation of microRNA‑25‑3p inhibits the proliferation and promotes the apoptosis of multiple myeloma cells via targeting the PTEN/PI3K/AKT signaling pathway. Int J Mol Med 2021; 47:8. [PMID: 33448321 PMCID: PMC7834966 DOI: 10.3892/ijmm.2020.4841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022] Open
Abstract
Numerous studies have confirmed that microRNAs (miRNAs or miRs) have important roles in cancer biogenesis and development including multiple myeloma (MM). MicroRNA-25-3p (miR-25-3p) has been proven to promote cancer progression, whereas its functions in MM has not yet been reported, at least to the best of our knowledge. Therefore, the present study aimed to investigate the function of miR-25-3p in MM and to identify the potential underlying mechanistic pathway. Herein, it was found that miR-25-3p expression was significantly increased in MM tissues and cell lines. The upregulation of miR-25-3p was closely associated with anemia, renal function impairment international staging system (ISS) staging and Durie-Salmon (D-S) staging. A high level of miR-25-3p was predictive of a poor prognosis of patients with MM. In vitro, the knockdown of miR-25-3p suppressed the proliferation and promoted the apoptosis of RPMI-8226 and U266 cells, while the overexpression of miR-25-3p exerted opposite effects. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a well-known tumor suppressor, was confirmed as a target of miR-25-3p in MM cells. Moreover, it was found that the PTEN expression levels were decreased, and inversely correlated with miR-25-3p expression levels in MM tissues. Further analyses revealed that the overexpression of PTEN exerted effects similar to those of miR-25-3p knockdown, whereas the knockdown of PTEN partially abolished the effects of miR-25-3p inhibitor on MM cells. Accompanied by PTEN induction, miR-25-3p promoted PI3K/AKT signaling pathway activation in MM cells. Collectively, these findings demonstrate critical roles for miR-25-3p in the pathogenesis of MM, and suggest that miR-25-3p may serve as a novel prognostic biomarker and therapeutic target of MM.
Collapse
Affiliation(s)
- Youmei Zi
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yingzi Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yanwei Wu
- Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Lina Zhang
- Central Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Ru Yang
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yan Huang
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
18
|
Liu X, Wang W, Bai Y, Zhang H, Zhang S, He L, Zhou W, Zhang D, Xu J. Identification of a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for chronic kidney disease using next-generation sequencing. J Int Med Res 2020; 48:300060520969481. [PMID: 33307899 PMCID: PMC7739098 DOI: 10.1177/0300060520969481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective To identify serum microRNAs (miRNAs) as potential non-invasive biomarkers for patients with chronic kidney disease (CKD). Methods We collected serum samples from healthy controls, CKD stage 1 (CKD1), and stage 5 (CKD5) patients with primary glomerulonephritis (GN), screened differentially expressed miRNAs (DEMs) using next-generation sequencing (NGS), and confirmed the sequencing data using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results We identified 20 and 42 DEMs in the CKD1 and CKD5 patients compared with the controls, respectively, and 70 DEMs in the CKD5 compared with the CKD1 patients. The qRT-PCR results showed that miR-483-5p was up-regulated in the CKD1 and CKD5 patients compared with controls (fold change = 2.56 and 18.77, respectively). miR-363-3p was down-regulated in the CKD5 patients compared with the controls and CKD1 patients (fold change = 0.27 and 0.48, respectively). Conclusion We identified a genome-wide serum miRNA expression profile in CKD patients, and serum miR-483-5p and miR-363-3p may act as potential diagnostic biomarkers for CKD.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China.,Department of Hematology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weijie Wang
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
| | - Huiran Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
| | - Lei He
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
| | - Wei Zhou
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
| | - Dongxue Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Hebei Clinical Research Center for Chronic Kidney Disease, Shijiazhuang, China
| |
Collapse
|
19
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
20
|
Regulators at Every Step—How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020. [DOI: 10.3390/cancers12123709
expr 991289423 + 939431153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial–mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
|
21
|
Xu C, Gu L, Kuerbanjiang M, Wen S, Xu Q, Xue H. Thrombospondin 2/Toll-Like Receptor 4 Axis Contributes to HIF-1α-Derived Glycolysis in Colorectal Cancer. Front Oncol 2020; 10:557730. [PMID: 33244454 PMCID: PMC7683806 DOI: 10.3389/fonc.2020.557730] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Background Aerobic glycolysis is a typical metabolic reprogramming in tumor cells, which contributes to the survival and proliferation of tumor cells. The underlying mechanisms controlling this metabolic switch in colorectal cancer (CRC), however, remain only partially understood. Methods The Cancer Genome Atlas (TCGA) dataset and Gene Expression Omnibus (GEO) (GDS4382, GSE6988, GSE35834) were used to analyzed the mRNA expression of THBS2. 392 paired samples of CRC and adjacent non-cancerous tissues were collected to detect the expression of THBS2 by IHC. The correlation of THBS2 expression with categorical clinical variables in patients with CRC was evaluated using chi-square analysis or Student's t-test. CCK-8, colony formation, and animal CT scan were used to functional analysis of THBS2 in CRC. Results Thrombospondin 2 (THBS2) is aberrantly upregulated and linked to a poor prognosis in CRC. Subsequent experiments also showed that THBS2 promotes the proliferation of CRC cells. In terms of mechanism, THBS2 interacted with Toll-like receptor 4 (TLR4), but not with the other toll-like receptors (TLRs), which upregulated the mRNA expression of GLUT1, HK2, ALDOA, PKM2, and LDHA and enhanced glycolytic capacity in CRC cells. Moreover, THBS2/TLR4 axis significantly increased the protein level of HIF-1α and blocking HIF-1α by siRNA reversed the enhanced glycolytic capacity and the upregulated expression of glycolytic enzymes in CRC cells. Conclusion Our findings revealed that the THBS2/TLR4 axis contributes to HIF-1α derived glycolysis and eventually promotes CRC progress.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Manzila Kuerbanjiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyuan Wen
- Ottwa -Shanghai Joint School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
22
|
Li XF, Zhang SH, Liu GF, Yu SN. miR-363 Alleviates Detrusor Fibrosis via the TGF-β1/Smad Signaling Pathway by Targeting Col1a2 in Rat Models of STZ-Induced T2DM. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:1142-1153. [PMID: 33294298 PMCID: PMC7695978 DOI: 10.1016/j.omtn.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023]
Abstract
Dysregulated expression of microRNAs (miRNAs or miRs) has been implicated in the pathophysiology of type 2 diabetes mellitus (T2DM). However, their underlying role in the complication of detrusor fibrosis remains poorly understood. Therefore, this study aimed to examine the potential functional relevance of miR-363 in detrusor fibrosis of rats with streptozotocin (STZ)-induced T2DM through the predicted target gene collagen type I alpha 2 (Col1a2). Immunohistochemical analysis found an increase in the positive expression of collagen type III alpha 1 (Col3a1) and Col1a2 in detrusor tissues, where miR-363 expression was decreased. Next, gain- and loss-of-function experiments were performed to clarify the effects of miR-363 and Col1a2 on the activities of bladder detrusor cells. Of note, binding affinity between miR-363 and Col1a2 was verified by a dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay. Upregulated miR-363 inhibited Col1a2 expression, which led to increased expression of B-cell lymphoma 2 (Bcl-2) and Smad7 and accelerated cell viability, along with decreases in cell apoptosis and Col3a1, Bcl-2-associated X protein (Bax), transforming growth factor (TGF)-β1, and Smad4 expressions. In conclusion, miR-363 upregulation reduces detrusor fibrosis in rats with STZ-induced T2DM through suppression of the TGF-β1/Smad signaling pathway by targeting Col1a2. Therefore, our study provided further insights for the development of new therapeutic targets for T2DM.
Collapse
Affiliation(s)
- Xue-Feng Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Shu-Hua Zhang
- Operation Room, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Shao-Nan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| |
Collapse
|
23
|
Pan S, Ren F, Li L, Liu D, Li Y, Wang A, Li W, Dong Y, Guo W. MiR-328-3p inhibits cell proliferation and metastasis in colorectal cancer by targeting Girdin and inhibiting the PI3K/Akt signaling pathway. Exp Cell Res 2020; 390:111939. [PMID: 32142853 DOI: 10.1016/j.yexcr.2020.111939] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/13/2020] [Accepted: 03/01/2020] [Indexed: 12/24/2022]
Abstract
MiR-328-3p has been reported to be downregulated and serve as a tumor suppressor in several cancers. Previous studies only have reported the downregulation of miR-328-3p in CRC. However, the roles of miR-328-3p in CRC growth and metastasis were unknown. In this study, we demonstrated that miR-328-3p overexpression inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). The PI3K/Akt signaling pathway was also inactivated by miR-328-3p overexpression. MiR-328-3p knockdown showed the opposite effects. In addition, we confirmed that miR-328-3p directly bound to 3'UTR of Girdin and negatively regulated its expression. Girdin knockdown or treatment with PI3K inhibitor LY294002 blocked the effects of miR-328-3p inhibitor on cell proliferation, metastasis, and the PI3K/Akt signaling pathway. Moreover, pre-miR-328 decreased numbers of liver metastatic nodules, and reduced the levels of p-Akt, p-Girdin, and Girdin in metastatic tissues in liver. In conclusion, miR-328-3p may inhibit proliferation and metastasis of CRC cells by targeting Girdin and inactivating the PI3K/Akt signaling pathway. MiR-328-3p may be a novel target in cancer therapy.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Fu Ren
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China; Key Laboratory of Chinese Physical Characteristics Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China.
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116027, People's Republic of China.
| | - Dahua Liu
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China; Key Laboratory of Chinese Physical Characteristics Research of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Yao Li
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Aimei Wang
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Weihong Li
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Yongyan Dong
- The First Clinical College, Jinzhou Medical University, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Wenjuan Guo
- School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin, 300387, People's Republic of China
| |
Collapse
|
24
|
Zhan J, Tong J, Fu Q. Long non‑coding RNA LINC00858 promotes TP53‑wild‑type colorectal cancer progression by regulating the microRNA‑25‑3p/SMAD7 axis. Oncol Rep 2020; 43:1267-1277. [PMID: 32323793 PMCID: PMC7058075 DOI: 10.3892/or.2020.7506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/21/2020] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in colorectal cancer (CRC) progression, however the mechanisms remain largely unknown. The present study aimed to reveal the role and possible molecular mechanisms of a new LNCRNA, LINC00858, in CRC. LINC00858 was increased in CRC tumor tissues, and patients with high LINC00858 expression had a shorter survival time. Knockdown of LINC00858 expression suppressed cell proliferation and induced G0/G1 cell cycle arrest and apoptosis in TP53-wild-type CRC cells. Subsequently, using Starbase v2.0 database, miR-25-3p was confirmed to interact with LINC00858 and was downregulated by LINC00858. Reduction of miR-25-3p expression with an inhibitor significantly attenuated the biological effects of LINC00858 knockdown in CRC cells. Furthermore, using TargetScan, SMAD7 was validated to interact with miR-25-3p and was downregulated by miR-25-3p. Lastly, the ectopic overexpression of SMAD7 rescued the suppressive effects of LINC00858 knockdown in CRC cells. Collectively, the results from the present study, to the best of our knowledge, firstly demonstrated a novel LINC00858/miR-25-3p/SMAD7 regulatory axis that promoted CRC progression, indicating LINC00858 as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Jidong Zhan
- Department of Internal Medicine, The Hospital of University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jin Tong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qiang Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
25
|
Rutz J, Maxeiner S, Justin S, Bachmeier B, Bernd A, Kippenberger S, Zöller N, Chun FKH, Blaheta RA. Low Dosed Curcumin Combined with Visible Light Exposure Inhibits Renal Cell Carcinoma Metastatic Behavior In Vitro. Cancers (Basel) 2020; 12:cancers12020302. [PMID: 32012894 PMCID: PMC7072295 DOI: 10.3390/cancers12020302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recent documentation shows that a curcumin-induced growth arrest of renal cell carcinoma (RCC) cells can be amplified by visible light. This study was designed to investigate whether this strategy may also contribute to blocking metastatic progression of RCC. Low dosed curcumin (0.2 µg/mL; 0.54 µM) was applied to A498, Caki1, or KTCTL-26 cells for 1 h, followed by exposure to visible light for 5 min (400–550 nm, 5500 lx). Adhesion to human vascular endothelial cells or immobilized collagen was then evaluated. The influence of curcumin on chemotaxis and migration was also investigated, as well as curcumin induced alterations of α and β integrin expression. Curcumin without light exposure or light exposure without curcumin induced no alterations, whereas curcumin plus light significantly inhibited RCC adhesion, migration, and chemotaxis. This was associated with a distinct reduction of α3, α5, β1, and β3 integrins in all cell lines. Separate blocking of each of these integrin subtypes led to significant modification of tumor cell adhesion and chemotactic behavior. Combining low dosed curcumin with light considerably suppressed RCC binding activity and chemotactic movement and was associated with lowered integrin α and β subtypes. Therefore, curcumin combined with visible light holds promise for inhibiting metastatic processes in RCC.
Collapse
Affiliation(s)
- Jochen Rutz
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
- Correspondence: ; Tel.: +49-69-6301-7109; Fax: +49-69-6301-7108
| | - Sebastian Maxeiner
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| | - Saira Justin
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| | - Beatrice Bachmeier
- Institute of Laboratory Medicine, University Hospital, Ludwig-Maximilians-University, 80539 Munich, Germany;
| | - August Bernd
- Department of Dermatology, Venereology, and Allergology, Goethe-University, 60590 Frankfurt am Main, Germany; (A.B.); (S.K.); (N.Z.)
| | - Stefan Kippenberger
- Department of Dermatology, Venereology, and Allergology, Goethe-University, 60590 Frankfurt am Main, Germany; (A.B.); (S.K.); (N.Z.)
| | - Nadja Zöller
- Department of Dermatology, Venereology, and Allergology, Goethe-University, 60590 Frankfurt am Main, Germany; (A.B.); (S.K.); (N.Z.)
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| | - Roman A. Blaheta
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (S.M.); (S.J.); (F.K.-H.C.); (R.A.B.)
| |
Collapse
|
26
|
Rong H, Chen B, Wei X, Peng J, Ma K, Duan S, He J. Long non-coding RNA XIST expedites lung adenocarcinoma progression through upregulating MDM2 expression via binding to miR-363-3p. Thorac Cancer 2020; 11:659-671. [PMID: 31968395 PMCID: PMC7049521 DOI: 10.1111/1759-7714.13310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background Lung adenocarcinoma (LAD) is a highly aggressive malignant tumor which threatens the health and life of the population. Long non‐coding RNA X‐inactive specific transcript (XIST) and mouse double minute clone 2 (MDM2) are connected with the tumorigenesis of LAD. Nevertheless, whether MDM2 is regulated by XIST has not previously been reported in LAD. Methods Quantitative real‐time polymerase chain reaction (qRT‐PCR) was employed to detect the expression of XIST, microRNA‐363‐3p (miR‐363‐3p) and MDM2 in LAD tissues and cells. The proliferation, migration, invasion and apoptosis of LAD cells were determined by 3‐(4, 5‐dimethylthiazol‐2‐YI)‐2, 5‐diphenyltetrazolium bromide (MTT), transwell or flow cytometry assay, respectively. MDM2 protein level was detected using western blot analysis. Dual‐luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pulldown assay were performed to determine the interaction among XIST, miR‐363‐3p and MDM2. A xenograft tumor model was constructed to validate the effect of XIST on LAD cells in vivo. Results We found that XIST and MDM2 were remarkably elevated while miR‐363‐3p was reduced in LAD tissues and cells. Both XIST and MDM2 downregulation restrained proliferation, migration and invasion, and facilitated apoptosis of LAD cells in vitro. Importantly, XIST bound to miR‐363‐3p to modulate MDM2 expression in LAD cells. Moreover, miR‐363‐3p knockdown or MDM2 elevation reversed the effects of XIST downregulation on the proliferation, migration, invasion and apoptosis of LAD cells. Furthermore, XIST knockdown constrained tumor growth on LAD cells in vivo. Conclusions XIST knockdown repressed proliferation, migration and invasion, and accelerated apoptosis of LAD cells by downregulating MDM2 expression via binding to miR‐363‐3p. Key points Significant findings of the studyXIST and MDM2 were abnormally enhanced in LAD tissues and cells. Both downregulation of XIST and MDM2 repressed proliferation, migration and invasion, and boosted apoptosis of LAD cells in vitro. XIST bound to miR‐363‐3p to regulate MDM2 expression in LAD cells. Downregulation of XIST impeded tumor growth on LAD cells in vivo. What this study adds This study confirmed that XIST was a potential target for inhibiting the development of LAD, and affords a possible strategy for the treatment of LAD in the future.
Collapse
Affiliation(s)
- Hao Rong
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Wei
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Jun Peng
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Ke Ma
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| | - Song Duan
- Department of Pathology, Chongqing Three Gorges Central Hospital, Chongqing, China
| | - Jintao He
- Department of Thoracic Surgery, Sichuan Cancer Hospital, Chengdu, China
| |
Collapse
|
27
|
Boguslawska J, Kryst P, Poletajew S, Piekielko-Witkowska A. TGF-β and microRNA Interplay in Genitourinary Cancers. Cells 2019; 8:E1619. [PMID: 31842336 PMCID: PMC6952810 DOI: 10.3390/cells8121619] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Genitourinary cancers (GCs) include a large group of different types of tumors localizing to the kidney, bladder, prostate, testis, and penis. Despite highly divergent molecular patterns, most GCs share commonly disturbed signaling pathways that involve the activity of TGF-β (transforming growth factor beta). TGF-β is a pleiotropic cytokine that regulates key cancer-related molecular and cellular processes, including proliferation, migration, invasion, apoptosis, and chemoresistance. The understanding of the mechanisms of TGF-β actions in cancer is hindered by the "TGF-β paradox" in which early stages of cancerogenic process are suppressed by TGF-β while advanced stages are stimulated by its activity. A growing body of evidence suggests that these paradoxical TGF-β actions could result from the interplay with microRNAs: Short, non-coding RNAs that regulate gene expression by binding to target transcripts and inducing mRNA degradation or inhibition of translation. Here, we discuss the current knowledge of TGF-β signaling in GCs. Importantly, TGF-β signaling and microRNA-mediated regulation of gene expression often act in complicated feedback circuits that involve other crucial regulators of cancer progression (e.g., androgen receptor). Furthermore, recently published in vitro and in vivo studies clearly indicate that the interplay between microRNAs and the TGF-β signaling pathway offers new potential treatment options for GC patients.
Collapse
Affiliation(s)
- Joanna Boguslawska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education; 01-813 Warsaw, Poland;
| | - Piotr Kryst
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | - Slawomir Poletajew
- II Department of Urology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (P.K.); (S.P.)
| | | |
Collapse
|
28
|
Bogusławska J, Popławski P, Alseekh S, Koblowska M, Iwanicka-Nowicka R, Rybicka B, Kędzierska H, Głuchowska K, Hanusek K, Tański Z, Fernie AR, Piekiełko-Witkowska A. MicroRNA-Mediated Metabolic Reprograming in Renal Cancer. Cancers (Basel) 2019; 11:cancers11121825. [PMID: 31756931 PMCID: PMC6966432 DOI: 10.3390/cancers11121825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of renal cell cancer (RCC). We hypothesized that altered metabolism of RCC cells results from dysregulation of microRNAs targeting metabolically relevant genes. Combined large-scale transcriptomic and metabolic analysis of RCC patients tissue samples revealed a group of microRNAs that contribute to metabolic reprogramming in RCC. miRNAs expressions correlated with their predicted target genes and with gas chromatography-mass spectrometry (GC-MS) metabolome profiles of RCC tumors. Assays performed in RCC-derived cell lines showed that miR-146a-5p and miR-155-5p targeted genes of PPP (the pentose phosphate pathway) (G6PD and TKT), the TCA (tricarboxylic acid cycle) cycle (SUCLG2), and arginine metabolism (GATM), respectively. miR-106b-5p and miR-122-5p regulated the NFAT5 osmoregulatory transcription factor. Altered expressions of G6PD, TKT, SUCLG2, GATM, miR-106b-5p, miR-155-5p, and miR-342-3p correlated with poor survival of RCC patients. miR-106b-5p, miR-146a-5p, and miR-342-3p stimulated proliferation of RCC cells. The analysis involving >6000 patients revealed that miR-34a-5p, miR-106b-5p, miR-146a-5p, and miR-155-5p are PanCancer metabomiRs possibly involved in global regulation of cancer metabolism. In conclusion, we found that microRNAs upregulated in renal cancer contribute to disturbed expression of key genes involved in the regulation of RCC metabolome. miR-146a-5p and miR-155-5p emerge as a key “metabomiRs” that target genes of crucial metabolic pathways (PPP (the pentose phosphate pathway), TCA cycle, and arginine metabolism).
Collapse
Affiliation(s)
- Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Saleh Alseekh
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (S.A.); (A.R.F.)
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland; (M.K.); (R.I.-N.)
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland; (M.K.); (R.I.-N.)
- Laboratory for Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Hanna Kędzierska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Katarzyna Głuchowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
| | - Zbigniew Tański
- Masovian Specialist Hospital in Ostroleka, 07-410 Ostroleka, Poland;
| | - Alisdair R. Fernie
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (S.A.); (A.R.F.)
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, ul. Marymoncka 99/103, 01-813 Warsaw, Poland; (J.B.); (P.P.); (B.R.); (H.K.); (K.G.); (K.H.)
- Correspondence: ; Tel.: +48-22-5693810
| |
Collapse
|
29
|
Li X, Li Q, Yu X, Li H, Huang G. Reverse of microtubule-directed chemotherapeutic drugs resistance induced by cancer-associated fibroblasts in breast cancer. Onco Targets Ther 2019; 12:7963-7973. [PMID: 31579239 PMCID: PMC6773970 DOI: 10.2147/ott.s211043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/26/2019] [Indexed: 12/01/2022] Open
Abstract
PURPOSE This study was designed to expound the underlying mechanism of microtubule-directed chemotherapeutic drugs resistance induced by cancer-associated fibroblasts (CAFs) in breast cancer. MATERIALS AND METHODS We collected 10 microtubule-directed chemotherapeutic drugs resistant breast tumor samples and 10 normal breast tumor samples to analyze the CAFs distribution by immunohistochemistry and flow cytometry. We also detected the collagen expression in CAFs by real-time PCR. We detected the activation of PI3K/AKT signaling pathway in tumor cells by Western blotting and immunofluorescence. The subcutaneous 4T1/MCF-7 bearing mice were used to investigate the anticancer effects of integrin β1 inhibitor combined with microtubule-directed chemotherapeutic drugs. RESULTS In our studies, accumulation of CAFs was observed in tumor samples from microtubule-directed chemotherapeutic drugs resistant patients. Those isolated CAFs could efficiently induce the acquisition of microtubule-directed chemotherapeutic drugs resistance in breast cancer cells. More importantly, we found that CAFs could regulate the microtubule-directed chemotherapeutic drugs resistance through the secretion of collagen to activate the integrin β1/PI3K/AKT signaling pathway. Combination of integrin α2β1 inhibitor and paclitaxel/vincristine sulfate could efficiently overcome the microtubule-directed chemotherapeutic drugs resistance induced by CAFs and enhanced the anticancer effects of chemotherapy in subcutaneous 4T1/MCF-7 bearing mice. CONCLUSION Our results demonstrated that CAFs constitute a supporting niche for cancer drug resistance acquisition. Thus, traditional microtubule-directed chemotherapeutic drugs combined with integrin β1 inhibitor may present an innovative therapeutic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Xuebo Li
- Department of Radiotherapy, Yidu Central Hospital of Wei Fang, Qingzhou262500, People’s Republic of China
| | - Qiang Li
- Department of Radiotherapy, Yidu Central Hospital of Wei Fang, Qingzhou262500, People’s Republic of China
| | - Xiuli Yu
- Department of Radiotherapy, Yidu Central Hospital of Wei Fang, Qingzhou262500, People’s Republic of China
| | - Haitao Li
- Department of Thyroid Breast Surgery, Yidu Central Hospital of Wei Fang, Qingzhou262500, People’s Republic of China
| | - Guoqiang Huang
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou310005, People’s Republic of China
| |
Collapse
|
30
|
Shen Y, Yu J, Jing Y, Zhang J. MiR-106a aggravates sepsis-induced acute kidney injury by targeting THBS2 in mice model. Acta Cir Bras 2019; 34:e201900602. [PMID: 31432993 PMCID: PMC6705346 DOI: 10.1590/s0102-865020190060000002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/02/2019] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate the role and related mechanisms of miR-106a in sepsis-induced AKI. METHODS Serum from sepsis and healthy patients was collected, sepsis mouse model was established by cecal ligation and puncture (CLP). TCMK-1 cells were treated with lipopolysaccharide (LPS) and transfected with THBS2-small interfering RNA (siTHBS2), miR-106a inhibitor, miR-106a mimics and their negative controls (NCs). The expression of miR-106a, thrombospondin 2 (THBS2), Bax, cleaved caspase-3 and Bcl-2, cell viability, relative caspase-3 activity and TNF-α, IL-1β, IL-6 content were respectively detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, Cell Counting Kit-8 (CCK-8) and enzyme linked immunosorbent assay (ELISA). The relationship between miR-106a and THBS2 was confirmed by dual luciferase reporter assay. RESULTS MiR-106a was up-regulated in serum of sepsis patients, CLP-induced mice models and LPS-induced TCMK-1 cells. LPS reduced cell viability and Bcl-2 expression, and increased caspase-3 activity, Bax expression, the content of TNF-α, IL-1β, IL-6. THBS2 was a target of miR-106a. The decreases of caspase-3 activity, TNF-α, IL-1β, IL-6, Bax expression and the increases of cell viability, Bcl-2 expression caused by miR-106a knockdown were reversed when THBS2 silencing in LPS-stimulated TCMK-1 cells. CONCLUSION MiR-106a aggravated LPS-induced inflammation and apoptosis of TCMK-1 cells via regulating THBS2 expression.
Collapse
Affiliation(s)
- Yezhou Shen
- Bachelor, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Conception and design of the study, acquisition of data, technical procedures, manuscript preparation and writing
| | - Jiaoyang Yu
- Master, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Technical procedures, acquisition of data
| | - Yunyan Jing
- Master, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Technical procedures, acquisition of data
| | - Jian Zhang
- Bachelor, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Statistical analysis, interpretation of data
| |
Collapse
|
31
|
Chang J, Gao F, Chu H, Lou L, Wang H, Chen Y. miR-363-3p inhibits migration, invasion, and epithelial-mesenchymal transition by targeting NEDD9 and SOX4 in non-small-cell lung cancer. J Cell Physiol 2019; 235:1808-1820. [PMID: 31332786 DOI: 10.1002/jcp.29099] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/27/2019] [Indexed: 01/30/2023]
Abstract
miR-363-3p is downregulated in lung adenocarcinoma and can inhibit tumor growth. Here, we aimed to investigate the effect of miR-363-3p on non-small-cell lung cancer (NSCLC) metastasis. In our study, miR-363-3p overexpression inhibited cell migration and invasion via epithelial-mesenchymal transition inhibition, while miR-363-3p knockdown exhibited the opposite effects. Further studies demonstrated that miR-363-3p bound to 3'-untranslated regions of NEDD9 and SOX4, and negatively regulated their levels. Interestingly, NEDD9 or SOX4 knockdown rescued the metastasis-promoting effects of antagomiR-363-3p. The inhibitory effects of agomiR-363-3p were also blocked by NEDD9 or SOX4 overexpression. Moreover, lentivirus particles carrying pre-miR-363 (LV-pre-miR-363) significantly decreased, while LV-miR-363-3p inhibitor increased metastatic nodule numbers and the levels of NEDD9 and SOX4 in lungs. In conclusion, tumor suppressor miR-363-3p may be a potential target in NSCLC therapy.
Collapse
Affiliation(s)
- Jingxia Chang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Gao
- Department of Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Heying Chu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Lou
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yibing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Wan W, Wan W, Long Y, Li Q, Jin X, Wan G, Zhang F, Lv Y, Zheng G, Li Z, Zhu Y. MiR-25-3p promotes malignant phenotypes of retinoblastoma by regulating PTEN/Akt pathway. Biomed Pharmacother 2019; 118:109111. [PMID: 31336343 DOI: 10.1016/j.biopha.2019.109111] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Aberrant expression of microRNAs plays an important role in the pathogenesis and progression of retinoblastoma. MiR-25, a member of the miR-106b˜25 cluster, has been reported to be abnormally expressed in retinoblastoma, but the exact role of it remains unclear. In our study, we found that miR-25-3p was upregulated in retinoblastoma tissues and cell lines. Enforced expression of miR-25-3p in retinoblastoma cell line WERI-RB-1 increased cell growth, colony formation, anchorage-independent growth, cell migration and invasion in vitro and tumor xenograft growth in vivo. In contrast, inhibited miR-25-3p expression in retinoblastoma cell line Y79 suppressed cell growth, colony formation, anchorage-independent growth, cell migration and invasion. Through luciferase reporter assay, we found that phosphatase and tensin homolog (PTEN) was a direct target of miR-25-3p. This was verified by western blot that miR-25-3p overexpression suppressed PTEN and activated Akt signaling. In addition, miR-25-3p was found to promote epithelial-mesenchymal transition (EMT) of WERI-RB-1 cells through PTEN/Akt pathway. Western blot analysis revealed that miR-25-3p overexpression increased Vimentin and Snail expression, and suppressed E-cadherin expression, but this could be reversed by restoring PTEN. Moreover, LY294002 treatment or restoring PTEN expression abolished the effects of miR-25-3p on cell invasion, colony formation and anchorage-independent growth in vitro and tumor xenograft growth in vivo. Taken together, our results suggested that miR-25-3p promotes malignant transformation of retinoblastoma cells by suppressing PTEN.
Collapse
Affiliation(s)
- Wencui Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Weiwei Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Yang Long
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Qiuming Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China.
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Guangming Wan
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Yong Lv
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Zhigang Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China
| | - Yu Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou 450052, China.
| |
Collapse
|
33
|
Genz B, Coleman MA, Irvine KM, Kutasovic JR, Miranda M, Gratte FD, Tirnitz-Parker JEE, Olynyk JK, Calvopina DA, Weis A, Cloonan N, Robinson H, Hill MM, Al-Ejeh F, Ramm GA. Overexpression of miRNA-25-3p inhibits Notch1 signaling and TGF-β-induced collagen expression in hepatic stellate cells. Sci Rep 2019; 9:8541. [PMID: 31189969 PMCID: PMC6561916 DOI: 10.1038/s41598-019-44865-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/23/2019] [Indexed: 02/06/2023] Open
Abstract
During chronic liver injury hepatic stellate cells (HSCs), the principal source of extracellular matrix in the fibrotic liver, transdifferentiate into pro-fibrotic myofibroblast-like cells - a process potentially regulated by microRNAs (miRNAs). Recently, we found serum miRNA-25-3p (miR-25) levels were upregulated in children with Cystic Fibrosis (CF) without liver disease, compared to children with CF-associated liver disease and healthy individuals. Here we examine the role of miR-25 in HSC biology. MiR-25 was detected in the human HSC cell line LX-2 and in primary murine HSCs, and increased with culture-induced activation. Transient overexpression of miR-25 inhibited TGF-β and its type 1 receptor (TGFBR1) mRNA expression, TGF-β-induced Smad2 phosphorylation and subsequent collagen1α1 induction in LX-2 cells. Pull-down experiments with biotinylated miR-25 revealed Notch signaling (co-)activators ADAM-17 and FKBP14 as miR-25 targets in HSCs. NanoString analysis confirmed miR-25 regulation of Notch- and Wnt-signaling pathways. Expression of Notch signaling pathway components and endogenous Notch1 signaling was downregulated in miR-25 overexpressing LX-2 cells, as were components of Wnt signaling such as Wnt5a. We propose that miR-25 acts as a negative feedback anti-fibrotic control during HSC activation by reducing the reactivity of HSCs to TGF-β-induced collagen expression and modulating the cross-talk between Notch, Wnt and TGF-β signaling.
Collapse
Affiliation(s)
- Berit Genz
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Mater Research, Translational Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Miranda A Coleman
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jamie R Kutasovic
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mariska Miranda
- Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Francis D Gratte
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Janina E E Tirnitz-Parker
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - John K Olynyk
- Department of Gastroenterology & Hepatology, Fiona Stanley Fremantle Hospital Group, Murdoch, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anna Weis
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicole Cloonan
- Genomic Biology Lab, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Harley Robinson
- Precision & Systems Biomedicine, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle M Hill
- Precision & Systems Biomedicine, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fares Al-Ejeh
- Personalised Medicine Team, QIMR-Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. .,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
34
|
Qin X, Gao S, Yang Y, Wu L, Wang L. microRNA-25 promotes cardiomyocytes proliferation and migration via targeting Bim. J Cell Physiol 2019; 234:22103-22115. [PMID: 31058341 DOI: 10.1002/jcp.28773] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) are pleiotropic players in cardiac development. Recent evidence have suggested miRNAs as promisingly therapeutic targets for cardiac regeneration. This study aimed to reveal the potential effects of miR-25 on cardiomyocytes proliferation and migration. Sprague-Dawley rats received left coronary occlusion surgery to induce an in vivo model of myocardial ischemia/reperfusion (I/R) injury. Expression changes of miR-25 and Bim were tested by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot. Besides, primary neonatal and adult cardiomyocytes were transfected by the antisense oligonucleotides or mimic specific for miR-25, and then 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), Boyden chamber, and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay were respectively used to determine cardiomyocytes growth and migration. Binding effects of miR-25 on the 3'-untranslated region (3'-UTR) of Bim was assessed by dual-luciferase reporter assay. We found that miR-25 was low expressed, whereas Bim was highly expressed in I/R injury model and hypoxia-stimulated cardiomyocytes. Downregulation of miR-25 in neonatal and adult cardiomyocytes markedly reduced cell proliferation and migration, but promoted apoptosis. Consistently, downregulation of miR-25 decreased the expression of cyclin E2, cyclin D1, and CDK4, and increased the expression of p57 (KIP2) in cardiomyocytes. We additionally found that Bim was a target of miR-25. The inhibitory effects of miR-25 downregulation on cardiomyocytes survival and migration were all significantly attenuated when Bim was silenced. To sum up, our study demonstrates that miR-25 downregulation inhibits cardiomyocytes proliferation and migration, but promotes apoptosis. The role of miR-25 in cardiomyocytes was by targeting Bim.
Collapse
Affiliation(s)
- Xiaofeng Qin
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| | - Shufang Gao
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| | - Yadong Yang
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| | - Leilei Wu
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| | - Liming Wang
- Department of Emergency, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
35
|
miR-30a reverses TGF-β2-induced migration and EMT in posterior capsular opacification by targeting Smad2. Mol Biol Rep 2019; 46:3899-3907. [PMID: 31049834 DOI: 10.1007/s11033-019-04833-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Posterior capsular opacification (PCO) leads to secondary vision loss following cataract surgery. TGF-β2 and miRNA play important roles in PCO. The aim of this study was to investigate the reciprocal crosstalk between miR-30a and TGF-β2/Smad2 during PCO progression. The expressions of and relationship between miR-30a and Smad2 were detected by RT-qPCR. Migration and epithelial-mesenchymal transition (EMT) were used to evaluate the functions of miR-30a and TGF-β2/Smad2. We found that miR-30a was downregulated by TGF-β2 and that it suppressed migration and EMT induced by TGF-β2. Moreover, we identified Smad2 as a direct target of miR-30a, suggesting that miR-30a may function partly through regulating Smad2. Altogether, we verified the function of and crosstalk between miR-30a and TGF-β2. We also provide evidence that miR-30a may serve as a potential candidate for PCO treatment.
Collapse
|
36
|
Yang L, Liu Z, Wen T. Multiplex fluorescent immunohistochemistry quantitatively analyses microvascular density (MVD) and the roles of TGF-β signalling in orchestrating angiogenesis in colorectal cancer. Transl Cancer Res 2019; 8:429-438. [PMID: 35116775 PMCID: PMC8797362 DOI: 10.21037/tcr.2019.02.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022]
Abstract
Background Advances in multiplex fluorescent immunohistochemistry (mfIHC) techniques and digital pathology platforms allow the quantification of multiple proteins in the same tissue section and produce continuous data. Previously, we used mfIHC to establish the expressed profiles of proteins involved in TGF-β signalling in colorectal cancer (CRC). Methods We used mfIHC to show microvascular density (MVD) by staining CD31 in the tissues from CRC patients. We further investigated the relationship between MVD and TGF-β signalling. Results We found that the levels of MVD were significantly higher in cancer tissues than in paired normal tissues. Prognostic analysis revealed that the survival time for CRC patients with high levels of MVD was significantly shorter than that for those with low levels of MVD. Systematic analysis of the levels of MVD and TGF-β signalling proteins revealed that TGF-β signalling showed contradictory roles in sustained tumour angiogenesis. In CRC cells, the expression of VEGFA was increased by low concentrations of TGFB1 but decreased by high concentrations of TGFB1. Vessel-forming assays demonstrated that low-dose TGFB1 stimulated but high-dose TGFB1 inhibited HUVECs to form vessel tubes. Conclusions Our analysis based on mfIHC staining in CRC tissues supports the concept that TGF-β signalling either promotes or inhibits tumour angiogenesis.
Collapse
Affiliation(s)
- Lei Yang
- Medical Research Center, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Zheng Liu
- Medical Research Center, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
37
|
Chen W, Zhuang J, Gong L, Dai Y, Diao H. Investigating the dysfunctional pathogenesis of Wilms' tumor through a multidimensional integration strategy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:136. [PMID: 31157257 DOI: 10.21037/atm.2019.03.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Wilms' tumor (WT) is a common kidney tumor in early childhood which is characterized by multiple congenital anomalies and syndromes. With the continuous improvement of medical standards, the cure rate and survival period of WT have increased. However, its molecular mechanism is still elusive. Methods A comprehensive multidimensional integration strategy was used to comprehensively analyze the mechanisms of WT. Results By integrating the potential pathogenic genes of kidney cancer and performing co-expression analysis on the disease-related genes, 23 functional modules were obtained. All the genes were differentially expressed in WT, and were mainly involved in many biological processes and signaling pathways, such as Wnt/β-catenin, mTOR/ERK and calcineurin. Additionally, based on the relationship between transcriptional and post-transcriptional regulatory systems, in functional modules, transcription factors (TFs) including STAT3, HDAC1 and SP1 as well as non-coding RNAs (ncRNAs) such as miR-335-5p, miR-21-5p and TUG1 were identified. Finally, potential drugs for these multifactor regulated dysfunctional modules which may have certain pharmacological or toxicological effects on WT such as cisplatin, sorafenib, and zinc were predicted. Conclusions A multidimensional dysfunction mechanism, involving disease-related genes, TFs and ncRNAs was revealed in the pathogenesis of WT. Functional modules were used to predict potential drugs which can be used in personalized therapy and drug delivery. This study explored the pathogenesis of WT from a new perspective, and provides new candidate targets and therapeutic drugs for improving the cure rate of WT.
Collapse
Affiliation(s)
- Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jia Zhuang
- Department of Urinary Surgery, Puning People's Hospital Affiliated to Southern Medical University, Jieyang 515300, China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
38
|
Diviney A, Chobrutskiy BI, Zaman S, Blanck G. An age-based, RNA expression paradigm for survival biomarker identification for pediatric neuroblastoma and acute lymphoblastic leukemia. Cancer Cell Int 2019; 19:73. [PMID: 30962767 PMCID: PMC6438000 DOI: 10.1186/s12935-019-0790-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Pediatric cancer survival rates overall have been improving, but neuroblastoma (NBL) and acute lymphoblastic leukemia (ALL), two of the more prevalent pediatric cancers, remain particularly challenging. One issue not yet fully addressed is distinctions attributable to age of diagnosis. Methods In this report, we verified a survival difference based on diagnostic age for both pediatric NBL and pediatric ALL datasets, with younger patients surviving longer for both diseases. We identified several gene expression markers that correlated with age, along a continuum, and then used a series of age-independent survival metrics to filter these initial correlations. Results For pediatric NBL, we identified 2 genes that are expressed at a higher level in lower surviving patients with an older diagnostic age; and 4 genes that are expressed at a higher level in longer surviving patients with a younger diagnostic age. For pediatric ALL, we identified 3 genes expressed at a higher level in lower surviving patients with an older diagnostic age; and 17 genes expressed at a higher level in longer surviving patients with a younger diagnostic age. Conclusions This process implicated pan-chromosome effects for chromosomes 11 and 17 in NBL; and for the X chromosome in ALL. Electronic supplementary material The online version of this article (10.1186/s12935-019-0790-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Diviney
- 1Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, USA
| | - Boris I Chobrutskiy
- 1Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, USA
| | - Saif Zaman
- 1Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, USA
| | - George Blanck
- 1Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Bd. MDC7, Tampa, USA.,2Immunology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612 USA
| |
Collapse
|
39
|
Menon R, Debnath C, Lai A, Guanzon D, Bhatnagar S, Kshetrapal PK, Sheller-Miller S, Salomon C. Circulating Exosomal miRNA Profile During Term and Preterm Birth Pregnancies: A Longitudinal Study. Endocrinology 2019; 160:249-275. [PMID: 30358826 PMCID: PMC6394761 DOI: 10.1210/en.2018-00836] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022]
Abstract
Despite decades of research in the field of human reproduction, the mechanisms responsible for human parturition still remain elusive. The objective of this study was to describe the changes in the exosomal miRNA concentrations circulating in the maternal plasma between mothers delivering term and preterm neonates, across gestation using a longitudinal study design. This descriptive study identifies the miRNA content in exosomes present in maternal plasma of term and preterm birth (PTB) (n = 20 and n = 10 per each gestational period, respectively) across gestation (i.e., first, second, and third trimesters and at the time of delivery). Changes in exosomal miRNA signature in maternal plasma during term and preterm gestation were determined using the NextSeq 500 high-output 75 cycles sequencing platform. A total of 167 and 153 miRNAs were found to significantly change (P < 0.05) as a function of the gestational age across term and PTB pregnancies, respectively. Interestingly, a comparison analysis between the exosomal miRNA profile between term and PTB reveals a total of 173 miRNAs that significantly change (P < 0.05) across gestation. Specific trends of changes (i.e., increase, decrease, and both) as a function of the gestational age were also identified. The bioinformatics analyses establish that the differences in the miRNA profile are targeting signaling pathways associated with TGF-β signaling, p53, and glucocorticoid receptor signaling, respectively. These data suggest that the miRNA content of circulating exosomes in maternal blood might represent a biomolecular "fingerprint" of the progression of pregnancy.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Chirantan Debnath
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, University of Queensland, Brisbane, Queensland, Australia
| | - Shinjini Bhatnagar
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Pallavi K Kshetrapal
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | | |
Collapse
|
40
|
Mehlich D, Garbicz F, Włodarski PK. The emerging roles of the polycistronic miR-106b∼25 cluster in cancer - A comprehensive review. Biomed Pharmacother 2018; 107:1183-1195. [PMID: 30257332 DOI: 10.1016/j.biopha.2018.08.097] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by inhibiting translation and decreasing the stability of the targeted transcripts. Over the last two decades, miRNAs have been recognized as important regulators of cancer cell biology, acting either as oncogenes or tumor suppressors. The polycistronic miR-106b∼25 cluster, located within an intron of MCM7 gene, consists of three highly conserved miRNAs: miR-25, miR-93 and miR-106b. A constantly growing body of evidence indicates that these miRNAs are overexpressed in numerous human malignancies and regulate multiple cellular processes associated with cancer development and progression, including: cell proliferation and survival, invasion, metastasis, angiogenesis and immune evasion. Furthermore, recent studies revealed that miR-106b∼25 cluster miRNAs modulate cancer stem cells characteristics and might promote resistance to anticancer therapies. In light of these novel discoveries, miRNAs belonging to the miR-106b∼25 cluster have emerged as key oncogenic drivers as well as potential biomarkers and plausible therapeutic targets in different tumor types. Herein, we comprehensively review novel findings on the roles of miR-106b∼25 cluster in human cancer, and provide a broad insight into the molecular mechanisms underlying its oncogenic properties.
Collapse
Affiliation(s)
- Dawid Mehlich
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland; Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 2C Banacha Str., 02-097, Warsaw, Poland
| | - Filip Garbicz
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Żwirki i Wigury Str., 02-091 Warsaw, Poland; Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 14 Indiry Gandhi Str., 02-776 Warsaw, Poland
| | - Paweł K Włodarski
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-091 Warsaw, Poland.
| |
Collapse
|
41
|
Ni J, Peng Y, Yang FL, Xi X, Huang XW, He C. Overexpression of CLEC3A promotes tumor progression and poor prognosis in breast invasive ductal cancer. Onco Targets Ther 2018; 11:3303-3312. [PMID: 29892197 PMCID: PMC5993038 DOI: 10.2147/ott.s161311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction The aim of this study was to evaluate the expression of C-type lectin domain family 3 member A (CLEC3A) and its clinical significance in breast invasive ductal cancer (IDC) as well as its effect on breast cancer (BC) cell proliferation and metastasis. In this study, the level of CLEC3A expression in The Cancer Genome Atlas (TCGA) datasets was analyzed. Materials and methods Clinical collected samples and BC cells were measured using quantitative reverse transcription polymerase chain reaction. Its correlations with patients’ clinicopathological characteristics were analyzed by Pearson’s chi-squared test. Overall survival (OS) analysis was performed by the Kaplan–Meier method and Cox’s proportional-hazards model. BC cell proliferation, migration, and invasion by CLEC3A knockdown were assessed using Cell Counting Kit-8 and colony formation assay, wound healing model and transwell assay, respectively, in BT474 cell line. Activities of survival factors and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling were measured by testing key molecules using Western blot assay. Results CLEC3A expression was markedly higher in breast IDC tissues than normal breast tissues or adjacent normal tissue. Patients with high CLEC3A expression related to higher lymph node and poorer OS of breast IDC. CLEC3A knockdown by siRNA could inhibit the BC cells BT474 proliferation, migration, and invasion, together with a decrease in expression of key proteins in survival factors and PI3K/AKT signaling pathway. Conclusion Elevated CLEC3A expression may correlate with breast IDC metastatic potential and indicated a poor prognosis in breast IDC. CLEC3A knockdown inhibited BC cell growth and metastasis might be through suppressing PI3K/AKT signaling activity. These findings unravel that CLEC3A is a promising therapeutic target for BC in the future.
Collapse
Affiliation(s)
- Jun Ni
- Department of Breast and Thyroid Surgery, People's Hospital of Ganzhou City, Ganzhou, Jiangxi, People's Republic of China
| | - Yun Peng
- Department of Breast and Thyroid Surgery, People's Hospital of Ganzhou City, Ganzhou, Jiangxi, People's Republic of China
| | - Fu-Lan Yang
- Department of Breast and Thyroid Surgery, People's Hospital of Ganzhou City, Ganzhou, Jiangxi, People's Republic of China
| | - Xun Xi
- Department of Breast and Thyroid Surgery, People's Hospital of Ganzhou City, Ganzhou, Jiangxi, People's Republic of China
| | - Xing-Wei Huang
- Department of Breast and Thyroid Surgery, People's Hospital of Ganzhou City, Ganzhou, Jiangxi, People's Republic of China
| | - Chun He
- Department of Breast and Thyroid Surgery, People's Hospital of Ganzhou City, Ganzhou, Jiangxi, People's Republic of China
| |
Collapse
|