1
|
Bin P, Wang C, Zhang H, Yan Y, Ren W. Targeting methionine metabolism in cancer: opportunities and challenges. Trends Pharmacol Sci 2024; 45:395-405. [PMID: 38580603 DOI: 10.1016/j.tips.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Reprogramming of methionine metabolism is a conserved hallmark of tumorigenesis. Recent studies have revealed mechanisms regulating methionine metabolism within the tumor microenvironment (TME) that drive both cancer development and antitumor immunity evasion. In this review article we summarize advancements in our understanding of tumor regulation of methionine metabolism and therapies in development that target tumor methionine metabolism. We also delineate the challenges of methionine blockade therapies in cancer and discuss emerging strategies to address them.
Collapse
Affiliation(s)
- Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hangchao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuqi Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Hu Y, Liu Y, Zhang J, Zhou Z, Wang J, Chen H, Huang M, Hu H, Dai Z, Jia K. Depletion of L-Methionine in Foods with an Engineered Thermophilic Methionine γ-lyase Efficiently Inhibits Tumor Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37909421 DOI: 10.1021/acs.jafc.3c05293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Dietary restriction of l-methionine, an essential amino acid, exerts potent antitumor effects on l-methionine-dependent cancers. However, dietary restriction of l-methionine has not been practical for human therapy because of the problem with the administration of l-methionine concentration in foods. Here, a thermophilic methionine γ-lyase (MGL), that catalyzes the cleavage of the C-S bond in l-methionine to produce α-ketobutyric acid, methanethiol, and ammonia was engineered from human cystathionine γ-lyase and almost completely depleted l-methionine at 65 °C, a temperature that accelerates the volatilization of methanethiol and its oxidation products. The high efficiency of l-methionine lysis may be attributed to the cooperative fluctuation and moderate the structural rigidity of 4 monomers in the thermophilic MGL, which facilitates l-methionine access to the entrance of the active site. Experimental diets treated with thermophilic MGL markedly inhibited prostate tumor growth in mice, and in parallel, the in vivo concentrations of l-methionine, its transformation product l-cysteine, and the oxidative stress indicator malondialdehyde significantly decreased. These findings provide a technology for the depletion of l-methionine in foods with an engineered thermophilic MGL, which efficiently inhibits tumor growth in mice.
Collapse
Affiliation(s)
- Yangming Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Yan Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jiulin Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Zhijing Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Jiaxue Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Hongyang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Meina Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Han Hu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kaizhi Jia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
3
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
4
|
Jiménez-Alonso JJ, López-Lázaro M. Dietary Manipulation of Amino Acids for Cancer Therapy. Nutrients 2023; 15:2879. [PMID: 37447206 DOI: 10.3390/nu15132879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.
Collapse
Affiliation(s)
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
5
|
KUBOTA YUTARO, HAN QINGHONG, HAMADA KAZUYUKI, AOKI YUSUKE, MASAKI NORIYUKI, OBARA KOYA, BARANOV ANTON, BOUVET MICHAEL, TSUNODA TAKUYA, HOFFMAN ROBERTM. Oral Installation of Recombinant Methioninase-producing Escherichia coli into the Microbiome Inhibits Colon-cancer Growth in a Syngeneic Mouse Model. Cancer Genomics Proteomics 2022; 19:683-691. [PMID: 36316039 PMCID: PMC9620449 DOI: 10.21873/cgp.20351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIM All cancer types so far tested are methionine-addicted. Targeting the methionine addiction of cancer with recombinant methioninase (rMETase) has shown great progress in vitro, in mouse models, and in the clinic. However, administration of rMETase requires multiple doses per day. In the present study, we determined if rMETase-producing Escherichia coli JM109 (E. coli JM109-rMETase) might be an effective anticancer agent when installed into the microbiome. MATERIALS AND METHODS E. coli JM109-rMETase was administered to a syngeneic model of MC38 colon cancer growing subcutaneously in C57BL/6 mice. JM109-rMETase was administered orally by gavage to the mice twice per day. Tumor size was measured with calipers. RESULTS The administration of E. coli JM109-rMETase twice a day significantly inhibited MC38 colon-cancer growth. E. coli JM109-rMETase was found in the stool of treated mice, indicating it had entered the microbiome. CONCLUSION The present study indicates the potential of microbiome-based treatment of cancer targeting methionine addiction.
Collapse
Affiliation(s)
- YUTARO KUBOTA
- AntiCancer Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Division of Internal Medicine, Department of Medical Oncology, Showa University School of Medicine, Tokyo, Japan
| | | | - KAZUYUKI HAMADA
- AntiCancer Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Division of Internal Medicine, Department of Medical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - YUSUKE AOKI
- AntiCancer Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - NORIYUKI MASAKI
- AntiCancer Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - KOYA OBARA
- AntiCancer Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | | | - MICHAEL BOUVET
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - TAKUYA TSUNODA
- Division of Internal Medicine, Department of Medical Oncology, Showa University School of Medicine, Tokyo, Japan
| | - ROBERT M. HOFFMAN
- AntiCancer Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
6
|
Sharma B, Devi S, Kumar R, Kanwar SS. Screening, characterization and anti-cancer application of purified intracellular MGL. Int J Biol Macromol 2022; 217:96-110. [PMID: 35817235 DOI: 10.1016/j.ijbiomac.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022]
Abstract
L-methionine-γ-lyase (MGL) producing bacterial isolates were screened from soil samples that further characterized as 'Klebsiella oxytoca BLM-1' by biochemical and 16S rDNA sequencing. Intracellular MGL obtained from K. oxytoca BLM-1 by sonication was purified by Octyl-Sepharose and Sephadex G-200 column chromatography. MALDI-TOF-MS analysis of protein band (Mr ~ 63 kDa) confirmed the PLP-dependence and structural similarity with MGL enzyme. Purified MGL (1.1 μg) exhibited the maximum activity in potassium phosphate buffer (80 mM; with L-met 20 mM pH 7.0) at 37 °C. That further enhanced in the presence of NaCl (2 mM), Tween-80 (1.0 %; v/v) and EDTA (5 mM). Km and Vmax for purified MGL by using L-met as substrate was found to be 5.32 mM and 0.386 U/mL/min. The purified MGL showed PLP dependence and the half-life was 365.59 min. The MGL was effective against breast cancer (MCF7), gastric adenocarcinoma and human glioblastoma (U87MG) cancer cell lines with IC50 values of purified MGL 0.041 U/mL, 0.008 U/mL and 0.009 U/mL, respectively. The U87MG, greatly affected by MGL treatment, when cultured in DMEM medium (10 mL) with PLP, homocysteine and 10 % FCS as compared to control/untransformed mouse spleen cells.
Collapse
Affiliation(s)
- Bhupender Sharma
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Sunita Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Rakesh Kumar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
| | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India.
| |
Collapse
|
7
|
Kiani-Zadeh M, Rezvany MR, Namjoo S, Barati M, Mohammadi MH, Ghasemi B, Tabatabaei T, Ghavamzadeh A, Zaker F, Teimoori-Toolabi L. Studying the potential of upregulated PTGS2 and VEGF-C besides hyper-methylation of PTGS2 promoter as biomarkers of Acute myeloid leukemia. Mol Biol Rep 2022; 49:7849-7862. [PMID: 35733068 DOI: 10.1007/s11033-022-07615-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Hereby, we aimed to investigate the expression of prostaglandin-endoperoxide synthase 2 (PTGS2) and Vascular Endothelial Factor-C (VEGF-C) besides the methylation of PTGS2 in AML patients. VEGF-C and PTGS2 expression analysis were evaluated in newly diagnosed AML patients and healthy controls by quantitative Reverse Transcriptase PCR method. Also, PTGS2 methylation status was evaluated by Methylation-Sensitive High-Resolution Melting Curve Analysis (MS-HRM). While 34% of patients were female, the mean age of the patients was 43.41 ± 17.60 years suffering mostly from M4 (48.21%) type of AML. Although methylation level between patients and controls was not significantly different, none of the normal controls showed methylation in the PTGS2 promoter. PTGS2 and VEGF-C levels were elevated in AML cases and correlated with WBC, Platelet, and Hemoglobin levels. The survival of patients with overexpressed VEGF-C and PTGS2 was poorer than others. It can be concluded that PTGS2 and especially VEGF-C expression but not PTGS2 methylation can be considered as diagnostic biomarkers for AML.
Collapse
Affiliation(s)
- Masoumeh Kiani-Zadeh
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rezvany
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran.,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.,Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, 17176, Stockholm, Sweden
| | - Soodeh Namjoo
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran.,Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- Department of HSCT research center, Laboratory Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Ghasemi
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Tahere Tabatabaei
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran
| | - Ardeshir Ghavamzadeh
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street Kargar Avenue, 1316943551, Tehran, Iran.
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Histone H3 lysine-trimethylation markers are decreased by recombinant methioninase and increased by methotrexate at concentrations which inhibit methionine-addicted osteosarcoma cell proliferation. Biochem Biophys Rep 2021; 28:101177. [PMID: 34877414 PMCID: PMC8633566 DOI: 10.1016/j.bbrep.2021.101177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Methionine addiction is a fundamental and general hallmark of cancer cells, which require exogenous methionine, despite their ability to synthesize normal amounts of methionine from homocysteine. In contrast, methionine-independent normal cells do not require exogenous methionine in the presence of a methionine precursor. The methionine addiction of cancer cells is due to excess transmethylation reactions. We have previously shown that histone H3 lysine marks are over-methylated in cancer cells and the over-methylation is unstable when the cancer cells are restricted of methionine. In the present study, we show that methionine-addicted osteosarcoma cells are sensitive to both methotrexate (MTX) and recombinant methioninase (rMETase), but they affect histone H3 lysine-methylation in the opposite direction. Concentrations of MTX and rMETase, which inhibit osteosarcoma cells viability to 20%, had opposing effects on the status of histone methylation of H3K9me3 and H3K27me3. rMETase significantly decreased the amount of H3K9me3 and H3K27me3. In contrast, MTX significantly increased the amount of H3K9me and H3K27me3. The results suggest that increase or decrease in these methylated histone lysine marks is associated with proliferation arrest of methionine-addicted osteosarcoma. Osteosarcoma cells are sensitive to both methotrexate and recombinant methioninase. MTX increased the amount of H3K9me and H3K27me3. RMETase decreased the amount of H3K9me3 and H3K27me3. Increase/decrease in H3K9me3 and H3K27me3 is associated with proliferation arrest.
Collapse
|
9
|
Aoki Y, Yamamoto J, Tome Y, Hamada K, Masaki N, Inubushi S, Tashiro Y, Bouvet M, Endo I, Nishida K, Hoffman RM. Over-methylation of Histone H3 Lysines Is a Common Molecular Change Among the Three Major Types of Soft-tissue Sarcoma in Patient-derived Xenograft (PDX) Mouse Models. Cancer Genomics Proteomics 2021; 18:715-721. [PMID: 34697064 DOI: 10.21873/cgp.20292] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/AIM Sarcomas are considered a heterogeneous disease with incomplete understanding of its molecular basis. In the present study, to further understand general molecular changes in sarcoma, patient-derived xenograft (PDX) mouse models of the three most common soft-tissue sarcomas: myxofibrosarcoma, undifferentiated pleomorphic sarcoma (UPS) and liposarcoma were established and the methylation status of histone H3 lysine marks was studied. MATERIALS AND METHODS Immunoblotting and immunohistochemical staining were used to quantify the extent of methylation of histone H3K4me3 and histone H3K9me3. RESULTS In all 3 sarcoma types in PDX models, histone H3K4me3 and H3K9me3 were found highly over-methylated compared to normal muscle tissue. CONCLUSION Histone H3 lysine over-methylation may be a general basis of malignancy of the major sarcoma types.
Collapse
Affiliation(s)
- Yusuke Aoki
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A.,Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Jun Yamamoto
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A.,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan;
| | - Kazuyuki Hamada
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Noriyuki Masaki
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Sachiko Inubushi
- Department of Breast and Endocrine Surgery, Kobe University Graduate School of Medicine, Hyogo, Japan
| | | | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, U.S.A.; .,Department of Surgery, University of California San Diego, La Jolla, CA, U.S.A
| |
Collapse
|
10
|
Han Q, Hoffman RM. Chronic Treatment of an Advanced Prostate-cancer Patient With Oral Methioninase Resulted in Long-term Stabilization of Rapidly Rising PSA Levels. In Vivo 2021; 35:2171-2176. [PMID: 34182494 DOI: 10.21873/invivo.12488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM Advanced prostate cancer is a recalcitrant disease with very limited treatment options. Our laboratory discovered methionine addiction, presumably a characteristic of all cancer types, including prostate cancer, which can be targeted by methionine restriction (MR), through treatment with oral recombinant methioninase (o-rMETase). PATIENTS AND METHODS o-rMETase was produced by fermentation of recombinant E. coli containing the Pseudomonas putida methioninase gene, and purified by column chromatography. An advanced prostate cancer patient received o-rMETase as a supplement, 500 units per day, divided into two oral doses of 250 units each. RESULTS Before treatment, the patient had a rapid rise in PSA levels, from 39 to 56 ng/ml, within 6 weeks. At the 15th week of o-rMETase administration, the PSA levels stabilized at 62 ng/ml. No overt side effects were observed. CONCLUSION o-rMETase single treatment can be beneficial for advanced prostate cancer patients.
Collapse
|
11
|
Igarashi K, Kawaguchi K, Yamamoto N, Hayashi K, Kimura H, Miwa S, Higuchi T, Taniguchi Y, Yonezawa H, Araki Y, Morinaga S, Misra S, Nelson SD, Dry SM, Li Y, Odani A, Singh SR, Tsuchiya H, Hoffman RM. A Novel Anionic-phosphate-platinum Complex Effectively Targets a Cisplatinum-resistant Osteosarcoma in a Patient-derived Orthotopic Xenograft Mouse Model. Cancer Genomics Proteomics 2020; 17:217-223. [PMID: 32345663 DOI: 10.21873/cgp.20182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM We have previously developed a novel bone-targeting platinum compound, 3Pt, and showed that it has strong inhibitory activity against osteosarcoma cells and orthotopic cell-line xenograft mouse models. In the present report, we compared the efficacy of 3Pt to cisplatinum (CDDP) in a CDDP-resistant relapsed osteosarcoma patient-derived orthotopic xenograft (PDOX) mouse model. PATIENTS AND METHODS The tumor of a patient with osteosarcoma of the distal femur was treated with CDDP-based chemotherapy followed by surgery. The surgical specimen was used to establish a PDOX model. An osteosarcoma cell line was also established from the original patient tumor. Osteosarcoma cell viability was assessed with the WST-8 assay and the IC50 values were calculated. The PDOX models were randomized into three groups: untreated control, CDDP-treated group, and 3Pt-treated group. Tumor size and body weight were measured twice a week. RESULTS 3Pt had a strong concentration-dependent cytocidal effect in vitro. The IC50 value of 3Pt was significantly lower than that of CDDP. On day 14 of the treatment, 3Pt caused a significantly greater tumor growth inhibition compared to the untreated control and CDDP-treated mice. CONCLUSION 3Pt is a promising clinical candidate for the treatment of recalcitrant osteosarcoma.
Collapse
Affiliation(s)
- Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Takashi Higuchi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Yuta Taniguchi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hirotaka Yonezawa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Yoshihiro Araki
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Sei Morinaga
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Sweta Misra
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, U.S.A
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, U.S.A
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, U.S.A
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, U.S.A
| | - Akira Odani
- Division of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, U.S.A.
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A. .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
12
|
Kamdem JP, Duarte AE, Ibrahim M, Lukong KE, Barros LM, Roeder T. Bibliometric analysis of personalized humanized mouse and Drosophila models for effective combinational therapy in cancer patients. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165880. [PMID: 32592936 DOI: 10.1016/j.bbadis.2020.165880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
Research performed using model organisms such as mice and the fruit fly, Drosophila melanogaster has significantly enhanced our knowledge about cancer biology and the fundamental processes of cancer. This is because the major biological properties and genes associated with cancer including signaling pathways, oncogenes, tumor suppressors, and other regulators of cell growth and proliferation are evolutionary conserved. This review provides bibliometric analysis of research productivity, and performance of authors, institutions, countries, and journals associated with personalized animal cancer models, focussing on the role of Drosophila in cancer research, thus highlighting emerging trends in the field. A total of 1469 and 2672 original articles and reviews for Drosophila cancer model and patient-derived xenograft (PDX) respectively, were retrieved from the Scopus database and the most cited papers were thoroughly analyzed. Our analysis indicates a steadily increasing productivity of the animal models and especially of mouse models in cancer research. In addition to the many different systems that address almost all aspects of tumor research in humanized animal models, a trend towards using tailored screening platforms with Drosophila models in particular will become widespread in the future. Having Drosophila models that recapitulate major genetic aspects of a given tumor will enable the development and validation of novel therapeutic strategies for specific cancers, and provide a platform for screening small molecule inhibitors and other anti-tumor compounds. The combination of Drosophila cancer models and mouse PDX models particularly is highly promising and should be one of the major research strategies the future.
Collapse
Affiliation(s)
- Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil.
| | - Antonia Eliene Duarte
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil
| | - Mohammad Ibrahim
- Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM), KPK, Mardan, Pakistan
| | - Kiven Erique Lukong
- Department of Biochemistry, Microbiology and Immunology (BMI) College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Luiz Marivando Barros
- Department of Biological Sciences, Regional University of Cariri, Campus Pimenta, Crato, Ceara CEP: 63105-000, Brazil
| | - Thomas Roeder
- Christian-Albrechts Universität zu Kiel, Zoologisches Institut, Molekulare Physiologie, Olshausenstraße 40, D-24098 Kiel, Germany; German Center for Lung Research, Airway Research Center North, Kiel, Germany.
| |
Collapse
|
13
|
Enzyme-mediated depletion of serum l-Met abrogates prostate cancer growth via multiple mechanisms without evidence of systemic toxicity. Proc Natl Acad Sci U S A 2020; 117:13000-13011. [PMID: 32434918 PMCID: PMC7293657 DOI: 10.1073/pnas.1917362117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extensive studies in prostate cancer and other malignancies have revealed that l-methionine (l-Met) and its metabolites play a critical role in tumorigenesis. Preclinical and clinical studies have demonstrated that systemic restriction of serum l-Met, either via partial dietary restriction or with bacterial l-Met-degrading enzymes exerts potent antitumor effects. However, administration of bacterial l-Met-degrading enzymes has not proven practical for human therapy because of problems with immunogenicity. As the human genome does not encode l-Met-degrading enzymes, we engineered the human cystathionine-γ-lyase (hMGL-4.0) to catalyze the selective degradation of l-Met. At therapeutically relevant dosing, hMGL-4.0 reduces serum l-Met levels to >75% for >72 h and significantly inhibits the growth of multiple prostate cancer allografts/xenografts without weight loss or toxicity. We demonstrate that in vitro, hMGL-4.0 causes tumor cell death, associated with increased reactive oxygen species, S-adenosyl-methionine depletion, global hypomethylation, induction of autophagy, and robust poly(ADP-ribose) polymerase (PARP) cleavage indicative of DNA damage and apoptosis.
Collapse
|
14
|
De L, Yuan T, Yong Z. ST1926 inhibits glioma progression through regulating mitochondrial complex II. Biomed Pharmacother 2020; 128:110291. [PMID: 32526455 DOI: 10.1016/j.biopha.2020.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/12/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022] Open
Abstract
The antitumor activity of atypical adamantyl retinoid ST1926 has been frequently reported in cancer studies; nevertheless, its effect on glioma has not been fully understood. Mitochondria are critical in regulating tumorigenesis and are defined as a promising target for anti-tumor therapy. In the present study, we found that ST1926 might be a mitochondria-targeting anti-glioma drug. ST1926 showed significantly inhibitory role in the viability of glioma cells mainly through inducing apoptosis and autophagy. The results showed that ST1926 alleviated mitochondria-regulated bioenergetics in glioma cells via reducing ATP production and promoting reactive oxygen species production. Importantly, ST1926 significantly impaired complex II (CII) function, which was associated with the inhibition of succinate dehydrogenase (SDH) activity. In addition, the effects of ST1926 on the induction of apoptosis and ROS were further promoted by the treatment of CII inhibitors, including TTFA and 3-NPA. Furthermore, the in vivo experiments confirmed the role of ST1926 in suppressing xenograft tumor growth with few toxicity. Therefore, ST1926 might be an effective anti-glioma drug through targeting CII.
Collapse
Affiliation(s)
- Liu De
- Department of Neurosurgery, Liaocheng Third People's Hospital, Shandong Province, 252000, China
| | - Tang Yuan
- Department of Neurosurgery, Liaocheng Third People's Hospital, Shandong Province, 252000, China
| | - Zheng Yong
- Department of Neurosurgery, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen, Guangdong, 518101, China.
| |
Collapse
|
15
|
Higuchi T, Yamamoto J, Sugisawa N, Tashiro Y, Nishino H, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. PPARγ Agonist Pioglitazone in Combination With Cisplatinum Arrests a Chemotherapy-resistant Osteosarcoma PDOX Model. Cancer Genomics Proteomics 2020; 17:35-40. [PMID: 31882549 DOI: 10.21873/cgp.20165] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Cisplatinum (CDDP) is a first-line drug in osteosarcoma treatment and the acquisition of resistance to CDDP is associated with a poor prognosis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor that plays important roles in cell proliferation, differentiation, development, metabolism and cell death. Recently, PPARγ was reported to enhance the efficacy, overcome resistance, and decrease the toxicity of CDDP in various human cancers. In this study we tested whether pioglitazone (PIO), a PPARγ agonist, could overcome CDDP resistance in osteosarcoma. MATERIALS AND METHODS In this study, we used a human osteosarcoma cell line and a patient-derived orthotopic xenograft (PDOX) models of osteosarcoma. We measured cell viability of 143B human osteosarcoma cells when treated with CDDP and PIO. We randomized PDOX models of osteosarcoma into four treatment groups: Group 1, Untreated control; Group 2, PIO alone; Group 3, CDDP alone; Group 4, a combination of CDDP and PIO. Each group comprised six mice. Mice were treated for 14 days and tumor size and body weight were measured. RESULTS Cell viability of 143B human osteosarcoma cells was significantly reduced when PIO (50 μmol/l) was combined with CDDP compared to CDDP alone. PDOX osteosarcoma tumors treated with the CDDP-PIO combination showed the strongest tumor growth inhibition compared to other treatment groups. PDOX osteosarcoma tumors treated with the CDDP-PIO combination had the least cancer cells and the most necrosis in histological section. CONCLUSION These results suggest that combining PIO along with CDDP could be an effective treatment strategy for osteosarcoma and has important clinical potential for patients.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Jun Yamamoto
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norihiko Sugisawa
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Yoshihiko Tashiro
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Hiroto Nishino
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Shree Ram Singh
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, U.S.A.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A. .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
16
|
Igarashi K, Kawaguchi K, Murakami T, Miyake K, Kiyuna T, Miyake M, Hiroshima Y, Higuchi T, Oshiro H, Nelson SD, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Singh SR, Tsuchiya H, Hoffman RM. Patient-derived orthotopic xenograft models of sarcoma. Cancer Lett 2019; 469:332-339. [PMID: 31639427 DOI: 10.1016/j.canlet.2019.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
Sarcoma is a rare and recalcitrant malignancy. Although immune and novel targeted therapies have been tested on many cancer types, few sarcoma patients have had durable responses with such therapy. Doxorubicin and cisplatinum are still first-line chemotherapy after four decades. Our laboratory has established the patient-derived orthotopic xenograft (PDOX) model using surgical orthotopic implantation (SOI). Many promising results have been obtained using the sarcoma PDOX model for identifying effective approved drugs and experimental therapeutics, as well as combinations of them for individual patients. In this review, we present our laboratory's experience with PDOX models of sarcoma, and the ability of the PDOX models to identify effective approved agents, as well as experimental therapeutics.
Collapse
Affiliation(s)
- Kentaro Igarashi
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kei Kawaguchi
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Murakami
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Tasuku Kiyuna
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Yukihiko Hiroshima
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Higuchi
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiromichi Oshiro
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan.
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
17
|
Xin L, Zhou Q, Yuan YW, Zhou LQ, Liu L, Li SH, Liu C. METase/lncRNA HULC/FoxM1 reduced cisplatin resistance in gastric cancer by suppressing autophagy. J Cancer Res Clin Oncol 2019; 145:2507-2517. [PMID: 31485766 DOI: 10.1007/s00432-019-03015-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/28/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Autophagy plays an important role in regulating cisplatin (CDDP) resistance in gastric cancer cells. However, the underlying mechanism of methioninase (METase) in the regulation of autophagy and CDDP resistance of gastric cancer cells is still not clear. MATERIALS AND METHODS Western blot was used to detect the levels of autophagy-related proteins, multidrug-resistant 1 (MDR-1), and FoxM1 protein. LncRNA HULC was detected by qRT-PCR. Cell viability was detected using CCK-8 assay. The interaction between lncRNA HULC and FoxM1 was confirmed by RNA pull-down and RIP assay. RESULTS Lentiviral vector carrying METase (LV-METase) suppressed autophagy and CDDP resistance of drug-resistant gastric cancer cells. LncRNA HULC was significantly downregulated in drug-resistant gastric cancer cells transfected with LV-METase. Besides, we found that lncRNA HULC interacted with FoxM1. In addition, METase suppressed autophagy to reduce CDDP resistance of drug-resistant gastric cancer cells through regulating HULC/FoxM1, and interfering HULC suppressed autophagy to reduce CDDP resistance of drug-resistant gastric cancer cells through regulating FoxM1. Finally, interfering HULC inhibited tumor growth in vivo. CONCLUSION METase suppressed autophagy to reduce CDDP resistance of drug-resistant gastric cancer cells through regulating HULC/FoxM1 pathway.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Li Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shi-Hao Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
18
|
Higuchi T, Sugisawa N, Miyake K, Oshiro H, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Kline Z, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. Pioglitazone, an agonist of PPARγ, reverses doxorubicin-resistance in an osteosarcoma patient-derived orthotopic xenograft model by downregulating P-glycoprotein expression. Biomed Pharmacother 2019; 118:109356. [PMID: 31545293 DOI: 10.1016/j.biopha.2019.109356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance (MDR) which results in chemoresistance is a major problem in osteosarcoma. P-glycoprotein (P-gp) plays a critical role in MDR by pumping out chemotherapy agents. Peroxisome proliferator activated receptor gamma (PPARγ) is a nuclear receptor involved in cellular differentiation and proliferation. Recently, a correlation between the expression and activity of PPARγ and the expression of P-gp-associated with MDR, has been reported in several human cancers. The present study determined if pioglitazone (PIO), a PPARγ agonist, could modulate P-gp and overcome doxorubicin (DOX)-resistance in a patient-derived orthotopic xenograft (PDOX) model of osteosarcoma. P-gp mRNA expression was quantified in 143B human osteosarcoma cells treated with DOX with/without PIO. The osteosarcoma PDOX models were randomized into four treatment groups of six mice: Control; PIO alone; DOX alone; DOX and PIO combination. Tumor size and body weight were measured during the 14 days of treatment. DOX significantly induced P-gp mRNA in a dose-dependent manner in 143B cells. PIO inhibited the increase of P-gp mRNA induced by DOX treatment when co-administrated with DOX. Tumor growth was inhibited the most by the DOX-PIO combination. Tumors treated with the DOX-PIO combination also had the most tumor necrosis. This study suggests that the DOX-PIO combination could be used in the clinic for osteosarcoma patients who develop DOX-resistance.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sugisawa
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiromichi Oshiro
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Zoey Kline
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan.
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
19
|
Li J, Wu Y, Wang D, Zou L, Fu C, Zhang J, Leung GPH. Oridonin synergistically enhances the anti-tumor efficacy of doxorubicin against aggressive breast cancer via pro-apoptotic and anti-angiogenic effects. Pharmacol Res 2019; 146:104313. [PMID: 31202781 DOI: 10.1016/j.phrs.2019.104313] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 01/30/2023]
Abstract
The therapeutic outcomes of doxorubicin (Dox) treatment in breast cancer are limited by decreased drug efficiency and cardiotoxicity. The aim of this study was to investigate whether oridonin (Ori), a natural chemical abundant in the Chinese herb Isodon rubescens, might potentiate the anticancer effects, and decrease the adverse cardiotoxic effects, of Dox. On the basis of the optimized drug ratio determined through combination index calculations, we evaluated the synergistic effects and potential mechanisms of combining Dox with Ori to suppress breast cancer growth and angiogenesis both in vitro and in vivo. Dox plus Ori synergistically induced apoptosis in MDA-MB-231 cells, in a manner involving regulation of the Bcl-2/Bax, PARP, Caspase 3 and Survivin signaling pathways. Additionally, Ori increased the intracellular accumulation of Dox in MDA-MB-231 cells. Moreover, Dox plus Ori significantly decreased the proliferation, migration, invasion and tube formation of HUVECs. The underlying anti-angiogenic mechanism may have been due to the inhibition of VEGFR2-mediated signaling. Computational docking analysis further demonstrated that Dox plus Ori had high affinity toward the ATP-binding domain of VEGFR-2 kinase. Consistently with these findings, in vivo studies indicated that Ori enhanced the antitumor effect of Dox via activating apoptosis and inhibiting blood vessel formation at tumor sites. Moreover, Ori reversed the Dox-induced cardiotoxicity in a mouse model. In conclusion, our findings provide strong evidence that Ori may be highly promising in enhancing the efficacy of Dox and decreasing its adverse cardiotoxic effects, thus suggesting that Ori may serve as a potential adjunct therapy during Dox-based chemotherapy.
Collapse
Affiliation(s)
- Jingjing Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Yihan Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Di Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, 999077, Hong Kong Special Administrative Region.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Nonrhabdomyosarcoma soft tissue sarcoma (NRSTS) is a rare subgroup of malignancy in childhood that is composed of a variety of soft tissue and bony tumors. Prognosis for resectable localized disease is usually good and improved with systemic treatment. However, survival from locally advanced and metastatic disease remains poor. There have been numerous preclinical and clinical studies to define histopathology, biology, and genetic alteration of sarcomas. The purpose of this review is to clarify the progress in the management of NRSTS. RECENT FINDINGS Genomic analysis, including the use of next-generation sequencing, has revealed fusion transcripts or specific genetic alterations which provide diagnostic biomarkers and potential targets for novel therapies. SUMMARY Most cases are sporadic, but some are associated with genetic predispositions. Most present as a painless mass and diagnosis is frequently delayed because of a low index of suspicion. There is a wide array of histopathological subtypes. Investigations usually involve core, incisional or excisional biopsy for tissue diagnosis, and cross-sectional and nuclear imaging for staging. Management of pediatric sarcoma is largely dependent on the patient's histopathological diagnosis, age, disease stage, and co-morbidities but usually involves a combination of systemic and local therapies. Preclinical studies and phase I/II trials of newer targeted therapies are ongoing.
Collapse
|
21
|
Pokrovsky VS, Anisimova NY, Davydov DZ, Bazhenov SV, Bulushova NV, Zavilgelsky GB, Kotova VY, Manukhov IV. Methionine Gamma Lyase from Clostridium sporogenes Increases the Anticancer Efficacy of Doxorubicin on A549 Cancer Cells In Vitro and Human Cancer Xenografts. Methods Mol Biol 2019; 1866:243-261. [PMID: 30725420 DOI: 10.1007/978-1-4939-8796-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The anticancer efficacy of methionine γ-lyase (MGL) from Clostridium sporogenes (C. sporogenes) is described. MGL was active against cancer cells in vitro and in vivo. Doxorubicin (DOX) and MGL were more effective on A549 human lung-cancer growth inhibition than either agent alone in vitro and in vivo.
Collapse
Affiliation(s)
- V S Pokrovsky
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Moscow, Russia. .,Department of Biochemistry, People's Friendship University (RUDN University), Moscow, Russia.
| | - N Yu Anisimova
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - D Zh Davydov
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, Moscow, Russia
| | - S V Bazhenov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia.,Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| | - N V Bulushova
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - G B Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - V Y Kotova
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia
| | - I V Manukhov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russia.,Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
22
|
Efficacy of Recombinant Methioninase (rMETase) on Recalcitrant Cancer Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models: A Review. Cells 2019; 8:cells8050410. [PMID: 31052611 PMCID: PMC6562625 DOI: 10.3390/cells8050410] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/10/2023] Open
Abstract
An excessive requirement for methionine (MET), termed MET dependence, appears to be a general metabolic defect in cancer and has been shown to be a very effective therapeutic target. MET restriction (MR) has inhibited the growth of all major cancer types by selectively arresting cancer cells in the late-S/G2 phase, when they also become highly sensitive to cytotoxic agents. Recombinant methioninase (rMETase) has been developed to effect MR. The present review describes the efficacy of rMETase on patient-derived orthotopic xenograft (PDOX) models of recalcitrant cancer, including the surprising result that rMETase administrated orally can be highly effective.
Collapse
|
23
|
The combination of olaratumab with gemcitabine and docetaxel arrests a chemotherapy-resistant undifferentiated soft-tissue sarcoma in a patient-derived orthotopic xenograft mouse model. Cancer Chemother Pharmacol 2019; 83:1075-1082. [DOI: 10.1007/s00280-019-03824-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
24
|
Olaratumab combined with doxorubicin and ifosfamide overcomes individual doxorubicin and olaratumab resistance of an undifferentiated soft-tissue sarcoma in a PDOX mouse model. Cancer Lett 2019; 451:122-127. [PMID: 30867142 DOI: 10.1016/j.canlet.2019.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/29/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
Olaratumab (OLA), a monoclonal antibody against platelet-derived growth factor receptor alpha (PDGFRα), has recently been used against soft-tissue sarcoma (STS) combined with doxorubicin (DOX), with limited efficacy. The goal of the present study was to determine the efficacy of OLA in combination with DOX and ifosfamide (IFO) on STS. Undifferentiated soft-tissue sarcoma (USTS) from a striated muscle of a patient was grown orthotopically in the right biceps femoris muscle of nude mice to establish USTS patient-derived orthotopic xenograft (PDOX) model. USTS PDOX tumors were treated with OLA alone, DOX alone, DOX combined with IFO, OLA combined with DOX or IFO, and OLA combined with DOX and IFO. Tumor size and body weight were measured during the 14 days of treatment. Tumor growth was arrested by OLA combined with DOX and IFO. Tumors treated with OLA combined with DOX and IFO had the most necrosis. The present study demonstrates the power of the PDOX model to identify the novel effective treatment strategy of the combination of OLA, DOX and IFO for soft-tissue sarcomas.
Collapse
|
25
|
A patient-derived orthotopic xenograft (PDOX) nude-mouse model precisely identifies effective and ineffective therapies for recurrent leiomyosarcoma. Pharmacol Res 2019; 142:169-175. [PMID: 30807865 DOI: 10.1016/j.phrs.2019.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 01/30/2023]
Abstract
Leiomyosarcoma is a rare and recalcitrant disease. Doxorubicin (DOX) is usually considered first-line treatment for this disease, but frequently is ineffective. In order to individualize therapy for this and other cancers, we have developed the patient-derived orthotopic xenograft (PDOX) mouse model. In the present study, we implanted a recurrent leiomyosarcoma from a resected tumor from the patient's thigh into the femoral muscle of nude mice. The following drugs were tested on the leiomyosarcoma PDOX model: DOX, the combination of gemcitabine (GEM) and docetaxel (DOC), trabectedin (TRA), temozolomide (TEM), pazopanib (PAZ) and olaratumab (OLA). Of these agents GEM/DOC, TRA and TEM were highly effective in the leiomyosarcoma PDOX model, the other agents, including first-line therapy DOX, were ineffective. Thus the leiomyosarcoma PDOX model could precisely distinguish effective and ineffective drugs, demonstrating the potential of the PDOX model for leiomyosarcoma treatment.
Collapse
|
26
|
Regorafenib regressed a doxorubicin-resistant Ewing's sarcoma in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Cancer Chemother Pharmacol 2019; 83:809-815. [PMID: 30758647 DOI: 10.1007/s00280-019-03782-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/17/2019] [Indexed: 02/01/2023]
Abstract
PURPOSE Ewing's sarcoma (ES) is a rare and recalcitrant disease which is in need of a development of a novel effective therapy. The aim of this study was to investigate the efficacy of regorafenib on an ES tumor in a patient-derived orthotopic xenograft (PDOX) model. METHODS The ES PDOX models were established orthotopically in the right chest wall of nude mice to match the site of the tumor in the donor patient. The ES PDOX models were randomized into three groups (G) when the tumor volume reached 75 mm3: G1: untreated control; G2: doxorubicin (DOX) (i.p., 3 mg/kg, weekly, 2 weeks); G3: regorafenib (REG) (p.o., 30 mg/kg, daily, 2 weeks). Tumor volume and body weight were measured twice a week. All mice were sacrificed on day 15. RESULTS DOX was ineffective compared to the control group (P = 0.229). REG regressed the tumor size (P < 0.001 and P < 0.001, relative to control and DOX, respectively). CONCLUSIONS Our findings suggest that REG has clinical potential for ES patients whose tumors respond to REG in a PDOX model.
Collapse
|
27
|
Methioninase Cell-Cycle Trap Cancer Chemotherapy. Methods Mol Biol 2019; 1866:133-148. [PMID: 30725413 DOI: 10.1007/978-1-4939-8796-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Cancer cells are methionine (MET) dependent compared to normal cells as they have an elevated requirement for MET in order to proliferate. MET restriction selectively traps cancer cells in the S/G2 phase of the cell cycle. The cell cycle phase can be visualized by color coding with the fluorescence ubiquitination-based cell cycle indicator (FUCCI). Recombinant methioninase (rMETase) is an enzyme that effectively degrades MET. rMETase induces S/G2-phase blockage of cancer cells which is identified by the cancer cells' green fluorescence with FUCCI imaging. Cancer cells in G1/G0 are the majority of the cells in solid tumors and are resistant to the chemotherapy. Treatment of cancer cells with standard chemotherapy drugs only led to the majority of the cancer cell population being arrested in G0/G1 phase, identified by the cancer cells' red fluorescence in the FUCCI system. The G0/G1-phase cancer cells are chemo-resistant. Tumor targeting Salmonella typhimurium A1-R (S. typhimurium A1-R) was used to decoy quiescent G0/G1 stomach cancer cells growing in nude mice to cycle, with subsequent rMETase treatment to selectively trap the decoyed cancer cells in S/G2 phase, which made them highly sensitive to chemotherapy. Subsequent cisplatinum (CDDP) or paclitaxel (PTX) chemotherapy was then administered to kill the decoyed and trapped cancer cells, which completely prevented or regressed tumor growth. In a subsequent experiment, a patient-derived orthotopic xenograft (PDOX) model of recurrent CDDP-resistant metastatic osteosarcoma was eradicated by the combination of Salmonella typhimurium A1-R decoy, rMETase S/G2-phase cell cycle trap, and CDDP cell kill. Salmonella typhimurium A1-R and rMETase pre-treatment thereby overcame CDDP resistance. These results demonstrate the effectiveness of the new chemotherapy paradigm of "decoy, trap, and kill" chemotherapy.
Collapse
|
28
|
Higuchi T, Kawaguchi K, Miyake K, Oshiro H, Zhang Z, Razmjooei S, Wangsiricharoen S, Igarashi K, Yamamoto N, Hayashi K, Kimura H, Miwa S, Nelson SD, Dry SM, Li Y, Chawla SP, Eilber FC, Singh SR, Tsuchiya H, Hoffman RM. The combination of gemcitabine and nab-paclitaxel as a novel effective treatment strategy for undifferentiated soft-tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) nude-mouse model. Biomed Pharmacother 2019; 111:835-840. [PMID: 30616082 DOI: 10.1016/j.biopha.2018.12.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/12/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022] Open
Abstract
Undifferentiated/unclassified soft-tissue sarcomas (USTS) is recalcitrant neoplasms that is usually treated with doxorubicin (DOX)-containing regimens as first-line therapy. Nanoparticle albumin-bound paclitaxel (nab-PTX) is a nanotechnology-based drug and is widely used in pancreatic cancer in combination with gemcitabine (GEM). The major goal of the present study was to determine the efficacy of nab-PTX in combination with GEM, compared to conventional drugs such as docetaxel (DOC), GEM combined with DOC, or first-line drug DOX on a USTS not-otherwise specified (USTS/NOS) from a striated muscle implanted in the right biceps femoris muscle of nude mice to establish a patient-derived orthotopic xenograft (PDOX) model. USTS PDOX models were randomized into six groups: untreated control; DOX; DOC; nab-PTX; GEM combined with DOC; and GEM combined with nab-PTX. Tumor size and body weight were measured. Tumor growth was inhibited to the greatest extent by GEM combined with nab-PTX. Tumors treated with GEM combined with nab-PTX had the most necrosis. Body weight of the treated mice was not significantly different from the untreated controls. The present study demonstrates the power of the PDOX model to identify a novel effective treatment strategy of the combination of GEM and nab-PTX for recalcitrant soft-tissue sarcomas. These results suggest that combination of GEM and nab-PTX could be a promising therapeutic strategy for USTS.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiromichi Oshiro
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Zhiying Zhang
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | | | | | - Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | | | - Frederick C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan.
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
29
|
Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, Tsuchiya H. Therapeutic Targets for Bone and Soft-Tissue Sarcomas. Int J Mol Sci 2019; 20:ijms20010170. [PMID: 30621224 PMCID: PMC6337155 DOI: 10.3390/ijms20010170] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/27/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Due to the rarity and heterogeneity of bone and soft-tissue sarcomas, investigation into molecular targets and new treatments has been particularly challenging. Although intensive chemotherapy and establishment of surgical procedures have improved the outcomes of patients with sarcoma, the curative rate of recurrent and metastatic sarcomas is still not satisfactory. Recent basic science research has revealed some of the mechanisms of progression and metastasis of malignancies including proliferation, apoptosis, angiogenesis, tumor microenvironment, migration, invasion, and regulation of antitumor immune systems. Based on these basic studies, new anticancer drugs, including pazopanib, trabectedin, eribulin, and immune checkpoint inhibitors have been developed and the efficacies and safety of the new drugs have been assessed by clinical trials. This review summarizes new molecular therapeutic targets and advances in the treatment for bone and soft tissue sarcomas.
Collapse
Affiliation(s)
- Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University School of Medicine, Kanazawa 920-8640, Japan.
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University School of Medicine, Kanazawa 920-8640, Japan.
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University School of Medicine, Kanazawa 920-8640, Japan.
| | - Akihiko Takeuchi
- Department of Orthopaedic Surgery, Kanazawa University School of Medicine, Kanazawa 920-8640, Japan.
| | - Kentaro Igarashi
- Department of Orthopaedic Surgery, Kanazawa University School of Medicine, Kanazawa 920-8640, Japan.
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University School of Medicine, Kanazawa 920-8640, Japan.
| |
Collapse
|
30
|
Hoffman RM, Han Q, Kawaguchi K, Li S, Tan Y. Afterword: Oral Methioninase-Answer to Cancer and Fountain of Youth? Methods Mol Biol 2019; 1866:311-322. [PMID: 30725426 DOI: 10.1007/978-1-4939-8796-2_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The elevated methionine (MET) requirement of cancer cells is termed MET dependence and is possibly the only known general metabolic defect in cancer. Targeting MET by recombinant methioninase (rMETase) can arrest the growth of cancer cells in vitro and in vivo due to their elevated requirement for MET. rMETase can also potentiate chemotherapy drugs active in S phase due to the selective arrest of cancer cells in S/G2 phase during MET restriction (MR). We previously reported that rMETase, administrated by intraperitoneal injection (ip-rMETase), could inhibit tumor growth in mouse models of cancer including patient-derived orthotopic xenograft (PDOX) mouse models. We subsequently compared ip-rMETase and oral rMETase (o-rMETase) on a melanoma PDOX mouse model. o-rMETase was significantly more effective than ip-rMETase to inhibit tumor growth without overt toxicity. The combination of o-rMETase+ip-rMETase was significantly more effective than either monotherapy and completely arrested tumor growth. Thus, o-rMETase is effective as an anticancer agent with the potential of clinical development for chronic cancer therapy as well as for cancer prevention. o-rMETase may also have potential as an antiaging agent for healthy people, since MR has been shown to extend the life span of a variety of different organisms.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA. .,Department of Surgery, University of California, San Diego, CA, USA.
| | | | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
31
|
Abstract
Methionine (MET) dependence is a cancer-specific metabolic abnormality that is due to MET overuse for aberrant transmethylation reactions. [11C]-MET is very useful for positron-emission tomography (PET) due to MET overuse in malignant tumors. Many benefits of MET-PET have been demonstrated. MET-PET can differentiate recurrent glioma and necrosis. [11C]-MET-PET can also predict prognosis in gliomas better than [18F]-FDG PET. [11C]-MET-PET is better than MRI for predicting survival in low-grade glioma (LGG). MET-PET has greater specificity for detecting residual tumor after surgery than MRI.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA. .,Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
32
|
Abstract
Methionine (MET) restriction (MR) has been shown to arrest cancer growth and sensitizes tumors to chemotherapy. MR total parenteral nutrition (MR TPN) with a chemotherapy-containing amino acid solution ("AO-90") (lacking both MET and L-cysteine[CYS]) showed synergistic effects with 5-fluorouracil (5-FU) in tumor-bearing rats and in a Phase I clinical trial with gastrointestinal tract cancers compared to 5-FU in a MET-containing TPN. All gastric cancer patients underwent gastrectomy. Resected tumors in the AO-90 group showed significant reduction of cancer histologically, while almost no effect was seen in the control group. A Phase II clinical trial of dietary MR combined with cystemustine treatment for melanoma or glioma was carried out. Twenty-two patients (20 with metastatic melanoma and 2 with recurrent gloma) received a median of four cycles of the combination of a 1-day MR diet with cystemustine (60 mg/m2) every 2 weeks. This combination was well tolerated (toxicity and nutritional status). The median disease-free survival was 1.8 months and the median survival was 4.6 months, with two long-duration stabilizations. MET depletion in plasma was 40%. In another study, eight patients with a variety of metastatic solid tumors were enrolled in a Phase I clinical trial of a commercially available MR medical food. Participants remained on the experimental diet for an average of 17.3 weeks. Plasma methionine levels fell from 21.6 to 9 μm within 2 weeks, a 58% decline. The only side effect was weight loss of approximately 0.5 kg per week. A feasibility study combining dietary MR with a FOLFOX regimen in patients with metastatic colorectal cancer was carried out. The plasma MET concentration was reduced by dietary MR by 58% on the first day of the MR diet. Among the four patients evaluable for response, three experienced a partial response and one patient had disease stabilization. The results of the above-described clinical trials indicate the clinical potential of MR.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.
- Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
33
|
Hoffman RM, Yang Z, Tan Y, Han Q, Li S, Yagi S. Safety and Toxicity of Recombinant Methioninase and Polyethylene Glycol (PEG) Recombinant Methioninase in Primates. Methods Mol Biol 2019; 1866:211-229. [PMID: 30725418 DOI: 10.1007/978-1-4939-8796-2_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Methionine (MET) is a general metabolic therapeutic target in cancer, whereby cancer cells have an elevated requirement for MET, termed MET dependence. We have developed recombinant L-methionine α-deamino-γ-mercaptomethane lyase (recombinant methioninase [rMETase, EC 4.4.1.11]) as targeted therapy of all cancer types. Pharmacokinetics, MET depletion, antigenicity, and toxicity of rMETase were examined in macaque monkeys. Pharmacokinetic analysis showed that rMETase was eliminated with a T1/2 of 2.49 h. A 2-week i.v. administration of 4000 units/kg every 8 h/day for 2 weeks resulted in a steady-state depletion of plasma MET to less than 2 μM. The only manifest toxicity was decreased food intake and slight weight loss. Serum albumin and red-cell values declined transiently during treatment. Rechallenge on day 28 resulted in anaphylactic shock and death in one animal. Pretreatment with hydrocortisone prevented the anaphylactic reaction. Anti-rMETase antibodies (at 10-3) were found after the first challenge, increased to 10-6 after the fourth challenge, and decreased to 10-2 by 2 months post-therapy. Therefore, the therapeutic potential of rMETase is limited by its short plasma half-life and immunologic effects, including high antibody production in mice and anaphylactic reactions in monkeys. To overcome these limits, rMETase has been coupled to methoxypolyethylene glycol succinimidyl glutarate polyethylene glycol (MEGC-PEG-5000). The pharmacokinetics, antigenicity, and toxicity of MEGC-PEG-rMETase in macaque monkeys were evaluated using an escalating-dose strategy. In pharmacokinetic studies, a single 4000 units/kg dose showed that MEGC-PEG-rMETase holoenzyme activity was eliminated with a biological half-life of 1.3 h, and the MEGC-PEG-rMETase apoenzyme was eliminated with a biological half-life of 90 h, a 36-fold increase compared with non-PEGylated rMETase. The disparity in the T½ of the apoenzyme and the holoenzyme reflects the loss of co-factor pyridoxal-L-phosphate of the circulating MEGC-PEG-rMETase. A 7-day i.v. administration of 4000 units/kg every 12 h resulted in a steady-state depletion of plasma MET to <5 μmol/L. The only manifest toxicity was decreased food intake and slight weight loss. Red cell values and hemoglobin declined transiently. Subsequent challenges did not result in any immunologic reactions. Anti-MEGC-PEG-rMETase antibodies were 100- to 1000-fold less than antibodies elicited by naked rMETase, thereby suggesting clinical potential of MEGC-PEG-rMETase as a broad anticancer agent.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.
- Department of Surgery, University of California, San Diego, CA, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Metabolic targeting with recombinant methioninase combined with palbociclib regresses a doxorubicin-resistant dedifferentiated liposarcoma. Biochem Biophys Res Commun 2018; 506:912-917. [PMID: 30392912 DOI: 10.1016/j.bbrc.2018.10.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 01/28/2023]
Abstract
Liposarcoma is the most common type of soft tissue sarcoma. Among the subtypes of liposarcoma, dedifferentiated liposarcoma (DDLPS) is recalcitrant and has the lowest survival rate. The aim of the present study is to determine the efficacy of metabolic targeting with recombinant methioninase (rMETase) combined with palbociclib (PAL) against a doxorubicin (DOX)-resistant DDLPS in a patient-derived orthotopic xenograft (PDOX) model. A resected tumor from a patient with recurrent high-grade DDLPS in the right retroperitoneum was grown orthotopically in the right retroperitoneum of nude mice to establish a PDOX model. The PDOX models were randomized into the following groups when tumor volume reached 100 mm3: G1, control without treatment; G2, DOX; G3, PAL; G4, recombinant methioninase (rMETase); G5, PAL combined with rMETase. Tumor length and width were measured both pre- and post-treatment. On day 14 after initiation, all treatments significantly inhibited tumor growth compared to the untreated control except DOX. PAL combined with rMETase was significantly more effective than both DOX, rMETase alone, and PAL alone. Combining PAL and rMETase significantly regressed tumor volume on day 14 after initiation of treatment and was the only treatment to do so. The relative body weight on day 14 compared with day 0 did not significantly differ between each treatment group. The results of the present study indicate the powerful combination of rMETase and PAL should be tested clinically against DDLPS in the near future.
Collapse
|
35
|
Kiyuna T, Tome Y, Murakami T, Miyake K, Igarashi K, Kawaguchi K, Oshiro H, Higuchi T, Miyake M, Sugisawa N, Zhang Z, Razmjooei S, Wangsiricharoen S, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Eckardt MA, Singh AS, Chawla S, Kanaya F, Eilber FC, Singh SR, Zhao M, Hoffman RM. A combination of irinotecan/cisplatinum and irinotecan/temozolomide or tumor-targeting Salmonella typhimurium A1-R arrest doxorubicin- and temozolomide-resistant myxofibrosarcoma in a PDOX mouse model. Biochem Biophys Res Commun 2018; 505:733-739. [PMID: 30292411 DOI: 10.1016/j.bbrc.2018.09.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 12/22/2022]
Abstract
Myxofibrosarcoma (MFS) is the most common sarcomas in elderly patients and is either chemo-resistant or recurs with metastasis after chemotherapy. This recalcitrant cancer in need of improved treatment. We have established a patient-derived orthotopic xenograft (PDOX) of MFS. The MFS PDOX model was established in the biceps femoris of nude mice and randomized into 7 groups of 7 mice each: control; doxorubicin (DOX); pazopanib (PAZ); temozolomide (TEM); Irinotecan (IRN); IRN combined with TEM; IRN combined with cisplatinum (CDDP) and Salmonella typhimurium A1-R (S. typhimurium A1-R). Treatment was evaluated by relative tumor volume and relative body weight. The MFS PDOX models were DOX, PAZ, and TEM resistant. IRN combined with TEM and IRN combined with CDDP were most effective on the MFS PDOX. S. typhimurium A1-R arrested the MFS PDOX tumor. There was no significant body weight loss in any group. The present study suggests that the combination of IRN with either TEM or CDDP, and S. typhimurium have clinical potential for MFS.
Collapse
Affiliation(s)
- Tasuku Kiyuna
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takashi Murakami
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Igarashi
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kei Kawaguchi
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiromichi Oshiro
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Takashi Higuchi
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norihiko Sugisawa
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Zhiying Zhang
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | | | | | | | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Mark A Eckardt
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Arun S Singh
- Div. of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Sant Chawla
- Sarcoma Oncology Center, Santa Monica, CA, USA.
| | - Fuminori Kanaya
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA.
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | | | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
36
|
Kawaguchi K, Miyake K, Zhao M, Kiyuna T, Igarashi K, Miyake M, Higuchi T, Oshiro H, Bouvet M, Unno M, Hoffman RM. Tumor targeting Salmonella typhimurium A1-R in combination with gemcitabine (GEM) regresses partially GEM-resistant pancreatic cancer patient-derived orthotopic xenograft (PDOX) nude mouse models. Cell Cycle 2018; 17:2019-2026. [PMID: 29963961 DOI: 10.1080/15384101.2018.1480223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gemcitabine (GEM) is first-line therapy for pancreatic cancer but has limited efficacy in most cases. Nanoparticle-albumin bound (nab)-paclitaxel is becoming first-line therapy for pancreatic cancer, but also has limited efficacy for pancreatic cancer. Our goal was to improve the treatment outcome in patient-like models of pancreatic cancer. We previously established patient-derived orthotopic xenografts (PDOX) pancreatic cancers from two patients. The pancreatic tumor was implanted orthotopically in the pancreatic tail of nude mice to establish the PDOX models. Five weeks after implantation, 50 PDOX mouse models were randomized into five groups of 10 mice for each pancreatic cancer PDOX: untreated control; GEM (100 mg/kg, i.p., once a week for 2 weeks); GEM + nab-PTX (GEM: 100 mg/kg, i.p., once a week for 2 weeks, nab-PTX: 10 mg/kg, i.v., twice a week for 2 weeks); S. typhimurium A1-R (5 × 107 CFU/100 μl, i.v., once a week for 2 weeks); GEM + S. typhimurium A1-R (GEM: 100 mg/kg, i.p., once a week for 2 weeks, S. typhimurium A1-R; 5 × 107 CFU/100 μl, i.v., once a week for 2 weeks). GEM + nab-PTX was significantly more effective than GEM alone in one PDOX model (p = 0.0004), but there was no significant difference in the other PDOX model. The combination of GEM + S. typhimurium A1-R regressed both PDOX models. These results show S. typhimurium A1-R can overcome the ineffectiveness or partial effectiveness of GEM in patient-like models of pancreatic cancer and demonstrate clinical potential for this combination.
Collapse
Affiliation(s)
- Kei Kawaguchi
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA.,c Department of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Kentaro Miyake
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Ming Zhao
- a AntiCancer, Inc ., San Diego , CA , USA
| | - Tasuku Kiyuna
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Kentaro Igarashi
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Masuyo Miyake
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Takashi Higuchi
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Hiromichi Oshiro
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| | - Michael Bouvet
- b Department of Surgery , University of California , San Diego , CA , USA
| | - Michiaki Unno
- c Department of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Robert M Hoffman
- a AntiCancer, Inc ., San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA , USA
| |
Collapse
|
37
|
Kawaguchi K, Higuchi T, Li S, Han Q, Tan Y, Igarashi K, Zhao M, Miyake K, Kiyuna T, Miyake M, Ohshiro H, Sugisawa N, Zhang Z, Razmjooei S, Wangsiricharoen S, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Eckardt MA, Singh AS, Singh SR, Eilber FC, Unno M, Hoffman RM. Combination therapy of tumor-targeting Salmonella typhimurium A1-R and oral recombinant methioninase regresses a BRAF-V600E-negative melanoma. Biochem Biophys Res Commun 2018; 503:3086-3092. [DOI: 10.1016/j.bbrc.2018.08.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023]
|
38
|
Kawaguchi K, Miyake K, Han Q, Li S, Tan Y, Igarashi K, Kiyuna T, Miyake M, Higuchi T, Oshiro H, Zhang Z, Razmjooei S, Wangsiricharoen S, Bouvet M, Singh SR, Unno M, Hoffman RM. Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 2018; 432:251-259. [DOI: 10.1016/j.canlet.2018.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
|
39
|
Kawaguchi K, Igarashi K, Miyake K, Kiyuna T, Miyake M, Singh AS, Chmielowski B, Nelson SD, Russell TA, Dry SM, Li Y, Unno M, Singh SR, Eilber FC, Hoffman RM. Patterns of sensitivity to a panel of drugs are highly individualised for undifferentiated/unclassified soft tissue sarcoma (USTS) in patient-derived orthotopic xenograft (PDOX) nude-mouse models. J Drug Target 2018; 27:211-216. [PMID: 30024282 DOI: 10.1080/1061186x.2018.1499748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Undifferentiated/unclassified soft tissue sarcoma (USTS) is a recalcitrant disease; therefore, precise individualised therapy is needed. Toward this goal, we previously established patient-derived orthotopic xenograft (PDOX) models of USTS in nude mice. Here, we determined the extent of uniqueness of drug response in a panel on USTS PDOX models from 5 different patients. We previously showed that 3 of the 5 patients were resistant to doxorubicin (DOX) despite DOX being first-line therapy. Two weeks after orthotopic tumour implantation, PDOX mouse models were randomised into five groups: untreated control, DOX, gem-citabine/docetaxel (GEM/DOC), pazopanib (PAZ), temozolomide (TEM). Three PDOX cases were completely resistant to DOX. TEM had high efficacy for 4 USTS PDOX models, including DOX-resistant cases. GEM/DOC and PAZ were effective in three USTS PDOX. One case was completely resistant to TEM. Two cases were completely resistant to PAZ. The results showed the drug sensitivity pattern for each USTS PDOX was highly individualised and that at least one effective drug could be found for each. The PDOX model could be effective in precise individualised drug sensitivity testing which is especially important for heterogeneous cancers such as USTS, and can give the patient a greater chance to be treated with an effective drug.
Collapse
Affiliation(s)
- Kei Kawaguchi
- a AntiCancer, Inc , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA, USA.,c Department of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Kentaro Igarashi
- a AntiCancer, Inc , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA, USA
| | - Kentaro Miyake
- a AntiCancer, Inc , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA, USA
| | - Tasuku Kiyuna
- a AntiCancer, Inc , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA, USA
| | - Masuyo Miyake
- a AntiCancer, Inc , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA, USA
| | - Arun S Singh
- d Division of Hematology-Oncology , University of California , Los Angeles , CA, USA
| | - Bartosz Chmielowski
- d Division of Hematology-Oncology , University of California , Los Angeles , CA, USA
| | - Scott D Nelson
- e Department of Pathology , University of California , Los Angeles , CA, USA
| | - Tara A Russell
- f Division of Surgical Oncology , University of California , Los Angeles , CA, USA
| | - Sarah M Dry
- e Department of Pathology , University of California , Los Angeles , CA, USA
| | - Yunfeng Li
- e Department of Pathology , University of California , Los Angeles , CA, USA
| | - Michiaki Unno
- c Department of Surgery, Graduate School of Medicine , Tohoku University , Sendai , Japan
| | - Shree Ram Singh
- g Basic Research Laboratory , National Cancer Institute , Frederick , MD, USA
| | - Fritz C Eilber
- f Division of Surgical Oncology , University of California , Los Angeles , CA, USA
| | - Robert M Hoffman
- a AntiCancer, Inc , San Diego , CA , USA.,b Department of Surgery , University of California , San Diego , CA, USA
| |
Collapse
|
40
|
Kiyuna T, Tome Y, Murakami T, Kawaguchi K, Igarashi K, Miyake K, Miyake M, Li Y, Nelson SD, Dry SM, Singh AS, Russell TA, Elliott I, Singh SR, Kanaya F, Eilber FC, Hoffman RM. Trabectedin arrests a doxorubicin-resistant PDGFRA-activated liposarcoma patient-derived orthotopic xenograft (PDOX) nude mouse model. BMC Cancer 2018; 18:840. [PMID: 30126369 PMCID: PMC6102848 DOI: 10.1186/s12885-018-4703-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pleomorphic liposarcoma (PLPS) is a rare, heterogeneous and an aggressive variant of liposarcoma. Therefore, individualized therapy is urgently needed. Our recent reports suggest that trabectedin (TRAB) is effective against several patient-derived orthotopic xenograft (PDOX) mouse models. Here, we compared the efficacy of first-line therapy, doxorubicin (DOX), and TRAB in a platelet-derived growth factor receptor-α (PDGFRA)-amplified PLPS. METHODS We used a fresh sample of PLPS tumor derived from a 68-year-old male patient diagnosed with a recurrent PLPS. Subcutaneous implantation of tumor tissue was performed in a nude mouse. After three weeks of implantation, tumor tissues were isolated and cut into small pieces. To match the patient a PDGFRA-amplified PLPS PDOX was created in the biceps femoris of nude mice. Mice were randomized into three groups: Group 1 (G1), control (untreated); Group 2 (G2), DOX-treated; Group 3 (G3), TRAB-treated. Measurement was done twice a week for tumor width, length, and mouse body weight. RESULTS The PLPS PDOX showed resistance towards DOX. However, TRAB could arrest the PLPS (p < 0.05 compared to control; p < 0.05 compared to DOX) without any significant changes in body-weight. CONCLUSIONS The data presented here suggest that for the individual patient the PLPS PDOX model could specifically distinguish both effective and ineffective drugs. This is especially crucial for PLPS because effective first-line therapy is harder to establish if it is not individualized.
Collapse
Affiliation(s)
- Tasuku Kiyuna
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takashi Murakami
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Kei Kawaguchi
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Igarashi
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Masuyo Miyake
- AntiCancer Inc., San Diego, CA, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Yunfeng Li
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Irmina Elliott
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Fuminori Kanaya
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA.
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA. .,Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
41
|
Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts. Invest New Drugs 2018; 37:201-209. [PMID: 29948359 DOI: 10.1007/s10637-018-0619-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
The anti-cancer efficacy of methionine γ-lyase (MGL) from Clostridium sporogenes (C. sporogenes) is described. MGL was active against cancer models in vitro and in vivo. The calculated EC50 values for MGL were 4.4 U/ml for A549, 7.5 U/ml for SK-BR3, 2.4 U/ml for SKOV3, and 0.4 U/ml for MCF7 cells. The combination of doxorubicin (DOX) and MGL was more effective for A549 human lung cancer growth inhibition than either agent alone in vitro and in vivo. MGL reduced the EC50 of doxorubicin from 35.9 μg/mL to 0.01-0.265 μg/mL. The growth inhibitory effect of DOX + MGL on A549 xenografts in vivo was reflective of the results obtained in vitro. The inhibition rate of tumor growth in the combined arm was 57%, significantly higher than that in the doxorubicin (p = 0.033)-alone arm.
Collapse
|
42
|
Kawaguchi K, Miyake K, Han Q, Li S, Tan Y, Igarashi K, Lwin TM, Higuchi T, Kiyuna T, Miyake M, Oshiro H, Bouvet M, Unno M, Hoffman RM. Targeting altered cancer methionine metabolism with recombinant methioninase (rMETase) overcomes partial gemcitabine-resistance and regresses a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer. Cell Cycle 2018; 17:868-873. [PMID: 29623758 PMCID: PMC6056209 DOI: 10.1080/15384101.2018.1445907] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022] Open
Abstract
Pancreatic cancer is a recalcitrant disease. Gemcitabine (GEM) is the most widely-used first-line therapy for pancreatic cancer, but most patients eventually fail. Transformative therapy is necessary to significantly improve the outcome of pancreatic cancer patients. Tumors have an elevated requirement for methionine and are susceptible to methionine restriction. The present study used a patient-derived orthotopic xenograft (PDOX) nude mouse model of pancreatic cancer to determine the efficacy of recombinant methioninase (rMETase) to effect methionine restriction and thereby overcome GEM-resistance. A pancreatic cancer obtained from a patient was grown orthotopically in the pancreatic tail of nude mice to establish the PDOX model. Five weeks after implantation, 40 pancreatic cancer PDOX mouse models were randomized into four groups of 10 mice each: untreated control (n = 10); GEM (100 mg/kg, i.p., once a week for 5 weeks, n = 10); rMETase (100 units, i.p., 14 consecutive days, n = 10); GEM+rMETase (GEM: 100 mg/kg, i.p., once a week for 5 weeks, rMETase: 100 units, i.p., 14 consecutive days, n = 10). Although GEM partially inhibited PDOX tumor growth, combination therapy (GEM+rMETase) was significantly more effective than mono therapy (GEM: p = 0.0025, rMETase: p = 0.0010). The present study is the first demonstrating the efficacy of rMETase combination therapy in a pancreatic cancer PDOX model to overcome first-line therapy resistance in this recalcitrant disease.
Collapse
Affiliation(s)
- Kei Kawaguchi
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | | | | | | | - Kentaro Igarashi
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | | | - Takashi Higuchi
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | - Masuyo Miyake
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | - Hiromichi Oshiro
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA
| | - Michiaki Unno
- Department of Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA
- Department of Surgery, University of California, San Diego, CA
| |
Collapse
|
43
|
Igarashi K, Kawaguchi K, Li S, Han Q, Tan Y, Gainor E, Kiyuna T, Miyake K, Miyake M, Higuchi T, Oshiro H, Singh AS, Eckardt MA, Nelson SD, Russell TA, Dry SM, Li Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Tsuchiya H, Eilber FC, Hoffman RM. Recombinant methioninase combined with doxorubicin (DOX) regresses a DOX-resistant synovial sarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model. Oncotarget 2018; 9:19263-19272. [PMID: 29721200 PMCID: PMC5922394 DOI: 10.18632/oncotarget.24996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/15/2018] [Indexed: 01/09/2023] Open
Abstract
Synovial sarcoma (SS) is a recalcitrant subgroup of soft tissue sarcoma (STS). A tumor from a patient with high grade SS from a lower extremity was grown orthotopically in the right biceps femoris muscle of nude mice to establish a patient-derived orthotopic xenograft (PDOX) mouse model. The PDOX mice were randomized into the following groups when tumor volume reached approximately 100 mm3: G1, control without treatment; G2, doxorubicin (DOX) (3 mg/kg, intraperitoneal [i.p.] injection, weekly, for 2 weeks; G3, rMETase (100 unit/mouse, i.p., daily, for 2 weeks); G4 DOX (3mg/kg), i.p. weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks). On day 14 after treatment initiation, all therapies significantly inhibited tumor growth compared to untreated control, except DOX: (DOX: p = 0.48; rMETase: p < 0.005; DOX combined with rMETase < 0.0001). DOX combined with rMETase was significantly more effective than both DOX alone (p < 0.001) and rMETase alone (p < 0.05). The relative body weight on day 14 compared with day 0 did not significantly differ between any treatment group or untreated control. The results indicate that r-METase can overcome DOX-resistance in this recalcitrant disease.
Collapse
Affiliation(s)
- Kentaro Igarashi
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA.,Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kei Kawaguchi
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Shukuan Li
- AntiCancer, Inc., San Diego, California, USA
| | | | - Yuying Tan
- AntiCancer, Inc., San Diego, California, USA
| | | | - Tasuku Kiyuna
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Masuyo Miyake
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Takashi Higuchi
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Hiromichi Oshiro
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| | - Arun S Singh
- Division of Hematology-Oncology, University of California, Los Angeles, CA, USA
| | - Mark A Eckardt
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Tara A Russell
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Sarah M Dry
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Yunfeng Li
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Fritz C Eilber
- Division of Surgical Oncology, University of California, Los Angeles, CA, USA
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, California, USA.,Department of Surgery, University of California, San Diego, California, USA
| |
Collapse
|