1
|
Gao Y, Shen Y, Dong J, Zhou Y, Zhu C, Yu Q, Qin X. Pancreatic head carcinoma derived from the dorsal pancreas is more likely to metastasize early than from the ventral pancreas through microvascular invasion. Medicine (Baltimore) 2024; 103:e39296. [PMID: 39151507 PMCID: PMC11332757 DOI: 10.1097/md.0000000000039296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
The development of the pancreatic head originates from the fusion of the ventral and dorsal pancreatic primordia during embryonic development. Theoretically, the origin of pancreatic head cancer also exists from the ventral pancreas and the dorsal pancreas. Among 49 patients with pancreatic head cancer, pancreatic head cancer was divided into pancreatic head cancer originating from the ventral (PHCv) or dorsal pancreas (PHCd) through imaging and pathological classification. The clinical data was collected and compared between the PHCv group and the PHCd group. The results showed that the patients from the PHCd group had worse long-term survival than those from the PHCv group (10 months vs 14.5 months). Similarly, the progression-free survival (PFS) results also indicate that patients from the PHCd group had a shorter time than those from the PHCv group (5 months vs 9.5 months). Further stratified analysis of potentially related factors showed that microvascular invasion is related to poor prognosis, and patients with pancreatic head cancer derived from the dorsal pancreas are more likely to develop microvascular invasion.
Collapse
Affiliation(s)
- Yuan Gao
- The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Yuhang Shen
- The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Jun Dong
- The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Yang Zhou
- Department of Pathology, Changzhou Second People’s Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Chunfu Zhu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Qiang Yu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| | - Xihu Qin
- The Institute of Hepatobiliary and Pancreatic Diseases, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, P.R. China
| |
Collapse
|
2
|
Kalfert D, Ludvikova M, Pesta M, Hakala T, Dostalova L, Grundmannova H, Windrichova J, Houfkova K, Knizkova T, Ludvik J, Polivka J, Kholova I. BRAF mutation, selected miRNAs and genes expression in primary papillary thyroid carcinomas and local lymph node metastases. Pathol Res Pract 2024; 258:155319. [PMID: 38696857 DOI: 10.1016/j.prp.2024.155319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024]
Abstract
Mutations in cancer-related genes are now known to be accompanied by epigenetic events in carcinogenesis by modification of the regulatory pathways and expression of genes involved in the pathobiology. Such cancer-related mutations, miRNAs and gene expression may be promising molecular markers of the most common papillary thyroid carcinoma (PTC). However, there are limited data on their relationships. The aim of this study was to analyse the interactions between BRAF mutations, selected microRNAs (miR-21, miR-34a, miR-146b, and miR-9) and the expression of selected genes (LGALS3, NKX2-1, TACSTD2, TPO) involved in the pathogenesis of PTC. The study cohort included 60 primary papillary thyroid carcinomas (PTC) that were classified as classical (PTC/C; n=50) and invasive follicular variant (PTC/F; n=10), and 40 paired lymph node metastases (LNM). BRAF mutation status in primary and recurrent/persistent papillary thyroid carcinomas was determined. The mutation results were compared both between primary and metastatic cancer tissue, and between BRAF mutation status and selected genes and miRNA expression in primary PTC. Furthermore, miRNAs and gene expression were compared between primary PTCs and non-neoplastic tissue, and local lymph node metastatic tumor, respectively. All studied markers showed several significant mutual interactions and contexts. In conclusion, to the best our knowledge, this is the first integrated study of BRAF mutational status, the expression levels of mRNAs of selected genes and miRNAs in primary PTC, and paired LNM.
Collapse
Affiliation(s)
- David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marie Ludvikova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen 32300, Czech Republic.
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen 32300, Czech Republic
| | - Tommi Hakala
- The Wellbeing Services County of Pirkanmaa, Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Lucie Dostalova
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Motol, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Grundmannova
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Jindra Windrichova
- Laboratory of Immunoanalysis, University Hospital in Pilsen, Pilsen, Czech Republic
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen 32300, Czech Republic
| | - Tereza Knizkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen 32300, Czech Republic
| | - Jaroslav Ludvik
- Department of Imaging Methods, University Hospital Pilsen, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiri Polivka
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ivana Kholova
- Pathology, Fimlab Laboratories, Tampere, Finland and Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland
| |
Collapse
|
3
|
Feng PF, Zhu LX, Sheng N, Li XS, Liu PG, Chen XF. CircXRN2 accelerates colorectal cancer progression through regulating miR-149-5p/MACC1 axis and EMT. Sci Rep 2024; 14:2448. [PMID: 38291092 PMCID: PMC10828403 DOI: 10.1038/s41598-024-52257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
In China, there has been a persistent upward trend in the incidence and mortality rates of colorectal cancer (CRC), with CRC ranking second in incidence and fifth in mortality among all malignant tumors. Although circular RNAs (circRNAs) have been implicated in the progression of various cancers, their specific role in CRC progression remains largely unexplored. The objective of this study was to elucidate the role and underlying mechanisms of circXRN2 in CRC. Differential expression of circXRN2 was identified through whole transcriptome sequencing. The expression levels of circXRN2 and miR-149-5p were quantified in CRC tissues, corresponding adjacent normal tissues, and CRC cell lines using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The stability of circXRN2 was confirmed through RNase R and actinomycin D experiments. The binding interaction between circXRN2 and miR-149-5p was validated through RNA pull-down, RNA immunoprecipitation, and dual-luciferase assays. The biological functions of circXRN2 were assessed through a battery of in vitro experiments, including the CCK-8 assay, EdU assay, scratch assay, Transwell assay, and flow cytometry assay. Additionally, in vivo experiments involving a tumor transplantation model and a liver-lung metastasis model were conducted. The influence of circXRN2 on the expression of epithelial-mesenchymal transition (EMT)-related genes was determined via Western blotting analysis. In CRC tissues and cells, there was an upregulation in the expression levels of both circXRN2 and ENC1, while miR-149-5p exhibited a downregulation in its expression. The overexpression of circXRN2 was found to enhance tumor proliferation and metastasis, as evidenced by results from both in vitro and in vivo experiments. Functionally, circXRN2 exerted its antitumor effect by suppressing cell proliferation, migration, and invasion while also promoting apoptosis. Mechanistically, the dysregulated expression of circXRN2 had an impact on the expression of proteins within the EMT signaling pathway. Our results demonstrated that circXRN2 promoted the proliferation and metastasis of CRC cells through the miR-149-5p/ENC1/EMT axis, suggesting that circXRN2 might serve as a potential therapeutic target and novel biomarker in the progression of CRC.
Collapse
Affiliation(s)
- Pan-Feng Feng
- Department of Pharmacy, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Long-Xun Zhu
- Department of Pharmacy, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Nan Sheng
- Institute of Experimental and Clinical Immunology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xin-Shuai Li
- Department of Pharmacy, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Pei-Gen Liu
- Department of General Surgery, Central Hospital of Panzhihua City, Panzhihua, 617000, Sichuan, China.
| | - Xiang-Fan Chen
- Biological Sample Bank, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, No. 666, Shengli Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
4
|
Liang W, Hu C, Zhu Q, Cheng X, Gao S, Liu Z, Wang H, Li P, Gao Y, Qian R. Exploring the relationship between abnormally high expression of NUP205 and the clinicopathological characteristics, immune microenvironment, and prognostic value of lower-grade glioma. Front Oncol 2023; 13:1007198. [PMID: 37284202 PMCID: PMC10240054 DOI: 10.3389/fonc.2023.1007198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/29/2023] [Indexed: 06/08/2023] Open
Abstract
Nuclear pore complex (NPC) is a major transport pivot for nucleocytoplasmic molecule exchange. Nucleoporin 205 (NUP205)-a main component of NPC-plays a key regulatory role in tumor cell proliferation; however, few reports document its effect on the pathological progression of lower-grade glioma (LGG). Therefore, we conducted an integrated analysis using 906 samples from multiple public databases to explore the effects of NUP205 on the prognosis, clinicopathological characteristics, regulatory mechanism, and tumor immune microenvironment (TIME) formation in LGG. First, multiple methods consistently showed that the mRNA and protein expression levels of NUP205 were higher in LGG tumor tissue than in normal brain tissue. This increased expression was mainly noted in the higher WHO Grade, IDH-wild type, and 1p19q non-codeleted type. Second, various survival analysis methods showed that the highly expressed NUP205 was an independent risk indicator that led to reduced survival time of patients with LGG. Third, GSEA analysis showed that NUP205 regulated the pathological progress of LGG via the cell cycle, notch signaling pathway, and aminoacyl-tRNA biosynthesis. Ultimately, immune correlation analysis suggested that high NUP205 expression was positively correlated with the infiltration of multiple immune cells, particularly M2 macrophages, and was positively correlated with eight immune checkpoints, particularly PD-L1. Collectively, this study documented the pathogenicity of NUP205 in LGG for the first time, expanding our understanding of its molecular function. Furthermore, this study highlighted the potential value of NUP205 as a target of anti-LGG immunotherapy.
Collapse
Affiliation(s)
- Wenjia Liang
- People’s Hospital of Henan University, Henan Provincial People’s Hospital, Microbiome Laboratory, Zhengzhou, Henan, China
| | - Chenchen Hu
- Intensive Care Unit, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingyun Zhu
- People’s Hospital of Henan University, Henan Provincial People’s Hospital, Microbiome Laboratory, Zhengzhou, Henan, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Hongbo Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Pengxu Li
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People’s Hospital, People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Wu CC, Wang YH, Hu SW, Wu WL, Yeh CT, Bamodu OA. MED10 Drives the Oncogenicity and Refractory Phenotype of Bladder Urothelial Carcinoma Through the Upregulation of hsa-miR-590. Front Oncol 2022; 11:744937. [PMID: 35096564 PMCID: PMC8792749 DOI: 10.3389/fonc.2021.744937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/15/2021] [Indexed: 11/15/2022] Open
Abstract
Background Dysfunctional transcription machinery with associated dysregulated transcription characterizes many malignancies. Components of the mediator complex, a principal modulator of transcription, are increasingly implicated in cancer. The mediator complex subunit 10 (MED10), a vital kinase module of the mediator, plays a critical role in bladder physiology and pathology. However, its role in the oncogenicity, metastasis, and disease recurrence in bladder cancer (BLCA) remains unclear. Objective Thus, we investigated the role of dysregulated or aberrantly expressed MED10 in the enhanced onco-aggression, disease progression, and recurrence of bladder urothelial carcinoma (UC), as well as the underlying molecular mechanism. Methods Using an array of multi-omics big data analyses of clinicopathological data, in vitro expression profiling and functional assays, and immunocytochemical staining, we assessed the probable roles of MED10 in the progression and prognosis of BLCA/UC. Results Our bioinformatics-aided gene expression profiling showed that MED10 is aberrantly expressed in patients with BLCA, is associated with high-grade disease, is positively correlated with tumor stage, and confers significant survival disadvantage. Reanalyzing the TCGA BLCA cohort (n = 454), we showed that aberrantly expressed MED10 expression is associated with metastatic and recurrent disease, disease progression, immune suppression, and therapy failure. Interestingly, we demonstrated that MED10 interacts with and is co-expressed with the microRNA, hsa-miR-590, and that CRISPR-mediated knockout of MED10 elicits the downregulation of miR-590 preferentially in metastatic UC cells, compared to their primary tumor peers. More so, silencing MED10 in SW1738 and JMSU1 UC cell lines significantly attenuates their cell proliferation, migration, invasion, clonogenicity, and tumorsphere formation (primary and secondary), with the associated downregulation of BCL-xL, MKI67, VIM, SNAI1, OCT4, and LIN28A but upregulated BAX protein expression. In addition, we showed that high MED10 expression is a non-inferior biomarker of urothelial recurrence compared with markers of cancer stemness; however, MED10 is a better biomarker of local recurrence than any of the stemness markers. Conclusion These data provide preclinical evidence that dysregulated MED10/MIR590 signaling drives onco-aggression, disease progression, and recurrence of bladder UC and that this oncogenic signal is therapeutically actionable for repressing the metastatic/recurrent phenotypes, enhancing therapy response, and shutting down stemness-driven disease progression and relapse in patients with BLCA/UC.
Collapse
Affiliation(s)
- Chia-Chang Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Taipei Medical University (TMU) Research Center of Urology and Kidney, Taipei Medical University, Taipei City, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Su-Wei Hu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Taipei Medical University (TMU) Research Center of Urology and Kidney, Taipei Medical University, Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Ling Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Taipei Medical University (TMU) Research Center of Urology and Kidney, Taipei Medical University, Taipei City, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Hematology and Oncology, Cancer Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
6
|
Liu Z, Cheng X, Pang B, Wang S, Liu B, Cao C, Qian R, Liang W, Zhu Y, Li P, Gao Y. Effects of ESCO2 or its methylation on the prognosis, clinical characteristics, immune microenvironment, and pathogenesis of low-grade glioma. Int Immunopharmacol 2022; 104:108399. [PMID: 35008004 DOI: 10.1016/j.intimp.2021.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 11/05/2022]
Abstract
The establishment of sister chromatid cohesion N-acetyltransferase 2 (ESCO2) has an important regulatory effect on cell proliferation and division, which is closely related to the malignant process of glioma cells. Therefore, this study attempts to provide a target for biologically targeted therapy for low-grade glioma (LGG) by demonstrating the regulatory effect of ESCO2 during the pathological process of LGG. First, the 1064 samples of LGG transcriptomic data and corresponding clinicopathological information obtained from various databases were included in the study. Second, the chi-squared test showed that the expression of ESCO2 was associated with the malignant characteristics of LGG (recurrence and grade), and Kaplan Meier and multivariate analysis suggested that ESCO2 was an independent risk factor, resulting in a significant reduction in the overall duration of survival of patients. Third, co-expression analysis showed that the level of mRNA expression of ESCO2 was negatively regulated by multiple methylation sites (cg04108328, cg12564175, and cg26534677), and the hypermethylation status of cg12564175 could prolong the overall survival of patients. Fourth, the Tumor Immune Estimation Resource (TIMER) database shows that ESCO2 can have a positive regulatory relationship with six different immune cells, such as CD8 + T cells and macrophages, and a positive expression relationship with PD-1 and PD-L1. Finally, Gene Set Enrichment Analysis (GSEA) showed that ESCO2 may play a carcinogenic role by affecting cell replication and DNA repair. In summary, this study confirmed the carcinogenic effect of ESCO2 on LGG for the first time. It is speculated that both the mRNA of ESCO2 and its methylation site (cg12564175) can be useful biological targets for molecular targeted therapy of LGG.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Bo Pang
- Department of Neurosurgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sen Wang
- Department of Neurosurgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Binfeng Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Chen Cao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Rongjun Qian
- Department of Neurosurgery of the Henan Provincial People's Hospital, Henan, Zhengzhou 450003, China.
| | - Wenjia Liang
- Department of Neurosurgery of the Henan Provincial People's Hospital, Henan, Zhengzhou 450003, China
| | - Yongjie Zhu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Pengxu Li
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Microbiome Laboratory, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Henan, 450003 Zhengzhou, China.
| |
Collapse
|
7
|
Identification of Differentially Expressed and Prognostic lncRNAs for the Construction of ceRNA Networks in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2021:2659550. [PMID: 34987577 PMCID: PMC8723861 DOI: 10.1155/2021/2659550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
Abstract
Background Long noncoding RNAs (lncRNAs) could function as competitive endogenous RNAs (ceRNAs) to competitively adsorb microRNAs (miRNAs), thereby regulating the expression of their target protein-coding mRNAs. In this study, we aim to identify more effective diagnostic and prognostic markers for lung adenocarcinoma (LUAD). Methods We obtained differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) for LUAD by using The Cancer Genomes Atlas (TCGA) portal. Weighted gene coexpression network analysis (WGCNA) was performed to unveil core gene modules associated with LUAD. The Cox proportional hazards model was performed to determine the prognostic significance of DElncRNAs. The diagnostic and prognostic significance of DElncRNAs was further verified based on the receiver operating characteristic curve (ROC). Cytoscape was used to construct the ceRNA networks comprising the lncRNAs-miRNAs-mRNAs axis based on the correlation obtained from the miRcode, miRDB, and TargetScan. Results Compared with normal lung tissues, 2355 DElncRNAs, 820 DEmiRNAs, and 17289 DEmRNAs were identified in LUAD tissues. We generated 8 WGCNA core modules in the lncRNAs coexpression network, 5 modules in the miRNAs, and 12 modules in the mRNAs coexpression network, respectively. One lncRNA module (blue) consisting of 441 lncRNAs, two miRNA modules (blue and turquoise) containing 563 miRNAs, and one mRNA module (turquoise), which consisted of 15162 mRNAs, were mostly significantly related to LUAD status. Furthermore, 67 DEmRNAs were found to be tumor-associated as well as the target genes of the DElncRNAs-DEmiRNAs axis. Survival analyses showed that 6 lncRNAs (LINC01447, WWC2-AS2, OGFRP1, LINC00942, LINC01168, and AC005863.1) were significantly correlated with the prognosis of LUAD patients. Ultimately, the potential ceRNA networks including 6 DElncRNAs, 4 DEmiRNAs, and 22 DEmRNAs were constructed. Conclusion Our study indicated that 6 DElncRNAs had the possibilities as diagnostic and prognostic biomarkers for LUAD. The lncRNA-mediated ceRNA networks might provide novel insights into the molecular mechanisms of LUAD progression.
Collapse
|
8
|
Jia L, Lei B, Gao H, Jia L, Luo D, Han J, Jia B. miR-130b suppresses the invasion and migration of prostate cancer via inhibiting DLL1 and regulating the PI3K/Akt pathways. Exp Ther Med 2022; 23:98. [PMID: 34976140 PMCID: PMC8674980 DOI: 10.3892/etm.2021.11021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer occurs in the prostatic epithelium and poses a threat to the health of middle-aged and older males. The objective of the present study was to explore the roles of microRNA (miRNA/miR)-130b in prostate cancer and potential molecular mechanisms in order to control the migration and invasion of prostate cancer. For this purpose, reverse transcription-PCR was performed to evaluate the mRNA levels of DLL1, phosphoinositide-3 kinase (PI3K), protein kinase B (Akt) and matrix metalloproteinase (MMP)9, and western blot analysis was carried out to detect the protein expression levels of DLL1, phosphorylated (p)-PI3K, p-Akt and MMP9. A Transwell assay was conducted to examine the invasion rate of prostate cancer cells. Furthermore, a scratch wound assay was performed to examine the migration rate of prostate cancer cells. A luciferase assay was performed to examine the interaction between miRNA and its target mRNA. The results revealed that miR-130b had abnormal (low) expression in tumor tissues compared with that in the adjacent normal tissue. An miR-130b mimic suppressed the expression of DLL1. The expression of p-PI3K, p-Akt and MMP9 in prostate cancer cells transfected with the miR-130b mimic was decreased in comparison to the negative control and control groups. Furthermore, migration and invasion were significantly suppressed in the miR-130b mimic group. In conclusion, a novel pathway interlinking miR-130b and MMP9, p-Akt and p-PI3K, which regulates the migration and invasion of prostate cancer cells, was identified. These findings provide an intriguing biomarker and treatment strategy for patients with prostate cancer.
Collapse
Affiliation(s)
- Li Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Bin Lei
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Huaijun Gao
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Lin Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Dan Luo
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Jianjun Han
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Bingxin Jia
- Department of Urology Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| |
Collapse
|
9
|
Das A, Ganesan H, Sriramulu S, Marotta F, Kanna NRR, Banerjee A, He F, Duttaroy AK, Pathak S. A review on interplay between small RNAs and oxidative stress in cancer progression. Mol Cell Biochem 2021; 476:4117-4131. [PMID: 34292483 DOI: 10.1007/s11010-021-04228-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been known to be the underlying cause in many instances of cancer development. The new aspect of cancer genesis that has caught the attention of many researchers worldwide is its connection to non-coding RNAs (ncRNAs). ncRNAs may not be protein coding, but in light of the more recent discovery of their wide range of functions, the term 'dark matter of the genome' has been rendered inapplicable. There is an extensive mention of colon cancer as an example, where some of these ncRNAs and their manipulations have seen significant progress. As of now, the focus is on discovering a non-invasive, cost-effective method for diagnosis that is easier to monitor and can be conducted before visible symptoms indicate cancer in a patient, by which time it may already be too late. The concept of liquid biopsies has revolutionized recent diagnostic measures. It has been possible to detect circulating parts of the cancer genome or other biomarkers in the patients' bodily fluids, resulting in the effective management of the disease. This has led these ncRNAs to be considered effective therapeutic targets and extrinsic modifications in several tumor types, proven to be effective as therapy. However, there is a vast scope for further understanding and pertinent application of our acquired knowledge and expanding it in enhancing the utilization of ncRNAs for a better prognosis, quicker diagnosis, and improved management of cancer. This review explores the prognosis of cancer and related mutations by scrutinizing small ncRNAs in the disease.
Collapse
Affiliation(s)
- Aparimita Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Harsha Ganesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention and Vitality & Longevity Medical Science Commission, FEMTEC World Foundation, Milan, Italy
| | - N R Rajesh Kanna
- Department of Pathology, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India
| | - Fang He
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai, 603 103, India.
| |
Collapse
|
10
|
Pedroza DA, Ramirez M, Rajamanickam V, Subramani R, Margolis V, Gurbuz T, Estrada A, Lakshmanaswamy R. miRNome and Functional Network Analysis of PGRMC1 Regulated miRNA Target Genes Identify Pathways and Biological Functions Associated With Triple Negative Breast Cancer. Front Oncol 2021; 11:710337. [PMID: 34350123 PMCID: PMC8327780 DOI: 10.3389/fonc.2021.710337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Increased expression of the progesterone receptor membrane component 1, a heme and progesterone binding protein, is frequently found in triple negative breast cancer tissue. The basis for the expression of PGRMC1 and its regulation on cellular signaling mechanisms remain largely unknown. Therefore, we aim to study microRNAs that target selective genes and mechanisms that are regulated by PGRMC1 in TNBCs. Methods To identify altered miRNAs, whole human miRNome profiling was performed following AG-205 treatment and PGRMC1 silencing. Network analysis identified miRNA target genes while KEGG, REACTOME and Gene ontology were used to explore altered signaling pathways, biological processes, and molecular functions. Results KEGG term pathway analysis revealed that upregulated miRNAs target specific genes that are involved in signaling pathways that play a major role in carcinogenesis. While multiple downregulated miRNAs are known oncogenes and have been previously demonstrated to be overexpressed in a variety of cancers. Overlapping miRNA target genes associated with KEGG term pathways were identified and overexpression/amplification of these genes was observed in invasive breast carcinoma tissue from TCGA. Further, the top two genes (CCND1 and YWHAZ) which are highly genetically altered are also associated with poorer overall survival. Conclusions Thus, our data demonstrates that therapeutic targeting of PGRMC1 in aggressive breast cancers leads to the activation of miRNAs that target overexpressed genes and deactivation of miRNAs that have oncogenic potential.
Collapse
Affiliation(s)
- Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Matthew Ramirez
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Venkatesh Rajamanickam
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Ramadevi Subramani
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States.,Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Victoria Margolis
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Tugba Gurbuz
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Adriana Estrada
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Rajkumar Lakshmanaswamy
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States.,Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
11
|
Tokumaru Y, Oshi M, Huyser MR, Yan L, Fukada M, Matsuhashi N, Futamura M, Akao Y, Yoshida K, Takabe K. Low expression of miR-29a is associated with aggressive biology and worse survival in gastric cancer. Sci Rep 2021; 11:14134. [PMID: 34239017 PMCID: PMC8266839 DOI: 10.1038/s41598-021-93681-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced gastric cancer (GC) is one of the most lethal cancer types, thus a better understanding of its biology in patients is urgently needed. MicroRNA (miR)-29a is a known tumor suppressive miR that is related to metastasis, but its clinical relevance in GC remains ambiguous. Here, using a large GC patient cohort we hypothesized that low expression of miR-29a in GC is associated with aggressive cancer biology and worse survival. We demonstrated that low miR-29a GC enriched cell proliferation, apoptosis, metastasis, and angiogenesis related gene sets, as well as the higher expression of related genes. Low miR-29a GC was associated with less anti-cancer immune cell infiltration as well as immune related scoring. Low miR-29a GC demonstrated a worse overall survival (OS) as well as disease specific survival (DSS) compared with high expressing miR-29a GC. Notably, low miR-29a expression was the only factor, other than residual tumor status, to be an independent prognostic biomarker of worse OS and DSS. In conclusion, low miR-29a GC was associated with aggressive cancer biology and worse OS as well as DSS. Additionally, low expression of miR-29a was an independent prognostic biomarker of OS and DSS in gastric cancer patients.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.,Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masanori Oshi
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Michelle R Huyser
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Masahiro Fukada
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yukihiro Akao
- United Graduate School of Drug and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA. .,Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan. .,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan. .,Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY, 14263, USA. .,Department of Breast Oncology and Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku, Tokyo, 160-8402, Japan. .,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, 960-1295, Japan.
| |
Collapse
|
12
|
Venkatas J, Singh M. Nanomedicine-mediated optimization of immunotherapeutic approaches in cervical cancer. Nanomedicine (Lond) 2021; 16:1311-1328. [PMID: 34027672 DOI: 10.2217/nnm-2021-0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer shows immense complexity at the epigenetic, genetic and cellular levels, limiting conventional treatment. Immunotherapy has revolutionized nanomedicine and rejuvenated the field of tumor immunology. Although several immunotherapeutic approaches have shown favorable clinical responses, their efficacies vary, with subsets of patients benefitting. The success of cancer immunotherapy requires the enhancement of cytokines and antitumor effector cell production and activation. Recently, the feasibility of nanoparticle-based cytokine approaches in tumor immunotherapy has been highlighted. Immunotherapeutic nanoparticle-based platforms form a novel strategy enabling researchers to co-deliver immunomodulatory agents, target tumors, improve pharmacokinetics and minimize collateral toxicity to healthy cells. This review looks at the potential of immunotherapy and nanotechnologically enhanced immunotherapeutic approaches for cervical cancer.
Collapse
Affiliation(s)
- Jeaneen Venkatas
- Nano-Gene & Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, KwaZulu-Natal, South Africa
| | - Moganavelli Singh
- Nano-Gene & Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, KwaZulu-Natal, South Africa
| |
Collapse
|
13
|
Wu F, Ji A, Zhang Z, Li J, Li P. miR-491-5p inhibits the proliferation and migration of A549 cells by FOXP4. Exp Ther Med 2021; 21:622. [PMID: 33936279 PMCID: PMC8082662 DOI: 10.3892/etm.2021.10054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs/miRs) plays a key role in the development of non-small cell lung cancer (NSCLC). In the present study, lower miRNA (miR)-491-5p levels and a higher forkhead box P4 (FOXP4) mRNA level were observed in NSCLC tissues and cell lines, compared to adjacent tissues and the normal human lung epithelial cell line BEAS-2B, respectively. A549 cell proliferation and migration were inhibited upon transfection of miR-491-5p mimics compared to miR-negative control (NC) mimics. In addition, compared to miR-NC mimics, overexpression of miR-491-5p decreased FOXP4 expression, while downregulation of miR-491-5p increased FOXP4 expression in A549 cells. The dual luciferase assay confirmed that the 3'untranslated region of FOXP4 was a target for miR-491-5p in A549 cells. Moreover, compared with the control short hairpin (sh)RNA, there was lower expression levels of TGF-β and its downstream targets (MMP-2 and MMP-9) in the FOXP4 shRNA group. Similarly, compared to miR-NC mimics, overexpression of miR-491-5p decreased MMP-2 and MMP-9 expression levels. In FOXP4-knockdown A549 cells, overexpression of miR-491-5p showed little effect on cell proliferation/migration. In A549 cells, overexpression of FOXP4 partially reversed the miR-491-5p mimics-induced inhibition on the cell proliferation and migration. These results may provide new insights into the role of miR-491-5p in NSCLC.
Collapse
Affiliation(s)
- Fuyong Wu
- Third Department of Oncology, People's Hospital of Shouguang, Shouguang, Shandong 262700, P.R. China
| | - Aiping Ji
- Second Department of Oncology, People's Hospital of Shouguang, Shouguang, Shandong 262700, P.R. China
| | - Zhenkun Zhang
- Third Department of Oncology, People's Hospital of Shouguang, Shouguang, Shandong 262700, P.R. China
| | - Jinfang Li
- Third Department of Oncology, People's Hospital of Shouguang, Shouguang, Shandong 262700, P.R. China
| | - Penglong Li
- Department of Oncology, Yantai Laiyang Central Hospital, Laiyang, Shandong 265200, P.R. China
| |
Collapse
|
14
|
Zhu L, Zhang L, Tang Y, Zhang F, Wan C, Xu L, Guo P. MicroRNA-363-3p inhibits tumor cell proliferation and invasion in oral squamous cell carcinoma cell lines by targeting SSFA2. Exp Ther Med 2021; 21:549. [PMID: 33850521 DOI: 10.3892/etm.2021.9981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/10/2020] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to evaluate the expression levels of microRNA (miR)-363-3p and its underlying physiological function in oral squamous cell carcinoma (OSCC). miR-363-3p expression levels were measured in OSCC cell lines using reverse transcription-quantitative PCR. The role of miR-363-3p in OSCC cells was examined using gain-of-function assays in vitro. Cell proliferation was assessed using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine assays and flow cytometry. Cell migration and invasion were evaluated in wound-healing and Transwell Matrigel assays. In addition, bioinformatics analysis predicted binding sites of miR-363-3p on sperm-specific antigen 2 (SSFA2). Luciferase reporter and RNA pull-down assays were conducted to test whether miR-363-3p interacted with SSFA2. miR-363-3p expression was downregulated in OSCC cell lines compared with that in the normal epithelial cell line (NHOK). Additionally, miR-363-3p overexpression suppressed OSCC cell proliferation, migration and invasion in vitro. SSFA2 was verified as a direct target of miR-363-3p, and SSFA2 overexpression partially counteracted the inhibitory effects of miR-363-3p on cell proliferation, migration and invasion in OSCC cell lines. Thus, miR-363-3p may serve as a tumor suppressor via targeting SSFA2 and may represent a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Liangming Zhu
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Lei Zhang
- Jiangcheng Dental Clinic, Wuhu, Anhui 241000, P.R. China
| | - Ying Tang
- Department of Endocrinology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui 241000, P.R. China
| | - Fang Zhang
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Chao Wan
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Liang Xu
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ping Guo
- Department of Stomatology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
15
|
Li G, Zhong S. MicroRNA-217 inhibits the proliferation and invasion, and promotes apoptosis of non-small cell lung cancer cells by targeting sirtuin 1. Oncol Lett 2021; 21:386. [PMID: 33777209 PMCID: PMC7988702 DOI: 10.3892/ol.2021.12647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 10/22/2020] [Indexed: 11/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a common malignancy worldwide. MicroRNA (miR)-217 and sirtuin 1 (SIRT1) have been reported to play significant roles in different types of cancer, such as osteosarcoma and prostate cancer; however, the association between miR-217 and SIRT1 in the cell proliferation, apoptosis and invasion of NSCLC remain unknown. Thus, the present study aimed to investigate the roles of miR-217 and SIRT1 in NSCLC. The expression levels of miR-217 and SIRT1 were detected via reverse transcription-quantitative (RT-q)PCR and western blot analyses. The effect of miR-217 on A549 and H1299 cell proliferation, apoptosis and invasion was assessed via the Cell Counting Kit-8, flow cytometry and Transwell assays, respectively. In addition, the association between SIRT1 and miR-217 was predicted using the TargetScan database, and verified via the dual-luciferase reporter assay, and RT-qPCR and western blot analyses. The results demonstrated that miR-217 expression was significantly downregulated, while SIRT1 expression was significantly upregulated in A549 and H1299 cells compared with the human bronchial epithelial cells. Furthermore, transfection with miR-217 mimic significantly inhibited A549 and H1299 cell proliferation and invasion, and induced A549 and H1299 cell apoptosis. The results of the dual-luciferase reporter assay and western blot analysis confirmed that SIRT1 is a target gene of miR-217. In addition, miR-217 inhibited the activation of AMP-activated protein kinase (AMPK) and mTOR signaling. Taken together, the results of the present study suggest that miR-217 inhibits A549 and H1299 cell proliferation and invasion, and induces A549 and H1299 cell apoptosis by targeting SIRT1 and inactivating the SIRT1-mediated AMPK/mTOR signaling pathway. Thus, miR-217 may be used as a potential therapeutic target for the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Guangshun Li
- Department of Thoracic, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Shouping Zhong
- Department of Thoracic, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
16
|
Beylerli OA, Gareev IF, Alyshov AB, Kudriashov VV. MicroRNAs as Biomarkers and Therapeutic Targets for Medulloblastomas. CREATIVE SURGERY AND ONCOLOGY 2021. [DOI: 10.24060/2076-3093-2020-10-4-311-318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Shen H, Xu L, You C, Tang H, Wu H, Zhang Y, Xie M. miR-665 is downregulated in glioma and inhibits tumor cell proliferation, migration and invasion by targeting high mobility group box 1. Oncol Lett 2020; 21:156. [PMID: 33552274 DOI: 10.3892/ol.2020.12417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/22/2020] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common brain tumor in adults. microRNAs (miRNAs/miRs) play an essential role in tumor development and progression. The present study aimed to investigate the potential clinical significance and function of miR-665 in glioma. Reverse transcription-quantitative PCR analysis was used to detect the expression of miR-665 in glioma tissues and cells. Survival curves were constructed using the Kaplan-Meier method. Cox regression analysis was performed to investigate the prognostic significance of miR-665. Cell Counting Kit-8 and Transwell assays were used to evaluate the role of miR-665 in glioma. Bioinformatics analysis and Dual-luciferase reporter assays were used to predict the putative direct targets of miR-665. Western blotting was used to evaluate the activity of the Wnt/β-catenin pathway. The relative expression of miR-665 was decreased in glioma tissues and cells and this downregulation was significantly associated with the Karnofsky performance scale score and World Health Organisation grade. Patients with glioma with low miR-665 expression had a shorter overall survival time compared with the high expression group. Besides, overexpression of miR-665 suppressed the proliferation, migration and invasion of glioma cells, while knockdown of miR-665 promoted these cellular behaviors. High mobility group box (HMGB)1 was a direct target of miR-665. It was also demonstrated that miR-665 may suppress glioma progression by targeting HMGB1 and inhibiting the Wnt/β-catenin pathway. Taken together, these data suggested that miR-665 may have a tumor suppressor role in glioma by targeting HMGB1. Therefore, miR-665 may be a novel prognostic biomarker and the miR-665/HMGB1 axis may be a novel therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Hao Shen
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ling Xu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Chunyue You
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Huaibo Tang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Haitao Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yong Zhang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Mingxiang Xie
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
18
|
Shi T, Gong J, Fujita K, Nishiyama N, Iwama H, Liu S, Nakahara M, Yoneyama H, Morishita A, Nonura T, Kobara H, Okano K, Suzuki Y, Masaki T. Aspirin inhibits cholangiocarcinoma cell proliferation via cell cycle arrest in vitro and in vivo. Int J Oncol 2020; 58:199-210. [PMID: 33491760 PMCID: PMC7864011 DOI: 10.3892/ijo.2020.5165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma is the most common biliary duct malignancy and the second most common primary liver cancer, accounting for 10-20% of hepatic malignancies. With high mortality and poor prognosis, the 5-year survival rate of cholangiocarcinoma is only 10%. A previous study demonstrated a significant association between aspirin use and a decreased risk of cholangiocarcinoma. However, the effect of aspirin on cholangiocarcinoma remains unknown. Therefore, the aim of the present study was to investigate the effects of aspirin on cholangiocarcinoma in vitro and in vivo. Three cholangiocarcinoma cell lines were used to analyze the effect of aspirin on cell proliferation, cell cycle progression, apoptosis, and the regulation of microRNAs. MicroRNAs are known to regulate the development and progression of various types of cancer. An HuCCT-1 xenograft model was used for the in vivo study. It was determined that aspirin inhibited the proliferation of human cholangiocarcinoma cells (except TKKK cells). Aspirin induced cell cycle arrest in the G0/G1 phase and regulated cell-cycle related proteins in cholangiocarcinoma cells (HuCCT-1 cells) but did not induce apoptosis. The expression of miR-340-5p was significantly upregulated after treatment, and overexpression of miR-340-5p inhibited the proliferation of HuCCT-1 cells and decreased the levels of cyclin D1. TKKK cells had low miR-340-5p expression, which may explain why aspirin had no effect on their proliferation. In vivo, aspirin reduced the growth of xenografted tumors. In conclusion, the present study indicated that aspirin partially inhibited cholangiocarcinoma cell proliferation and tumor growth by inducing G0/G1 phase cell cycle arrest, potentially through the miR-340-5p/cyclin D1 axis.
Collapse
Affiliation(s)
- Tingting Shi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Jian Gong
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Noriko Nishiyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Shi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Takako Nonura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Keiichi Okano
- Department of Digestive Surgery, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Yasuyuki Suzuki
- Department of Digestive Surgery, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa 761‑0793, Japan
| |
Collapse
|
19
|
Feng S, Sun H, Zhu W. MiR-92 overexpression suppresses immune cell function in ovarian cancer via LATS2/YAP1/PD-L1 pathway. Clin Transl Oncol 2020; 23:450-458. [PMID: 32654106 DOI: 10.1007/s12094-020-02439-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Increasing evidence suggested that microRNA plays an important role in ovarian cancer. In this study, the role of miR-92 in ovarian cancer was investigated. METHODS In this study, miR-92 expression in clinical sample was evaluated, role of miR-92 was investigated in vitro, and underlying mechanism was investigated using Chip, co-IP, and western blot. RESULTS In this study, we show that miR-92 is overexpressed in ovarian cancer tissue compared with normal cancer tissue. Transfection of miR-92 increased proliferation of ovarian cancer cell, and increased migration capacity and colony formation were observed after miR-92 transfection; we found that expression of LATS2 was decreased by miR-92, and this was further confirmed by luciferase assay, which proved that miR-92 is targeting 3' of the endogenous LATS2 gene. Downregulation of LATS2 resulted in increased translocation of YAP1 and upregulation of PD-L1, which subsequently suppressed NK cell function and promoted T cell apoptosis. Moreover, co-transfection of YAP1-targeted shRNA could relieve miR-92-induced immune suppression effect. Mechanically, immunoprecipitation (IP) was used to show that LATS2 interacted with YAP1 and subsequently limited nuclear translocation of YAP1; chromatin immunoprecipitation (ChIP) was used to confirm that YAP1 could bind to enhancer region of PD-L1 to enhance transcription activity of PD-L1. CONCLUSIONS Our data revealed a novel mechanism which finally resulted in immune suppression in ovarian cancer.
Collapse
Affiliation(s)
- S Feng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China
| | - H Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China
| | - W Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China.
| |
Collapse
|
20
|
Xu J, Guo J, Golob-Schwarzl N, Haybaeck J, Qiu X, Hildebrandt N. Single-Measurement Multiplexed Quantification of MicroRNAs from Human Tissue Using Catalytic Hairpin Assembly and Förster Resonance Energy Transfer. ACS Sens 2020; 5:1768-1776. [PMID: 32438801 DOI: 10.1021/acssensors.0c00432] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Absolute quantification of microRNAs (miRNAs) or other nucleic acid biomarkers is an important requirement for molecular and clinical biosensing. Emerging technologies with beneficial features concerning simplicity and multiplexing present an attractive route for advancing diagnostic tools toward rapid and low-cost bioanalysis. However, the actual translation into the clinic by miRNA quantification in human samples is often missing. Here, we show that implementing time-gated Förster resonance energy transfer (TG-FRET) into a catalytic hairpin assembly (CHA) can be used for the simultaneous quantification of two miRNAs with a single measurement from total RNA extracts of human tissues. A single terbium-dye FRET pair was conjugated at two specific distances within target-specific CHA hairpin probes, such that each miRNA resulted in distinct amplified photoluminescence (PL) decays that could be distinguished and quantified by TG PL intensity detection. Enzyme-free amplification in a separation-free assay format and the absence of autofluorescence background allowed for simple, specific, and sensitive detection of miR-21 and miR-20a with limits of detection down to 1.8 pM (250 amol). Reliable duplexed quantification of both miRNAs at low picomolar concentrations was confirmed by analyzing total RNA extracts from different colon and rectum tissues with single- and dual-target CHA-TG-FRET and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for comparison. These simple and multiplexed nucleic acid biomarker assays present a capable method for clinical diagnostics and biomolecular research.
Collapse
Affiliation(s)
- Jingyue Xu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
- nanofret.com, Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Jiajia Guo
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
| | - Nicole Golob-Schwarzl
- Department of Dermatology and Venerology, Medical University of Graz, A-8010 Graz, Austria
| | - Johannes Haybaeck
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, A-8010 Graz, Austria
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Xue Qiu
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
- School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao Shandong, China
| | - Niko Hildebrandt
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CNRS, CEA, 91405 Orsay Cedex, France
- nanofret.com, Laboratoire Chimie Organique, Bioorganique, Réactivité et Analyse (COBRA), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan Cedex, France
| |
Collapse
|
21
|
Interactions between the MicroRNAs and Microbiota in Cancer Development: Roles and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12040805. [PMID: 32230762 PMCID: PMC7225936 DOI: 10.3390/cancers12040805] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The human microbiota is made up of the fungi, bacteria, protozoa and viruses cohabiting within the human body. An altered microbiota can provoke diseases such as cancer. The mechanisms by which a modified microbiota can intervene in the onset and progression of neoplastic diseases are manifold. For instance, these include the effects on the immune system and the onset of obesity. A different mechanism seems to be constituted by the continuous and bidirectional relationships existing between microbiota and miRNAs. MiRNAs emerged as a novel group of small endogenous non-coding RNAs from that control gene expression. Several works seem to confirm the presence of a close connection between microbiota and miRNAs. Although the main literature data concern the correlations between microbiota, miRNAs and colon cancer, several researches have revealed the presence of connections with other types of tumour, including the ovarian tumour, cervical carcinoma, hepatic carcinoma, neoplastic pathologies of the central nervous system and the possible implication of the microbiota-miRNAs system on the response to the treatment of neoplastic pathologies. In this review, we summarise the physiological and pathological functions of the microbiota on cancer onset by governing miRNA production. A better knowledge of the bidirectional relationships existing between microbiota and miRNAs could provide new markers for the diagnosis, staging and monitoring of cancer and seems to be a promising approach for antagomir-guided approaches as therapeutic agents.
Collapse
|
22
|
MiR-629-5p promotes the invasion of lung adenocarcinoma via increasing both tumor cell invasion and endothelial cell permeability. Oncogene 2020; 39:3473-3488. [PMID: 32108166 DOI: 10.1038/s41388-020-1228-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
Tumor invasion underlies further metastasis, the leading cause for cancer-related deaths. Deregulation of microRNAs has been identified associated with the malignant behavior of various cancers, including lung adenocarcinoma (LUAD), the major subtype of lung cancer. Here, we showed the significantly positive correlation between miR-629-5p level and tumor invasion in LUAD specimens (n = 49). In a human LUAD metastasis mouse model, H1650 cells (high level of miR-629-5p) were more aggressive than A549 cells (low level of miR-629-5p) in vivo, including higher incidence of vascular invasion and pulmonary colonization. Ectopic expression of miR-629-5p in A549 cells also increased their invasive capability. Then we identified that miR-629-5p promotes LUAD invasion in a mode of dual regulation via tumor cells invasion and endothelial cells permeability, respectively. In tumor cells, miR-629-5p enhanced motility and invasiveness of tumor cells by directly targeting PPWD1 (a cyclophilin), which clinically related to tumor invasion in LUAD specimens. Restoring PPWD1 protein significantly attenuated the invasion-promoting effects of miR-629-5p. Besides, exosomal-miR-629-5p secreted from tumor cells could be transferred to endothelial cells and increased endothelial monolayers permeability by suppressing CELSR1 (a nonclassic-type cadherin), which had a low level in the endothelial cells of invasive LUAD specimens. Activating the expression of CELSR1 in endothelial cells markedly blocked the effect of miR-629-5p. Our study suggests the dual roles of miR-629-5p in tumor cells and endothelial cells for LUAD invasion, implying a therapeutic option to targeting miR-629-5p using the "one stone, two birds" strategy in LUAD.
Collapse
|
23
|
circRNA_0000140 suppresses oral squamous cell carcinoma growth and metastasis by targeting miR-31 to inhibit Hippo signaling pathway. Cell Death Dis 2020; 11:112. [PMID: 32041942 PMCID: PMC7010827 DOI: 10.1038/s41419-020-2273-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/08/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies and has a poor prognosis. Circular RNA (circRNA) has been increasingly recognized as a crucial contributor to carcinogenesis. circRNA_0000140 has been aberrantly expressed in OSCC, but its role in tumor growth and metastasis remains largely unclear. Sanger sequencing, actinomycin D, and RNase R treatments were used to confirm head-to-tail junction sequences and the stability of circ_0000140. In vitro cell activities, including proliferation, migration, invasion, and apoptosis, were determined by colony formation, transwell, and flow cytometry assays. The expression levels of circ_0000140, Hippo signaling pathway, and serial epithelial–mesenchymal transition (EMT) markers were measured by quantitative real-time PCR, western blotting, immunofluorescence, and immunohistochemistry. Dual luciferase reporter assays and Argonaute 2-RNA immunoprecipitation assays were performed to explore the interplay among circ_0000140, miR-31, and LATS2. Subcutaneous tumor growth was observed in nude mice, in which in vivo metastasis was observed following tail vein injection of OSCC cells. circ_0000140 is derived from exons 7 to 10 of the KIAA0907 gene. It was down-regulated in OSCC tissues and cell lines, and correlated negatively with poor prognostic outcomes in OSCC patients. Gain-of-function experiments demonstrated that circ_0000140 enhancement suppressed cell proliferation, migration, and invasion, and facilitated cell apoptosis in vitro. In xenograft mouse models, overexpression of circ_0000140 was able to repress tumor growth and lung metastasis. Furthermore, mechanistic studies showed that circ_0000140 could bind with miR-31 and up-regulate its target gene LATS2, thus affecting OSCC cellular EMT. Our findings demonstrated the roles of circ_0000140 in OSCC tumorigenesis as well as in metastasis, and circ_0000140 exerts its tumor-suppressing effect through miR-31/LATS2 axis of Hippo signaling pathway in OSCC.
Collapse
|
24
|
Koh YC, Ho CT, Pan MH. Recent advances in cancer chemoprevention with phytochemicals. J Food Drug Anal 2020; 28:14-37. [DOI: 10.1016/j.jfda.2019.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
|
25
|
Sun J, Deng Y, Shi J, Yang W. MicroRNA‑542‑3p represses OTUB1 expression to inhibit migration and invasion of esophageal cancer cells. Mol Med Rep 2019; 21:35-42. [PMID: 31939620 PMCID: PMC6896300 DOI: 10.3892/mmr.2019.10836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/24/2019] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is involved in the pathogenesis of esophageal cancer. miRNA (miR)‑542‑3p is a tumor suppressor in multiple types of cancer. However, whether and how miR‑542‑3p contributes to the progression of esophageal cancer remains unknown, and this is the aim of the present study. In the current study, decreased expression of miR‑542‑3p was detected in tumor tissues compared with normal tissues from patients with esophageal cancer, and miR‑542‑3p expression was negatively correlated with mRNA expression levels of ovarian tumor domain‑containing ubiquitin aldehyde‑binding protein 1 (OTUB1) in tumor tissues from patients with esophageal cancer. In KYSE150 human esophageal squamous cell carcinoma cells, overexpression of miR‑542‑3p significantly decreased OTUB1 at mRNA and protein levels, whereas downregulation of miR‑542‑3p significantly increased OTUB1 expression. Using a dual‑luciferase assay, OTUB1 was validated to be a target gene of miR‑542‑3p in KYSE150 cells. Functionally, miR‑542‑3p significantly inhibited the migration and invasion of KYSE150 cells by repression of OTUB1 expression. These results demonstrated that miR‑542‑3p may promote the metastasis of esophageal cancer cells, and indicated that miR‑542‑3p may be a treatment target for esophageal cancer.
Collapse
Affiliation(s)
- Jun Sun
- Oncology Department, Jianhu Hospital Affiliated to Nantong University, Jianhu, Jiangsu 224700, P.R. China
| | - Yong Deng
- Thoracic Surgery Department, Sheyang People's Hospital, Sheyang, Jiangsu 224300, P.R. China
| | - Jin Shi
- Thoracic Surgery Department, Sheyang People's Hospital, Sheyang, Jiangsu 224300, P.R. China
| | - Wengang Yang
- Thoracic Surgery Department, Sheyang People's Hospital, Sheyang, Jiangsu 224300, P.R. China
| |
Collapse
|
26
|
Qi H, Wang H, Pang D. miR-448 promotes progression of non-small-cell lung cancer via targeting SIRT1. Exp Ther Med 2019; 18:1907-1913. [PMID: 31410153 DOI: 10.3892/etm.2019.7738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022] Open
Abstract
Deregulation of microRNAs (miRs) has been demonstrated to be involved in both the initiation and the development of non-small-cell lung cancer (NSCLC). miR-448 has been identified as a tumor suppressor in several cancer types. The aim of the present study was to explore the role of miR-448 in NSCLC. Tumor tissues and paired normal tissues were obtained from patients with NSCLC. The viability and migration of A549 cells were determined by the Cell Counting kit-8 and wound-healing assays, respectively. Gene and protein levels were detected by reverse transcription-quantitative polymerase chain reaction analysis and western blotting, respectively. The interaction between the 3' untranslated region of sirtuin1 (SIRT1) and miR-448 was predicted by TargetScan and verified by dual luciferase reporter assay. miR-448 levels were revealed to be decreased whereas SIRT1 levels were increased in NSCLC tissues compared with normal tissues. Pearson's correlation analysis demonstrated that there was a negative correlation between miR-448 and SIRT1 mRNA levels. Overexpression of miR-448 led to reduced growth and migration ability of A549 cells. In addition, overexpression of miR-448 decreased SIRT1 mRNA and protein levels, thereby inhibiting epithelial-mesenchymal transition (EMT) and affecting EMT-associated molecules, including vimentin and E-cadherin. Dual luciferase reporter assay confirmed that SIRT1 was a direct target of miR-448. Notably, activation of SIRT1 by resveratrol treatment partially reversed the cell growth inhibition induced by miR-448 mimics. These findings suggested that the progression of NSCLC may be controlled by miR-448, which appears to hold promise as a therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Hongfeng Qi
- Department of Cardiothoracic Surgery, Changyi People's Hospital, Weifang, Shandong 261300, P.R. China
| | - Haifeng Wang
- Department of Endoscopy, Shouguang Hospital of TCM, Shouguang, Shandong 262700, P.R. China
| | - Dabin Pang
- Department of Cardiothoracic Surgery, Changyi People's Hospital, Weifang, Shandong 261300, P.R. China
| |
Collapse
|
27
|
Sahranavardfard P, Firouzi J, Azimi M, Khosravani P, Heydari R, Emami Razavi A, Dorraj M, Keighobadi F, Ebrahimi M. MicroRNA-203 reinforces stemness properties in melanoma and augments tumorigenesis in vivo. J Cell Physiol 2019; 234:20193-20205. [PMID: 31016725 DOI: 10.1002/jcp.28619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
Abstract
One of the challenges encountered in microRNA (miRNA) studies is to observe their dual role in different conditions and cells. This leads to a tougher prediction of their behavior as gene expression regulators. miR-203 has been identified to play a negative role in the progression of malignant melanoma; however, it has been reported, with dual effect, as both an oncomiR and tumor suppressor miRNA in some malignancies, such as breast cancer, meanwhile, the role of miR-203 in melanoma stem cells or even metastatic cells is unclear. In the present study, after observation of upregulation of miR-203 in melanoma patient's serum and also melanospheres as cancer stem cells model, we examined its overexpression on the stemness potential and migration ability of melanoma cells. Our data demonstrated that the increased miR-203 level was significantly associated with significant increase in the ability of proliferation, colony and spheres formation, migration, and tumorigenesis in A375 and NA8 cells. All of these changes were associated with enhancement of BRAF, several epithelial to mesenchymal transition factors, and stemness genes. In conclusion, our results clearly determined that miR-203 could be down-regulateddownregulated in melanoma tissues but be overexpressed in melanoma stem cells. It has an important role as oncomiR and promote repopulation, tumorigenicity, self-renewal, and migration. Therefore, we suggested overexpression of miR-203 as biomarker for early detection of metastasis. However, more studies are needed to validate our data.
Collapse
Affiliation(s)
- Parisa Sahranavardfard
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Firouzi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Azimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pardis Khosravani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amirnader Emami Razavi
- Iran National Tumor Bank, The cancer institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Dorraj
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Keighobadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Han X, Li Q, Liu C, Wang C, Li Y. Overexpression miR-24-3p repressed Bim expression to confer tamoxifen resistance in breast cancer. J Cell Biochem 2019; 120:12966-12976. [PMID: 31001849 DOI: 10.1002/jcb.28568] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022]
Abstract
Endocrine therapy resistance represents a major challenge to the successful treatment of patients with breast cancer. The development of tamoxifen resistance commonly occurrs during the treatment of patients with breast cancer whereas its underlying mechanisms remain elusive. Here, we found that miR-24-3p regulated tamoxifen sensitivity in breast cancer cells. Forced overexpression of miR-24-3p augmented tamoxifen-induced cell viability inhibition in breast cancer cells, while knockdown of miR-24-3p partially attenuated the cytotoxicity effect of tamoxifen. Moreover, we discovered Bim as a target gene of miR-24-3p in breast cancer cells by RNA immunoprecipitation, quantitative reverse transcription polymerase chain reaction, Western blot, and dual luciferase reporter assay. In our established tamoxifen resistant MCF7 cell line (MCF7/TAM), there was a significant elevation of miR-24-3p and decrease of BIM expression compared with parental MCF7 cells. In addition, the inhibition of miR-24-3p could reverse the tamoxifen resistance of MCF7/TAM cells by the induction of cell apoptosis. Silencing of Bim expression blocked miR-24-3p inhibitor-induced elevation of tamoxifen sensitivity of MCF7/TAM cells. Using tumor tissues from patients with breast cancer, we also found that the expression of miR-24-3p was negatively correlated with Bim mRNA expression. Collectively, our study highlighted the pivotal role of miR-24-3p overexpression in mediating the development of tamoxifen resistance in breast cancer and suggested miR-24-3p might be a predictor or target for patients with breast cancer.
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiaobei Li
- Department of Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chang Liu
- Department of Radiation Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunyan Wang
- Department of Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Yao H, Sun Q, Zhu J. miR-1271 enhances the sensitivity of colorectal cancer cells to cisplatin. Exp Ther Med 2019; 17:4363-4370. [PMID: 31086572 PMCID: PMC6489001 DOI: 10.3892/etm.2019.7501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
The high mortality of colorectal cancer (CRC) is likely caused by early invasion and metastasis. The chemoresistance of tumor cells is the critical reason for treatment failure. The present study aimed to develop targeted solutions to overcome chemotherapy drug resistance in CRC. CCK-8 assay was used to examine SW480 cell viability. SW480 cell apoptosis was examined using flow cytometry. The present study demonstrated that the expression of miR-1271 was significantly decreased in CRC tumors and cell lines compared with control tissues. Furthermore, the expression of microRNA (miR)-1271 was increased and decreased following the transfection of miR-1271 mimics and an inhibitor, respectively. Furthermore, miR-1271 regulated mammalian target of rapamycin (mTOR) expression by directly binding to the mTOR 3'-untranslated region and the relative luciferase activity of mTOR was decreased following miR-1271 overexpression. The results of the present study indicate that miR-1271 may be a potential target for anti-CRC therapy, particularly in the sensitivity of chemotherapeutic drugs. miR-1271 may therefore enhance the sensitivity of CRC cells to chemotherapy drugs and provide a novel approach for the gene therapy of CRC.
Collapse
Affiliation(s)
- Huixiang Yao
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qun Sun
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jinshui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
30
|
Yang C, Shi Z, Hu J, Wei R, Yue G, Zhou D. miRNA-155 expression and role in pathogenesis in spinal tuberculosis-induced intervertebral disc destruction. Exp Ther Med 2019; 17:3239-3246. [PMID: 30936999 PMCID: PMC6434382 DOI: 10.3892/etm.2019.7313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/29/2018] [Indexed: 12/28/2022] Open
Abstract
The current study aimed to investigate microRNA-155 (miR-155) expression in spinal tuberculosis-induced intervertebral disc destruction and its regulatory role in disease pathogenesis. A total of 26 patients with intervertebral disc destruction induced by spinal tuberculosis and 31 healthy individuals were included. Reverse transcription-quantitative polymerase chain reactions, western blot analysis and ELISA were performed to detect mRNA and protein expression levels. A bioinformatics analysis was applied to predict the upstream regulator of matrix metalloproteinase (MMP)13, which was confirmed by dual-luciferase reporter assay. Compared with the control group, mRNA and protein expression levels of MMP13 were significantly increased in the intervertebral disc of patients with spinal tuberculosis. However, miR-155 expression in the intervertebral disc of patients with spinal tuberculosis was significantly decreased compared with the control group. Dual-luciferase reporter assays suggested that miR-155 bound to the 3′-untranslated region of MMP13 to regulate gene expression. In primary annulus fibrosus cells, upregulated miR-155 expression significantly decreased MMP13 expression in the cells and culture supernatant, whereas it increased type II collagen expression. Upregulated MMP13 expression in the intervertebral disc in patients with spinal tuberculosis may be correlated with downregulated miR-155 expression. miR-155 may regulate expression levels of associated proteins in the intervertebral disc via modulating MMP13 expression, which contributes to the disease pathogenesis. The results of the current study may provide the theoretical basis for the diagnosis and treatment of disc damages caused by spinal tuberculosis.
Collapse
Affiliation(s)
- Chengzhi Yang
- Trauma Center, Guangxi Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, P.R. China
| | - Zhanying Shi
- Trauma Center, Guangxi Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, P.R. China
| | - Juzheng Hu
- Trauma Center, Guangxi Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, P.R. China
| | - Renjie Wei
- Department of Trauma Orthopedics, Hechi People's Hospital, Hechi, Guangxi 547000, P.R. China
| | - Guoping Yue
- Department of Joint Osteopathy, Guangxi Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, P.R. China
| | - Dan Zhou
- Trauma Center, Guangxi Liuzhou Workers Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545000, P.R. China
| |
Collapse
|
31
|
Martins-Neves SR, Cleton-Jansen AM, Gomes CMF. Therapy-induced enrichment of cancer stem-like cells in solid human tumors: Where do we stand? Pharmacol Res 2018; 137:193-204. [PMID: 30316903 DOI: 10.1016/j.phrs.2018.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
The development of local recurrence and metastatic disease, most probably attributable to the intrinsic or acquired resistance of tumor cells to standard therapy, still constitute the major clinical problem preventing the cure of cancer patients. Despite progress in the research of new therapeutic targets and compounds, resistant cells displaying stem-like properties seem to play a leading role in therapeutic failures and to be the culprit cells responsible for associated tumor recurrence. A whole new plethora of research studies suggest that drug-tolerant cancer stem cells may be induced by conventional cancer chemotherapeutics such as doxorubicin, cisplatinum and ionizing radiation. This phenotypic plasticity and transition from a differentiated to stem-like cell state associates with the activation of diverse stem cell self-renewal (e.g. Notch, Hedgehog, Wnt), drug efflux (e.g. ABC transporters) and survival-related pathways (e.g. TGF-β, ERK, AKT), which may confer resistance and treatment failures in solid tumors. Therefore, combined therapeutic strategies aiming to simultaneously target drug-sensitive tumor cells and their capacity of phenotypic switching may lead to survival benefits and meaningful disease remissions. This knowledge can be applicable to the clinic and contribute to better therapeutic outcomes and prevent tumor recurrence.
Collapse
Affiliation(s)
- Sara R Martins-Neves
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354 Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Department of Pathology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Célia M F Gomes
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354 Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|