1
|
Wang X, Yang C, Huang C, Wang W. Dysfunction of the carnitine cycle in tumor progression. Heliyon 2024; 10:e35961. [PMID: 39211923 PMCID: PMC11357771 DOI: 10.1016/j.heliyon.2024.e35961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The carnitine cycle is responsible for the transport of cytoplasmic fatty acids to the mitochondria for subsequent β-oxidation to maintain intracellular energy homeostasis. Recent studies have identified abnormalities in the carnitine cycle in various types of tumors; these abnormalities include the altered expression levels of carnitine cycle-related metabolic enzymes and transport proteins. Dysfunction of the carnitine cycle has been shown to influence tumorigenesis and progression by altering intracellular oxidative and inflammatory status or regulating tumor metabolic flexibility. Many therapeutic strategies targeting the carnitine cycle are actively being explored to modify the dysfunction of the carnitine cycle in patients with malignant tumors; such approaches include carnitine cycle-related enzyme inhibitors and exogenous carnitine supplementation. Therefore, here, we review the studies of carnitine in tumors, aiming to scientifically illustrate the dysfunction of the carnitine cycle in tumor progression and provide new ideas for further research.
Collapse
Affiliation(s)
- Xiangjun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
2
|
Albini A, Noonan DM, Corradino P, Magnoni F, Corso G. The Past and Future of Angiogenesis as a Target for Cancer Therapy and Prevention. Cancer Prev Res (Phila) 2024; 17:289-303. [PMID: 38714356 DOI: 10.1158/1940-6207.capr-24-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Cancer growth is dependent on angiogenesis, the formation of new blood vessels, which represents a hallmark of cancer. After this concept was established in the 1970s, inhibition of tumor development and metastases by blocking the neoangiogenic process has been an important approach to the treatment of tumors. However, antiangiogenic therapies are often administered when cancer has already progressed. The key to reducing the cancer burden is prevention. We noticed 20 years ago that a series of possible cancer chemopreventive agents showed antiangiogenic properties when tested in experimental models. This article reviews the relevant advances in the understanding of the rationale for targeting angiogenesis for cancer therapy, prevention, and interception and recently investigated substances with antiangiogenic activity that may be suitable for such strategies. Many compounds, either dietary derivatives or repurposed drugs, with antiangiogenic activity are possible tools for cancer angioprevention. Such molecules have a favorable safety profile and are likely to allow the prolonged duration necessary for an efficient preventive strategy. Recent evidence on mechanisms and possible use is described here for food derivatives, including flavonoids, retinoids, triterpenoids, omega fatty acids, and carotenoids from marine microorganisms. As examples, a number of compounds, including epigallocatechin, resveratrol, xanthohumol, hydroxytyrosol, curcumin, fenretinide, lycopene, fucoxanthin, and repurposed drugs, such as aspirin, β blockers, renin-angiotensin-aldosterone inhibitors, carnitines, and biguanides, are reviewed.
Collapse
Affiliation(s)
- Adriana Albini
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Douglas M Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- IRCCS MultiMedica, Milan, Italy
| | - Paola Corradino
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Francesca Magnoni
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giovanni Corso
- European Institute of Oncologi IEO, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
He Y, Yu Q, Ma X, Lv D, Wang H, Qiu W, Chen XF, Jiao Y, Liu Y. A metabolomics approach reveals metabolic disturbance of human cholangiocarcinoma cells after parthenolide treatment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118075. [PMID: 38513779 DOI: 10.1016/j.jep.2024.118075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tanacetum parthenium (L.) Schultz-Bip, commonly known as feverfew, has been traditionally used to treat fever, migraines, rheumatoid arthritis, and cancer. Parthenolide (PTL), the main bioactive ingredient isolated from the shoots of feverfew, is a sesquiterpene lactone with anti-inflammatory and antitumor properties. Previous studies showed that PTL exerts anticancer activity in various cancers, including hepatoma, cholangiocarcinoma, acute myeloid leukemia, breast, prostate, and colorectal cancer. However, the metabolic mechanism underlying the anticancer effect of PTL remains poorly understood. AIM OF THE STUDY To explore the anticancer activity and underlying mechanism of PTL in human cholangiocarcinoma cells. MATERIAL AND METHODS In this investigation, the effects and mechanisms of PTL on human cholangiocarcinoma cells were investigated via a liquid chromatography/mass spectrometry (LC/MS)-based metabolomics approach. First, cell proliferation and apoptosis were evaluated using cell counting kit-8 (CCK-8), flow cytometry analysis, and western blotting. Then, LC/MS-based metabolic profiling along with orthogonal partial least-squares discriminant analysis (OPLS-DA) has been constructed to distinguish the metabolic changes between the negative control group and the PTL-treated group in TFK1 cells. Next, enzyme-linked immunosorbent assay (ELISA) was applied to investigate the changes of metabolic enzymes associated with significantly alerted metabolites. Finally, the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established using MetaboAnalyst 5.0 and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database. RESULTS PTL treatment could induce the proliferation inhibition and apoptosis of TFK1 in a concentration-dependent manner. Forty-three potential biomarkers associated with the antitumor effect of PTL were identified, which primarily related to glutamine and glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, nicotinate and nicotinamide metabolism, pyrimidine metabolism, fatty acid metabolism, phospholipid catabolism, and sphingolipid metabolism. Pathway analysis of upstream and downstream metabolites, we found three key metabolic enzymes, including glutaminase (GLS), γ-glutamyl transpeptidase (GGT), and carnitine palmitoyltransferase 1 (CPT1), which mainly involved in glutamine and glutamate metabolism, glutathione metabolism, and fatty acid metabolism. The changes of metabolic enzymes associated with significantly alerted metabolites were consistent with the levels of metabolites, and the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established. PTL may exert its antitumor effect against cholangiocarcinoma by disturbing metabolic pathways. Furthermore, we selected two positive control agents that are considered as first-line chemotherapy standards in cholangiocarcinoma therapy to verify the reliability and accuracy of our metabolomic study on PTL. CONCLUSION This research enhanced our comprehension of the metabolic profiling and mechanism of PTL treatment on cholangiocarcinoma cells, which provided some references for further research into the anti-cancer mechanisms of other drugs.
Collapse
Affiliation(s)
- Yongping He
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China; School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Department of Pharmacy, The People's Hospital of Chongzuo, Guangxi, Chongzuo, 532200, China
| | - Qianxue Yu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xiaoyu Ma
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Diya Lv
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hui Wang
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Weian Qiu
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China
| | - Xiao Fei Chen
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Yang Jiao
- School of Pharmacy, Guangxi Medical University, Guangxi, Nanning, 530021, China.
| | - Yue Liu
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
4
|
Li ZC, Wang J, Liu HB, Zheng YM, Huang JH, Cai JB, Zhang L, Liu X, Du L, Yang XT, Chai XQ, Jiang YH, Ren ZG, Zhou J, Fan J, Yu DC, Sun HC, Huang C, Liu F. Proteomic and metabolomic features in patients with HCC responding to lenvatinib and anti-PD1 therapy. Cell Rep 2024; 43:113877. [PMID: 38421869 DOI: 10.1016/j.celrep.2024.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Combination therapy (lenvatinib/programmed death-1 inhibitor) is effective for treating unresectable hepatocellular carcinoma (uHCC). We reveal that responders have better overall and progression-free survival, as well as high tumor mutation burden and special somatic variants. We analyze the proteome and metabolome of 82 plasma samples from patients with hepatocellular carcinoma (HCC; n = 51) and normal controls (n = 15), revealing that individual differences outweigh treatment differences. Responders exhibit enhanced activity in the alternative/lectin complement pathway and higher levels of lysophosphatidylcholines (LysoPCs), predicting a favorable prognosis. Non-responders are enriched for immunoglobulins, predicting worse outcomes. Compared to normal controls, HCC plasma proteins show acute inflammatory response and platelet activation, while LysoPCs decrease. Combination therapy increases LysoPCs/phosphocholines in responders. Logistic regression/random forest models using metabolomic features achieve good performance in the prediction of responders. Proteomic analysis of cancer tissues unveils molecular features that are associated with side effects in responders receiving combination therapy. In conclusion, our analysis identifies plasma features associated with uHCC responders to combination therapy.
Collapse
Affiliation(s)
- Zhong-Chen Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - He-Bin Liu
- Shanghai Omicsolution Co., Ltd., 28 Yuanwen Road, Shanghai 201199, China
| | - Yi-Min Zheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jian-Hang Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China; Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Institutes of Biomedical of Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xin Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Road, Shanghai 200071, China
| | - Ling Du
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Xue-Ting Yang
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Xiao-Qiang Chai
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China
| | - Zheng-Gang Ren
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - De-Cai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Feng Liu
- Minhang Hospital, Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, 131 DongAn Road, Shanghai 200032, China.
| |
Collapse
|
5
|
Li Z, Zhang Q, Zhang X, Jin Q, Yue Q, Li N, Liu H, Fujimoto M, Jin G. Dihydroartemisinin inhibits melanoma migration and metastasis by affecting angiogenesis. Phytother Res 2023. [PMID: 37982352 DOI: 10.1002/ptr.8065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Tumor angiogenesis is critical for tumor metastasis by providing oxygen, nutrients, and metastatic pathways. As a potential anti-angiogenic agent, Dihydroartemisinin (DHA) can effectively inhibit tumor metastasis. However, the mechanism how it regulates angiogenesis to affect tumor metastasis has not been fully clarified. To investigate the mechanisms of how DHA regulates melanoma progression. In this study, bioinformatics methods were used to analyze the correlation between angiogenesis and melanoma metastasis. Then, B16F10, A375, HUVECs and mouse metastasis models were adapted to clarify the inhibition of DHA in melanoma. GESA analysis revealed melanoma metastasis significantly positive correlated with angiogenesis. Meanwhile, DHA significantly decreased melanoma nodules and lung wet weight in metastatic tumor mice, and inhibited the expression of the angiogenic marker CD31 in vitro and in vivo. Similarly, DHA inhibited the expression of the angiogenic signal molecule VEGFR2 in A375 and B16F10 cells, and significantly suppressed the formation of their tubular structures. DHA-treated supernatants significantly inhibited the tubule-forming ability as well as lateral and longitudinal migration ability of HUVECs compared with untreated melanoma cell supernatants. Screening yielded the angiogenic pathways HIF-1α/VEGF, PI3K/ATK/mTOR associated with melanoma metastasis, and DHA may inhibit tumor metastasis by inhibiting these angiogenic pathways in melanoma cells to inhibit tumor metastasis. Further non-targeted metabolomics analysis revealed that DHA-treated model mice produced differential metabolites that were also associated with angiogenic pathways. DHA inhibits melanoma invasion and metastasis by mediating angiogenesis. These results have important implications for the potential use of DHA in treatment of melanoma.
Collapse
Affiliation(s)
- Zhaoxiang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Qi Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Xinyuan Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Qi Yue
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Na Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Huan Liu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Laboratory of Cutaneous Immunology, Osaka UniversityImmunology Frontier Research Center, Osaka, Japan
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
6
|
Farahzadi R, Hejazi MS, Molavi O, Pishgahzadeh E, Montazersaheb S, Jafari S. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9328344. [PMID: 37600065 PMCID: PMC10435298 DOI: 10.1155/2023/9328344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 08/22/2023]
Abstract
Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for β-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Alhusaini AM, Alsoghayer R, Alhushan L, Alanazi AM, Hasan IH. Acetyl-L-Carnitine and Liposomal Co-Enzyme Q 10 Attenuate Hepatic Inflammation, Apoptosis, and Fibrosis Induced by Propionic Acid. Int J Mol Sci 2023; 24:11519. [PMID: 37511276 PMCID: PMC10380200 DOI: 10.3390/ijms241411519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Propionic acid (PRA) is a metabolic end-product of enteric bacteria in the gut, and it is commonly used as a food preservative. Despite the necessity of PRA for immunity in the body, excessive exposure to this product may result in disruptive effects. The purpose of this study is to examine the hepatoprotective effects of acetyl-L-carnitine (A-CAR) and liposomal-coenzyme Q10 (L-CoQ10) against PRA-induced injury. Liver injury in rats was induced by oral administration of PRA, and A-CAR and L-CoQ10 were administered concurrently with PRA for 5 days. Oxidative stress, inflammatory, apoptotic, and fibrotic biomarkers were analyzed; the histology of liver tissue was assessed as well to further explore any pathological alterations. PRA caused significant increases in the levels of serum liver enzymes and hepatic oxidative stress, inflammatory, and apoptotic biomarker levels, along with histopathological alterations. Concurrent treatment with A-CAR and/or L-CoQ10 with PRA prevented tissue injury and decreased the levels of oxidative stress, proinflammatory cytokines, and apoptotic markers. Additionally, A-CAR and/or L-CoQ10 modulated the expression of high-mobility group box-1, cytokeratin-18, transforming growth factor-beta1, and SMAD3 in liver tissue. In conclusion, A-CAR and/or L-CoQ10 showed hepatoprotective efficacy by reducing oxidative stress, the inflammatory response, apoptosis, and fibrosis in liver tissue.
Collapse
Affiliation(s)
- Ahlam M Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Rahaf Alsoghayer
- Pharm D Program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Lina Alhushan
- Pharm D Program, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Abeer M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| | - Iman H Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11459, Saudi Arabia
| |
Collapse
|
8
|
Liao Z, Zhao L, Zhong F, Zhou Y, Lu T, Liu L, Gong X, Li J, Rao J. Serum and urine metabolomics analyses reveal metabolic pathways and biomarkers in relation to nasopharyngeal carcinoma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9469. [PMID: 36593223 DOI: 10.1002/rcm.9469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Nasopharyngeal carcinoma (NPC) is a malignant tumor that is endemic in Southeast Asia, North Africa, and southern China. There is an urgent need for effective early diagnosis and treatment of this disease since NPC is currently often detected at advanced stages. METHODS To reveal the underlying metabolic mechanisms and discover potential diagnostic biomarkers of NPC, we employed ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and UHPLC-Q-Exactive Orbitrap MS, respectively, to analyze 54 serum samples and 54 urine samples from 27 patients with NPC and 27 healthy control individuals. RESULTS A total of 1230 metabolites were determined in serum samples, and 181 of the 1230 metabolites were significantly changed in NPC patients. The 181 metabolites were enriched in 16 pathways, including biosynthesis of unsaturated fatty acids, cholesterol metabolism, and ferroptosis. A total of 2509 metabolites were detected in the urine samples. Among them, 179 metabolites were significantly altered in NPC patients, and these metabolites were enriched in eight pathways, including the tricarboxylic acid (TCA) cycle and caffeine metabolism. Seven metabolites, including creatinine and paraxanthine, were found to be significantly changed in both NPC serum and urine samples. Based on them, further biomarker analysis revealed that the panel of three serum metabolites, octanoylcarnitine, creatinine, and decanoyl-l-carnitine, displayed a perfect diagnostic performance (area under the curve [AUC] = 0.973) to distinguish NPC patients from controls, while the other three-metabolite biomarker panel, consisting of stachydrine, decanoyl-l-carnitine, and paraxanthine, had an AUC = 0.809 to distinguish NPC and control in urine samples. CONCLUSION This work highlights the key metabolites and metabolic pathways disturbed in NPC and presents potential biomarkers for effective diagnosis of this disease.
Collapse
Affiliation(s)
- Zhaohui Liao
- Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, People's Republic of China
| | - Li Zhao
- School of Nursing, Nanchang University, Nanchang, Jiangxi, China
| | - Fangyan Zhong
- Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, People's Republic of China
- National Health Commission Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital), Nanchang, Jiangxi, China
| | - Yumeng Zhou
- Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, People's Republic of China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Tianzhu Lu
- Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, People's Republic of China
- National Health Commission Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital), Nanchang, Jiangxi, China
| | - Lijuan Liu
- Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, People's Republic of China
- National Health Commission Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital), Nanchang, Jiangxi, China
| | - Xiaochang Gong
- Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, People's Republic of China
- National Health Commission Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital), Nanchang, Jiangxi, China
| | - Jingao Li
- Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, People's Republic of China
- National Health Commission Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital), Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Jun Rao
- Jiangxi Clinical Research Center for Cancer, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, People's Republic of China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Albogami S. The Potential Inhibitory Role of Acetyl-L-Carnitine on Proliferation, Migration, and Gene Expression in HepG2 and HT29 Human Adenocarcinoma Cell Lines. Curr Issues Mol Biol 2023; 45:2393-2408. [PMID: 36975525 PMCID: PMC10046977 DOI: 10.3390/cimb45030155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Malignancies of the liver and colon are the most prevalent forms of digestive system cancer globally. Chemotherapy, one of the most significant treatments, has severe side effects. Chemoprevention using natural or synthetic medications can potentially reduce cancer severity. Acetyl-L-carnitine (ALC) is an acetylated derivative of carnitine essential for intermediate metabolism in most tissues. This study aimed to investigate the effects of ALC on the proliferation, migration, and gene expression of human liver (HepG2) and colorectal (HT29) adenocarcinoma cell lines. The cell viability and half maximal inhibitory concentration of both cancer cell lines were determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Wound healing after treatment was assessed using a migration assay. Morphological changes were imaged using brightfield and fluorescence microscopy. Post treatment, apoptotic DNA was detected using a DNA fragmentation assay. The relative mRNA expressions of matrix metallopeptidase 9 (MMP9) and vascular endothelial growth factor (VEGF) were evaluated using RT-PCR. The results showed that ALC treatment affects the wound-healing ability of HepG2 and HT29 cell lines. Changes in nuclear morphology were detected under fluorescent microscopy. ALC also downregulates the expression levels of MMP9 and VEGF in HepG2 and HT29 cell lines. Our results indicate that the anticancer action of ALC is likely mediated by a decrease in adhesion, migration, and invasion.
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
10
|
The Association of Serum L-Carnitine Concentrations with the Risk of Cancer in Chinese Adults with Hypertension. Nutrients 2022; 14:nu14234999. [PMID: 36501029 PMCID: PMC9738465 DOI: 10.3390/nu14234999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The effect of serum L-carnitine (LC) concentrations on cancer risk remains unclear. This study aims to explore the association between serum LC and the risk of incident cancer. METHODS This is a case-control study, including 574 patients with incident cancer and 574 controls matched in a 1:1 ratio by age, sex, and residence, nested within the China H-Type Hypertension Registry Study (CHHRS). Conditional logistic regression analysis was used to assess the association of serum LC and incident cancer risk. RESULTS When LC was assessed as quartiles, compared with patients with low LC (Q1), patients in the highest quartile (Q4) had a 33% (OR = 0.67, 95% CI: 0.46 to 0.99), 52% (OR = 0.48, 95% CI: 0.23 to 0.99), and 39% (OR = 0.61, 95% CI: 0.38 to 0.99) decreased risk of overall, digestive system, and non-digestive system cancer in the adjusted models, respectively. In subgroup analyses, an inverse association of LC with cancer risk was observed in individuals who were overweight (obese), who never drink, who never smoke, and who were female. In the mediation analysis, serum trimethylamine-N-oxide (TMAO) concentrations did not mediate the reversed association of LC with cancer risk. CONCLUSIONS This study showed that serum LC concentrations had a protective impact on overall, digestive system, and non-digestive system cancer risk.
Collapse
|
11
|
Manjunath M, Swaroop S, Pradhan SS, Rao K R, Mahadeva R, Sivaramakrishnan V, Choudhary B. Integrated Transcriptome and Metabolomic Analysis Reveal Anti-Angiogenic Properties of Disarib, a Novel Bcl2-Specific Inhibitor. Genes (Basel) 2022; 13:genes13071208. [PMID: 35885991 PMCID: PMC9316176 DOI: 10.3390/genes13071208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Transcriptomic profiling of several drugs in cancer cell lines has been utilised to obtain drug-specific signatures and guided combination therapy to combat drug resistance and toxicity. Global metabolomics reflects changes due to altered activity of enzymes, environmental factors, etc. Integrating transcriptomics and metabolomics can provide genotype-phenotype correlation, providing meaningful insights into alterations in gene expression and its outcome to understand differential metabolism and guide therapy. This study uses a multi-omics approach to understand the global gene expression and metabolite changes induced by Disarib, a novel Bcl2-specific inhibitor in the Ehrlich adenocarcinoma (EAC) breast cancer mouse model. RNAseq analysis was performed on EAC mouse tumours treated with Disarib and compared to the controls. The expression of 6 oncogenes and 101 tumour suppressor genes interacting with Bcl2 and Bak were modulated upon Disarib treatment. Cancer hallmark pathways like DNA repair, Cell cycle, angiogenesis, and mitochondrial metabolism were downregulated, and programmed cell death platelet-related pathways were upregulated. Global metabolomic profiling using LC-MS revealed that Oncometabolites like carnitine, oleic acid, glycine, and arginine were elevated in tumour mice compared to normal and were downregulated upon Disarib treatment. Integrated transcriptomic and metabolomic profiles identified arginine metabolism, histidine, and purine metabolism to be altered upon Disarib treatment. Pro-angiogenic metabolites, arginine, palmitic acid, oleic acid, and myristoleic acid were downregulated in Disarib-treated mice. We further validated the effect of Disarib on angiogenesis by qRT-PCR analysis of genes in the VEGF pathway. Disarib treatment led to the downregulation of pro-angiogenic markers. Furthermore, the chorioallantoic membrane assay displayed a reduction in the formation of the number of secondary blood vessels upon Disarib treatment. Disarib reduces tumours by reducing oncometabolite and activating apoptosis and downregulating angiogenesis.
Collapse
Affiliation(s)
- Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Raksha Rao K
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
| | - Raghunandan Mahadeva
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Anantapur 515001, Andhra Pradesh, India; (S.S.); (S.S.P.); (V.S.)
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru 560100, Karnataka, India; (M.M.); (R.R.K.); (R.M.)
- Correspondence:
| |
Collapse
|
12
|
Wang J, Zhou Y, Zhang D, Zhao W, Lu Y, Liu C, Lin W, Zhang Y, Chen K, Wang H, Zhao L. CRIP1 suppresses BBOX1-mediated carnitine metabolism to promote stemness in hepatocellular carcinoma. EMBO J 2022; 41:e110218. [PMID: 35775648 DOI: 10.15252/embj.2021110218] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Carnitine metabolism is thought to be negatively correlated with the progression of hepatocellular carcinoma (HCC) and the specific molecular mechanism is yet to be fully elucidated. Here, we report that little characterized cysteine-rich protein 1 (CRIP1) is upregulated in HCC and associated with poor prognosis. Moreover, CRIP1 promoted HCC cancer stem-like properties by downregulating carnitine energy metabolism. Mechanistically, CRIP1 interacted with BBOX1 and the E3 ligase STUB1, promoting BBOX1 ubiquitination and proteasomal degradation, and leading to the downregulation of carnitine. BBOX1 ubiquitination at lysine 240 is required for CRIP1-mediated control of carnitine metabolism and cancer stem-like properties. Further, our data showed that acetylcarnitine downregulation in CRIP1-overexpressing cells decreased beta-catenin acetylation and promoted nuclear accumulation of beta-catenin, thus facilitating cancer stem-like properties. Clinically, patients with higher CRIP1 protein levels had lower BBOX1 levels but higher nuclear beta-catenin levels in HCC tissues. Together, our findings identify CRIP1 as novel upstream control factor for carnitine metabolism and cancer stem-like properties, suggesting targeting of the CRIP1/BBOX1/β-catenin axis as a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yan Zhou
- Department of Medical Oncology, Affiliated Tumour Hospital of Guangzhou Medical University, Guangzhou, China
| | - Donghui Zhang
- Department of Pathology, Affiliated Tumour Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiyi Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yishi Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wandie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yujie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kunling Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Medical Oncology, Affiliated Tumour Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Xiang J, Zhong L, Luo H, Meng L, Dong Y, Qi Z, Wang H. A comparative analysis of carcass and meat traits, and rumen bacteria between Chinese Mongolian sheep and Dorper × Chinese Mongolian crossbred sheep. Animal 2022; 16:100503. [PMID: 35378496 DOI: 10.1016/j.animal.2022.100503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
Mutton is one of the most widely consumed meats globally. The Chinese Mongolian sheep (MS) breed is an indigenous breed of sheep characterised by high-quality meat and strong adaptability. Dorper × Chinese Mongolian crossbred sheep (DS) is an improved breed with a rapid growth rate and high mutton yield found in parts of China. The rumen microbiota is known to play a key role in shaping host nutrition and health. However, the carcass traits and meat nutritional qualities of DS and MS remain poorly defined, as does how rumen microbes affect these characteristics. The objective of this study was to compare carcass profiles, rumen bacterial communities, and meat nutritional qualities between MS and DS and clarify the associations between rumen microbiota and meat nutritional composition. We found that DS had a faster growth rate and better carcass traits than MS, including BW, carcass weight, meat weight, and loin-eye area. We further found that metabolite and rumen bacterial community composition differed between the two sheep breeds. First, compared with MS, DS had lower contents of some sweet amino acids, monounsaturated fatty acids, n-3 polyunsaturated fatty acids, and beneficial metabolites. Secondly, MS and DS had distinct rumen bacterial compositions, and these differential bacteria were related to carcass traits as well as to contents of meat amino acids, free fatty acids, and other metabolites. Taken together, our data showed that DS had better carcass characteristics but lower meat nutritional quality, parameters that were associated with differences in rumen bacterial community composition. These findings may benefit future breeding strategies aimed at improving sheep carcass performance and meat quality worldwide.
Collapse
Affiliation(s)
- Jinzhu Xiang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 020020, China
| | - Liang Zhong
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang 050051, China
| | - Hui Luo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 020020, China
| | - Lingbo Meng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 020020, China
| | - Yanbing Dong
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 020020, China
| | - Zhi Qi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 020020, China
| | - Hanning Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 020020, China.
| |
Collapse
|
14
|
Prediction of Metabolic Profiles from Transcriptomics Data in Human Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23073867. [PMID: 35409231 PMCID: PMC8998886 DOI: 10.3390/ijms23073867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The Metabolome and Transcriptome are mutually communicating within cancer cells, and this interplay is translated into the existence of quantifiable correlation structures between gene expression and metabolite abundance levels. Studying these correlations could provide a novel venue of understanding cancer and the discovery of novel biomarkers and pharmacological strategies, as well as laying the foundation for the prediction of metabolite quantities by leveraging information from the more widespread transcriptomics data. In the current paper, we investigate the correlation between gene expression and metabolite levels in the Cancer Cell Line Encyclopedia dataset, building a direct correlation network between the two molecular ensembles. We show that a metabolite/transcript correlation network can be used to predict metabolite levels in different samples and datasets, such as the NCI-60 cancer cell line dataset, both on a sample-by-sample basis and in differential contrasts. We also show that metabolite levels can be predicted in principle on any sample and dataset for which transcriptomics data are available, such as the Cancer Genome Atlas (TCGA).
Collapse
|
15
|
Zahednezhad F, Shahbazi Mojarrad J, Zakeri-Milani P, Baradaran B, Mahmoudian M, Sarfraz M, Valizadeh H. Surface modification with cholesteryl acetyl carnitine, a novel cationic agent, elevates cancer cell uptake of the PEGylated liposomes. Int J Pharm 2021; 609:121148. [PMID: 34600054 DOI: 10.1016/j.ijpharm.2021.121148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022]
Abstract
The present study aimed to synthesize cholesteryl acetyl carnitine (CAC), and surface modify the PEGylated liposomes with the intention of enhanced cancer cell uptake. For this, CAC synthesis was performed in amine-free esterification conditions and then four liposomal formulations of unmodified, CAC/PEG, and CAC + PEG-modified were prepared by ethanol injection method. Cytotoxicity of the liposomes was investigated in A549 cells, followed by cellular uptake assessments of coumarin 6 (C6)-loaded liposomes. The results of ATR-FTIR, 1HNMR, and 13CNMR demonstrated successful formation of CAC. A molecular docking study showed efficient binding affinities rather than carnitine to the active site of four carnitine transporters. Liposomal formulations possessed spherical morphology with a mean particle size range of 112-138 nm, narrow size distribution, and negative surface charge. All formulations had low cytotoxicity at 0.5 mg/ml, but high cytotoxicity at around 2.5 mg/ml. The lowest IC50 was obtained for CAC modified liposomes. CAC + PEG-modified liposomes had the highest cellular uptake. In conclusion, CAC + PEG modification of liposomes is an effective approach for increasing A549 cellular uptake, with low cytotoxicity at commonly applied liposome concentrations. The elevated uptake may be due to the involvement of the organic cation transporter, cationic structure, and the metabolic preference of CAC in cancer cells.
Collapse
Affiliation(s)
- Fahimeh Zahednezhad
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mahmoudian
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
16
|
Nenseth HZ, Sahu A, Saatcioglu F, Osguthorpe S. A Nutraceutical Formula Is Effective in Raising the Circulating Vitamin and Mineral Levels in Healthy Subjects: A Randomized Trial. Front Nutr 2021; 8:703394. [PMID: 34540877 PMCID: PMC8440802 DOI: 10.3389/fnut.2021.703394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Low levels of nutrient intake are common in industrialized countries. This has negative implications on health and is associated with chronic diseases. Supplementation of vitamins, minerals, and key nutrients to optimal levels may, therefore, be beneficial for individual health and for the health economy. Although the use of supplements has become very common, due to a lack of monitoring, there is very limited data on the efficacy of supplementation with different formulas. In this study, we present the results of a randomized controlled study on the efficacy of a novel formulated nutraceutical, N247, in 250 healthy volunteers aged 26-75 years and a placebo control group (n = 35). The broad-spectrum formulation of N247 includes essential vitamins, minerals, and trace elements that are adequately balanced in regard to synergies and related metabolic functions. Moreover, tolerance, safety, and nutrient availability is an important aspect of daily, long-term use of N247. After 3 months of regular N247 use, levels of vitamins and minerals in serum were significantly increased in the N247 group compared with the control group and a placebo group, with excellent compliance rates. Coupled with additional natural ingredients that aim to increase the potency of the nutrients, N247 may represent a novel and beneficial supplement for individuals with nutritional deficiencies. Clinical Trial Registration:https://clinicaltrials.gov/, identifier: NCT04054505.
Collapse
Affiliation(s)
| | - Aparna Sahu
- Turiyan Psyneuronics Pvt. Ltd, Bangalore, India
| | | | | |
Collapse
|
17
|
Samson F, Fabunmi TE, Patrick AT, Jee D, Gutsaeva DR, Jahng WJ. Fatty Acid Composition and Stoichiometry Determine the Angiogenesis Microenvironment. ACS OMEGA 2021; 6:5953-5961. [PMID: 33681633 PMCID: PMC7931378 DOI: 10.1021/acsomega.1c00196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 05/11/2023]
Abstract
The current study tested the hypothesis of whether specific lipids may control angiogenic reactions. Using the chorioallantoic membrane assay of the chick embryo, new vessel formation was analyzed quantitatively by gas chromatography and mass spectrometry as well as bioinformatics tools including an angiogenesis analyzer. Our biochemical experiments showed that a specific lipid composition and stoichiometry determine the angiogenesis microenvironment to accelerate or inhibit vessel formation. Specific lipids of angiogenesis determinants in the vessel area and the non-vessel area were identified as nitrooleic acid, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), palmitic acid, oleic acid, linoleic acid, linolenic acid, epoxyoleic acid, lysophosphatidylcholine (LPC), cholesterol, 7-ketocholesterol, and docosahexaenoyl lysophosphatidylcholine (DHA-LPC). Vessel formation happens on the surface area of the hydrophilic membrane of the yolk. Our biochemical data demonstrated that angiogenesis was followed in the white lipid complex area to generate more branches, junctions, segments, and extremities. We analyzed lipid fragments in the vessel, non-vessel, and albumen area to show that each area contains a specific lipid composition and stoichiometry. Mass spectrometry data demonstrated that the vessel area has higher concentrations of nitrooleic acid, palmitic acid, stearic acid, LPC, lysophosphatidylethanolamine, cholesterol, oleic acid, linoleic acid, 7-ketocholesterol, and DHA-LPC; however, DHA and EPA were abundant in the hydrophobic non-vessel area. The purpose of vessel formation is to wrap up the yolk area to transport nutrients including specific fatty acids. Besides, angiogenesis requires aqueous albumen shown by distance-dependent vessel formation from albumen and oxygen. Higher concentrations of fatty acids are required for energy and carbon structure from the carbon-carbon bond, membrane building blocks, and amphiphilic detergent to solubilize a hydrophobic environment in the aqueous blood layer. The current study may guide that the uncovered hydrophobic or zwitterionic molecules such as DHA and DHA-LPC may control angiogenesis as antiangiogenic or proangiogenic molecules as potential drug targets for treating uncontrolled angiogenesis-related diseases, including diabetic retinopathy and age-related macular degeneration.
Collapse
Affiliation(s)
| | - Tosin Esther Fabunmi
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Ambrose Teru Patrick
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
| | - Donghyun Jee
- Department
of Ophthalmology and Visual Science, St. Vincent’s Hospital,
College of Medicine, The Catholic University
of Korea, Suwon 16247, Korea
| | - Diana R. Gutsaeva
- Department
of Ophthalmology, Augusta University, Augusta, Georgia 30912, United States
| | - Wan Jin Jahng
- Department
of Petroleum Chemistry, American University
of Nigeria, Yola 640101, Nigeria
- . Phone: +234-805-550-1032
| |
Collapse
|
18
|
Rashid MM, Lee H, Jung BH. Evaluation of the antitumor effects of PP242 in a colon cancer xenograft mouse model using comprehensive metabolomics and lipidomics. Sci Rep 2020; 10:17523. [PMID: 33067464 PMCID: PMC7568555 DOI: 10.1038/s41598-020-73721-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/22/2020] [Indexed: 01/16/2023] Open
Abstract
PP242, an inhibitor of mechanistic target of rapamycin (mTOR), displays potent anticancer effects against various cancer types. However, the underlying metabolic mechanism associated with the PP242 effects is not clearly understood. In this study, comprehensive metabolomics and lipidomics investigations were performed using ultra-high-performance chromatography-Orbitrap-mass spectrometry (UHPLC-Orbitrap-MS) in plasma and tumor tissue to reveal the metabolic mechanism of PP242 in an LS174T cell-induced colon cancer xenograft mouse model. After 3 weeks of PP242 treatment, a reduction in tumor size and weight was observed without any critical toxicities. According to results, metabolic changes due to the effects of PP242 were not significant in plasma. In contrast, metabolic changes in tumor tissues were very significant in the PP242-treated group compared to the xenograft control (XC) group, and revealed that energy and lipid metabolism were mainly altered by PP242 treatment like other cancer inhibitors. Additionally, in this study, it was discovered that not only TCA cycle but also fatty acid β-oxidation (β-FAO) for energy metabolism was inhibited and clear reduction in glycerophospholipid was observed. This study reveals new insights into the underlying anticancer mechanism of the dual mTOR inhibitor PP242, and could help further to facilitate the understanding of PP242 effects in the clinical application.
Collapse
Affiliation(s)
- Md Mamunur Rashid
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Hyunbeom Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea. .,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea.
| |
Collapse
|
19
|
Crocetto F, Boccellino M, Barone B, Di Zazzo E, Sciarra A, Galasso G, Settembre G, Quagliuolo L, Imbimbo C, Boffo S, Angelillo IF, Di Domenico M. The Crosstalk between Prostate Cancer and Microbiota Inflammation: Nutraceutical Products Are Useful to Balance This Interplay? Nutrients 2020; 12:E2648. [PMID: 32878054 PMCID: PMC7551491 DOI: 10.3390/nu12092648] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
The human microbiota shows pivotal roles in urologic health and disease. Emerging studies indicate that gut and urinary microbiomes can impact several urological diseases, both benignant and malignant, acting particularly on prostate inflammation and prostate cancer. Indeed, the microbiota exerts its influence on prostate cancer initiation and/or progression mechanisms through the regulation of chronic inflammation, apoptotic processes, cytokines, and hormonal production in response to different pathogenic noxae. Additionally, therapies' and drugs' responses are influenced in their efficacy and tolerability by microbiota composition. Due to this complex potential interconnection between prostate cancer and microbiota, exploration and understanding of the involved relationships is pivotal to evaluate a potential therapeutic application in clinical practice. Several natural compounds, moreover, seem to have relevant effects, directly or mediated by microbiota, on urologic health, posing the human microbiota at the crossroad between prostatic inflammation and prostate cancer development. Here, we aim to analyze the most recent evidence regarding the possible crosstalk between prostate, microbiome, and inflammation.
Collapse
Affiliation(s)
- Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80135 Naples, Italy; (F.C.); (B.B.); (C.I.)
| | - Mariarosaria Boccellino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Biagio Barone
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80135 Naples, Italy; (F.C.); (B.B.); (C.I.)
| | - Erika Di Zazzo
- Department of Health Science “V. Tiberio”, 86100 Campobasso, Italy
| | - Antonella Sciarra
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80135 Naples, Italy;
| | - Giovanni Galasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Giuliana Settembre
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Lucio Quagliuolo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80135 Naples, Italy; (F.C.); (B.B.); (C.I.)
| | - Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, 19122 PA, USA;
| | | | - Marina Di Domenico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80135 Naples, Italy; (M.B.); (G.G.); (G.S.); (L.Q.); (M.D.D.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, 19122 PA, USA;
| |
Collapse
|
20
|
Durazzo A, Lucarini M, Nazhand A, Souto SB, Silva AM, Severino P, Souto EB, Santini A. The Nutraceutical Value of Carnitine and Its Use in Dietary Supplements. Molecules 2020; 25:E2127. [PMID: 32370025 PMCID: PMC7249051 DOI: 10.3390/molecules25092127] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Carnitine can be considered a conditionally essential nutrient for its importance in human physiology. This paper provides an updated picture of the main features of carnitine outlining its interest and possible use. Particular attention has been addressed to its beneficial properties, exploiting carnitine's properties and possible use by considering the main in vitro, in animal, and human studies. Moreover, the main aspects of carnitine-based dietary supplements have been indicated and defined with reference to their possible beneficial health properties.
Collapse
Affiliation(s)
- Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Amirhossein Nazhand
- Department of Biotechnology, Sari Agriculture Science and Natural Resource University, 9th km of Farah Abad Road, Sari 48181 68984, Mazandaran, Iran;
| | - Selma B. Souto
- Department of Endocrinology of Hospital São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), P-5001-801 Vila Real, Portugal
| | - Patrícia Severino
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Av. Murilo Dantas 300, Aracaju 49032-490, Brazil;
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via. D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
21
|
Baci D, Bruno A, Cascini C, Gallazzi M, Mortara L, Sessa F, Pelosi G, Albini A, Noonan DM. Acetyl-L-Carnitine downregulates invasion (CXCR4/CXCL12, MMP-9) and angiogenesis (VEGF, CXCL8) pathways in prostate cancer cells: rationale for prevention and interception strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:464. [PMID: 31718684 PMCID: PMC6852951 DOI: 10.1186/s13046-019-1461-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/21/2019] [Indexed: 01/04/2023]
Abstract
Background Prostate cancer (PCa) is a leading cause of cancer-related death in males worldwide. Exacerbated inflammation and angiogenesis have been largely demonstrated to contribute to PCa progression. Diverse naturally occurring compounds and dietary supplements are endowed with anti-oxidant, anti-inflammatory and anti-angiogenic activities, representing valid compounds to target the aberrant cytokine/chemokine production governing PCa progression and angiogenesis, in a chemopreventive setting. Using mass spectrometry analysis on serum samples of prostate cancer patients, we have previously found higher levels of carnitines in non-cancer individuals, suggesting a protective role. Here we investigated the ability of Acetyl-L-carnitine (ALCAR) to interfere with key functional properties of prostate cancer progression and angiogenesis in vitro and in vivo and identified target molecules modulated by ALCAR. Methods The chemopreventive/angiopreventive activities ALCAR were investigated in vitro on four different prostate cancer (PCa) cell lines (PC-3, DU-145, LNCaP, 22Rv1) and a benign prostatic hyperplasia (BPH) cell line. The effects of ALCAR on the induction of apoptosis and cell cycle arrest were investigated by flow cytometry (FC). Functional analysis of cell adhesion, migration and invasion (Boyden chambers) were performed. ALCAR modulation of surface antigen receptor (chemokines) and intracellular cytokine production was assessed by FC. The release of pro-angiogenic factors was detected by a multiplex immunoassay. The effects of ALCAR on PCa cell growth in vivo was investigated using tumour xenografts. Results We found that ALCAR reduces cell proliferation, induces apoptosis, hinders the production of pro inflammatory cytokines (TNF-α and IFN-γ) and of chemokines CCL2, CXCL12 and receptor CXCR4 involved in the chemotactic axis and impairs the adhesion, migration and invasion capabilities of PCa and BPH cells in vitro. ALCAR exerts angiopreventive activities on PCa by reducing production/release of pro angiogenic factors (VEGF, CXCL8, CCL2, angiogenin) and metalloprotease MMP-9. Exposure of endothelial cells to conditioned media from PCa cells, pre-treated with ALCAR, inhibited the expression of CXCR4, CXCR1, CXCR2 and CCR2 compared to those from untreated cells. Oral administration (drinking water) of ALCAR to mice xenografted with two different PCa cell lines, resulted in reduced tumour cell growth in vivo. Conclusions Our results highlight the capability of ALCAR to down-modulate growth, adhesion, migration and invasion of prostate cancer cells, by reducing the production of several crucial chemokines, cytokines and MMP9. ALCAR is a widely diffused dietary supplements and our findings provide a rational for studying ALCAR as a possible molecule for chemoprevention approaches in subjects at high risk to develop prostate cancer. We propose ALCAR as a new possible “repurposed agent’ for cancer prevention and interception, similar to aspirin, metformin or beta-blockers.
Collapse
Affiliation(s)
- Denisa Baci
- School of Medicine and Surgery, University of Milano-Bicocca, Building U8, Via Cadore 48, 20900, Monza, Italy
| | - Antonino Bruno
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Caterina Cascini
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Matteo Gallazzi
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy
| | - Lorenzo Mortara
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giuseppe Pelosi
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Adriana Albini
- School of Medicine and Surgery, University of Milano-Bicocca, Building U8, Via Cadore 48, 20900, Monza, Italy. .,Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.
| | - Douglas M Noonan
- Science and Technology Pole (PST), IRCCS MultiMedica, Milan, Italy.,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
22
|
Takaya H, Namisaki T, Kitade M, Shimozato N, Kaji K, Tsuji Y, Nakanishi K, Noguchi R, Fujinaga Y, Sawada Y, Saikawa S, Sato S, Kawaratani H, Moriya K, Akahane T, Yoshiji H. Acylcarnitine: Useful biomarker for early diagnosis of hepatocellular carcinoma in non-steatohepatitis patients. World J Gastrointest Oncol 2019; 11:887-897. [PMID: 31662827 PMCID: PMC6815927 DOI: 10.4251/wjgo.v11.i10.887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early diagnosis of hepatocellular carcinoma (HCC) is necessary to improve the prognosis of patients. However, the currently available tumor biomarkers are insufficient for the early detection of HCC. Acylcarnitine is essential in fatty acid metabolic pathways. A recent study reported that a high level of acylcarnitine may serve as a useful biomarker for the early diagnosis of HCC in steatohepatitis (SH) patients. In contrast, another study reported that the level of acetylcarnitine (AC2) - one of the acylcarnitine species - in non-SH patients with HCC was decreased vs that reported in those without HCC.
AIM To investigate the usefulness of acylcarnitine as a biomarker for the early diagnosis of HCC in non-SH patients.
METHODS Thirty-three non-SH patients (14 with HCC and 19 without HCC) were enrolled in this study. Blood samples were obtained from patients at the time of admission. The levels of acylcarnitine and AC2 in the serum were determined through tandem mass spectrometry. The levels of vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR-2) were determined by enzyme-linked immunosorbent assay. Univariate and multivariate analyses were used to determine early diagnostic factors of HCC.
RESULTS The level of acylcarnitine was significantly lower in non-SH patients with HCC vs those without HCC (P < 0.05). In contrast, the level of lens culinaris agglutinin-reactive fraction of α-fetoprotein (AFP) - AFP-L3% - was significantly higher in non-SH patients with HCC vs those without HCC (P < 0.05). However, the levels of total carnitine, free carnitine, AFP, des-γ-carboxy prothrombin, VEGF, and VEGFR-2 were not different between patients with and without HCC. The multivariate analysis showed that a low level of acylcarnitine was the only independent factor for the early diagnosis of HCC. The patients with a low level of AC2 had a significantly higher level of VEGF vs those with a high level of AC2 (P < 0.05).
CONCLUSION The metabolic pathways of fatty acids may differ between SH HCC and non-SH HCC. Further studies are warranted to investigate these differences.
Collapse
Affiliation(s)
- Hiroaki Takaya
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Mitsuteru Kitade
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Naotaka Shimozato
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Yuki Tsuji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Keisuke Nakanishi
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Ryuichi Noguchi
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Yukihisa Fujinaga
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Yasuhiko Sawada
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Soichiro Saikawa
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Shinya Sato
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Takemi Akahane
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 6348522, Japan
| |
Collapse
|
23
|
Zaimenko I, Jaeger C, Brenner H, Chang-Claude J, Hoffmeister M, Grötzinger C, Detjen K, Burock S, Schmitt CA, Stein U, Lisec J. Non-invasive metastasis prognosis from plasma metabolites in stage II colorectal cancer patients: The DACHS study. Int J Cancer 2019; 145:221-231. [PMID: 30560999 DOI: 10.1002/ijc.32076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
Metastasis is the main cause of death from colorectal cancer (CRC). About 20% of stage II CRC patients develop metastasis during the course of disease. We performed metabolic profiling of plasma samples from non-metastasized and metachronously metastasized stage II CRC patients to assess the potential of plasma metabolites to serve as biomarkers for stratification of stage II CRC patients according to metastasis risk. We compared the metabolic profiles of plasma samples prospectively obtained prior to metastasis formation from non-metastasized vs. metachronously metastasized stage II CRC patients of the German population-based case-control multicenter DACHS study retrospectively. Plasma samples were analyzed from stage II CRC patients for whom follow-up data including the information on metachronous metastasis were available. To identify metabolites distinguishing non-metastasized from metachronously metastasized stage II CRC patients robust supervised classifications using decision trees and support vector machines were performed and verified by 10-fold cross-validation, by nested cross-validation and by traditional validation using training and test sets. We found that metabolic profiles distinguish non-metastasized from metachronously metastasized stage II CRC patients. Classification models from decision trees and support vector machines with 10-fold cross-validation gave average accuracy of 0.75 (sensitivity 0.79, specificity 0.7) and 0.82 (sensitivity 0.85, specificity 0.77), respectively, correctly predicting metachronous metastasis in stage II CRC patients. Taken together, plasma metabolic profiles distinguished non-metastasized and metachronously metastasized stage II CRC patients. The classification models consisting of few metabolites stratify non-invasively stage II CRC patients according to their risk for metachronous metastasis.
Collapse
Affiliation(s)
- Inna Zaimenko
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Carsten Jaeger
- Berlin Institute of Health, Berlin, Germany.,Medical Department, Division of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carsten Grötzinger
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susen Burock
- Charité Comprehensive Cancer Center, Berlin, Germany
| | - Clemens A Schmitt
- Medical Department, Division of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Lisec
- Medical Department, Division of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany.,Division of Analytical Chemistry, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
24
|
Servillo L, D'Onofrio N, Neglia G, Casale R, Cautela D, Marrelli M, Limone A, Campanile G, Balestrieri ML. Carnitine Precursors and Short-Chain Acylcarnitines in Water Buffalo Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8142-8149. [PMID: 30011990 DOI: 10.1021/acs.jafc.8b02963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ruminants' milk contains δ-valerobetaine originating from rumen through the transformation of dietary Nε-trimethyllysine. Among ruminant's milk, the occurrence of δ-valerobetaine, along with carnitine precursors and metabolites, has not been investigated in buffalo milk, the second most worldwide consumed milk, well-known for its nutritional value. HPLC-ESI-MS/MS analyses of bulk milk revealed that the Italian Mediterranean buffalo milk contains δ-valerobetaine at levels higher than those in bovine milk. Importantly, we detected also γ-butyrobetaine, the l-carnitine precursor, never described so far in any milk. Of interest, buffalo milk shows higher levels of acetylcarnitine, propionylcarnitine, butyrylcarnitine, isobutyrylcarnitine, and 3-methylbutyrylcarnitine (isovalerylcarnitine) than cow milk. Moreover, buffalo milk shows isobutyrylcarnitine and butyrylcarnitine at a 1-to-1 molar ratio, while in cow's milk this ratio is 5 to 1. Results indicate a peculiar short-chain acylcarnitine profile characterizing buffalo milk, widening the current knowledge about its composition and nutritional value.
Collapse
Affiliation(s)
- Luigi Servillo
- Department of Precision Medicine , University of Campania "L. Vanvitelli" , 80138 Naples , Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine , University of Campania "L. Vanvitelli" , 80138 Naples , Italy
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production , Federico II University , 80137 Naples , Italy
| | - Rosario Casale
- Department of Precision Medicine , University of Campania "L. Vanvitelli" , 80138 Naples , Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi , Azienda Speciale della Camera di Commercio di Reggio Calabria , 89125 Reggio Calabria , Italy
| | - Massimo Marrelli
- Maxillofacial Surgery Section , Marrelli Health , 88900 Crotone , Italy
| | - Antonio Limone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno , 80055 Naples , Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production , Federico II University , 80137 Naples , Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine , University of Campania "L. Vanvitelli" , 80138 Naples , Italy
| |
Collapse
|