1
|
Tan X, Zhao X. B7-H3 in acute myeloid leukemia: From prognostic biomarker to immunotherapeutic target. Chin Med J (Engl) 2024; 137:2540-2551. [PMID: 38595093 PMCID: PMC11556994 DOI: 10.1097/cm9.0000000000003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 04/11/2024] Open
Abstract
ABSTRACT B7-H3 (CD276), an immune checkpoint protein of the B7 family, exhibits significant upregulation in solid tumors and hematologic malignancies, exerting a crucial role in their pathophysiology. The distinct differential expression of B7-H3 between tumors and normal tissues and its multifaceted involvement in tumor pathogenesis position it as a promising therapeutic target for tumors. In the context of acute myeloid leukemia (AML), B7-H3 is prominently overexpressed and closely associated with unfavorable prognoses, yet it has remained understudied. Despite various ongoing clinical trials demonstrating the potential efficacy of immunotherapies targeting B7-H3, the precise underlying mechanisms responsible for B7-H3-mediated proliferation and immune evasion in AML remain enigmatic. In view of this, we comprehensively outline the current research progress concerning B7-H3 in AML, encompassing in-depth discussions on its structural attributes, receptor interactions, expression profiles, and biological significance in normal tissues and AML. Moreover, we delve into the protumor effects of B7-H3 in AML, examine the intricate mechanisms that underlie its function, and discuss the emerging application of B7-H3-targeted therapy in AML treatment. By juxtaposing B7-H3 with other molecules within the B7 family, this review emphasizes the distinctive advantages of B7-H3, not only as a valuable prognostic biomarker but also as a highly promising immunotherapeutic target in AML.
Collapse
Affiliation(s)
- Xiao Tan
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| | - Xiangyu Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, China
| |
Collapse
|
2
|
Miliotis C, Ma Y, Katopodi XL, Karagkouni D, Kanata E, Mattioli K, Kalavros N, Pita-Juárez YH, Batalini F, Ramnarine VR, Nanda S, Slack FJ, Vlachos IS. Determinants of gastric cancer immune escape identified from non-coding immune-landscape quantitative trait loci. Nat Commun 2024; 15:4319. [PMID: 38773080 PMCID: PMC11109163 DOI: 10.1038/s41467-024-48436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/23/2024] Open
Abstract
The landscape of non-coding mutations in cancer progression and immune evasion is largely unexplored. Here, we identify transcrptome-wide somatic and germline 3' untranslated region (3'-UTR) variants from 375 gastric cancer patients from The Cancer Genome Atlas. By performing gene expression quantitative trait loci (eQTL) and immune landscape QTL (ilQTL) analysis, we discover 3'-UTR variants with cis effects on expression and immune landscape phenotypes, such as immune cell infiltration and T cell receptor diversity. Using a massively parallel reporter assay, we distinguish between causal and correlative effects of 3'-UTR eQTLs in immune-related genes. Our approach identifies numerous 3'-UTR eQTLs and ilQTLs, providing a unique resource for the identification of immunotherapeutic targets and biomarkers. A prioritized ilQTL variant signature predicts response to immunotherapy better than standard-of-care PD-L1 expression in independent patient cohorts, showcasing the untapped potential of non-coding mutations in cancer.
Collapse
Affiliation(s)
- Christos Miliotis
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard Program in Virology, Harvard University Graduate School of Arts and Sciences, Boston, MA, USA
| | - Yuling Ma
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xanthi-Lida Katopodi
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Dimitra Karagkouni
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eleni Kanata
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kaia Mattioli
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nikolas Kalavros
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yered H Pita-Juárez
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felipe Batalini
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Oncology, Department of Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Varune R Ramnarine
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shivani Nanda
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ioannis S Vlachos
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Spatial Technologies Unit, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
3
|
Zhou H, Yu CY, Wei H. Liposome-based nanomedicine for immune checkpoint blocking therapy and combinatory cancer therapy. Int J Pharm 2024; 652:123818. [PMID: 38253269 DOI: 10.1016/j.ijpharm.2024.123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
The discovery of immune checkpoint (IC) has led to a wave of leap forward in cancer immunotherapy that represents probably the most promising strategy for cancer therapy. However, the clinical use of immune checkpoint block (ICB) therapy is limited by response rates and side effects. A strategy that addresses the limitations of ICB therapies through combination therapies, using nanocarriers as mediators, has been mentioned in numerous research papers. Liposomes have been probably one of the most extensively used nanocarriers for clinical applications, with broad drug delivery and high safety. A timely review on this hot subject of research, i.e., the application of liposomes for ICB, is thus highly desirable for both fundamental and clinical translatable studies, but remains, to our knowledge, unexplored so far. For this purpose, this review is composed to address the dilemma of ICB therapy and the reasons for this dilemma. We later describe how other cancer treatments have broken this dilemma. Finally, we focus on the role of liposomes in various combinatory cancer therapy. This review is believed to serve as a guidance for the rational design and development of liposome for immunotherapy with enhanced therapeutic efficiency.
Collapse
Affiliation(s)
- Haoyuan Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical of Science, Hengyang 421001, China.
| |
Collapse
|
4
|
Nicolini A, Ferrari P. Targeted Therapies and Drug Resistance in Advanced Breast Cancer, Alternative Strategies and the Way beyond. Cancers (Basel) 2024; 16:466. [PMID: 38275906 PMCID: PMC10814066 DOI: 10.3390/cancers16020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
"Targeted therapy" or "precision medicine" is a therapeutic strategy launched over two decades ago. It relies on drugs that inhibit key molecular mechanisms/pathways or genetic/epigenetic alterations that promote different cancer hallmarks. Many clinical trials, sponsored by multinational drug companies, have been carried out. During this time, research has increasingly uncovered the complexity of advanced breast cancer disease. Despite high expectations, patients have seen limited benefits from these clinical trials. Commonly, only a minority of trials are successful, and the few approved drugs are costly. The spread of this expensive therapeutic strategy has constrained the resources available for alternative research. Meanwhile, due to the high cost/benefit ratio, other therapeutic strategies have been proposed by researchers over time, though they are often not pursued due to a focus on precision medicine. Notable among these are drug repurposing and counteracting micrometastatic disease. The former provides an obvious answer to expensive targeted therapies, while the latter represents a new field to which efforts have recently been devoted, offering a "way beyond" the current research.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera—Universitaria Pisana, 56125 Pisa, Italy;
| |
Collapse
|
5
|
Saadi W, Fatmi A, Pallardó FV, García-Giménez JL, Mena-Molla S. Long Non-Coding RNAs as Epigenetic Regulators of Immune Checkpoints in Cancer Immunity. Cancers (Basel) 2022; 15:cancers15010184. [PMID: 36612180 PMCID: PMC9819025 DOI: 10.3390/cancers15010184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, cancer treatment has undergone significant changes, predominantly in the shift towards immunotherapeutic strategies using immune checkpoint inhibitors. Despite the clinical efficacy of many of these inhibitors, the overall response rate remains modest, and immunotherapies for many cancers have proved ineffective, highlighting the importance of knowing the tumor microenvironment and heterogeneity of each malignancy in patients. Long non-coding RNAs (lncRNAs) have attracted increasing attention for their ability to control various biological processes by targeting different molecular pathways. Some lncRNAs have a regulatory role in immune checkpoints, suggesting they might be utilized as a target for immune checkpoint treatment. The focus of this review is to describe relevant lncRNAs and their targets and functions to understand key regulatory mechanisms that may contribute in regulating immune checkpoints. We also provide the state of the art on super-enhancers lncRNAs (selncRNAs) and circular RNAs (circRNAs), which have recently been reported as modulators of immune checkpoint molecules within the framework of human cancer. Other feasible mechanisms of interaction between lncRNAs and immune checkpoints are also reported, along with the use of miRNAs and circRNAs, in generating new tumor immune microenvironments, which can further help avoid tumor evasion.
Collapse
Affiliation(s)
- Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
- Correspondence: (W.S.); (S.M.-M.)
| | - Ahlam Fatmi
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Salvador Mena-Molla
- INCLIVA Health Research Institute, INCLIVA, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (W.S.); (S.M.-M.)
| |
Collapse
|
6
|
Nicolini A, Ferrari P, Carpi A. Immune Checkpoint Inhibitors and Other Immune Therapies in Breast Cancer: A New Paradigm for Prolonged Adjuvant Immunotherapy. Biomedicines 2022; 10:biomedicines10102511. [PMID: 36289773 PMCID: PMC9599105 DOI: 10.3390/biomedicines10102511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Breast cancer is the most common form of cancer in women worldwide. Advances in the early diagnosis and treatment of cancer in the last decade have progressively decreased the cancer mortality rate, and in recent years, immunotherapy has emerged as a relevant tool against cancer. HER2+ and triple-negative breast cancers (TNBCs) are considered more immunogenic and suitable for this kind of treatment due to the higher rate of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression. In TNBC, genetic aberrations further favor immunogenicity due to more neo-antigens in cancer cells. Methods: This review summarizes the principal ongoing conventional and investigational immunotherapies in breast cancer. Particularly, immune checkpoint inhibitors (ICIs) and their use alone or combined with DNA damage repair inhibitors (DDRis) are described. Then, the issue on immunotherapy with monoclonal antibodies against HER-2 family receptors is updated. Other investigational immunotherapies include a new schedule based on the interferon beta-interleukin-2 sequence that was given in ER+ metastatic breast cancer patients concomitant with anti-estrogen therapy, which surprisingly showed promising results. Results: Based on the scientific literature and our own findings, the current evaluation of tumor immunogenicity and the conventional model of adjuvant chemotherapy (CT) are questioned. Conclusions: A novel strategy based on additional prolonged adjuvant immunotherapy combined with hormone therapy or alternated with CT is proposed.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, 56125 Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
7
|
Otmani K, Rouas R, Lewalle P. OncomiRs as noncoding RNAs having functions in cancer: Their role in immune suppression and clinical implications. Front Immunol 2022; 13:913951. [PMID: 36189271 PMCID: PMC9523483 DOI: 10.3389/fimmu.2022.913951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, microRNAs have been established as central players in tumorigenesis, but above all, they have opened an important door for our understanding of immune and tumor cell communication. This dialog is largely due to onco-miR transfer from tumor cells to cells of the tumor microenvironment by exosome. This review outlines recent advances regarding the role of oncomiRs in enhancing cancer and how they modulate the cancer-related immune response in the tumor immune microenvironment.MicroRNAs (miRNAs) are a type of noncoding RNA that are important posttranscriptional regulators of messenger RNA (mRNA) translation into proteins. By regulating gene expression, miRNAs enhance or inhibit cancer development and participate in several cancer biological processes, including proliferation, invasion metastasis, angiogenesis, chemoresistance and immune escape. Consistent with their widespread effects, miRNAs have been categorized as oncogenes (oncomiRs) or tumor suppressor (TS) miRNAs. MiRNAs that promote tumor growth, called oncomiRs, inhibit messenger RNAs of TS genes and are therefore overexpressed in cancer. In contrast, TS miRNAs inhibit oncogene messenger RNAs and are therefore underexpressed in cancer. Endogenous miRNAs regulate different cellular pathways in all cell types. Therefore, they are not only key modulators in cancer cells but also in the cells constituting their microenvironments. Recently, it was shown that miRNAs are also involved in intercellular communication. Indeed, miRNAs can be transferred from one cell type to another where they regulate targeted gene expression. The primary carriers for the transfer of miRNAs from one cell to another are exosomes. Exosomes are currently considered the primary carriers for communication between the tumor and its surrounding stromal cells to support cancer progression and drive immune suppression. Exosome and miRNAs are seen by many as a hope for developing a new class of targeted therapy. This review outlines recent advances in understanding the role of oncomiRs in enhancing cancer and how they promote its aggressive characteristics and deeply discusses the role of oncomiRs in suppressing the anticancer immune response in its microenvironment. Additionally, further understanding the mechanism of oncomiR-related immune suppression will facilitate the use of miRNAs as biomarkers for impaired antitumor immune function, making them ideal immunotherapy targets.
Collapse
Affiliation(s)
- Khalid Otmani
- Experimental Hematology Laboratory, Hematology Department, Jules Bordet Institute, Brussels, Belgium
- Hematology Department, Université libre de Bruxelles, Brussels, Belgium
- *Correspondence: Khalid Otmani,
| | - Redouane Rouas
- Hematology Department, Université libre de Bruxelles, Brussels, Belgium
- Hematological Cell Therapy Unit, Hematology Department, Jules Bordet Institute, Brussels, Belgium
| | - Philippe Lewalle
- Experimental Hematology Laboratory, Hematology Department, Jules Bordet Institute, Brussels, Belgium
- Hematology Department, Université libre de Bruxelles, Brussels, Belgium
- Hematological Cell Therapy Unit, Hematology Department, Jules Bordet Institute, Brussels, Belgium
| |
Collapse
|
8
|
A 13-gene signature to predict the prognosis and immunotherapy responses of lung squamous cell carcinoma. Sci Rep 2022; 12:13646. [PMID: 35953696 PMCID: PMC9372044 DOI: 10.1038/s41598-022-17735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) comprises 20–30% of all lung cancers. Immunotherapy has significantly improved the prognosis of LUSC patients; however, only a small subset of patients responds to the treatment. Therefore, we aimed to develop a novel multi-gene signature associated with the immune phenotype of the tumor microenvironment for LUSC prognosis prediction. We stratified the LUSC patients from The Cancer Genome Atlas dataset into hot and cold tumor according to a combination of infiltration status of immune cells and PD-L1 expression level. Kaplan–Meier analysis showed that hot tumors were associated with shorter overall survival (OS). Enrichment analyses of differentially expressed genes (DEGs) between the hot and cold tumors suggested that hot tumors potentially have a higher immune response ratio to immunotherapy than cold tumors. Subsequently, hub genes based on the DEGs were identified and protein–protein interactions were constructed. Finally, we established an immune-related 13-gene signature based on the hub genes using the least absolute shrinkage and selection operator feature selection and multivariate cox regression analysis. This gene signature divided LUSC patients into high-risk and low-risk groups and the former inclined worse OS than the latter. Multivariate cox proportional hazard regression analysis showed that the risk model constructed by the 13 prognostic genes was an independent risk factor for prognosis. Receiver operating characteristic curve analysis showed a moderate predictive accuracy for 1-, 3- and 5-year OS. The 13-gene signature also performed well in four external cohorts (three LUSC and one melanoma cohorts) from Gene Expression Omnibus. Overall, in this study, we established a reliable immune-related 13-gene signature that can stratify and predict the prognosis of LUSC patients, which might serve clinical use of immunotherapy.
Collapse
|
9
|
The Regulatory Effects of MicroRNAs on Tumor Immunity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2121993. [PMID: 35909469 PMCID: PMC9329000 DOI: 10.1155/2022/2121993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs are endogenous noncoding small RNAs that posttranscriptionally regulate the expressions of their target genes. Accumulating research shows that miRNAs are crucial regulators of immune cell growth and antitumor immune response. Studies on miRNAs and tumors primarily focus on the tumor itself. At the same time, relatively few studies on the indirect regulatory effects of miRNAs in the development of tumors are achieved by affecting the immune system of tumor hosts and altering their immune responses. This review discusses the influence of miRNAs on the antitumor immune system.
Collapse
|
10
|
Ju Y, Seol YM, Kim J, Jin H, Choi GE, Jang A. Expression Profiles of Circulating MicroRNAs in XELOX-Chemotherapy-Induced Peripheral Neuropathy in Patients with Advanced Gastric Cancer. Int J Mol Sci 2022; 23:ijms23116041. [PMID: 35682716 PMCID: PMC9180980 DOI: 10.3390/ijms23116041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most common cancers and a leading cause of cancer deaths around the world. Chemotherapy is one of the most effective treatments for cancer patients, and has remarkably enhanced survival rates. However, it has many side effects. Recently, microRNAs (miRNAs) have been intensively studied as potential biomarkers for cancer diagnosis and treatment monitoring. However, definitive biomarkers in chemotherapy-induced peripheral neuropathy (CIPN) are still lacking. The aim of this study was to identify the factors significant for neurological adverse events in GC patients receiving XELOX (oxaliplatin and capecitabine) chemotherapy. The results show that XELOX chemotherapy induces changes in the expression of hsa-miR-200c-3p, hsa-miR-885-5p, and hsa-miR-378f. Validation by qRT-PCR demonstrated that hsa-miR-378f was significantly downregulated in CIPN. Hsa-miR-378f was identified as showing a statistically significant correlation in GC patients receiving XELOX chemotherapy according to the analysis of differentially expressed (DE) miRNAs. Furthermore, 34 potential target genes were predicted using a web-based database for miRNA target prognostication and functional annotations. The identified genes are related to the peptidyl-serine phosphorylation and regulation of alternative mRNA splicing with enrichment in the gastric cancer, neurotrophin, MAPK, and AMPK signaling pathways. Collectively, these results provide information useful for developing promising strategies for the treatment of XELOX-chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Yeongdon Ju
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea; (Y.J.); (J.K.); (H.J.)
- Clinical Trial Specialist Program for In Vitro Diagnostics, Brain Busan 21 Plus Program, Graduate School, Catholic University of Pusan, Busan 46252, Korea
| | - Young Mi Seol
- Division of Hematology-Oncology, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea;
| | - Jungho Kim
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea; (Y.J.); (J.K.); (H.J.)
| | - Hyunwoo Jin
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea; (Y.J.); (J.K.); (H.J.)
- Clinical Trial Specialist Program for In Vitro Diagnostics, Brain Busan 21 Plus Program, Graduate School, Catholic University of Pusan, Busan 46252, Korea
| | - Go-Eun Choi
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Korea; (Y.J.); (J.K.); (H.J.)
- Correspondence: (G.-E.C.); (A.J.); Tel.: +82-51-510-0563 (G.-E.C.); +82-52-259-1252 (A.J.)
| | - Aelee Jang
- Department of Nursing, University of Ulsan, Ulsan 44610, Korea
- Correspondence: (G.-E.C.); (A.J.); Tel.: +82-51-510-0563 (G.-E.C.); +82-52-259-1252 (A.J.)
| |
Collapse
|
11
|
Xie C, Lu C, Liu Y, Liu Z. Diagnostic gene biomarkers for predicting immune infiltration in endometriosis. BMC Womens Health 2022; 22:184. [PMID: 35585523 PMCID: PMC9118874 DOI: 10.1186/s12905-022-01765-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the potential diagnostic markers and extent of immune cell infiltration in endometriosis (EMS). METHODS Two published profiles (GSE7305 and GSE25628 datasets) were downloaded, and the candidate biomarkers were identified by support vector machine recursive feature elimination analysis and a Lasso regression model. The diagnostic value and expression levels of biomarkers in EMS were verified by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting, then further validated in the GSE5108 dataset. CIBERSORT was used to estimate the composition pattern of immune cell components in EMS. RESULTS One hundred and fifty-three differential expression genes (DEGs) were identified between EMS and endometrial with 83 upregulated and 51 downregulated genes. Gene sets related to arachidonic acid metabolism, cytokine-cytokine receptor interactions, complement and coagulation cascades, chemokine signaling pathways, and systemic lupus erythematosus were differentially activated in EMS compared with endometrial samples. Aquaporin 1 (AQP1) and ZW10 binding protein (ZWINT) were identified as diagnostic markers of EMS, which were verified using qRT-PCR and western blotting and validated in the GSE5108 dataset. Immune cell infiltrate analysis showed that AQP1 and ZWINT were correlated with M2 macrophages, NK cells, activated dendritic cells, T follicular helper cells, regulatory T cells, memory B cells, activated mast cells, and plasma cells. CONCLUSION AQP1 and ZWINT could be regarded as diagnostic markers of EMS and may provide a new direction for the study of EMS pathogenesis in the future.
Collapse
Affiliation(s)
- Chengmao Xie
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Chang Lu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Yong Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Zhaohui Liu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
12
|
Rebmann V, Schwich E, Michita RT, Grüntkemeier L, Bittner AK, Rohn H, Horn PA, Hoffmann O, Kimmig R, Kasimir-Bauer S. Systematic Evaluation of HLA-G 3'Untranslated Region Variants in Locally Advanced, Non-Metastatic Breast Cancer Patients: UTR-1, 2 or UTR-4 are Predictors for Therapy and Disease Outcome. Front Immunol 2022; 12:817132. [PMID: 35095919 PMCID: PMC8790528 DOI: 10.3389/fimmu.2021.817132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major improvements in diagnostics and therapy in early as well as in locally advanced breast cancer (LABC), metastatic relapse occurs in about 20% of patients, often explained by early micro-metastatic spread into bone marrow by disseminated tumor cells (DTC). Although neoadjuvant chemotherapy (NACT) has been a successful tool to improve overall survival (OS), there is growing evidence that various environmental factors like the non-classical human leukocyte antigen-G (HLA-G) promotes cancer invasiveness and metastatic progression. HLA-G expression is associated with regulatory elements targeting certain single-nucleotide polymorphisms (SNP) in the HLA-G 3’ untranslated region (UTR), which arrange as haplotypes. Here, we systematically evaluated the impact of HLA-G 3’UTR polymorphisms on disease status, on the presence of DTC, on soluble HLA-G levels, and on therapy and disease outcome in non-metastatic LABC patients. Although haplotype frequencies were similar in patients (n = 142) and controls (n = 204), univariate analysis revealed that the UTR-7 haplotype was related to patients with low tumor burden, whereas UTR-4 was associated with tumor sizes >T1. Furthermore, UTR-4 was associated with the presence of DTC, but UTR-3 and UTR-7 were related to absence of DTC. Additionally, increased levels of soluble HLA-G molecules were found in patients carrying UTR-7. Regarding therapy and disease outcome, univariate and multivariate analysis highlighted UTR-1 or UTR-2 as a prognostic parameter indicative for a beneficial course of disease in terms of complete response towards NACT or progression-free survival (PFS). At variance, UTR-4 was an independent risk factor for a reduced OS besides already known parameters. Taken into account the most common HLA-G 3’UTR haplotypes (UTR-1–UTR-7, UTR-18), deduction of the UTR-1/2/4 haplotypes to specific SNPs revealed that the +3003C variant, unique for UTR-4, seemed to favor a detrimental disease outcome, while the +3187G and +3196G variants, unique for UTR-1 or UTR-2, were prognostic parameters for a beneficial course of disease. In conclusion, these data suggest that the HLA-G 3’UTR variants +3003C, +3187G, and +3196G are promising candidates for the prediction of therapy and disease outcome in LABC patients.
Collapse
Affiliation(s)
- Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Esther Schwich
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rafael Tomoya Michita
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Medicine, Baylor College of Medicine (BCMC), Houston, TX, United States
| | - Lisa Grüntkemeier
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hana Rohn
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Regulation of Immune Cells by microRNAs and microRNA-Based Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:75-108. [DOI: 10.1007/978-3-031-08356-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Ding R, Duan Z, Yang M, Wang X, Li D, Kan Q. High miR-3609 expression is associated with better prognosis in TNBC based on mining using systematic integrated public sequencing data. Exp Ther Med 2021; 23:54. [PMID: 34934431 PMCID: PMC8652383 DOI: 10.3892/etm.2021.10976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/09/2021] [Indexed: 12/09/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are small endogenous RNAs that regulate gene expression post-transcriptionally. Abnormal miR-3609 expression is associated with the occurrence of pancreatic cancer, glioma and other diseases, such as polycystic ovary syndrome. However, the prognostic potential of miR-3609 has been reported in breast cancer. Thus, the present study aimed to investigate the differential expression and prognostic value of miR-3609 in patients with breast cancer from the UALCAN, cBioportal and Kaplan-Meier Plotter databases, respectively. Furthermore, the co-expression genes of miR-3609 in breast cancer were investigated using data from the LinkedOmics database, and functional enrichment analysis was performed using the LinkInterpreter module in LinkedOmics. The co-expression gene network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins database, and the cytoHubba plug-in was used to identify the hub genes, which were visualized using Cytoscape software. The prognoses of the hub genes were performed using the Kaplan-Meier Plotter database. The Cell Counting Kit-8 and cell cycle assays were performed to confirm the functions of miR-3609 mimics transfection in MDA-MB-231 cells. Survival analysis using the Kaplan-Meier Plotter database demonstrated that high miR-3609 expression in triple-negative breast cancer (TNBC) was associated with a better prognosis. Furthermore, the experimental results indicated that high miR-3609 expression inhibited the proliferation of TNBC cells and induced cell cycle arrest of TNBC cells in the G0/G1 phase. Taken together, the results of the present study suggest that miR-3609 plays a vital role in mediating cell cycle arrest and inhibiting the proliferation of TNBC cells.
Collapse
Affiliation(s)
- Rumeng Ding
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenfeng Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Meng Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xinru Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Duolu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
15
|
Zhu L, Liu J, Chen J, Zhou Q. The developing landscape of combinatorial therapies of immune checkpoint blockade with DNA damage repair inhibitors for the treatment of breast and ovarian cancers. J Hematol Oncol 2021; 14:206. [PMID: 34930377 PMCID: PMC8686226 DOI: 10.1186/s13045-021-01218-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The use of immune checkpoint blockade (ICB) using antibodies against programmed death receptor (PD)-1, PD ligand (PD-L)-1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) has redefined the therapeutic landscape in solid tumors, including skin, lung, bladder, liver, renal, and breast tumors. However, overall response rates to ICB therapy remain limited in PD-L1-negative patients. Thus, rational and effective combination therapies will be needed to address ICB treatment resistance in these patients, as well as in PD-L1-positive patients who have progressed under ICB treatment. DNA damage repair inhibitors (DDRis) may activate T-cell responses and trigger inflammatory cytokines release and eventually immunogenic cancer cell death by amplifying DNA damage and generating immunogenic neoantigens, especially in DDR-defective tumors. DDRi may also lead to adaptive PD-L1 upregulation, providing a rationale for PD-L1/PD-1 blockade. Thus, based on preclinical evidence of efficacy and no significant overlapping toxicity, some ICB/DDRi combinations have rapidly progressed to clinical testing in breast and ovarian cancers. Here, we summarize the available clinical data on the combination of ICB with DDRi agents for treating breast and ovarian cancers and discuss the mechanisms of action and other lessons learned from translational studies conducted to date. We also review potential biomarkers to select patients most likely to respond to ICB/DDRi combination therapy.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang Province, China.
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
16
|
Zhang W, Zhang L, Qian J, Lin J, Chen Q, Yuan Q, Zhou J, Zhang T, Shi J, Zhou H. Expression characteristic of 4Ig B7-H3 and 2Ig B7-H3 in acute myeloid leukemia. Bioengineered 2021; 12:11987-12002. [PMID: 34787059 PMCID: PMC8810086 DOI: 10.1080/21655979.2021.2001182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
4IgB7-H3 (4Ig) and 2IgB7-H3 (2Ig) expression characteristics in acute myeloid leukemia (AML) remain unknown. This study investigated mRNA and membrane protein expression of two B7-H3 isoforms in AML cell lines and de novo patients by using RT-PCR and flow cytometry, and analyzed the B7-H3 promoter methylation state by utilizing RQ-MSP. 4Ig was the dominant isoform. 2Ig mRNA expression rate and abundance were elevated in AML in comparison with controls (P = 0.000 and 0.000), while no significant difference in 4Ig (P = 0.802, P = 0.398). Membrane protein levels of B7-H3 isoforms in AML was higher than controls, detected by total B7-H3 expression rate (P = 0.002), total B7-H3 mean fluorescence intensity (MFI) ratio of blast cells and lymphocytes (MFI ratio) (P = 0.000), and 4Ig B7-H3 MFI ratio (P = 0.005). Compared with 2Iglow group, 2Ighigh patients had older age, lower NPM1 mutation, higher FLT3-ITD mutation, and declining complete remission (CR) rates (P = 0.026, 0.012, 0.047, and 0.028). In B7-H3high group, there was a trend toward older age, M4 and M5, worse karyotype, and lower CR rates, although with no marked difference (P > 0.05). The overall survival (OS) of 2Ighigh and B7-H3high groups were shorter than that of 2Iglow and B7-H3low groups in the whole and non-M3 AML cohorts (P = 0.006 and 0.046; P = 0.003 and 0.032). Besides, an unmethylated B7-H3 promoter was identified. In conclusion, 2Ig mRNA and total B7-H3 membrane protein tended to have potential diagnostic value for AML. Specifically, high 2Ig mRNA and total B7-H3 membrane protein expression indicate worse OS. 4Ig and 2Ig expression are methylation-independent.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingyi Zhang
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiaoyun Chen
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qian Yuan
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jingdong Zhou
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingjuan Zhang
- Laboratory Center, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jinning Shi
- Department of Hematology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhou
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
17
|
Host miRNA and immune cell interactions: relevance in nano-therapeutics for human health. Immunol Res 2021; 70:1-18. [PMID: 34716546 DOI: 10.1007/s12026-021-09247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Around 2200 miRNA (microRNA) genes were found in the human genome. miRNAs are arranged in clusters within the genome and share the same transcriptional regulatory units. It has been revealed that approximately 50% of miRNAs elucidated in the genome are transcribed from non-protein-coding genes, and the leftover miRNAs are present in the introns of coding sequences. We are now approaching a stage in which miRNA diagnostics and therapies can be established confidently, and several commercial efforts are underway to carry these innovations from the bench to the clinic. MiRNAs control many of the significant cellular activities such as production, differentiation, growth, and metabolism. Particularly in the immune system, miRNAs have emerged as a crucial biological component during diseased state and homeostasis. miRNAs have been found to regulate inflammatory responses and autoimmune disorders. Moreover, each miRNA targets multiple genes simultaneously, making miRNAs promising tools as diagnostic biomarkers and as remedial targets. Still, one of the major obstacles in miRNA-based approaches is the achievement of specific and efficient systemic delivery of miRNAs. To overcome these challenges, nanoformulations have been synthesized to protect miRNAs from degradation and enhance cellular uptake. The current review deals with the miRNA-mediated regulation of the recruitment and activation of immune cells, especially in the tumor microenvironment, viral infection, inflammation, and autoimmunity. The nano-based miRNA delivery modes are also discussed here, especially in the context of immune modulation.
Collapse
|
18
|
Zhao Y, Shi Z, Hao Z, Zhou J, Han C, Li R, Lv Q, Liu Y, Liang C. Hypoxia-mediated down-regulation of miRNAs' biogenesis promotes tumor immune escape in bladder cancer. Clin Transl Oncol 2021; 23:1678-1687. [PMID: 33625672 DOI: 10.1007/s12094-021-02569-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The study examines the function of hypoxia-mediated down-regulation of microRNAs (miRNAs) (mir-30c, mir-135a, and mir-27a) in the process of bladder cancer immune escape. METHODS Quantitative Real-time PCR (qRT-PCR) was carried out to determine gene expression levels of Drosha and Dicer under hypoxia treatment, while western blotting and flow cytometry were used to determine protein expression. Seven reported miRNAs were identified via qRT-PCR assay. Flow cytometry detection of CD3/CD4/CD8-positive expression and statistics. Enzyme-linked immunosorbent assay (ELISA) detected cellular immune factors content. Cell apoptosis was checked via flow cytometry assay. Luciferase report assay and western blot assays were both used to verify the relationship between miRNAs and Casitas B-lineage lymphoma proto-oncogene b (Cbl-b). The animal model was established and Hematoxylin-eosin (HE) staining, TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and immunohistochemistry (IHC) assays were separately used to verify the conclusions. RESULTS The CD3 + /CD4 + expression was increased in the hypoxia group, while CD3 + /CD8 + expression, the cellular immune factors content Interleukin-2 (IL-2) and Tumor Necrosis Factor-α (TNFα) along with the cell apoptosis were suppressed. The protein expression of Cbl-b was found to be up-regulated in the hypoxia group. After constructing the overexpression/ knockdown of Cbl-b in peripheral blood mononuclear cell (PBMC), Cbl-b has been found to promote tumor immune escape in bladder cancer. Furthermore, Cbl-b had been identified as the co-targets of mir-30c, mir-135a, and mir-27a and down-regulation of miRNA biogenesis promotes Cbl-b expression and deactivating T cells in vitro/in vivo. CONCLUSION Hypoxia-mediated down-regulation of miRNAs' biogenesis promotes tumor immune escape in bladder cancer, which could bring much more advance to the medical research on tumors.
Collapse
Affiliation(s)
- Y Zhao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230000, China
- Institute of Urology, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230000, China
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Z Shi
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Z Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230000, China
- Institute of Urology, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230000, China
| | - J Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230000, China
- Institute of Urology, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230000, China
| | - C Han
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - R Li
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Q Lv
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Y Liu
- Xuzhou Central Hospital, Xuzhou, 221009, China
- Xuzhou Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - C Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230000, China.
- Institute of Urology, Anhui Medical University, Hefei, 230000, China.
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230000, China.
| |
Collapse
|
19
|
Xu QR, Tang J, Liao HY, Yu BT, He XY, Zheng YZ, Liu S. Long non-coding RNA MEG3 mediates the miR-149-3p/FOXP3 axis by reducing p53 ubiquitination to exert a suppressive effect on regulatory T cell differentiation and immune escape in esophageal cancer. J Transl Med 2021; 19:264. [PMID: 34140005 PMCID: PMC8212454 DOI: 10.1186/s12967-021-02907-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 01/27/2023] Open
Abstract
Background Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been implicated in the progression of esophageal cancer (EC). However, the specific mechanism of the involvement of MEG3 in EC development in relation to the regulation of immune escape remains uncertain. Thus, the aim of the current study was to investigate the effect of MEG3 on EC via microRNA-149-3p (miR-149-3p). Methods Gain- and loss-of-function experiments were initially performed in EC cells in addition to the establishment of a 4-nitroquinoline 1-oxide-induced EC mouse model aimed at evaluating the respective roles of forkhead box P3 (FOXP3), MEG3, miR-149-3p, mouse double minute 2 homolog (MDM2) and p53 in T cell differentiation and immune escape observed in EC. Results EC tissues were found to exhibit upregulated FOXP3 and MDM2 while MEG3, p53 and miR-149-3p were all downregulated. FOXP3 was confirmed to be a target gene of miR-149-3p with our data suggesting it reduced p53 ubiquitination and degradation by means of inhibiting MDM2. P53 was enriched in the promoter of miR-149-3p to upregulate miR-149-3p. The overexpression of MEG3, p53 or miR-149-3p or silencing FOXP3 was associated with a decline in CD25+FOXP3+CD4+ T cells, IL-10+CD4+ T cells and IL-4+CD4+ T cells in spleen tissues, IL-4, and IL-10 levels as well as C-myc, N-myc and Ki-67 expression in EC mice. Conclusion Collectively, MEG3 decreased FOXP3 expression and resulted in repressed regulatory T cell differentiation and immune escape in EC mice by upregulating miR-149-3p via MDM2-mediated p53. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02907-1.
Collapse
Affiliation(s)
- Qi-Rong Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hong-Ying Liao
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityMedical University, No. 26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong Province, P. R. China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiang-Yuan He
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yu-Zhen Zheng
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen UniversityMedical University, No. 26, Erheng Road, Yuancun, Tianhe District, Guangzhou, 510655, Guangdong Province, P. R. China.
| | - Sheng Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
20
|
Liang Y, Liu Y, Zhang Q, Zhang H, Du J. Tumor-derived extracellular vesicles containing microRNA-1290 promote immune escape of cancer cells through the Grhl2/ZEB1/PD-L1 axis in gastric cancer. Transl Res 2021; 231:102-112. [PMID: 33321257 DOI: 10.1016/j.trsl.2020.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is a highly prevalent malignancy featured by dismal oncological outcomes. Accumulating pieces of evidence have consensus over the therapeutic significance of extracellular vesicles (EVs) and its role in carcinogenesis. Here, we planned to uncover EVs' role in GC by shuttling microRNA-1290 (miR-1290) and to identify the possible molecular mechanism associated with Grhl2, PD-L1, and ZEB1. Grhl2 was under-expressed in GC tissues, exhibiting a negative correlation with PD-L1 expression. In addition, Grhl2 promoted T cell proliferation by down-regulating PD-L1 via inhibiting ZEB1, while miR-1290 was found to negatively regulate Grhl2. EVs were also isolated from GC cells or normal gastric epithelial cells and identified with the presence of EV markers. miR-1290 expression was determined to be enriched in the EVs derived from GC cells and observed to promote the suppressive action of GC cells on T cell activation by up-regulating PD-L1 via the Grhl2/ZEB1 pathway in the co-culture system of GC cells with or without treatment of EVs with T cells. Moreover, we also developed a mouse model of GC and injected the EVs derived from miR-1290-inhibitor-treated GC cells into the tumor-bearing mice for further validation of mechanism in vivo. Intriguingly, the pivotal role of EVs-shuttled miR-1290 as an oncomiR was demonstrated in vivo. Collectively, we found that miR-1290 in EVs secreted from GC cells contributed to immune escape through the Grhl2/ZEB1/PD-L1 axis.
Collapse
Affiliation(s)
- Yuan Liang
- Medical Oncology Department of Thoracic Cancer(2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, PR China
| | - Yang Liu
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Qingfu Zhang
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Heng Zhang
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Jiang Du
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
21
|
Zou X, Zhao Y, Liang X, Wang H, Zhu Y, Shao Q. Double Insurance for OC: miRNA-Mediated Platinum Resistance and Immune Escape. Front Immunol 2021; 12:641937. [PMID: 33868274 PMCID: PMC8047328 DOI: 10.3389/fimmu.2021.641937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC) is still the leading cause of death among all gynecological malignancies, despite the recent progress in cancer therapy. Immune escape and drug resistance, especially platinum-based chemotherapy, are significant factors causing disease progression, recurrence and poor prognosis in OC patients. MicroRNAs(miRNAs) are small noncoding RNAs, regulating gene expression at the transcriptional level. Accumulating evidence have indicated their crucial roles in platinum resistance. Importantly, they also act as mediators of tumor immune escape/evasion. In this review, we summarize the recent study of miRNAs involved in platinum resistance of OC and systematically analyses miRNAs involved in the regulation of OC immune escape. Further understanding of miRNAs roles and their possible mechanisms in platinum resistance and tumor escape may open new avenues for improving OC therapy.
Collapse
Affiliation(s)
- Xueqin Zou
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiuting Liang
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanling Zhu
- Department of Obstetrics and Gynecology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, China
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China.,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, China
| |
Collapse
|
22
|
Lazaridou MF, Massa C, Handke D, Mueller A, Friedrich M, Subbarayan K, Tretbar S, Dummer R, Koelblinger P, Seliger B. Identification of microRNAs Targeting the Transporter Associated with Antigen Processing TAP1 in Melanoma. J Clin Med 2020; 9:jcm9092690. [PMID: 32825219 PMCID: PMC7563967 DOI: 10.3390/jcm9092690] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
The underlying molecular mechanisms of the aberrant expression of components of the HLA class I antigen processing and presentation machinery (APM) in tumors leading to evasion from T cell-mediated immune surveillance could be due to posttranscriptional regulation mediated by microRNAs (miRs). So far, some miRs controlling the expression of different APM components have been identified. Using in silico analysis and an miR enrichment protocol in combination with small RNA sequencing, miR-26b-5p and miR-21-3p were postulated to target the 3′ untranslated region (UTR) of the peptide transporter TAP1, which was confirmed by high free binding energy and dual luciferase reporter assays. Overexpression of miR-26b-5p and miR-21-3p in melanoma cells downregulated the TAP1 protein and reduced expression of HLA class I cell surface antigens, which could be reverted by miR inhibitors. Moreover, miR-26b-5p overexpression induced a decreased T cell recognition. Furthermore, an inverse expression of miR-26b-5p and miR-21-3p with TAP1 was found in primary melanoma lesions, which was linked with the frequency of CD8+ T cell infiltration. Thus, miR-26-5p and miR-21-3p are involved in the HLA class I-mediated immune escape and might be used as biomarkers or therapeutic targets for HLA class Ilow melanoma cells.
Collapse
Affiliation(s)
- Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Sandy Tretbar
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
| | - Reinhard Dummer
- Institute of Dermatology, University Hospital Zürich, 8091 Zürich, Switzerland;
| | - Peter Koelblinger
- Department of Dermatology and Allergology, University Hospital Salzburg, 5020 Salzburg, Austria;
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany; (M.-F.L.); (C.M.); (D.H.); (A.M.); (M.F.); (K.S.); (S.T.)
- Correspondence: ; Tel.: +49-(0)-345-557-4054
| |
Collapse
|
23
|
Pehlivan M, Soyoz M, Cerci B, Coven HIK, Yuce Z, Sercan HO. sFRP1 Expression Induces miRNAs That Modulate Wnt Signaling in Chronic Myeloid Leukemia Cells. Mol Biol 2020. [DOI: 10.1134/s0026893320040135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y, Wang X. miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci 2020; 16:2628-2647. [PMID: 32792861 PMCID: PMC7415433 DOI: 10.7150/ijbs.47203] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs (ncRNAs) of about 22 nucleotides in size, play important roles in gene regulation, and their dysregulation is implicated in human diseases including cancer. A variety of miRNAs could take roles in the cancer progression, participate in the process of tumor immune, and function with miRNA sponges. During the last two decades, the connection between miRNAs and various cancers has been widely researched. Based on evidence about miRNA, numerous potential cancer biomarkers for the diagnosis and prognosis have been put forward, providing a new perspective on cancer screening. Besides, there are several miRNA-based therapies among different cancers being conducted, advanced treatments such as the combination of synergistic strategies and the use of complementary miRNAs provide significant clinical benefits to cancer patients potentially. Furthermore, it is demonstrated that many miRNAs are engaged in the resistance of cancer therapies with their complex underlying regulatory mechanisms, whose comprehensive cognition can help clinicians and improve patient prognosis. With the belief that studies about miRNAs in human cancer would have great clinical implications, we attempt to summarize the current situation and potential development prospects in this review.
Collapse
Affiliation(s)
- Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yuqian Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hui Xie
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wei Yin
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yongguang Tao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078 China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
25
|
Shao G, Zhou C, Ma K, Zhao W, Xiong Q, Yang L, Huang Z, Yang Z. MiRNA-494 enhances M1 macrophage polarization via Nrdp1 in ICH mice model. JOURNAL OF INFLAMMATION-LONDON 2020; 17:17. [PMID: 32351331 PMCID: PMC7183644 DOI: 10.1186/s12950-020-00247-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
Background Ubiquitination-mediated M1/M2 macrophage polarization plays important roles in the pathogenesis of immune disease. However, the regulatory mechanism of ubiquitination during M1/M2 macrophage polarization following intracerebral hemorrhage (ICH) has not been well studied. Methods In the experiment, macrophages were administered with erythrocyte lysates, and then miR-494-, Nrdp1-, and M1/M2-related markers were analyzed. Brain inflammatory response, brain edema, and neurological functions of ICH mice were also assessed. Results We found that miR-494 levels increased while Nrdp1 levels decreased in macrophages after ICH. We also demonstrated that miR-494 inhibited Nrdp1 expression by directly binding its 3′-untranslated region. MiR-494 attenuated C/EBP-β activation and downstream proinflammatory factor production. Upregulation of Nrdp1 in macrophages significantly promoted M2 macrophage polarization via ubiquitinating and activating C/EBP-β. Moreover, the results indicated that miR-494 could enhance M1 macrophage polarization, promote brain edema, and impair neurological functions in ICH mice. Conclusions Taken together, our results demonstrated that Nrdp1 contributed to M1/M2 macrophage polarization and neuroinflammation via ubiquitination and activation of C/EBP-β in ICH. miR-494 may provide a promising therapeutic clue for ICH.
Collapse
Affiliation(s)
- Gaohai Shao
- 1Department of orthopedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Changlong Zhou
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Kunlong Ma
- 1Department of orthopedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Wang Zhao
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Qijiang Xiong
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Ling Yang
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Zhongyan Huang
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| | - Zhao Yang
- 2Department of Neurology and Chongqing key laboratory of cerebravascular disease, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160 China
| |
Collapse
|
26
|
Emamgolizadeh Gurt Tapeh B, Mosayyebi B, Samei M, Beyrampour Basmenj H, Mohammadi A, Alivand MR, Hassanpour P, Solali S. microRNAs involved in T-cell development, selection, activation, and hemostasis. J Cell Physiol 2020; 235:8461-8471. [PMID: 32324267 DOI: 10.1002/jcp.29689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) characterized by small, noncoding RNAs have a fundamental role in the regulation of gene expression at the post-transcriptional level. Additionally, miRNAs have recently been identified as potential regulators of various genes involved in the pathogenesis of the autoimmune and inflammatory disease. So far, the interaction between miRNAs and T lymphocytes in the immune response as a new and significant topic has not been emphasized substantially. The role of miRNAs in different biological processes including apoptosis, immune checkpoints and the activation of immune cells is still unclear. Aberrant miRNA expression profile affects various aspects of T-cell function. Accordingly, in this literature review, we summarized the role of significant miRNAs in T-cell development processes. Consequently, we demonstrated precise mechanisms that candidate miRNAs interfere in Immune response mediated by different types of T cells. We believe that a good understanding of the interaction between miRNAs and immune response contributes to the new therapeutic strategies in relation to disease with an immunological origin.
Collapse
Affiliation(s)
- Behnam Emamgolizadeh Gurt Tapeh
- Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Samei
- Department of Immunology, Gorgan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammadi
- Department of cancer and inflammation, University of Southern Denmark, Odense, Denmark
| | - Mohammad R Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Hassanpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Division of Hematology and Transfusion Medicine, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Xu S, Wang Q, Kang Y, Liu J, Yin Y, Liu L, Wu H, Li S, Sui S, Shen M, Zheng W, Pang D. Long Noncoding RNAs Control the Modulation of Immune Checkpoint Molecules in Cancer. Cancer Immunol Res 2020; 8:937-951. [PMID: 32321773 DOI: 10.1158/2326-6066.cir-19-0696] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/01/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNA) that are associated with immune checkpoints have not been identified, and the mechanism by which such lncRNAs might regulate the expression of immune checkpoints is unknown in human cancer. Immune checkpoint-associated lncRNAs (ICP-lncRNA) were identified and validated via a comprehensive bioinformatic analysis of The Cancer Genome Atlas data. These ICP-lncRNAs were involved in key immune response and immune cell receptor signaling pathways. The expression of ICP-lncRNAs was upregulated and correlated with a poor prognosis in patients with cancer. HLA complex P5 (HCP5) and myocardial infarction associated transcript (MIAT) promoted tumor growth and upregulated the expression of PD-L1/CD274 via a competing endogenous RNA mechanism of sponging miR-150-5p. The combination of MIAT knockdown and PD-L1 antibody administration showed a synergistic inhibitory effect on tumor growth. Finally, the expression of both HCP5 and MIAT was confirmed to be transcriptionally suppressed by CCCTC-binding factor (CTCF), and lipopolysaccharide induced CTCF eviction from the HCP5 and MIAT promoters, attenuating the transcriptionally suppressive activity of CTCF. This study enlarges the functional landscape of known lncRNAs in human cancer and indicates novel insights into their roles in the field of tumor immunity and immunotherapy. These findings may aid in the comprehensive management of human cancer with immunotherapy.
Collapse
Affiliation(s)
- Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hao Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Siwei Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Wei Zheng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China. .,Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
28
|
microRNAs in the Antitumor Immune Response and in Bone Metastasis of Breast Cancer: From Biological Mechanisms to Therapeutics. Int J Mol Sci 2020; 21:ijms21082805. [PMID: 32316552 PMCID: PMC7216039 DOI: 10.3390/ijms21082805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common type of cancer in women, and the occurrence of metastasis drastically worsens the prognosis and reduces overall survival. Understanding the biological mechanisms that regulate the transformation of malignant cells, the consequent metastatic transformation, and the immune surveillance in the tumor progression would contribute to the development of more effective and targeted treatments. In this context, microRNAs (miRNAs) have proven to be key regulators of the tumor-immune cells crosstalk for the hijack of the immunosurveillance to promote tumor cells immune escape and cancer progression, as well as modulators of the metastasis formation process, ranging from the preparation of the metastatic site to the transformation into the migrating phenotype of tumor cells. In particular, their deregulated expression has been linked to the aberrant expression of oncogenes and tumor suppressor genes to promote tumorigenesis. This review aims at summarizing the role and functions of miRNAs involved in antitumor immune response and in the metastasis formation process in breast cancer. Additionally, miRNAs are promising targets for gene therapy as their modulation has the potential to support or inhibit specific mechanisms to negatively affect tumorigenesis. With this perspective, the most recent strategies developed for miRNA-based therapeutics are illustrated.
Collapse
|
29
|
Prinz C, Weber D. MicroRNA (miR) dysregulation during Helicobacter pylori-induced gastric inflammation and cancer development: critical importance of miR-155. Oncotarget 2020; 11:894-904. [PMID: 32206186 PMCID: PMC7075464 DOI: 10.18632/oncotarget.27520] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 02/06/2020] [Indexed: 02/03/2023] Open
Abstract
Dysregulation of noncoding microRNA molecules has been associated with immune cell activation in the context of Helicobacter pylori induced gastric inflammation as well as carcinogenesis, but also with downregulation of mismatch repair genes, and may interfere with immune checkpoint proteins that lead to the overexpression of antigens on gastric tumor cells. Numerous miR-molecules have been described as important tools and markers in gastric inflammation and cancer development -including miR-21, miR-143, miR-145, miR-201, and miR-335- all of which are downregulated in gastric tumors, and involved in cell cycle growth or tumor invasion. Among the many microRNAs involved in gastric inflammation, adenocarcinoma development and immune checkpoint regulation, miR-155 is notable in that its upregulation is considered a key marker of chronic gastric inflammation that predisposes a patient to gastric carcinogenesis. Among various other miRs, miR-155 is highly expressed in activated B and T cells and in monocytes/macrophages present in chronic gastric inflammation. Notably, miR-155 was shown to downregulate the expression of certain MMR genes, such as MLH1, MSH2, and MSH6. In tumor-infiltrating miR-155-deficient CD8+ T cells, antibodies against immune checkpoint proteins restored the expression of several derepressed miR-155 targets, suggesting that miR-155 may regulate overlapping pathways to promote antitumor immunity. It may thus be of high clinical impact that gastric pathologies mediated by miR-155 result from its overexpression. This suggests that it may be possible to therapeutically attenuate miR-155 levels for gastric cancer treatment and/or to prevent the progression of chronic gastric inflammation into cancer.
Collapse
Affiliation(s)
- Christian Prinz
- Lehrstuhl für Innere Medizin1, University of Witten gGmbH, Helios Universitätsklinikum, D-42283 Wuppertal, Germany
| | - David Weber
- Lehrstuhl für Innere Medizin1, University of Witten gGmbH, Helios Universitätsklinikum, D-42283 Wuppertal, Germany
| |
Collapse
|
30
|
Zhang L, Xu X, Su X. Noncoding RNAs in cancer immunity: functions, regulatory mechanisms, and clinical application. Mol Cancer 2020; 19:48. [PMID: 32122338 PMCID: PMC7050126 DOI: 10.1186/s12943-020-01154-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
It is well acknowledged that immune system is deeply involved in cancer initiation and progression, and can exert both pro-tumorigenic and anti-tumorigenic effects, depending on specific microenvironment. With the better understanding of cancer-associated immune cells, especially T cells, immunotherapy was developed and applied in multiple cancers and exhibits remarkable efficacy. However, currently only a subset of patients have responses to immunotherapy, suggesting that a boarder view of cancer immunity is required. Non-coding RNAs (ncRNAs), mainly including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are identified as critical regulators in both cancer cells and immune cells, thus show great potential to serve as new therapeutic targets to improve the response of immunotherapy. In this review, we summarize the functions and regulatory mechanisms of ncRNAs in cancer immunity, and highlight the potential of ncRNAs as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Le Zhang
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, FL, 33612-9497, USA
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Huimin District, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
31
|
Zhang M, Gao D, Shi Y, Wang Y, Joshi R, Yu Q, Liu D, Alotaibi F, Zhang Y, Wang H, Li Q, Zhang ZX, Koropatnick J, Min W. miR-149-3p reverses CD8 + T-cell exhaustion by reducing inhibitory receptors and promoting cytokine secretion in breast cancer cells. Open Biol 2019; 9:190061. [PMID: 31594465 PMCID: PMC6833224 DOI: 10.1098/rsob.190061] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blockade of inhibitory receptors (IRs) is one of the most effective immunotherapeutic approaches to treat cancer. Dysfunction of miRNAs is a major cause of aberrant expression of IRs and contributes to the immune escape of cancer cells. How miRNAs regulate immune checkpoint proteins in breast cancer remains largely unknown. In this study, downregulation of miRNAs was observed in PD-1-overexpressing CD8+ T cells using miRNA array analysis of mouse breast cancer homografts. The data reveal that miR-149-3p was predicted to bind the 3'UTRs of mRNAs encoding T-cell inhibitor receptors PD-1, TIM-3, BTLA and Foxp1. Treatment of CD8+ T cells with an miR-149-3p mimic reduced apoptosis, attenuated changes in mRNA markers of T-cell exhaustion and downregulated mRNAs encoding PD-1, TIM-3, BTLA and Foxp1. On the other hand, T-cell proliferation and secretion of effector cytokines indicative of increased T-cell activation (IL-2, TNF-α, IFN-γ) were upregulated after miR-149-3p mimic treatment. Moreover, the treatment with a miR-149-3p mimic promoted the capacity of CD8+ T cells to kill targeted 4T1 mouse breast tumour cells. Collectively, these data show that miR-149-3p can reverse CD8+ T-cell exhaustion and reveal it to be a potential antitumour immunotherapeutic agent in breast cancer.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China.,Department of Surgery, Western University, London, Canada N6A 5A5.,Department of Pathology and Laboratory Medicine, Western University, London, Canada N6A 5A5.,Department of Oncology, Western University, London, Canada N6A 5A5.,Department of Microbiology and Immunology, Western University, London, Canada N6A 5A5
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang 330006, People's Republic of China
| | - Yanmei Shi
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China.,Department of Surgery, Western University, London, Canada N6A 5A5.,Department of Pathology and Laboratory Medicine, Western University, London, Canada N6A 5A5.,Department of Oncology, Western University, London, Canada N6A 5A5.,Department of Microbiology and Immunology, Western University, London, Canada N6A 5A5.,Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Yifan Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China.,Department of Surgery, Western University, London, Canada N6A 5A5.,Department of Pathology and Laboratory Medicine, Western University, London, Canada N6A 5A5.,Department of Oncology, Western University, London, Canada N6A 5A5.,Department of Microbiology and Immunology, Western University, London, Canada N6A 5A5
| | - Rakesh Joshi
- Department of Surgery, Western University, London, Canada N6A 5A5.,Department of Pathology and Laboratory Medicine, Western University, London, Canada N6A 5A5.,Department of Oncology, Western University, London, Canada N6A 5A5.,Department of Microbiology and Immunology, Western University, London, Canada N6A 5A5
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Daheng Liu
- Department of Surgery, Western University, London, Canada N6A 5A5.,Department of Pathology and Laboratory Medicine, Western University, London, Canada N6A 5A5.,Department of Oncology, Western University, London, Canada N6A 5A5.,Department of Microbiology and Immunology, Western University, London, Canada N6A 5A5
| | - Faizah Alotaibi
- Department of Surgery, Western University, London, Canada N6A 5A5.,Department of Pathology and Laboratory Medicine, Western University, London, Canada N6A 5A5.,Department of Oncology, Western University, London, Canada N6A 5A5.,Department of Microbiology and Immunology, Western University, London, Canada N6A 5A5
| | - Yujuan Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China.,Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang 330006, People's Republic of China
| | - Hongmei Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
| | - Qing Li
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China.,Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Zhu-Xu Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China.,Department of Surgery, Western University, London, Canada N6A 5A5.,Department of Pathology and Laboratory Medicine, Western University, London, Canada N6A 5A5.,Department of Oncology, Western University, London, Canada N6A 5A5.,Department of Microbiology and Immunology, Western University, London, Canada N6A 5A5
| | - James Koropatnick
- Department of Surgery, Western University, London, Canada N6A 5A5.,Department of Pathology and Laboratory Medicine, Western University, London, Canada N6A 5A5.,Department of Oncology, Western University, London, Canada N6A 5A5.,Department of Microbiology and Immunology, Western University, London, Canada N6A 5A5
| | - Weiping Min
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China.,Department of Surgery, Western University, London, Canada N6A 5A5.,Department of Pathology and Laboratory Medicine, Western University, London, Canada N6A 5A5.,Department of Oncology, Western University, London, Canada N6A 5A5.,Department of Microbiology and Immunology, Western University, London, Canada N6A 5A5.,Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
32
|
Richardsen E, Andersen S, Al-Saad S, Rakaee M, Nordby Y, Pedersen MI, Ness N, Ingebriktsen LM, Fassina A, Taskén KA, Mills IG, Donnem T, Bremnes RM, Busund LT. Low Expression of miR-424-3p is Highly Correlated with Clinical Failure in Prostate Cancer. Sci Rep 2019; 9:10662. [PMID: 31337863 PMCID: PMC6650397 DOI: 10.1038/s41598-019-47234-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/15/2019] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PC) is a highly heterogenous disease and one of the leading causes of mortality in developed countries. Recently, studies have shown that expression of immune checkpoint proteins are directly or indirectly repressed by microRNAs (miRs) in many types of cancers. The great advantages of using miRs based therapy is the capacity of these short transcripts to target multiple molecules for the same- or different pathways with synergistic immune inhibition effects. miR-424 has previously been described as a biomarker of poor prognosis in different types of cancers. miR-424 is also found to target both the CTLA-4/CD80- and PD-1/PD-L1 axis. In the present study, the clinical significance of miR-424-3p expression in PC tissue was evaluated. Naïve radical prostatectomy specimens from 535 patients was used for tissue microarray construction. In situ hybridization was used to evaluate the expression of miR-424-3p and immunohistochemistry was used for CTLA-4 protein detection. In univariate- and multivariate analyses, low expression of miR-424-3p was significant associated with clinical failure-free survival, (p = 0.004) and p = 0.018 (HR:0.44, CI95% 0.22-0.87). Low expression of miR-424-3p also associated strongly with aggressive phenotype of PC. This highlight the importance of miR-424-3p as potential target for therapeutic treatment in prostate cancer.
Collapse
Affiliation(s)
- E Richardsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway. .,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway.
| | - S Andersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - S Al-Saad
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - M Rakaee
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Y Nordby
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Urology, University Hospital of North Norway, Tromso, Norway
| | - M I Pedersen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - N Ness
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - L M Ingebriktsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - A Fassina
- Department of Medicine, University of Padua, 35121, Padova, Italy
| | - K A Taskén
- Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - I G Mills
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - T Donnem
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - R M Bremnes
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - L T Busund
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|