1
|
Wu S, Sun X, Hua R, Hu C, Qin L. DDX21 functions as a potential novel oncopromoter in pancreatic ductal adenocarcinoma: a comprehensive analysis of the DExD box family. Discov Oncol 2024; 15:333. [PMID: 39095628 PMCID: PMC11297014 DOI: 10.1007/s12672-024-01204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal tumor with an ill-defined pathogenesis. DExD box (DDX) family genes are widely distributed and involved in various RNA metabolism and cellular biogenesis; their dysregulation is associated with aberrant cellular processes and malignancies. However, the prognostic significance and expression patterns of the DDX family in PDAC are not fully understood. The present study aimed to explore the clinical value of DDX genes in PDAC. METHODS Differentially expressed DDX genes were identified. DDX genes related to prognostic signatures were further investigated using LASSO Cox regression analysis. DDX21 protein expression was analyzed using the UALCAN and human protein atlas (HPA) online tools and confirmed in 40 paired PDAC and normal tissues through Tissue Microarrays (TMA). The independent prognostic significance of DDX21 in PDAC was determined through the construction of nomogram models and calibration curves. The functional roles of DDX21 were investigated using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Cell proliferation, invasion, and migration were assessed using Cell Counting Kit-8, colony formation, Transwell, and wound healing assays. RESULTS Upregulation of genes related to prognostic signatures (DDX10, DDX21, DDX60, and DDX60L) was significantly associated with poor prognosis of patients with PDAC based on survival and recurrence time. Considering the expression profile and prognostic values of the signature-related genes, DDX21 was finally selected for further exploration. DDX21 was overexpressed significantly at both the mRNA and protein levels in PDAC compared to normal pancreatic tissues. DDX21 expression, pathological stage, and residual tumor were significant independent prognostic indicators in PDAC. Moreover, functional enrichment analysis revealed that Genes co-expressed with DDX21 are predominantly involved in RNA metabolism, helicase activity, ribosome biogenesis, cell cycle, and various cancer-related pathways, such as PI3K/Akt signaling pathway and TGF-β signaling pathway. Furthermore, in vitro experiments confirmed that the knockdown of DDX21 significantly reduced MIA PaCa-2 cell viability, proliferation, migration, and invasion. CONCLUSIONS Four signature-related genes could relatively precisely predict the prognosis of patients with PDAC. Specifically, DDX21 upregulation may signal an unfavorable prognosis by negatively affecting the biological properties of PDAC cells. DDX21 may be considered as a candidate therapeutic target in PDAC.
Collapse
Affiliation(s)
- Shaohan Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
- Department of General Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing, 314000, Zhejiang, China
| | - Xiaofang Sun
- Department of General Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing, 314000, Zhejiang, China
| | - Ruheng Hua
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Chundong Hu
- Department of General Surgery, the Second Affiliated Hospital of Jiaxing University, No. 1518, Huancheng North Road, Jiaxing, 314000, Zhejiang, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
2
|
Li Q, Wang T, Wang X, Ge X, Yang T, Wang W. DDX56 promotes EMT and cancer stemness via MELK-FOXM1 axis in hepatocellular carcinoma. iScience 2024; 27:109827. [PMID: 38827395 PMCID: PMC11141150 DOI: 10.1016/j.isci.2024.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global cause of death, with epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties contributing to its metastasis. DEAD box helicase 56 (DDX56) is involved in carcinogenesis, but its role in EMT induction and stem phenotype maintenance is unclear. This study assessed the impact of DDX56 absence on HCC cell stemness and EMT. DDX56 was found to be overexpressed in HCC tissues, correlating with disease stage and prognosis. In vitro, DDX56 stimulated tumor cell proliferation, migration, invasion, EMT, and stemness. It also enhanced maternal embryonic leucine-zipper kinase (MELK)-mediated forkhead box protein M1 (FOXM1) expression, regulating cancer stemness and malignant traits. In vivo, DDX56 knockdown in tumor-bearing mice reduced tumorigenicity and lung metastasis by modulating the MELK-FOXM1 signaling pathway. Collectively, DDX56 initiates stem cell-like traits in HCC and promotes EMT via MELK-FOXM1 activation, shedding light on HCC pathogenesis and suggesting a potential anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Qing Li
- Department of Internal Medicine, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning Province, China
| | - Tianyi Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Ximin Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - XinYu Ge
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Tao Yang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|
3
|
Shojaei S, Moradi-Chaleshtori M, Paryan M, Koochaki A, Sharifi K, Mohammadi-Yeganeh S. Mesenchymal stem cell-derived exosomes enriched with miR-218 reduce the epithelial-mesenchymal transition and angiogenesis in triple-negative breast cancer cells. Eur J Med Res 2023; 28:516. [PMID: 37968694 PMCID: PMC10647065 DOI: 10.1186/s40001-023-01463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/19/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) and angiogenesis are morphogenetic processes implicated in tumor invasion and metastasis. It is found that the aberrant expression of microRNAs (miRNAs) contributes to these processes. Exosomes are considered potential natural vehicles for miRNA delivery in cancer therapy. miR-218 is one of the tumor suppressor miRNAs and its downregulation is associated with EMT and angiogenesis. We aimed to use adipose mesenchymal stem cells-derived exosomes (ADMSC-exosomes) for miR-218 delivery to breast cancer cells and evaluate miR-218 tumor-suppressing properties in vitro. METHODS Exosomes were isolated from conditioned media of ADMSCs. miR-218 was loaded to exosomes using electroporation. mRNA expression of target genes (Runx2 and Rictor) in MDA-MB-231 breast cancer cells was evaluated by qPCR. To explore the effects of miR-218 containing exosomes on breast cancer cells, viability, apoptosis, and Boyden chamber assays were performed. The angiogenic capacity of MDA-MB-231 cells after treatment with miR-218 containing exosomes was assessed by in vitro tube formation assay. RESULTS miR-218 mimic was efficiently loaded to ADMSC-exosomes and delivered to MDA-MB-231 cells. Exposure to miR-218 containing exosomes significantly decreased miR-218 target genes (Runx2 and Rictor) in MDA-MB-231 cells. They increased the expression of epithelial marker (CDH1) and reduced mesenchymal marker (CDH2). miR-218 restoration using miR-218 containing exosomes reduced viability, motility, invasion, and angiogenic capacity of breast cancer cells. CONCLUSIONS These findings suggest that ADMSC-exosomes can efficiently restore miR-218 levels in breast cancer cells and miR-218 can prevent breast cancer progression with simultaneous targeting of angiogenesis and EMT.
Collapse
Affiliation(s)
- Samaneh Shojaei
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Moradi-Chaleshtori
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Ameneh Koochaki
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Sharifi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Yoodee S, Thongboonkerd V. Epigenetic regulation of epithelial-mesenchymal transition during cancer development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:1-61. [PMID: 37657856 DOI: 10.1016/bs.ircmb.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) plays essential roles in promoting malignant transformation of epithelial cells, leading to cancer progression and metastasis. During EMT-induced cancer development, a wide variety of genes are dramatically modified, especially down-regulation of epithelial-related genes and up-regulation of mesenchymal-related genes. Expression of other EMT-related genes is also modified during the carcinogenic process. Especially, epigenetic modifications are observed in the EMT-related genes, indicating their involvement in cancer development. Mechanically, epigenetic modifications of histone, DNA, mRNA and non-coding RNA stably change the EMT-related gene expression at transcription and translation levels. Herein, we summarize current knowledge on epigenetic regulatory mechanisms observed in EMT process relate to cancer development in humans. The better understanding of epigenetic regulation of EMT during cancer development may lead to improvement of drug design and preventive strategies in cancer therapy.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, Vizeacoumar FJ, Wu Y. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol 2023; 12:1087989. [PMID: 36761420 PMCID: PMC9905851 DOI: 10.3389/fonc.2022.1087989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.
Collapse
Affiliation(s)
- Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hardikkumar Patel
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan and Saskatchewan Cancer Agency, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| |
Collapse
|
6
|
MicroRNAs: A Link between Mammary Gland Development and Breast Cancer. Int J Mol Sci 2022; 23:ijms232415978. [PMID: 36555616 PMCID: PMC9786715 DOI: 10.3390/ijms232415978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is among the most common cancers in women, second to skin cancer. Mammary gland development can influence breast cancer development in later life. Processes such as proliferation, invasion, and migration during mammary gland development can often mirror processes found in breast cancer. MicroRNAs (miRNAs), small, non-coding RNAs, can repress post-transcriptional RNA expression and can regulate up to 80% of all genes. Expression of miRNAs play a key role in mammary gland development, and aberrant expression can initiate or promote breast cancer. Here, we review the role of miRNAs in mammary development and breast cancer, and potential parallel roles. A total of 32 miRNAs were found to be expressed in both mammary gland development and breast cancer. These miRNAs are involved in proliferation, metastasis, invasion, and apoptosis in both processes. Some miRNAs were found to have contradictory roles, possibly due to their ability to target many genes at once. Investigation of miRNAs and their role in mammary gland development may inform about their role in breast cancer. In particular, by studying miRNA in development, mechanisms and potential targets for breast cancer treatment may be elucidated.
Collapse
|
7
|
Hu A, Wang Y, Tian J, Chen Z, Chen R, Han X, Chen Y, Liu T, Chen Q. Pan-cancer analysis reveals DDX21 as a potential biomarker for the prognosis of multiple tumor types. Front Oncol 2022; 12:947054. [PMID: 36505822 PMCID: PMC9730287 DOI: 10.3389/fonc.2022.947054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Background DExD-box helicase 21 (DDX21) is an essential member of the RNA helicase family. DDX21 is involved in the carcinogenesis of various malignancies, but there has been no comprehensive research on its involvement in different types of cancer. Method This study used TCGA, CPTAC, GTEx, GEO, FANTOM5, BioGRID, TIMER2, GEPIA2, cBioPortal, STRING, and Metascape databases and Survival ROC software to evaluate DDX21 gene expression, protein expression, immunohistochemistry, gene mutation, immune infiltration, and protein phosphorylation in 33 TCGA tumor types, as well as the prognostic relationship between DDX21 and different tumors, by survival analysis and similar gene enrichment analysis. Furthermore, Cell Counting Kit-8 (CCK-8) and Transwell studies were employed to assess the effect of DDX21 expression on lung adenocarcinoma (LUAD) cell proliferation and migration. Result The DDX21 gene was highly expressed in most cancers, and overexpression was associated with poor overall survival (OS) and disease-free survival (DFS). DDX21 mutations were most common in uterine corpus endometrial carcinoma (UCEC; >5%), and DDX21 expression was positively correlated with the degree of infiltration of CAF and CD8+ cells in several tumor types. Numerous genes were co-expressed with DDX21. Gene enrichment analysis revealed close links between DDX21, RNA metabolism, and ribosomal protein production. In vitro analysis of LUAD cells showed that DDX21 expression was positively correlated with cell proliferation and migration capacity, consistent with prior bioinformatics studies. Conclusions DDX21 is overexpressed in a variety of cancers, and overexpression in some cancers is associated with poor prognosis. Immune infiltration and DDX21-related gene enrichment analyses indicated that DDX21 may affect cancer development through mechanisms that regulate tumor immunity, RNA metabolism, and ribosomal protein synthesis. This pan-cancer study revealed the prognostic value and the oncogenic role of DDX21.
Collapse
Affiliation(s)
- Ankang Hu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yonghui Wang
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiahao Tian
- Clinical Medicine Science, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zihan Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xufeng Han
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tingjun Liu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Quangang Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
8
|
Feng J, Meng X. Histone modification and histone modification-targeted anti-cancer drugs in breast cancer: Fundamentals and beyond. Front Pharmacol 2022; 13:946811. [PMID: 36188615 PMCID: PMC9522521 DOI: 10.3389/fphar.2022.946811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022] Open
Abstract
Dysregulated epigenetic enzymes and resultant abnormal epigenetic modifications (EMs) have been suggested to be closely related to tumor occurrence and progression. Histone modifications (HMs) can assist in maintaining genome stability, DNA repair, transcription, and chromatin modulation within breast cancer (BC) cells. In addition, HMs are reversible, dynamic processes involving the associations of different enzymes with molecular compounds. Abnormal HMs (e.g. histone methylation and histone acetylation) have been identified to be tightly related to BC occurrence and development, even though their underlying mechanisms remain largely unclear. EMs are reversible, and as a result, epigenetic enzymes have aroused wide attention as anti-tumor therapeutic targets. At present, treatments to restore aberrant EMs within BC cells have entered preclinical or clinical trials. In addition, no existing studies have comprehensively analyzed aberrant HMs within BC cells; in addition, HM-targeting BC treatments remain to be further investigated. Histone and non-histone protein methylation is becoming an attractive anti-tumor epigenetic therapeutic target; such methylation-related enzyme inhibitors are under development at present. Consequently, the present work focuses on summarizing relevant studies on HMs related to BC and the possible mechanisms associated with abnormal HMs. Additionally, we also aim to analyze existing therapeutic agents together with those drugs approved and tested through pre-clinical and clinical trials, to assess their roles in HMs. Moreover, epi-drugs that target HMT inhibitors and HDAC inhibitors should be tested in preclinical and clinical studies for the treatment of BC. Epi-drugs that target histone methylation (HMT inhibitors) and histone acetylation (HDAC inhibitors) have now entered clinical trials or are approved by the US Food and Drug Administration (FDA). Therefore, the review covers the difficulties in applying HM-targeting treatments in clinics and proposes feasible approaches for overcoming such difficulties and promoting their use in treating BC cases.
Collapse
|
9
|
Yin Y, Xu ZY, Liu YJ, Huang W, Zhang Q, Li JP, Zou X. Identification and Validation in a Novel Classification of Helicase Patterns for the Prediction of Tumor Proliferation and Prognosis. J Hepatocell Carcinoma 2022; 9:885-900. [PMID: 36061235 PMCID: PMC9432388 DOI: 10.2147/jhc.s378175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Helicases have been classified as a class of enzymes that determine the stability of the cellular genome. There is growing evidence that helicases can help tumor cells resist drug killing by repairing Deoxyribose Nucleic Acid (DNA) or stabilizing transcription, which may contribute to the understanding of drug resistance. Currently, identifying cancer biomarkers among helicases and stratifying patients according to helicase activity will be able to guide treatment well. Methods We clustered 371 hepatocellular carcinoma (HCC) patients from The Cancer Genome Atlas (TCGA) by consensus clustering based on helicase expression profiles to identify potential molecular subtypes. The Multiscale Embedded Gene Co-Expression Network Analysis (MEGENA) algorithm was used to find core differential gene modules between different molecular subtypes, and single-cell analysis was utlized to explore the potential function of hub gene. Immunohistochemical (IHC) staining was used to verify the diagnostic value of DDX56 and its ability to reflect the proliferation efficiency of cancer cells. Results We identified two subtypes associated with helicase. High helicase subtype was associated with poor clinical outcome, massive M0 macrophage infiltration, and highly active cell proliferation features. In addition, we identified a new biomarker, DDX56, which has not been reported in HCC, was highly expressed in HCC tissues, associated with poor prognosis, and was also shown to be associated with high cell proliferative activity. Conclusion In conclusion, based on helicase expression profiles, we have developed a new classification system for HCC, which is a proliferation-related system, and has clinical significance in evaluating prognosis and treating HCC patients, including immunotherapy and chemotherapy. In addition, we identified a new biomarker, DDX 56, which is overexpressed in HCC tissues, predicts a poor prognosis and is a validated index of tumor cell proliferation.
Collapse
Affiliation(s)
- Yi Yin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Zi-Yuan Xu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Yuan-jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Wei Huang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Qian Zhang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Jie-pin Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- Department of Oncology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People’s Republic of China
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, Jiangsu, 210029, People’s Republic of China
- Correspondence: Xi Zou; Jie-pin Li, Email ;
| |
Collapse
|
10
|
Zhang L, Bernardo KD, Vickers TA, Tian J, Liang XH, Crooke ST. NAT10 and DDX21 Proteins Interact with RNase H1 and Affect the Performance of Phosphorothioate Oligonucleotides. Nucleic Acid Ther 2022; 32:280-299. [PMID: 35852833 PMCID: PMC9416547 DOI: 10.1089/nat.2021.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
RNase H1-dependent phosphorothioate oligonucleotides (PS-ASOs) have been developed to treat various diseases through specific degradation of target RNAs. Although many factors or features of RNA and PS-ASOs have been demonstrated to affect antisense activity of PS-ASOs, little is known regarding the roles of RNase H1-associated proteins in PS-ASO performance. In this study, we report that two nucleolar proteins, NAT10 and DDX21, interact with RNase H1 and affect the potency and safety of PS-ASOs. The interactions of these two proteins with RNase H1 were determined using BioID proximity labeling in cells and confirmed biochemically. Reduction of NAT10 and DDX21 decreased PS-ASO activity in cells, and purified NAT10 and DDX21 proteins enhanced RNase H1 cleavage rates, indicating that these two proteins facilitate RNase H1 endoribonuclease activity. Consistently, reduction of these proteins increased the levels of R-loops, and impaired pre-rRNA processing. In addition, reduction of the two proteins increased the cytotoxicity of toxic PS-ASOs, and treatment of toxic PS-ASOs also altered the localization of these proteins. Together, this study shows for the first time that NAT10 and DDX21 interact with RNase H1 protein and enhance its enzymatic activity, contributing to the potency and safety of PS-ASOs.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Karla D. Bernardo
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Timothy A. Vickers
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Jun Tian
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Xue-hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Stanley T. Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| |
Collapse
|
11
|
Retinoid orphan nuclear receptor alpha (RORα) suppresses the epithelial-mesenchymal transition (EMT) by directly repressing Snail transcription. J Biol Chem 2022; 298:102059. [PMID: 35605663 PMCID: PMC9218514 DOI: 10.1016/j.jbc.2022.102059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
Retinoid orphan nuclear receptor alpha (RORα) is a member of the orphan nuclear factor family and regulates gene expression by binding to ROR response elements (ROREs). RORα has been identified as a potential tumor suppressor; however, how downregulation of RORα promotes cancer progression is not fully understood. Here, we showed that protein levels of RORα were downregulated during the Snail-, Twist-, or transforming growth factor-β–induced epithelial–mesenchymal transition (EMT). We found that silencing of RORα induced expression of mesenchymal markers in MCF10A cells, accompanied by enhanced cell invasion, migration, and mammosphere formation. Furthermore, ectopic expression of RORα suppressed transforming growth factor-β–induced EMT processes in MCF10A and HMLE cells. These results indicate that downregulation of RORα is crucial for the induction of EMT in mammary epithelial cells. By analyzing gene expression profiles in control and RORα-expressing cells, we also identified Snail, a key regulator of EMT, as a potential target of RORα. We show that RORα expression significantly inhibits Snail transcription in breast cancer cells. Chromatin immunoprecipitation analysis demonstrated that RORα bound to the ROREs in promoter region of SNAI1 gene, and using the luciferase reporter assay, we showed that binding to the ROREs was critical for RORα to repress Snail transcription. Finally, rescue experiments substantiated that Snail mediates RORα function in suppressing EMT and mammosphere formation. These results reveal a novel function of RORα in suppressing EMT and identify Snail as a direct target of RORα in mammary epithelial cells.
Collapse
|
12
|
Yu B, Zhou S, Long D, Ning Y, Yao H, Zhou E, Wang Y. DDX55 promotes HCC progression via interacting with BRD4 and participating in exosome-mediated cell-cell communication. Cancer Sci 2022; 113:3002-3017. [PMID: 35514200 PMCID: PMC9459289 DOI: 10.1111/cas.15393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/27/2022] Open
Abstract
The involvement of DEAD‐box helicase 55 (DDX55) in oncogenesis has been suggested, but its biological role in hepatocellular carcinoma (HCC) remains unknown. The present study verified the upregulation of DDX55 in HCC tissues compared with non‐tumor controls. DDX55 displayed the highest prognostic values among the DEAD‐box protein family for recurrence‐free survival and overall survival of HCC patients. In addition, the effects of DDX55 in the promotion of HCC cell proliferation, migration, and invasion were determined ex vivo and in vivo. Mechanistically, we revealed that DDX55 could interact with BRD4 to form a transcriptional regulatory complex that positively regulated PIK3CA transcription. Following that, β‐catenin signaling was activated in a PI3K/Akt/GSK‐3β dependent manner, thus inducing cell cycle progression and epithelial–mesenchymal transition. Intriguingly, both DDX55 mRNA and protein were identified in the exosomes derived from HCC cells. Exosomal DDX55 was implicated in intercellular communication between HCC cells with high or low DDX55 levels and between HCC cells and endothelial cells, thereby promoting the malignant phenotype of HCC cells and angiogenesis. In conclusion, DDX55 may be a valuable prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Bin Yu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Dakun Long
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Yuxiang Ning
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Hanlin Yao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Engineering Center of Natural Polymer-based Medical Materials, Hubei, Wuhan, China
| |
Collapse
|
13
|
Huang R, Yang Z, Liu Q, Liu B, Ding X, Wang Z. CircRNA DDX21 acts as a prognostic factor and sponge of miR-1264/QKI axis to weaken the progression of triple-negative breast cancer. Clin Transl Med 2022; 12:e768. [PMID: 35522944 PMCID: PMC9076009 DOI: 10.1002/ctm2.768] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023] Open
Affiliation(s)
- Renhong Huang
- Department of General SurgeryComprehensive Breast Health CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhou Yang
- Department of General SurgeryShanghai Pudong HospitalFudan University Pudong Medical CenterShanghaiChina
| | - Qian Liu
- Department of Pathologythe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Biao Liu
- Department of Pathologythe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Xinyuan Ding
- Department of Pharmacythe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhouChina
| | - Zheng Wang
- Department of General SurgeryComprehensive Breast Health CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
14
|
Wang J, Wang Y, Wang J, Zhang S, Yu Z, Zheng K, Fu Z, Wang C, Huang W, Chen J. DEAD-box helicase 56 functions as an oncogene promote cell proliferation and invasion in gastric cancer via the FOXO1/p21 Cip1/c-Myc signaling pathway. Bioengineered 2022; 13:13970-13985. [PMID: 35723050 PMCID: PMC9275944 DOI: 10.1080/21655979.2022.2084235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
DEAD-box helicase (DDX) family exerts a critical effect on cancer initiation and progression through alternative splicing, transcription and ribosome biogenesis. Increasing evidence has demonstrated that DEAD-box helicase 56 (DDX56) is over-expressed in several cancers, which plays an oncogenic role. Till the present, the impact of DDX56 on gastric cancer (GC) remains unclear. We conducted high-throughput sequencing (RNA-seq) to demonstrate aberrant DDX56 levels within 10 GC and matched non-carcinoma tissue samples. DDX56 levels were detected through qRT-PCR, western blotting (WB) and immunochemical staining in GC patients. We conducted gain- and loss-of-function studies to examine DDX56's biological role in GC development. In vitro, we carried out 5‑Ethynyl‑2‑deoxyuridine (EdU), scratch, Transwell, and flow cytometry (FCM) assays for detecting GC cell growth, invasion, migration and apoptosis. Additionally, gene set enrichment analysis (GSEA), WB assay, and Encyclopedia of RNA Interactomes (ENCORI) were carried out for analyzing DDX56-regulated downstream genes and signaling pathways. In vivo, tumor xenograft experiment was performed for investigating how DDX56 affected GC development within BALB/c nude mice. Functionally, DDX56 knockdown arrested cell cycle at G1 phase, invasion and migration of AGS and MKN28 cells, and enhanced their apoptosis. Ectopic DDX56 expression enhanced the cell growth, migration and invasion, and inhibited apoptosis. Knockdown of DDX56 suppressed GC growth in the tumor models of BALB/c nude mice. Mechanistically, DDX56 post-transcriptionally suppressed FOXO1/p21 Cip1 protein expression, which could activate its downstream cyclin E1/CDK2/c-Myc signaling pathways. This sheds lights on the GC pathogenic mechanism and offers a potential anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Jiancheng Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ye Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junfu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Siwen Zhang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhu Yu
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Kaitian Zheng
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhao Fu
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Congjun Wang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weijia Huang
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Junqiang Chen
- Department of Gastrointestinal Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Cerutti C, Zhang L, Tribollet V, Shi JR, Brillet R, Gillet B, Hughes S, Forcet C, Shi TL, Vanacker JM. Computational identification of new potential transcriptional partners of ERRα in breast cancer cells: specific partners for specific targets. Sci Rep 2022; 12:3826. [PMID: 35264626 PMCID: PMC8907200 DOI: 10.1038/s41598-022-07744-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
Estrogen related receptors are orphan members of the nuclear receptor superfamily acting as transcription factors (TFs). In contrast to classical nuclear receptors, the activities of the ERRs are not controlled by a natural ligand. Regulation of their activities thus relies on availability of transcriptional co-regulators. In this paper, we focus on ERRα, whose involvement in cancer progression has been broadly demonstrated. We propose a new approach to identify potential co-activators, starting from previously identified ERRα-activated genes in a breast cancer (BC) cell line. Considering mRNA gene expression from two sets of human BC cells as major endpoint, we used sparse partial least squares modeling to uncover new transcriptional regulators associated with ERRα. Among them, DDX21, MYBBP1A, NFKB1, and SETD7 are functionally relevant in MDA-MB-231 cells, specifically activating the expression of subsets of ERRα-activated genes. We studied SET7 in more details and showed its co-localization with ERRα and its ERRα-dependent transcriptional and phenotypic effects. Our results thus demonstrate the ability of a modeling approach to identify new transcriptional partners from gene expression. Finally, experimental results show that ERRα cooperates with distinct co-regulators to control the expression of distinct sets of target genes, thus reinforcing the combinatorial specificity of transcription.
Collapse
Affiliation(s)
- Catherine Cerutti
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
| | - Ling Zhang
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
| | - Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
| | - Jing-Ru Shi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Riwan Brillet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
| | - Tie-Liu Shi
- The Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
16
|
Tabassum S, Ghosh MK. DEAD-box RNA helicases with special reference to p68: Unwinding their biology, versatility, and therapeutic opportunity in cancer. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Wang Q, Yen YT, Xie C, Liu F, Liu Q, Wei J, Yu L, Wang L, Meng F, Li R, Liu B. Combined delivery of salinomycin and docetaxel by dual-targeting gelatinase nanoparticles effectively inhibits cervical cancer cells and cancer stem cells. Drug Deliv 2021; 28:510-519. [PMID: 33657950 PMCID: PMC7935125 DOI: 10.1080/10717544.2021.1886378] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/02/2021] [Indexed: 01/05/2023] Open
Abstract
Intra-tumor heterogeneity is widely accepted as one of the key factors, which hinders cancer patients from achieving full recovery. Especially, cancer stem cells (CSCs) may exhibit self-renewal capacity, which makes it harder for complete elimination of tumor. Therefore, simultaneously inhibiting CSCs and non-CSCs in tumors becomes a promising strategy to obtain sustainable anticancer efficacy. Salinomycin (Sal) was reported to be critical to inhibit CSCs. However, the poor bioavailability and catastrophic side effects brought about limitations to clinical practice. To solve this problem, we previously constructed gelatinase-stimuli nanoparticles composed of nontoxic, biocompatible polyethylene glycol-polycaprolactone (PEG-PCL) copolymer with a gelatinase-cleavable peptide Pro-Val-Gly-Leu-Iso-Gly (PVGLIG) inserted between the two blocks of the copolymer. By applying our "smart" gelatinase-responsive nanoparticles for Sal delivery, we have demonstrated specific accumulation in tumor, anti-CSCs ability and reduced toxicity of Sal-NPs in our previous study. In the present study, we synthesized Sal-Docetaxel-loaded gelatinase-stimuli nanoparticles (Sal-Doc NP) and confirmed single emulsion as the optimal method of producing Sal-Doc NPs (Sal-Doc SE-NP) in comparison with nanoprecipitation. Sal-Doc SE-NPs inhibited both CSCs and non-CSCs in mice transplanted with cervical cancer, and might be associated with enhanced restriction of epithelial-mesenchymal transition (EMT) pathway. Besides, the tumorigenic capacity and growing speed were obviously suppressed in Sal-Doc-SE-NPs-treated group in rechallenge experiment. Our results suggest that Sal-Doc-loaded gelatinase-stimuli nanoparticles could be a promising strategy to enhance antitumor efficacy and reduce side effects by simultaneously suppressing CSCs and non-CSCs.
Collapse
Affiliation(s)
- Qin Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ying-Tzu Yen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Fangcen Liu
- Department of pathology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Lifeng Wang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Rutian Li
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Xu W, Anwaier A, Liu W, Tian X, Zhu WK, Wang J, Qu Y, Zhang H, Ye D. Systematic Genome-Wide Profiles Reveal Alternative Splicing Landscape and Implications of Splicing Regulator DExD-Box Helicase 21 in Aggressive Progression of Adrenocortical Carcinoma. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:243-256. [PMID: 36939770 PMCID: PMC9590509 DOI: 10.1007/s43657-021-00026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022]
Abstract
Alternative splicing (AS) in the tumor biological process has provided a novel perspective on carcinogenesis. However, the clinical significance of individual AS patterns of adrenocortical carcinoma (ACC) has been underestimated, and in-depth investigations are lacking. We selected 76 ACC samples from the Cancer Genome Atlas (TCGA) SpliceSeq and SpliceAid2 databases, and 39 ACC samples from Fudan University Shanghai Cancer Center (FUSCC). Prognosis-related AS events (PASEs) and survival analysis were evaluated based on prediction models constructed by machine-learning algorithm. In total, 23,984 AS events and 3,614 PASEs were detected in the patients with ACC. The predicted risk score of each patient suggested that eight PASEs groups were significantly correlated with the clinical outcomes of these patients (p < 0.001). Prognostic models produced AUC values of 0.907 in all PASEs' groups. Eight splicing factors (SFs), including BAG2, CXorf56, DExD-Box Helicase 21 (DDX21), HSPB1, MBNL3, MSI1, RBMXL2, and SEC31B, were identified in regulatory networks of ACC. DDX21 was identified and validated as a novel clinical promoter and therapeutic target in 115 patients with ACC from TCGA and FUSCC cohorts. In conclusion, the strict standards used in this study ensured the systematic discovery of profiles of AS events using genome-wide cohorts. Our findings contribute to a comprehensive understanding of the landscape and underlying mechanism of AS, providing valuable insights into the potential usages of DDX21 for predicting prognosis for patients with ACC. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-021-00026-x.
Collapse
Affiliation(s)
- Wenhao Xu
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Aihetaimujiang Anwaier
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wangrui Liu
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 People’s Republic of China
| | - Xi Tian
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wen-Kai Zhu
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jian Wang
- grid.412987.10000 0004 0630 1330Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 People’s Republic of China
| | - Yuanyuan Qu
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Hailiang Zhang
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Dingwei Ye
- grid.452404.30000 0004 1808 0942Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
19
|
Wang K, Li B, Fan P, Ren X, Jiang H. Downregulation of DEAD-box helicase 21 (DDX21) inhibits proliferation, cell cycle, and tumor growth in colorectal cancer via targeting cell division cycle 5-like (CDC5L). Bioengineered 2021; 12:12647-12658. [PMID: 34903139 PMCID: PMC8810101 DOI: 10.1080/21655979.2021.2011636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/30/2022] Open
Abstract
Identification of novel anti-tumor target is crucial for cancer diagnosis, prognosis, and therapeutic strategy. The study aimed to explore the roles and interaction of DEAD-box helicase 21 (DDX21) and cell division cycle 5-like (CDC5L) in colorectal cancer (CRC) progression. Levels of DDX21 and CDC5L were detected in colorectal cancer cell lines by RT-qPCR and Western blot assay. The role of DDX21 and CDC5L on the cell proliferation, cell cycle and tumor growth were evaluated both in vitro and in vivo. The interaction of DDX21 and CDC5L was predicted by The STRING publicly available data and verified by immunoprecipitation. The results showed that DDX21 was dramatically upregulated in colorectal cancer cells. In vivo and in vitro experiments revealed that downregulation of DDX21 suppressed colorectal cancer cell proliferation, colony formation, cell cycle development, and tumor growth, while overexpression of CDC5L reversed the suppressive effects of DDX21 silencing. Furthermore, DDX21 interacted with CDC5L to exert the tumor-promoting effects in CRC. In summary, the data indicate a novel role for DDX21/CDC5L in the development of CRC, which enrich the therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Kai Wang
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Baosong Li
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Peng Fan
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Xiang Ren
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Hong Jiang
- Department of Colorectal and Anal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| |
Collapse
|
20
|
Koltowska K, Okuda KS, Gloger M, Rondon-Galeano M, Mason E, Xuan J, Dudczig S, Chen H, Arnold H, Skoczylas R, Bower NI, Paterson S, Lagendijk AK, Baillie GJ, Leshchiner I, Simons C, Smith KA, Goessling W, Heath JK, Pearson RB, Sanij E, Schulte-Merker S, Hogan BM. The RNA helicase Ddx21 controls Vegfc-driven developmental lymphangiogenesis by balancing endothelial cell ribosome biogenesis and p53 function. Nat Cell Biol 2021; 23:1136-1147. [PMID: 34750583 DOI: 10.1038/s41556-021-00784-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Kazuhide S Okuda
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marleen Gloger
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Rondon-Galeano
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Mason
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Stefanie Dudczig
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Huijun Chen
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Hannah Arnold
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Renae Skoczylas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Neil I Bower
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Scott Paterson
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Anne Karine Lagendijk
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Gregory J Baillie
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ignaty Leshchiner
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cas Simons
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Kelly A Smith
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia.,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Wolfram Goessling
- Massachusetts General Hospital, Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Joan K Heath
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia.,St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Medical Faculty, WWU Münster, Münster, Germany.,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands
| | - Benjamin M Hogan
- Division of Genomics of Development and Disease, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia. .,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia. .,Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia. .,Hubrecht Institute-KNAW and University Medical Centre, Utrecht, The Netherlands.
| |
Collapse
|
21
|
Caterino M, Paeschke K. Action and function of helicases on RNA G-quadruplexes. Methods 2021; 204:110-125. [PMID: 34509630 PMCID: PMC9236196 DOI: 10.1016/j.ymeth.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Methodological progresses and piling evidence prove the rG4 biology in vivo. rG4s step in virtually every aspect of RNA biology. Helicases unwinding of rG4s is a fine regulatory layer to the downstream processes and general cell homeostasis. The current knowledge is however limited to a few cell lines. The regulation of helicases themselves is delineating as a important question. Non-helicase rG4-processing proteins likely play a role.
The nucleic acid structure called G-quadruplex (G4) is currently discussed to function in nucleic acid-based mechanisms that influence several cellular processes. They can modulate the cellular machinery either positively or negatively, both at the DNA and RNA level. The majority of what we know about G4 biology comes from DNA G4 (dG4) research. RNA G4s (rG4), on the other hand, are gaining interest as researchers become more aware of their role in several aspects of cellular homeostasis. In either case, the correct regulation of G4 structures within cells is essential and demands specialized proteins able to resolve them. Small changes in the formation and unfolding of G4 structures can have severe consequences for the cells that could even stimulate genome instability, apoptosis or proliferation. Helicases are the most relevant negative G4 regulators, which prevent and unfold G4 formation within cells during different pathways. Yet, and despite their importance only a handful of rG4 unwinding helicases have been identified and characterized thus far. This review addresses the current knowledge on rG4s-processing helicases with a focus on methodological approaches. An example of a non-helicase rG4s-unwinding protein is also briefly described.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
22
|
Zou J, Zhu X, Xiang D, Zhang Y, Li J, Su Z, Kong L, Zhang H. LIX1-like protein promotes liver cancer progression via miR-21-3p-mediated inhibition of fructose-1,6-bisphosphatase. Acta Pharm Sin B 2021; 11:1578-1591. [PMID: 34221869 PMCID: PMC8245913 DOI: 10.1016/j.apsb.2021.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Limb and CNS expressed 1 like (LIX1L) is over-expressed in several types of tumors. However, the function of LIX1L in glucose metabolism and hepatocellular carcinoma (HCC) progression remains elusive. Here we report that LIX1L is over-expressed in human HCC tissues, which predicts unfavorable prognosis. LIX1L deficiency in vivo significantly attenuated liver cancer initiation in mice. Functional studies indicated that LIX1L overexpression elevated proliferation, migratory, invasive capacities of HCC cells in vitro, and promoted liver cancer growth and metastasis in vivo. LIX1L knockdown up-regulated fructose-1,6-bisphosphatase (FBP1) expression to reduce glucose consumption as well as lactate production. Mechanistically, LIX1L increased miR-21-3p expression, which targeted and suppressed FBP1, thereby promoting HCC growth and metastasis. MiR-21-3p inhibitor could abrogate LIX1L induced enhancement of cell migration, invasion, and glucose metabolism. Inhibition of miR-21-3p suppressed tumor growth in an orthotopic tumor model. Our results establish LIX1L as a critical driver of hepatocarcinogenesis and HCC progression, with implications for prognosis and treatment.
Collapse
Key Words
- CCl4, carbon tetrachloride
- DEN, diethylnitrosamine
- ECAR, extracellular acidification rate
- EMT, epithelial–mesenchymal transition
- FBP1
- FBP1, fructose-1,6-bisphosphatase 1
- Gluconeogenesis
- Glucose metabolism
- HCC, hepatocellular carcinoma
- Hepatocellular carcinoma
- LIX1L
- LIX1L, Limb and CNS expressed 1 like
- Metastasis
- NASH, non-alcoholic steatohepatitis
- Proliferation
- Seq, sequencing
- miR-21-3p
- miRNA, microRNA
- shRNA, short-hairpin RNA
Collapse
Affiliation(s)
- Jie Zou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoyun Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dejuan Xiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yanqiu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
McRae EKS, Dupas SJ, Atefi N, McKenna SA. Monitoring Enzymatic RNA G-Quadruplex Unwinding Activities by Nuclease Sensitivity and Reverse Transcription Stop Assays. Methods Mol Biol 2021; 2209:163-173. [PMID: 33201469 DOI: 10.1007/978-1-0716-0935-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Multiple different methods have been employed to investigate the unwinding of RNA G-quadruplexes by various helicase proteins. Each has their own pitfalls, namely, looking at non-native or chemically modified RNA sequences, biasing the unwinding process with competing trap nucleotides, and a lack of context sequence to the 5' and 3' of the RNA G-quadruplex structure. Herein we present two straightforward methods that allow for quadruplex unwinding to be monitored on native RNA sequences without the use of fluorescent modifications, specialized equipment, or trap nucleotides to be employed.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Negar Atefi
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada. .,Manitoba Institute for Materials, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
24
|
Li B, Fang L, Wang B, Yang Z, Zhao T. Identification of Prognostic RBPs in Osteosarcoma. Technol Cancer Res Treat 2021; 20:15330338211004918. [PMID: 33754909 PMCID: PMC8120427 DOI: 10.1177/15330338211004918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma often occurs in children and adolescents and causes poor prognosis. The role of RNA-binding proteins (RBPs) in malignant tumors has been elucidated in recent years. Our study aims to identify key RBPs in osteosarcoma that could be prognostic factors and treatment targets. GSE33382 dataset was downloaded from Gene Expression Omnibus (GEO) database. RBPs extraction and differential expression analysis was performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to explore the biological function of differential expression RBPs. Moreover, we constructed Protein-protein interaction (PPI) network and obtained key modules. Key RBPs were identified by univariate Cox regression analysis and multiple stepwise Cox regression analysis combined with the clinical information from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Risk score model was generated and validated by GSE16091 dataset. A total of 38 differential expression RBPs was identified. Go and KEGG results indicated these RBPs were significantly involved in ribosome biogenesis and mRNA surveillance pathway. COX regression analysis showed DDX24, DDX21, WARS and IGF2BP2 could be prognostic factors in osteosarcoma. Spearman's correlation analysis suggested that WARS might be important in osteosarcoma immune infiltration. In conclusion, DDX24, DDX21, WARS and IGF2BP2 might play key role in osteosarcoma, which could be therapuetic targets for osteosarcoma treatment.
Collapse
Affiliation(s)
- Bei Li
- Department of Orthopedic Oncology Surgery, Shandong Cancer Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Long Fang
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Baolong Wang
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zengkun Yang
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tingbao Zhao
- Department of Orthopaedics, Shandong Provincial Third Hospital, 66555Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
25
|
Sun X, Li K, Zha R, Liu S, Fan Y, Wu D, Hase M, Aryal UK, Lin CC, Li BY, Yokota H. Preventing tumor progression to the bone by induced tumor-suppressing MSCs. Theranostics 2021; 11:5143-5159. [PMID: 33859739 PMCID: PMC8039940 DOI: 10.7150/thno.58779] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Advanced breast cancer metastasizes to many organs including bone, but few effective treatments are available. Here we report that induced tumor-suppressing (iTS) MSCs protected bone from metastases while un-induced MSCs did not. Methods: iTS MSCs were generated by overexpressing Lrp5, β-catenin, Snail, or Akt. Their tumor-suppressing capability was tested using a mouse model of mammary tumors and bone metastasis, human breast cancer tissues and cancer cell lines. Results: In a mouse model, the induced MSC-derived conditioned medium (MSC CM) reduced mammary tumors and suppressed tumor-induced osteolysis. Tumor-promoting genes such as CXCL2 and LIF, as well as PDL1, a blocker of T-cell-based immune responses were downregulated. Proteomics analysis revealed that heat shock protein 90 (Hsp90ab1), calreticulin (Calr) and peptidylprolyl isomerase B (Ppib), which are highly expressed intracellular proteins in many cancers, were enriched in MSC CM as atypical tumor suppressors. Thus, overexpressing selected genes that were otherwise tumorigenic rendered MSCs the tumor-suppressing capability through the atypical suppressors, as well as p53 and Trail. Notably, the inhibitory effect of Lrp5- and Akt-overexpressing MSC CMs, Hsp90ab1 and Calr presented selective inhibition to tumor cells than non-tumor cells. The development of bone-resorbing osteoclasts was also suppressed by MSC CMs. Conclusion: Collectively, the results showed an anti-tumor effect of iTS MSCs and suggested novel therapeutic approaches to suppress the progression of tumors into the bone.
Collapse
Affiliation(s)
- Xun Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Kexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Rongrong Zha
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yao Fan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Di Wu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Misato Hase
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Graduate School of Engineering, Mie University, Mie 514, Japan
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- ✉ Corresponding authors: Hiroki Yokota, PhD, Department of Biomedical Engineering, Indiana U. Purdue U. Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN 46202 USA. Phone: 317-278-5177, Fax: 317-278-2455, E-mail: ; Bai-Yan Li, MD/PhD, Department of Pharmacology, School of Pharmacy, Harbin Medical University, #157 Baojian Road, Harbin 150081, China. Phone/Fax: +86 451-8667-134, E-mail:
| | - Hiroki Yokota
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- ✉ Corresponding authors: Hiroki Yokota, PhD, Department of Biomedical Engineering, Indiana U. Purdue U. Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN 46202 USA. Phone: 317-278-5177, Fax: 317-278-2455, E-mail: ; Bai-Yan Li, MD/PhD, Department of Pharmacology, School of Pharmacy, Harbin Medical University, #157 Baojian Road, Harbin 150081, China. Phone/Fax: +86 451-8667-134, E-mail:
| |
Collapse
|
26
|
Downregulation of lncRNA HCP5 has inhibitory effects on gastric cancer cells by regulating DDX21 expression. Cytotechnology 2021; 73:1-11. [PMID: 33505109 DOI: 10.1007/s10616-020-00429-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
LncRNA HCP5 has been confirmed to play crucial roles in many types of cancers. However, the role of lncRNA HCP5 in regulating the occurrence and development of gastric cancer (GC) remains unknown. In the current study, we aimed to investigate the precise effects of lncRNA HCP5 on cell proliferation, migration and invasion and molecular mechanisms in gastric cancer. Using RT-qPCR analysis, we found that lncRNA HCP5 was differentially expressed in GC cell lines. CCK-8, wound healing and transwell assay indicated that the proliferation, migration and invasion of gastric cancer cells were inhibited by downregulation of lncRNA HCP5 and lncRNA HCP5 overexpression exhibited the opposite effects in gastric cancer cells. Mechanistically, RNA binding protein immunoprecipitation and dual luciferase reporter assay confirmed the interaction between lncRNA HCP5 and DDX21. The effects of lncRNA HCP5 overexpression the proliferation, migration and invasion of GC cells were partly rescued by DDX21 silencing. Taken together, downregulation of lncRNA HCP5 exerted inhibitory effects on GC cell proliferation, migration and invasion through modulation of DDX21 expression, demonstrating the function of lncRNA HCP5 and DDX21 in GC progression.
Collapse
|
27
|
Marcaida MJ, Kauzlaric A, Duperrex A, Sülzle J, Moncrieffe MC, Adebajo D, Manley S, Trono D, Dal Peraro M. The Human RNA Helicase DDX21 Presents a Dimerization Interface Necessary for Helicase Activity. iScience 2020; 23:101811. [PMID: 33313488 PMCID: PMC7721647 DOI: 10.1016/j.isci.2020.101811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Members of the DEAD-box helicase family are involved in all fundamental processes of RNA metabolism, and as such, their malfunction is associated with various diseases. Currently, whether and how oligomerization impacts their biochemical and biological functions is not well understood. In this work, we show that DDX21, a human DEAD-box helicase with RNA G-quadruplex resolving activity, is dimeric and that its oligomerization state influences its helicase activity. Solution small-angle X-ray scattering (SAXS) analysis uncovers a flexible multi-domain protein with a central dimerization domain. While the Arg/Gly rich C termini, rather than dimerization, are key to maintaining high affinity for RNA substrates, in vitro helicase assays indicate that an intact dimer is essential for both DDX21 ATP-dependent double-stranded RNA unwinding and ATP-independent G-quadruplex remodeling activities. Our results suggest that oligomerization plays a key role in regulating RNA DEAD-box helicase activity. The human RNA DEAD-box helicase DDX21 is dimeric DDX21 dimerization is mediated by a hydrophobic central core domain SAXS-based modeling reveals that DDX21 is intrinsically flexible Dimerization and C-terminal domains mediate G-quadruplex and dsRNA unwinding
Collapse
Affiliation(s)
- Maria J Marcaida
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Annamaria Kauzlaric
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Alice Duperrex
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Jenny Sülzle
- Laboratory for Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Martin C Moncrieffe
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Damilola Adebajo
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Suliana Manley
- Laboratory for Experimental Biophysics, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Didier Trono
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Switzerland
| |
Collapse
|
28
|
DEAD-box RNA helicase protein DDX21 as a prognosis marker for early stage colorectal cancer with microsatellite instability. Sci Rep 2020; 10:22085. [PMID: 33328538 PMCID: PMC7745018 DOI: 10.1038/s41598-020-79049-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022] Open
Abstract
DEAD-box RNA helicase DDX21 (also named nucleolar RNA helicase 2) is a nuclear autoantigen with undefined roles in cancer. To explore possible roles of autoimmune recognition in cancer immunity, we examined DDX21 protein expression in colorectal cancer tissue and its association with patient clinical outcomes. Unbiased deep proteomic profiling of two independent colorectal cancer cohorts using mass spectrometry showed that DDX21 protein was significantly upregulated in cancer relative to benign mucosa. We then examined DDX21 protein expression in a validation group of 710 patients, 619 of whom with early stage and 91 with late stage colorectal cancers. DDX21 was detected mostly in the tumor cell nuclei, with high expression in some mitotic cells. High levels of DDX21 protein were found in 28% of stage I, 21% of stage II, 30% of stage III, and 32% of stage IV colorectal cancer cases. DDX21 expression levels correlated with non-mucinous histology in early stage cancers but not with other clinicopathological features such as patient gender, age, tumor location, tumor grade, or mismatch repair status in any cancer stage. Kaplan-Meier analyses revealed that high DDX21 protein levels was associated with longer survival in patients with early stage colorectal cancer, especially longer disease-free survival in patients with microsatellite instability (MSI) cancers, but no such correlations were found for the microsatellite stable subtype or late stage colorectal cancer. Univariate and multivariate analyses also identified high DDX21 protein expression as an independent favorable prognostic marker for early stage MSI colorectal cancer.
Collapse
|
29
|
Wang X, Wu Z, Qin W, Sun T, Lu S, Li Y, Wang Y, Hu X, Xu D, Wu Y, Chen Q, Yao W, Liu M, Wei M, Wu H. Long non-coding RNA ZFAS1 promotes colorectal cancer tumorigenesis and development through DDX21-POLR1B regulatory axis. Aging (Albany NY) 2020; 12:22656-22687. [PMID: 33202381 PMCID: PMC7746388 DOI: 10.18632/aging.103875] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence supports long non-coding RNA-ZFAS1 as master protein regulators involved in a variety of human cancers. However, the molecular mechanism is not fully understood in colorectal cancer (CRC) and remains to be elucidated. Here, we uncovered a previously unreported mechanism linking RNA helicase DDX21 regulated by lncRNA ZFAS1 in control of POLR1B expression in CRC initiation and progression. Specifically, ZFAS1 exerted its oncogenic functions and was significantly up-regulated accompanied by elevated DDX21, POLR1B expression in CRC cells and tissues, which further closely associated with poor clinical outcomes. Notably, ZFAS1 knockdown dramatically suppressed CRC cell proliferation, invasion, migration, and increased cell apoptosis, which were contrary to the effect caused by ZFAS1 up-regulation. We further revealed that the inhibitory effect caused by ZFAS1 knockdown could be reversed by DDX21 overexpression in vitro and in vivo. Mechanistically, our research found that ZFAS1 could directly recruit DDX21 protein by harboring the specific motif (AAGA or CAGA). Finally, POLR1B was identified as the downstream target of DDX21 regulated by ZFAS1, which was also up-regulated in CRC cells and tissues and closely related to poor prognosis. The unrecognized ZFAS1/DDX21/POLR1B signaling regulation axis may provide new biomarkers and targets for CRC treatment and prognostic evaluation.
Collapse
Affiliation(s)
- Xiufang Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Zhikun Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Yalun Li
- Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang 110001, P. R. China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Department of Medical Oncology, Liaoning Cancer Hospital and Institute, Shenyang 110042, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Dongping Xu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Yutong Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Mingyan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, P. R. China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| |
Collapse
|
30
|
Likhoshvai VA, Golubyatnikov VP, Khlebodarova TM. Limit cycles in models of circular gene networks regulated by negative feedback loops. BMC Bioinformatics 2020; 21:255. [PMID: 32921311 PMCID: PMC7488683 DOI: 10.1186/s12859-020-03598-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The regulatory feedback loops that present in structural and functional organization of molecular-genetic systems and the phenomenon of the regulatory signal delay, a time period between the moment of signal reception and its implementation, provide natural conditions for complicated dynamic regimes in these systems. The delay phenomenon at the intracellular level is a consequence of the matrix principle of data transmission, implemented through the rather complex processes of transcription and translation.However, the rules of the influence of system structure on system dynamics are not clearly understood. Knowledge of these rules is particularly important for construction of synthetic gene networks with predetermined properties. RESULTS We study dynamical properties of models of simplest circular gene networks regulated by negative feedback mechanisms. We have shown existence and stability of oscillating trajectories (cycles) in these models. Two algorithms of construction and localization of these cycles have been proposed. For one of these models, we have solved an inverse problem of parameters identification. CONCLUSIONS The modeling results demonstrate that non-stationary dynamics in the models of circular gene networks with negative feedback loops is achieved by a high degree of non-linearity of the mechanism of the autorepressor influence on its own expression, by the presence of regulatory signal delay, the value of which must exceed a certain critical value, and transcription/translation should be initiated from a sufficiently strong promoter/Shine-Dalgarno site. We believe that the identified patterns are key elements of the oscillating construction design.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch RAS, Novosibirsk, Russia
| | - Vladimir P Golubyatnikov
- Laboratory of Inverse Problems of Mathematical Physics, Sobolev Institute of Mathematics Siberian Branch RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | - Tamara M Khlebodarova
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
31
|
The SNAIL1 promoter contains G-quadruplex structures regulating its gene expression and DNA replication. Exp Cell Res 2020; 394:112158. [PMID: 32610184 DOI: 10.1016/j.yexcr.2020.112158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/17/2023]
Abstract
SNAIL1 is a key regulator of epithelial-mesenchymal transition (EMT) and its expression is associated with tumor progression and poor clinical prognosis of cancer patients. Compared to the studies of SNAIL1 stability and its transcriptional regulation, very limited knowledge is available regarding effective approaches to directly target SNAIL1. In this study, we revealed the potential regulation of SNAIL1 gene expression by G-quadruplex structures in its promoter. We first revealed that the negative strand of the SNAIL1 promoter contained a multi-G-tract region with high potential of forming G-quadruplex structures. In circular dichroism studies, the oligonucleotide based on this region showed characteristic molar ellipticity at specific wavelengths of G-quadruplex structures. We also utilized native polyacrylamide gel electrophoresis, gel-shift assays, immunofluorescent staining, dimethyl sulfate footprinting and chromatin immunoprecipitation studies to verify the G-quadruplex structures formed by the oligonucleotide. In reporter assays, disruption of G-quadruplex potential increased SNAIL1 promoter-mediated transcription, suggesting that G-quadruplexes played a negative role in SNAIL1 expression. In a DNA synthesis study, we detected G-quadruplex-mediated retardation in the SNAIL1 promoter replication. Consistently, we discovered that the G-quadruplex region of the SNAIL1 promoter is highly enriched for mutations, implicating the clinical relevance of G-quadruplexes to the altered SNAIL1 expression in cancer cells.
Collapse
|
32
|
Wang Q, Liu F, Wang L, Xie C, Wu P, Du S, Zhou S, Sun Z, Liu Q, Yu L, Liu B, Li R. Enhanced and Prolonged Antitumor Effect of Salinomycin-Loaded Gelatinase-Responsive Nanoparticles via Targeted Drug Delivery and Inhibition of Cervical Cancer Stem Cells. Int J Nanomedicine 2020; 15:1283-1295. [PMID: 32161458 PMCID: PMC7049776 DOI: 10.2147/ijn.s234679] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/26/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cervical cancer stem cells (CCSCs) represent a subpopulation of tumor cells that possess self-renewal capacity and numerous intrinsic mechanisms of resistance to conventional chemotherapy and radiotherapy. These cells play a crucial role in relapse and metastasis of cervical cancer. Therefore, eradication of CCSCs is the primary objective in cervical cancer therapy. Salinomycin (Sal) is an agent used for the elimination of cancer stem cells (CSCs); however, the occurrence of several side effects hinders its application. Nanoscale drug-delivery systems offer great promise for the diagnosis and treatment of tumors. These systems can be used to reduce the side effects of Sal and improve clinical benefit. METHODS Sal-loaded polyethylene glycol-peptide-polycaprolactone nanoparticles (Sal NPs) were fabricated under mild and non-toxic conditions. The real-time biodistribution of Sal NPs was investigated through non-invasive near-infrared fluorescent imaging. The efficacy of tumor growth inhibition by Sal NPs was evaluated using tumor xenografts in nude mice. Flow cytometry, immunohistochemistry, and Western blotting were used to detect the apoptosis of CSCs after treatment with Sal NPs. Immunohistochemistry and Western blotting were used to examine epithelial-mesenchymal transition (epithelial interstitial transformation) signal-related molecules. RESULTS Sal NPs exhibited antitumor efficacy against cervical cancers by inducing apoptosis of CCSCs and inhibiting the epithelial-mesenchymal transition pathway. Besides, tumor pieces resected from Sal NP-treated mice showed decreased reseeding ability and growth speed, further demonstrating the significant inhibitory ability of Sal NPs against CSCs. Moreover, owing to targeted delivery based on the gelatinase-responsive strategy, Sal NPs was more effective and tolerable than free Sal. CONCLUSION To the best of our knowledge, this is the first study to show that CCSC-targeted Sal NPs provide a potential approach to selectively target and efficiently eradicate CCSCs. This renders them a promising strategy to improve the therapeutic effect against cervical cancer.
Collapse
Affiliation(s)
- Qin Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Fangcen Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lifeng Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing210023, People’s Republic of China
| | - Puyuan Wu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Shiyao Du
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Shujuan Zhou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Zhichen Sun
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Lixia Yu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing210008, People’s Republic of China
| |
Collapse
|
33
|
McRae EKS, Dupas SJ, Booy EP, Piragasam RS, Fahlman RP, McKenna SA. An RNA guanine quadruplex regulated pathway to TRAIL-sensitization by DDX21. RNA (NEW YORK, N.Y.) 2020; 26:44-57. [PMID: 31653714 PMCID: PMC6913123 DOI: 10.1261/rna.072199.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
DDX21 is a newly discovered RNA G-quadruplex (rG4) binding protein with no known biological rG4 targets. In this study we used label-free proteomic MS/MS to identify 26 proteins that are expressed at significantly different levels in cells expressing an rG4-binding deficient DDX21 (M4). MS data are available via ProteomeXchange with identifier PXD013501. From this list we validate MAGED2 as a protein that is regulated by DDX21 through rG4 in its 5'-UTR. MAGED2 protein levels, but not mRNA levels, are reduced by half in cells expressing DDX21 M4. MAGED2 has a repressive effect on TRAIL-R2 expression that is relieved under these conditions, resulting in elevated TRAIL-R2 mRNA and protein in MCF-7 cells, rendering them sensitive to TRAIL-mediated apoptosis. Our work identifies the role of DDX21 in regulation at the translational level through biologically relevant rG4 and shows that MAGED2 protein levels are regulated, at least in part, by the potential to form rG4 in their 5'-UTRs.
Collapse
Affiliation(s)
- Ewan K S McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada T6G 2R7
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
| |
Collapse
|
34
|
Baulida J, Díaz VM, Herreros AGD. Snail1: A Transcriptional Factor Controlled at Multiple Levels. J Clin Med 2019; 8:jcm8060757. [PMID: 31141910 PMCID: PMC6616578 DOI: 10.3390/jcm8060757] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022] Open
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition and fibroblast activation. As a consequence, Snail1 expression and function is regulated at multiple levels from gene transcription to protein modifications, affecting its interaction with specific cofactors. In this review, we describe the different elements that control Snail1 expression and its activity both as transcriptional repressor or activator.
Collapse
Affiliation(s)
- Josep Baulida
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
| | - Víctor M Díaz
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada al CSIC, 08003 Barcelona, Spain.
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
35
|
Wang T, Meng J, Wang C, Wen T, Jia M, Ge Y, Xie L, Hao S, Liu J, Xu H. Inhibition of Murine Breast Cancer Metastases by Hydrophilic As 4S 4 Nanoparticles Is Associated With Decreased ROS and HIF-1α Downregulation. Front Oncol 2019; 9:333. [PMID: 31106156 PMCID: PMC6498897 DOI: 10.3389/fonc.2019.00333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Arsenic sulfide (As4S4) is a mineral drug that can be administrated orally and has been applied in the treatment of myeloid leukemia. The aim of this work is to investigate the therapeutic effect of As4S4 in highly metastatic triple-negative breast cancer (TNBC) animal model, as As4S4 has not been applied in the treatment of breast cancer yet. To overcome the poor solubility of original As4S4, a formulation of hydrophilic As4S4 nanoparticles (e-As4S4) developed previously was applied to mouse breast cancer cells as well as the tumor-bearing mice. It was shown that e-As4S4 was much more cytotoxic than r-As4S4, strongly inhibiting the proliferation of the cells and scavenging intracellular reactive oxygen species (ROS). The oral administration of e-As4S4 significantly increased the accumulation of arsenic in the tumor tissue and eliminated ROS in tumor tissues. Besides, e-As4S4 could also inhibit the activation of hypoxia-inducible factor-1α (HIF-1α) and NLRP3 inflammasomes. Consequently, the angiogenesis was reduced, the metastasis to lung and liver was inhibited and the survival of tumor-bearing mice was prolonged. In conclusion, e-As4S4 holds great potential for an alternative therapeutics in the treatment of breast cancer, due to its unique function of correcting the aggressive microenvironment.
Collapse
Affiliation(s)
| | - Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|