1
|
Kong M, Shi X, Gao J, Guo W. BTF3 affects hepatocellular carcinoma progression by transcriptionally upregulating PDCD2L and inactivating p53 signaling. Mol Med 2024; 30:252. [PMID: 39707202 DOI: 10.1186/s10020-024-01044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, with the characteristics of high mortality and low 5-year survival rate. The potential role of BTF3 and PDCD2L in HCC remains unclear. Our study found that BTF3 expression was upregulated in hepatocellular carcinoma tissues, and its high expression was associated with poor prognosis. Knockdown of BTF3 significantly inhibited proliferation and promoted apoptosis of hepatocellular carcinoma cells by cell function assay. Mechanistically, BTF3 plays an oncogenic role by regulating the transcriptional expression of PDCD2L, which promotes proliferation and inhibits apoptosis of HCC cells by restraining the p53 pathway. In conclusion, our results suggest that BTF3 induces malignant progression of HCC by acting as a transcription factor that promotes the transcription of PDCD2L and influences the p53 pathway and that the BTF3/PDCD2L/P53 axis may be a future therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Patil K, Johnston E, Novack J, Wallace G, Lin M, Pai SB. Multifaceted impact of HIV inhibitor dapivirine on triple negative breast cancer cells reveals potential entities as targets for novel therapy. Sci Rep 2024; 14:30103. [PMID: 39627279 PMCID: PMC11615302 DOI: 10.1038/s41598-024-79789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Many breast cancers originate from the cells lining the milk duct and some become invasive. Breast cancer lacking estrogen, progesterone receptors (ER-, PR-) and epidermal growth factor receptor 2 (HER2-) amplification, termed "Triple negative" (TNBC) is reported to frequently affect Black women and younger women. TNBC is an invasive ductal carcinoma with limited treatment options. To this end, we opted to investigate drugs that could be repurposed because they offer advantages in bringing effective treatments faster to the clinic. We chose to study the effect of the drug, dapivirine, a non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV because it could be detected in the breast milk of lactating women when treated for HIV and the drug could potentially target the cancer. Here we show the potent impact of dapivirine on MDA-MB-231 TNBC cells, while NNRTI like nevirapine showed marginal effects. When dapivirine was tested on other breast cell lines, MCF-7 and MCF 10A, the inhibition was at higher concentrations. Molecular studies with dapivirine in TNBC cells, revealed an increase in reactive oxygen species (ROS), apoptotic cells, and activation of caspases. Importantly, protein profiling and STRING analysis revealed deregulation of the key molecule, PCNA and impact on pivotal cell signaling circuits including extracellular matrix (ECM), angiogenesis, cell adhesion, and immunomodulation. Of note, is its potential effect on stem-like cells due to downregulation of the basic transcription factor 3 (BTF3) and proteasome activator complex subunit 3; the latter affecting their dependence on the proteasome pathway. Taken together, dapivirine exhibits the potential to be considered as a repurposed drug for TNBC as monotherapy/combination therapy. Notably, it could also potentially be a treatment for individuals with dual ailments, such as HIV and TNBC, if the clinical outcomes with dapivirine for TNBC become favorable.
Collapse
Affiliation(s)
- Ketki Patil
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Elizabeth Johnston
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Joseph Novack
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Garrett Wallace
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Michelle Lin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Homayoonfal M, Molavizadeh D, Sadeghi S, Chaleshtori RS. The role of microRNAs in acrylamide toxicity. Front Nutr 2024; 11:1344159. [PMID: 38456012 PMCID: PMC10917983 DOI: 10.3389/fnut.2024.1344159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
The chemical compound known as Acrylamide (AA) is employed in different industries worldwide and is also found in thermal-processed food. AA has been acting as a reproductive toxicant, carcinogen, and neurotoxic in various animals, which may promote several toxic impacts in animal and human species. Up to now, various studies have focused on the harmful mechanisms and intervention actions of AA. However, the underlying mechanisms that AA and its toxic effects can exert have remained uncertain. MicroRNAs (miRNAs) are a class of short, non-coding RNAs that are able to act as epigenetic regulators. These molecules can regulate a wide range of cellular and molecular processes. In this regard, it has been shown that different chemical agents can dysregulate miRNAs. To determine the possible AA targets along with mechanisms of its toxicity, it is helpful to study the alteration in the profiles of miRNA regulation following AA intake. The current research aimed to evaluate the miRNAs' mediatory roles upon the AA's toxic potentials. This review study discussed the AA, which is made within the food matrix, the way it is consumed, and the potential impacts of AA on miRNAs and its association with different cancer types and degenerative diseases. The findings of this review paper indicated that AA might be capable of altering miRNA signatures in different tissues and exerting its carcinogen effects.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Danial Molavizadeh
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Sadeghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Wang M, Liu J, Liao X, Yi Y, Xue Y, Yang L, Cheng H, Liu P. The SGK3-Catalase antioxidant signaling axis drives cervical cancer growth and therapy resistance. Redox Biol 2023; 67:102931. [PMID: 37866161 PMCID: PMC10623367 DOI: 10.1016/j.redox.2023.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Cancer cells frequently exhibit aberrant redox homeostasis and adaptation to oxidative stress. Hence abrogation of redox adaptation in cancer cells can be exploited for therapeutic benefit. Here we report SGK3 functions as an anti-oxidative factor to promote cell growth and drug resistance in cervical cancers harboring PIK3CA helical domain mutations. Mechanistically, SGK3 is activated upon oxidative stress and exerts anti-ROS activity by stabilizing and activating the antioxidant enzyme catalase. SGK3 interacts with and phosphorylates catalase, promoting its tetrameric state and activity. Meanwhile, SGK3 phosphorylates GSK3β and protects catalase from GSK3β-β-TrCP mediated ubiquitination and proteasomal degradation. Furthermore, SGK3 inhibition not only potentiates CDK4/6 inhibitor Palbociclib-mediated cytotoxicity, but also overcomes cisplatin resistance through ROS-mediated mechanisms. These data uncover the role of SGK3 in maintaining redox homeostasis and suggest that the SGK3-catalase antioxidant signaling axis may be therapeutically targeted to improve treatment efficacy for cervical cancers carrying PIK3CA helical domain mutations.
Collapse
Affiliation(s)
- Min Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China
| | - Jiannan Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China
| | - Xingming Liao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yasong Yi
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China
| | - Yijue Xue
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| | - Ling Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.
| | - Hailing Cheng
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China.
| | - Pixu Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Dalian, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Fatmous M, Rai A, Poh QH, Salamonsen LA, Greening DW. Endometrial small extracellular vesicles regulate human trophectodermal cell invasion by reprogramming the phosphoproteome landscape. Front Cell Dev Biol 2022; 10:1078096. [PMID: 36619864 PMCID: PMC9813391 DOI: 10.3389/fcell.2022.1078096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
A series of cyclical events within the uterus are crucial for pregnancy establishment. These include endometrial regeneration following menses, under the influence of estrogen (proliferative phase), then endometrial differentiation driven by estrogen/progesterone (secretory phase), to provide a microenvironment enabling attachment of embryo (as a hatched blastocyst) to the endometrial epithelium. This is followed by invasion of trophectodermal cells (the outer layer of the blastocyst) into the endometrium tissue to facilitate intrauterine development. Small extracellular vesicles (sEVs) released by endometrial epithelial cells during the secretory phase have been shown to facilitate trophoblast invasion; however, the molecular mechanisms that underline this process remain poorly understood. Here, we show that density gradient purified sEVs (1.06-1.11 g/ml, Alix+ and TSG101+, ∼180 nm) from human endometrial epithelial cells (hormonally primed with estrogen and progesterone vs. estrogen alone) are readily internalized by a human trophectodermal stem cell line and promote their invasion into Matrigel matrix. Mass spectrometry-based proteome analysis revealed that sEVs reprogrammed trophectoderm cell proteome and their cell surface proteome (surfaceome) to support this invasive phenotype through upregulation of pro-invasive regulators associated with focal adhesions (NRP1, PTPRK, ROCK2, TEK), embryo implantation (FBLN1, NIBAN2, BSG), and kinase receptors (EPHB4/B2, ERBB2, STRAP). Kinase substrate prediction highlighted a central role of MAPK3 as an upstream kinase regulating target cell proteome reprogramming. Phosphoproteome analysis pinpointed upregulation of MAPK3 T204/T202 phosphosites in hTSCs following sEV delivery, and that their pharmacological inhibition significantly abrogated invasion. This study provides novel molecular insights into endometrial sEVs orchestrating trophoblast invasion, highlighting the microenvironmental regulation of hTSCs during embryo implantation.
Collapse
Affiliation(s)
- Monique Fatmous
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University (LTU), Melbourne, VIC, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Central Clinical School, Monash University, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia,Department of Biochemistry and Chemistry, LTU, Melbourne, VIC, Australia
| | - Lois A. Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia,Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Central Clinical School, Monash University, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia,Department of Biochemistry and Chemistry, LTU, Melbourne, VIC, Australia,*Correspondence: David W. Greening,
| |
Collapse
|
6
|
Wang J, Liu X, Li P, Wang J, Shu Y, Zhong X, Gao Z, Yang J, Jiang Y, Zhou X, Yang G. Long noncoding RNA HOTAIR regulates the stemness of breast cancer cells via activation of the NF-κB signaling pathway. J Biol Chem 2022; 298:102630. [PMID: 36273585 PMCID: PMC9691943 DOI: 10.1016/j.jbc.2022.102630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Breast cancer is the most prevalent cancer among women, and it is characterized by a high rate of tumor development and heterogeneity. Breast cancer stem cells (CSCs) may well contribute to these pathological properties, but the mechanisms underlying their self-renewal and maintenance are still elusive. Here, we found that the long noncoding RNA HOTAIR is highly expressed in breast CSCs. HOTAIR is required for breast CSC self-renewal and tumor propagation. Mechanistically, we demonstrate that HOTAIR recruits the PRC2 protein complex to the promoter of IκBα to inhibit its expression, leading to activation of the NF-κB signaling pathway. The activated NF-κB signaling promotes downstream c-Myc and Cyclin D1 expression. Furthermore, our analysis of clinical samples from the GEPIA database indicated that the IκBα level, as well as the survival rate of patients, with high HOTAIR expression was significantly lower than that of patients with relatively low HOTAIR expression. Our data suggest that HOTAIR-mediated NF-κB signaling primes breast CSC self-renewal and tumor propagation. In sum, we have identified HOTAIR-based NF-κB signaling regulatory circuit that promotes tumorigenic activity in breast CSCs, further indicating that HOTAIR could be a promising target for clinical treatment of breast cancers.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China,Core Facilities, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingzhu Liu
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China,School of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Ping Li
- School of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Junrong Wang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yu Shu
- School of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Zhong
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China,College of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Zhen Gao
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Jingyi Yang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yashuang Jiang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Xile Zhou
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China,Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Geng Yang
- Department of Clinical Medicine & Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, China,For correspondence: Geng Yang
| |
Collapse
|
7
|
Song J, Zheng A, Li S, Zhang W, Zhang M, Li X, Jin F, Ji Z. Clinical significance and prognostic value of small nucleolar RNA SNORA38 in breast cancer. Front Oncol 2022; 12:930024. [PMID: 36158687 PMCID: PMC9500313 DOI: 10.3389/fonc.2022.930024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundBreast cancer is the most common malignant tumor among women worldwide, and breast cancer stem cells (BCSCs) are believed to be the source of tumorigenesis. New findings suggest that small nucleolar RNAs (snoRNAs) play a significant role in tumor development.MethodsThe Cancer Genome Atlas (TCGA) and Kaplan–Meier survival analysis were used to demonstrate expression and survival of SNORA38 signature. In situ hybridization (ISH) and immunohistochemical (IHC) were conducted to analyze the correlation between SNORA38 and stemness biomarker in 77 BC samples. Gene Set Enrichment Analysis (GSEA) was performed to investigate the mechanisms related to SNORA38 expression in BC. Real-time qPCR was employed to evaluate the expression of SNORA38 in breast cancer cell lines.ResultsIn the public database and patients’ biopsies, SNORA38 was significantly up-regulated in breast cancer. Furthermore, the expression of SNORA38 was significantly correlated with tumor size, lymph node metastasis, and TNM stage, among which tumor size was an independent factor for SNORA38 expression. Higher SNORA38 expression was associated with shorter overall survival (OS). Meanwhile, SNORA38 was positively associated with the stem cell marker OCT-4, which suggested that SNORA38 might be related to breast cancer stemness.ConclusionsSNORA38 is an important carcinogenic snoRNA in breast cancer and might be a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Jian Song
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shan Li
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wenrong Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Meilin Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xingzhe Li
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Feng Jin, ; Ziyao Ji,
| | - Ziyao Ji
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Feng Jin, ; Ziyao Ji,
| |
Collapse
|
8
|
Wang KN, Hu Y, Han LL, Zhao SS, Song C, Sun SW, Lv HY, Jiang NN, Xv LZ, Zhao ZW, Li M. Salvia chinensis Benth Inhibits Triple-Negative Breast Cancer Progression by Inducing the DNA Damage Pathway. Front Oncol 2022; 12:882784. [PMID: 36033499 PMCID: PMC9404549 DOI: 10.3389/fonc.2022.882784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTriple-negative breast cancer (TNBC) is distinguished by early recurrence and metastases, a high proclivity for treatment resistance, and a lack of targeted medicines, highlighting the importance of developing innovative therapeutic techniques. Salvia chinensis Benth (SCH) has been widely studied for its anticancer properties in a variety of cancers. However, its significance in TNBC treatment is rarely discussed. Our study investigated the anticancer effect of SCH on TNBC and the underlying mechanisms.MethodsFirst, we used clonogenic, cell viability, flow cytometry, and Transwell assays to assess the effect of SCH on TNBC. Bioinformatic studies, especially network pharmacology-based analysis and RNA sequencing analysis, were performed to investigate the constituents of SCH and its molecular mechanisms in the suppression of TNBC. High-performance liquid chromatography and thin-layer chromatography were used to identify two major components, quercetin and β-sitosterol. Then, we discovered the synergistic cytotoxicity of quercetin and β-sitosterol and assessed their synergistic prevention of cell migration and invasion. Breast cancer xenografts were also created using MDA-MB-231 cells to test the synergistic therapeutic impact of quercetin and β-sitosterol on TNBC in vivo. The impact on the DNA damage and repair pathways was investigated using the comet assay and Western blot analysis.ResultsOur findings showed that SCH decreased TNBC cell growth, migration, and invasion while also inducing cell death. We identified quercetin and β-sitosterol as the core active components of SCH based on a network pharmacology study. According to RNA sequencing research, the p53 signaling pathway is also regarded as a critical biological mechanism of SCH treatment. The comet assay consistently showed that SCH significantly increased DNA damage in TNBC cells. Our in vivo and in vitro data revealed that the combination of quercetin and β-sitosterol induced synergistic cytotoxicity and DNA damage in TNBC cells. In particular, SCH particularly blocked the inter-strand cross-link repair mechanism and the double-strand breach repair caused by the homologous recombination pathway, in addition to inducing DNA damage. Treatment with quercetin and β-sitosterol produced similar outcomes.ConclusionThe current study provides novel insight into the previously unknown therapeutic potential of SCH as a DNA-damaging agent in TNBC.
Collapse
Affiliation(s)
- Kai-nan Wang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ye Hu
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lin-lin Han
- Health Management Center, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shan-shan Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Chen Song
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Si-wen Sun
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hui-yun Lv
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ni-na Jiang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ling-zhi Xv
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Ling-zhi Xv, ; Zuo-wei Zhao, ; Man Li,
| | - Zuo-wei Zhao
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Ling-zhi Xv, ; Zuo-wei Zhao, ; Man Li,
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Ling-zhi Xv, ; Zuo-wei Zhao, ; Man Li,
| |
Collapse
|
9
|
Zhang L, Dong L, Yang L, Luo Y, Chen F. MiR-27a-5p regulates acrylamide-induced mitochondrial dysfunction and intrinsic apoptosis via targeting Btf3 in rats. Food Chem 2022; 368:130816. [PMID: 34416489 DOI: 10.1016/j.foodchem.2021.130816] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022]
Abstract
Acrylamide (AA), a potential carcinogen, is commonly formed in foods rich in carbohydrates at high heat. It is known that AA-induced mitochondrial dysfunction is responsible for its toxicity. Previously we found AA exposure increased miR-27a-5p expression in livers of SD rats. Here, the regulation mechanism of miR-27a-5p in mitochondrial dysfunction was investigated in rat liver cell lines (IAR20) and SD rats. The results showed that the overexpressed miR-27a-5p contributes to modulating mitochondrial dysfunction and Btf3 is identified as its target gene. The knockdown of Btf3 increases the cleaved PARP1 level and the phosphorylation of ATM and p53, which results in mitochondria-dependent apoptosis. Therefore, the miR-27a-5p-Btf3-ATM-p53 axis might play a vital role in the promotion of AA-induced cell apoptosis through disrupting mitochondrial structure and function. This would provide a potential target for the assessment and intervention of AA toxicity.
Collapse
Affiliation(s)
- Lujia Zhang
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Li Dong
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Liuqing Yang
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yinghua Luo
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science & Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Augusto TV, Amaral C, Wang Y, Chen S, Almeida CF, Teixeira N, Correia-da-Silva G. Effects of PI3K inhibition in AI-resistant breast cancer cell lines: autophagy, apoptosis, and cell cycle progression. Breast Cancer Res Treat 2021; 190:227-240. [PMID: 34498152 DOI: 10.1007/s10549-021-06376-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Breast cancer is the leading cause of cancer death in women. The aromatase inhibitors (AIs), Anastrozole (Ana), Letrozole (Let), and Exemestane (Exe) are a first-line treatment option for estrogen receptor-positive (ER+) breast tumors, in postmenopausal women. Nevertheless, the development of acquired resistance to this therapy is a major drawback. The involvement of PI3K in resistance, through activation of the PI3K/AKT/mTOR survival pathway or through a cytoprotective autophagic process, is widely described. MATERIALS AND METHODS The involvement of autophagy in response to Ana and Let treatments and the effects of the combination of BYL-719, a PI3K inhibitor, with AIs were explored in AI-resistant breast cancer cell lines (LTEDaro, AnaR, LetR, and ExeR). RESULTS We demonstrate that Ana and Let treatments do not promote autophagy in resistant breast cancer cells, contrary to Exe. Moreover, the combinations of BYL-719 with AIs decrease cell viability by different mechanisms by nonsteroidal vs. steroidal AIs. The combination of BYL-719 with Ana or Let induced cell cycle arrest while the combination with Exe promoted cell cycle arrest and apoptosis. In addition, BYL-719 decreased AnaR, LetR, and ExeR cell viability in a dose- and time-dependent manner, being more effective in the ExeR cell line. This decrease was further exacerbated by ICI 182,780. CONCLUSION These results corroborate the lack of cross-resistance between AIs verified in the clinic, excluding autophagy as a mechanism of resistance to Ana or Let and supporting the ongoing clinical trials combining BYL-719 with AIs.
Collapse
Affiliation(s)
- Tiago V Augusto
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Cristina Amaral
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Yuanzhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Cristina F Almeida
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| | - Georgina Correia-da-Silva
- Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, UCIBIO.REQUIMTE, University of Porto, Rua Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
11
|
Zu ML, Duan Y, Xie JB, Qi YS, Xie P, Borjigidai A, Piao XL. Gypenoside LI arrests the cell cycle of breast cancer in G0/G1 phase by down-regulating E2F1. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:114017. [PMID: 33716078 DOI: 10.1016/j.jep.2021.114017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynostemma pentaphyllum (Thunb.) Makino, a traditional medicine in China, has been widely used for the treatment of various diseases. Gypenoside LI (Gyp LI) is a major constituent from steamed G. pentaphyllum. Previous studies have shown that gypnenoside LI possess inhibitory effect on the growth of many cancer cells. However, its pharmacological effect in breast cancer and the mechanism have not been reported yet. AIM OF THE STUDY To investigate the anti-breast cancer activity of gypenoside LI and underlying mechanisms of gypenoside LI in MDA-MB-231 and MCF-7 cells. MATERIAL/METHODS The cytotoxicity of gypenoside LI was determined by MTT, colony-formation and three-dimensional spheroid assay. The migration, cell apoptosis and the cell cycle were investigated through cell morphology observation, flow cytometry analysis and key proteins detection. The anticancer mechanisms of gypenoside LI were detected by RNA sequencing (RNA-seq) and Gene Set Enrichment Analysis (GSEA) transcriptome analysis. RESULTS Gypenoside LI inhibited cell proliferation, migration, induced cell apoptosis and cell cycle arrest. Gypenoside LI arrested cell cycle at G0/G1 phase by regulating E2F1. It also inhibited tumor proliferation by regulating the expression of ERCC6L. Interestingly, we found that E2F1 siRNA also down-regulated the expression of ERCC6L. Gypenoside LI showed potential anti-breast cancer cells activity, especially on triple-negative breast cancer cells. CONCLUSIONS These data indicate that gypenoside LI could inhibit human breast cancer cells through inhibiting proliferation and migration, inducing apoptosis, arresting cell cycle at G0/G1 phase by regulating E2F1. It could be used as potential multi-target chemopreventive agents for cancer.
Collapse
Affiliation(s)
- Ma-Li Zu
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Yu Duan
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Jin-Bo Xie
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Yan-Shuang Qi
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Peng Xie
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Almaz Borjigidai
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China.
| | - Xiang-Lan Piao
- Key Laboratory of Ethnomedicine of Ministry of Education, Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, 100081, PR China.
| |
Collapse
|
12
|
Wang H, Xing J, Wang W, Lv G, He H, Lu Y, Sun M, Chen H, Li X. Molecular Characterization of the Oncogene BTF3 and Its Targets in Colorectal Cancer. Front Cell Dev Biol 2021; 8:601502. [PMID: 33644029 PMCID: PMC7905040 DOI: 10.3389/fcell.2020.601502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and leading causes of cancer mortality worldwide, and the prognosis of patients with CRC remains unsatisfactory. Basic transcription factor 3 (BTF3) is an oncogene and hazardous prognosticator in CRC. Although two distinct functional mechanisms of BTF3 in different cancer types have been reported, its role in CRC is still unclear. In this study, we aimed to molecularly characterize the oncogene BTF3 and its targets in CRC. Here, we first identified the transcriptional targets of BTF3 by applying combined RNA-Seq and ChIP-Seq analysis, identifying CHD1L as a transcriptional target of BTF3. Thereafter, we conducted immunoprecipitation (IP)-MS and E3 ubiquitin ligase analysis to identify potential interacting targets of BTF3 as a subunit of the nascent-polypeptide-associated complex (NAC). The analysis revealed that BTF3 might also inhibit E3 ubiquitin ligase HERC2-mediated p53 degradation. Finally, miRNAs targeting BTF3 were predicted and validated. Decreased miR-497-5p expression is responsible for higher levels of BTF3 post-transcriptionally. Collectively, we concluded that BTF3 is an oncogene, and there may exist a transcription factor and NAC-related proteolysis mechanism in CRC. This study provides a comprehensive basis for understanding the oncogenic mechanisms of BTF3 in CRC.
Collapse
Affiliation(s)
- Hantao Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Junjie Xing
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Wei Wang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Guifen Lv
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Haiyan He
- Department of Digestive Endoscopy, Changhai Hospital, Shanghai, China
| | - Yeqing Lu
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Mei Sun
- Department of Anesthesiology, Changhai Hospital, Shanghai, China
| | - Haiyan Chen
- Department of Endocrinology, Changzheng Hospital, Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
13
|
Zhang Y, Gao X, Yi J, Sang X, Dai Z, Tao Z, Wang M, Shen L, Jia Y, Xie D, Cheng H, Liu Z, Liu P. BTF3 confers oncogenic activity in prostate cancer through transcriptional upregulation of Replication Factor C. Cell Death Dis 2021; 12:12. [PMID: 33414468 PMCID: PMC7791038 DOI: 10.1038/s41419-020-03348-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
High levels of Basic Transcription Factor 3 (BTF3) have been associated with prostate cancer. However, the mechanisms underlying the role of BTF3 as an oncogenic transcription factor in prostate tumorigenesis have not been explored. Herein, we report that BTF3 confers oncogenic activity in prostate cancer cells. Mechanistically, while both BTF3 splicing isoforms (BTF3a and BTF3b) promote cell growth, BTF3b, but not BTF3a, regulates the transcriptional expression of the genes encoding the subunits of Replication Factor C (RFC) family that is involved in DNA replication and damage repair processes. BTF3 knockdown results in decreased expression of RFC genes, and consequently attenuated DNA replication, deficient DNA damage repair, and increased G2/M arrest. Furthermore, knockdown of the RFC3 subunit diminishes the growth advantage and DNA damage repair capability conferred by ectopic overexpression of BTF3b. Importantly, we show that enforced BTF3 overexpression in prostate cancer cells induces substantial accumulation of cisplatin-DNA adducts and render the cells more sensitive to cisplatin treatment both in vitro and in vivo. These findings provide novel insights into the role of BTF3 as an oncogenic transcription factor in prostate cancer and suggest that BTF3 expression levels may serve as a potential biomarker to predict cisplatin treatment response.
Collapse
Affiliation(s)
- Yuan Zhang
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Xiang Gao
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.,Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jingyan Yi
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaolin Sang
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zhihong Dai
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.,Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiwei Tao
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Min Wang
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Lanlin Shen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Yaxun Jia
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Daqing Xie
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hailing Cheng
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Zhiyu Liu
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China. .,Department of Urology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Pixu Liu
- Cancer Institute, Department of Urology, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China. .,Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
14
|
Melatonin potentiates the cytotoxic effect of Neratinib in HER2 + breast cancer through promoting endocytosis and lysosomal degradation of HER2. Oncogene 2021; 40:6273-6283. [PMID: 34556812 PMCID: PMC8566236 DOI: 10.1038/s41388-021-02015-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Complete blockade of the HER2 protein itself and HER signaling network is critical to achieving effective HER2-targeted therapies. Despite the success of HER2-targeted therapies, the diseases will relapse in a significant fraction of patients with HER2+ breast cancers. How to improve the therapeutic efficacy of existing HER2-targeted agents remains an unmet clinical need. Here, we uncover a role of Melatonin in diminishing HER2-mediated signaling by destruction of HER2 protein. Mechanistically, Melatonin treatment attenuated the protective effect of the HSP90 chaperone complex on its client protein HER2, triggering ubiquitylation and subsequent endocytic lysosomal degradation of HER2. The inhibitory effect of Melatonin on HER2 signaling substantially enhanced the cytotoxic effects of the pan-HER inhibitor Neratinib in HER2+ breast cancer cells. Lastly, we demonstrate that dual inhibition of HER2 by combined use of Melatonin and Neratinib effectively blocked the growth of HER2+ breast tumor xenografts in vivo. Our findings shed light on the potential use of Melatonin in a novel dual HER2 blockade strategy for HER2+ breast cancer treatment.
Collapse
|
15
|
Wang H, Gao L, Qi M, Su P, Xiong X, Zhao J, Hu J, Han B. BTF3 promotes stemness and inhibits TypeⅠInterferon signaling pathway in triple-negative breast cancer. Biochem Biophys Res Commun 2020; 537:22-28. [PMID: 33383560 DOI: 10.1016/j.bbrc.2020.12.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) is a major challenge in clinical practice due to its aggressiveness and lack of targeted treatment. Cancer stem-like traits contribute to tumorigenesis and immune privilege of TNBC. However, the relationship of stemness and immunosurveillance remains unclear. Here, we demonstrate that BTF3 expression is related with stem-like properties in TNBC cells. BTF3 modulates stemness, migration and proliferation of TNBC in vitro. Bioinformatics analysis revealed that interferon signaling pathways and IRF7, both of which participate in the immune escape of TNBC, are closely related to BTF3 in TNBC cells. Knockdown of BTF3 activates IRF7 expression through increased degradation of BMI1, a protein that can represses IRF7 transcription by directly binding to its promotor region. BTF3 links stem-like traits and the interferon signaling pathway, revealing the potential connection of stemness and immunomodulation in TNBC. Clinically, we suggest that BTF3 is predictive of poor prognosis in patients with TNBC. Together, our findings highlight an important role of BTF3 in regulating the progression of TNBC cells.
Collapse
Affiliation(s)
- Hexiang Wang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, 250012, Jinan, China; Department of Pathology, Qingdao Hiser Hospital, 266034, Qingdao, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, 250012, Jinan, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jian Zhao
- Department of Thoracic Surgery, Shandong University Qilu Hospital, 250012, Jinan, China
| | - Jing Hu
- Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China.
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, Shandong University, School of Basic Medical Sciences, 250012, Jinan, China; Department of Pathology, Shandong University Qilu Hospital, 250012, Jinan, China.
| |
Collapse
|
16
|
Wu X, Liu L, Zhang H. miR‑802 inhibits the epithelial‑mesenchymal transition, migration and invasion of cervical cancer by regulating BTF3. Mol Med Rep 2020; 22:1883-1891. [PMID: 32582971 PMCID: PMC7411396 DOI: 10.3892/mmr.2020.11267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miR)-802 has been discovered to be involved in the occurrence and development of numerous types of tumor; however, studies into the role of miR‑802 in cervical cancer are limited. Therefore, the present study aimed to investigate the regulatory effects of miR‑802 in cervical cancer cells. miR‑802 expression levels in cervical cancer tissue and cells were analyzed using reverse transcription‑quantitative (RT‑q)PCR, a dual‑reporter luciferase activity assay was used to identify the direct target gene of miR‑802, and RT‑qPCR and western blotting were performed to determine the relationship between miR‑802 and basic transcription factor 3 (BTF3). Cell viability, and migration and invasion were analyzed using Cell Counting Kit‑8 and Transwell assays, respectively. Finally, the expression levels of metastasis‑associated proteins, N‑cadherin and E‑cadherin, were determined using RT‑qPCR and western blotting. Decreased expression levels of miR‑802 were found in cervical cancer tissues and cells, and the overexpression of miR‑802 inhibited cell viability, migration and invasion. Moreover, miR‑802 was discovered to directly target BTF3 to inhibit its expression. Notably, the overexpression miR‑802 markedly reversed the promotive effect of BTF3 on cell viability, in addition to the migratory and invasive abilities of the cells. Simultaneously, the overexpression of miR‑802 significantly suppressed epithelial‑mesenchymal transition, and the expression levels of matrix metallopeptidase (MMP)2 and MMP9 in cells through regulating BTF3. In conclusion, the present study revealed that miR‑802 may suppress cervical cancer progression by decreasing BTF3 expression levels, indicating that it may represent a potential therapeutic target for the treatment and prognosis of patients with cervical cancer.
Collapse
Affiliation(s)
- Xiuhui Wu
- Department of Gynecology, Jingmen No.1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Leng Liu
- Department of Gynecology, Jingmen No.1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Hongxia Zhang
- Department of Breast Surgery, Xiantao First People's Hospital, Xiantao, Hubei 433000, P.R. China
| |
Collapse
|
17
|
Liu L, Fan Y, Zhao D, Ioannidis J, Gong D, Clinton M. Expression Profile of Chicken Sex Chromosome Gene BTF3 is Linked to Gonadal Phenotype. Sex Dev 2020; 13:212-220. [PMID: 32155647 DOI: 10.1159/000506344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
In birds, the female is heterogametic (ZW) and the male homogametic (ZZ). The small W chromosome comprises only 28 protein coding genes (homologues to Z chromosome counterparts) and a number of repeat regions. Here, we report our analysis of one of these genes, BTF3 (basic transcription factor 3), which exhibits differential expression during gonadogenesis. We measured RNA levels of both Z and W homologues and BTF3 protein levels in male and female gonads during development of the chicken embryo. In addition, BTF3 RNA and protein levels were compared in female gonads (ovary) and in female gonads following treatment to induce sex reversal (testis). Combined BTF3 RNA levels were higher in female gonads than male gonads, while BTF3-Z was expressed at similar levels in males and females. Surprisingly, BTF3 protein levels were higher in male gonads than female gonads at embryonic day 6 (E6), suggesting translational rather than transcriptional regulation. BTF3 protein was expressed in both somatic and germ cells and was restricted to the medulla of the developing ovary in females and the sex cords of the developing testis in males. In addition, in gonadal sex-reversed females, RNA and protein levels of BTF3 were similar to those normally found in male gonads, suggesting that BTF3 expression correlated with the gonadal phenotype.
Collapse
|
18
|
Wang X, Fang Y, Sun W, Xu Z, Zhang Y, Wei X, Ding X, Xu Y. Endocrinotherapy resistance of prostate and breast cancer: Importance of the NF‑κB pathway (Review). Int J Oncol 2020; 56:1064-1074. [PMID: 32319568 DOI: 10.3892/ijo.2020.4990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) and breast cancer (BCa) are two common sex hormone‑related cancer types with high rates of morbidity, and are leading causes of cancer death globally in men and women, respectively. The biological function of androgen or estrogen is a key factor for PCa or BCa tumorigenesis, respectively. Nevertheless, after hormone deprivation therapy, the majority of patients ultimately develop hormone‑independent malignancies that are resistant to endocrinotherapy. It is widely recognized, therefore, that understanding of the mechanisms underlying the process from hormone dependence towards hormone independence is critical to discover molecular targets for the control of advanced PCa and BCa. This review aimed to dissect the important mechanisms involved in the therapeutic resistance of PCa and BCa. It was concluded that activation of the NF‑κB pathway is an important common mechanism for metastasis and therapeutic resistance of the two types of cancer; in particular, the RelB‑activated noncanonical NF‑κB pathway appears to be able to lengthen and strengthen NF‑κB activity, which has been a focus of recent investigations.
Collapse
Affiliation(s)
- Xiumei Wang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Yao Fang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Wenbo Sun
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Zhi Xu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaowei Wei
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Yong Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, and Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
19
|
Ding J, Yao Y, Huang G, Wang X, Yi J, Zhang N, Liu C, Wang K, Zhang Y, Wang M, Liu P, Ye M, Li M, Cheng H. Targeting the EphB4 receptor tyrosine kinase sensitizes HER2-positive breast cancer cells to Lapatinib. Cancer Lett 2020; 475:53-64. [PMID: 32006616 DOI: 10.1016/j.canlet.2020.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/23/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
Clinical data analysis reveals that the expression of the EphB4 receptor tyrosine kinase is significantly elevated in HER2-positive breast cancer and high levels of EphB4 strongly correlate with poor disease prognosis. However, the impact of EphB4 activation on HER2-positive breast cancer cells and the potential of EphB4 as a therapeutic target remain to be explored. Here, we show that EphB4 overexpression confers gain-of-function activities to HER2-positive breast cancer cells, rendering resistance to a HER2/EGFR inhibitor Lapatinib. Furthermore, using integrated transcriptomic and tyrosine phosphoproteomic analyses, followed by biochemical confirmation, we establish that EphB4 activation engages the SHP2/GAB1-MEK signaling cascade and downstream c-MYC activation, and thereby limits the overall drug responses to Lapatinib. Finally, we demonstrate that, in HER2-positive breast tumors, inhibition of EphB4 combined with Lapatinib is more effective than either alone. These findings provide new insights into the signaling networks dictating therapeutic response to Lapatinib as well as a rationale for co-targeting EphB4 in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Jinlei Ding
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yating Yao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China; University of Chinese Academy of Sciences, Beijing, China
| | - Gena Huang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaonan Wang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jingyan Yi
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Nan Zhang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chongya Liu
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kainan Wang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuan Zhang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Min Wang
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Pixu Liu
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Mingliang Ye
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China.
| | - Man Li
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Hailing Cheng
- Cancer Institute, Department of Oncology, Department of Thoracic Surgery, The Second Hospital of Dalian Medical University, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
20
|
Liu Y, Ma H, Wang Y, Du X, Yao J. Cystatin SN Affects Cell Proliferation by Regulating the ERα/PI3K/AKT/ERα Loopback Pathway in Breast Cancer. Onco Targets Ther 2019; 12:11359-11369. [PMID: 31920327 PMCID: PMC6934116 DOI: 10.2147/ott.s234328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/27/2019] [Indexed: 01/03/2023] Open
Abstract
Background Cystatin SN (CST1) has been reported to act as an oncogene in cancers, but its underlying mechanism remains unclear. Methods We performed Western blotting analyses to observe protein expression and conducted transwell invasion, wound healing, and colony formation assays to assess cell invasion, migration, and proliferation, respectively. We also performed cell cycle analyses by flow cytometry to determine the role of CST1 in the cell cycle. In vivo experiments used subcutaneous tumor models in BALB/c-nu athymic female mice to evaluate the effect of CST1 on tumor growth. Results Western blotting analyses showed that CST1 was upregulated in ER+ breast cancer cells such as MCF7, T47D, and BT474. CST1 knockdown led to slower cell growth and inhibited the G1 to S phase transition in ER+ breast cancer cells. In vivo experiments showed that CST1 deletion inhibited tumor growth, and led to decreased expression of estrogen receptor α (ERα) and p-AKT. In vitro experiments showed that the over-expression of CST1 led to the upregulation of ERα, and inhibition of CST1 inhibited the expression of ERα. Western blotting analyses showed that CST1 regulated the activity of the PI3K/AKT signaling pathway in breast cancer cells. We confirmed that CST1 acted as an oncogene in ER+ breast cancer by regulating the ERα/PI3K/AKT/ERα loopback pathway. Conclusion CST1 acts as an oncogene in ER+ breast cancer, and CST1 contributes to cancer development by regulating the ERα/PI3K/AKT/ERα loopback pathway in ER+ breast cancer. Our findings indicate that CST1 could be a significant therapeutic target for ER+ breast cancer patients. Our discovery should inspire further studies on the role of CST1 in cancers.
Collapse
Affiliation(s)
- Yanfang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xinyang Du
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
21
|
Zheng A, Song X, Zhang L, Zhao L, Mao X, Wei M, Jin F. Long non-coding RNA LUCAT1/miR-5582-3p/TCF7L2 axis regulates breast cancer stemness via Wnt/β-catenin pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:305. [PMID: 31300015 PMCID: PMC6626338 DOI: 10.1186/s13046-019-1315-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022]
Abstract
Background The mechanism underlying breast cancer stem cell (BCSCs) characteristics remains to be fully elucidated. Accumulating evidence implies that long noncoding RNAs (lncRNAs) play a pivotal role in regulating BCSCs stemness. Methods LncRNA LUCAT1 expression was assessed in breast cancer tissues (n = 151 cases) by in situ hybridization. Sphere-formation assay and colony formation assay were used to detect cell self-renewal and proliferation, respectively. RNA immunoprecipitation, RNA pull down and luciferase reporter assays were used to identify LUCAT1 and TCF7L2 as the direct target of miR-5582-3p. The activity of the Wnt/β-catenin pathway was analyzed by TOP/FOP-Flash reporter assays, western blot and immunohistochemistry (IHC). Results This study found LUCAT1 expression was related to tumor size (p = 0.015), lymph node metastasis (p = 0.002) and TNM staging (p < 0.001). High LUCAT1 expression indicated a shorter overall survival (p = 0.006) and disease-free survival (p = 0.011). Furthermore, LUCAT1 was more expressed in BCSCs than in breast cancer cells (BCCs) by lncRNA microarray chips. LUCAT1 up-regulation promoted proliferation of BCCs, while LUCAT1 down-regulation inhibited self-renewal of BCSCs. MiR-5582-3p was directly bound to LUCAT1 and TCF7L2 and negatively regulated their expression. LUCAT1 affected Wnt/β-catenin pathway. Conclusions LUCAT1 might be a significant biomarker to evaluate prognosis in breast cancer. LUCAT1 increased stem-like properties of BCCs and stemness of BCSCs by competitively binding miR-5582-3p with TCF7L2 and enhancing the Wnt/β-catenin pathway. The LUCAT1/miR-5582-3p/TCF7L2 axis provides insights for regulatory mechanism of stemness, and new strategies for clinical practice. Electronic supplementary material The online version of this article (10.1186/s13046-019-1315-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ang Zheng
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, No.155 Nanjing Road, Heping Districrt, Shenyang, 110001, People's Republic of China
| | - Xinyue Song
- Department of Pharmacology, School of Pharmacy, Liaoning Province Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
| | - Lin Zhang
- Department of Surgery, Hwamei Hospital, University of Chinese Academy of Sciences, (Ningbo No.2 Hospital). No.41 Xibei Road, Haishu District, NingBo, 315000, People's Republic of China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Province Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
| | - Xiaoyun Mao
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, No.155 Nanjing Road, Heping Districrt, Shenyang, 110001, People's Republic of China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Province Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
| | - Feng Jin
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, No.155 Nanjing Road, Heping Districrt, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
22
|
Hu J, Sun F, Chen W, Zhang J, Zhang T, Qi M, Feng T, Liu H, Li X, Xing Y, Xiong X, Shi B, Zhou G, Han B. BTF3 sustains cancer stem-like phenotype of prostate cancer via stabilization of BMI1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:227. [PMID: 31138311 PMCID: PMC6540453 DOI: 10.1186/s13046-019-1222-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Cancer stem-like traits contribute to prostate cancer (PCa) progression and metastasis. Deciphering the novel molecular mechanisms underlying stem-like traits may provide important insight for developing novel therapeutics. Methods Immunohistochemistry and immunofluorescence assays in prostatic tissues; gain- and loss-of-function analyses using ectopic overexpression and shRNAs in PCa cell lines; measurements of tumorigenic and stemness properties, and transcription in vitro and in vivo; transcriptional analysis in public databases. Results We identified that overexpression of BTF3 in PCa tissues and BTF3 expression highly correlates to stem-like traits. Cancer stem-like characteristics in PCa including self-renewal and metastatic potential were impaired by BTF3 loss and promoted by BTF3 overexpression. Mechanistically, BTF3 could stabilize BMI1, which is a crucial regulator of prostate stem cell self-renewal. More importantly, our data revealed that BTF3 is highly predictive of poor prognosis and may help in risk stratification of PCa patients. Conclusions BTF3 promotes PCa progression though modeling stem-like traits in PCa. BTF3 represents a stratification marker in PCa progression and outcomes. Electronic supplementary material The online version of this article (10.1186/s13046-019-1222-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan, 250012, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Shandong University, Jinan, 250012, China
| | - Mei Qi
- Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hui Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xinjun Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.,Department of Pathology, Binzhou People's Hospital, Binzhou, 256610, China
| | - Yuanxin Xing
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan, 250012, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, M5S1A8, Toronto, ON, Canada
| | - Benkang Shi
- Department of Urology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Gengyin Zhou
- Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China. .,Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China.
| |
Collapse
|
23
|
Wang M, Xue Y, Shen L, Qin P, Sang X, Tao Z, Yi J, Wang J, Liu P, Cheng H. Inhibition of SGK1 confers vulnerability to redox dysregulation in cervical cancer. Redox Biol 2019; 24:101225. [PMID: 31136958 PMCID: PMC6536746 DOI: 10.1016/j.redox.2019.101225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer has poor prognosis and patients are often diagnosed at advanced stages of the disease with limited treatment options. There is thus an urgent need for the discovery of new therapeutic strategies in cervical cancer. The activation of SGK1 has been linked to the development of various cancer types but little is known about the role of SGK1 in cervical cancer and its potential as a therapeutic target. Here we report that SGK1 is an antioxidative factor that promotes survival of cervical cancer cells. Gene set enrichment analysis of RNA-Seq data reveals a strong inverse association between SGK1 and oxidative phosphorylation. Consistently, inhibition of SGK1 via siRNA or pharmacological inhibitor GSK650394 induces ROS and cytotoxicity upon H2O2 stress. Further analysis of clinical data associates SGK1 with gene expression signatures regulated by the antioxidant transcription factor NRF2 in cervical cancer. Mechanistically, SGK1 activation exerts antioxidant effect through induction of c-JUN-dependent NRF2 expression and activity. Importantly, we find that inhibition of SGK1 confers vulnerability to melatonin as a pro-oxidant, resulting in ROS over-accumulation and consequently enhanced cell cytotoxicity. We further demonstrate that combined use of GSK650394 and melatonin yields substantial regression of cervical tumors in vivo. This work opens new perspectives on the potential of SGK1 inhibitors as sensitizing agents to enable the design of therapeutically redox-modulating strategies against cervical cancer.
Collapse
Affiliation(s)
- Min Wang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Yijue Xue
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Lanlin Shen
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Pan Qin
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiaolin Sang
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Zhiwei Tao
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Jingyan Yi
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China
| | - Jia Wang
- Department of Breast Surgery, Institute of Breast Disease, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Pixu Liu
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| | - Hailing Cheng
- Cancer Institute, The Second Hospital of Dalian Medical University, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
24
|
Lu G, Li Y, Ma Y, Lu J, Chen Y, Jiang Q, Qin Q, Zhao L, Huang Q, Luo Z, Huang S, Wei Z. Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. J Exp Clin Cancer Res 2018; 37:289. [PMID: 30482236 PMCID: PMC6260744 DOI: 10.1186/s13046-018-0945-6] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidence have illustrated the vital role of long noncoding RNAs (lncRNAs) long intergenic non-protein coding RNA 00511 (LINC00511) on the human cancer progression and tumorigenesis. However, the role of LINC00511 in breast cancer tumourigenesis is still unknown. This research puts emphasis on the function of LINC00511 on the breast cancer tumourigenesis and stemness, and investigates the in-depth mechanism. METHODS The lncRNA and RNA expression were measured using RT-PCR. Protein levels were measured using western blotting analysis. CCK-8, colony formation assays and transwell assay were performed to evaluate the cell proliferation ability and invasion. Sphere-formation assay was also performed for the stemness. Bioinformatic analysis, chromatin immunoprecipitation (ChIP) and luciferase reporter assays were carried to confirm the molecular binding. RESULTS LINC00511 was measured to be highly expressed in the breast cancer specimens and the high-expression was correlated with the poor prognosis. Functionally, the gain and loss-of-functional experiments revealed that LINC00511 promoted the proliferation, sphere-formation ability, stem factors (Oct4, Nanog, SOX2) expression and tumor growth in breast cancer cells. Mechanically, LINC00511 functioned as competing endogenous RNA (ceRNA) for miR-185-3p to positively recover E2F1 protein. Furthermore, transcription factor E2F1 bind with the promoter region of Nanog gene to promote it transcription. CONCLUSION In conclusion, our data concludes that LINC00511/miR-185-3p/E2F1/Nanog axis facilitates the breast cancer stemness and tumorigenesis, providing a vital insight for them.
Collapse
Affiliation(s)
- Guanming Lu
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yueyong Li
- The First Affiliated Hospital of Jinan university, Huangpu Road, No. 613, Guangzhou, 510630 Guangdong China
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yanfei Ma
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Jinlan Lu
- Department of Dental, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yongcheng Chen
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qiulan Jiang
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qiang Qin
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Lifeng Zhao
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qianfang Huang
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Zhizhai Luo
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Shiqing Huang
- The First Affiliated Hospital of Jinan university, Huangpu Road, No. 613, Guangzhou, 510630 Guangdong China
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
- Department of Tumor, Youjiang Medical College Affiliated Hospital, Zhongshan Second Road, No. 18, Baise, 533000 Guangxi China
| | - Zhongheng Wei
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| |
Collapse
|